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Patterns of synaptic connectivity in various regions of the brain are characterized by the
presence of synaptic motifs, defined as unidirectional and bidirectional synaptic contacts
that follow a particular configuration and link together small groups of neurons. Recent
computational work proposes that a relay network (two populations communicating via a
third, relay population of neurons) can generate precise patterns of neural synchronization.
Here, we employ two distinct models of neuronal dynamics and show that simulated
neural circuits designed in this way are caught in a global attractor of activity that prevents
neurons from modulating their response on the basis of incoming stimuli. To circumvent
the emergence of a fixed global attractor, we propose a mechanism of selective gain
inhibition that promotes flexible responses to external stimuli. We suggest that local
neuronal circuits may employ this mechanism to generate precise patterns of neural
synchronization whose transient nature delimits the occurrence of a brief stimulus.
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INTRODUCTION
The mammalian brain is composed of a complex network of
synapses that permit the flow of electrochemical activity between
populations of neurons. In the cerebral cortex, synaptic net-
works form a dense map whose cytoarchitecture has been stud-
ied extensively (Braitenberg and Schuz, 1998). Several factors
influence the probability of local synaptic connections in cor-
tex, including physical distance (Song et al., 2005), functional
domains (sets of neurons that show similar response properties)
(Mountcastle, 1997), and selective connectivity amongst similar
cell types (Stepanyants et al., 2004). Another characteristic feature
of cortical networks is the presence of synaptic motifs, defined as
triplets (or, more generally, n-tuplets) of neurons whose synap-
tic pattern follows a particular configuration (Sporns and Kotter,
2004; Song et al., 2005; Roxin et al., 2008). These motifs provide
the building blocks of connectivity at a given spatial scale, and
have been explored in various contexts outside of brain connec-
tivity, including gene regulation and other biological and artificial
networks (Milo et al., 2004).

Motif configurations have been studied in the context of both
local cortical networks in vitro (Song et al., 2005) and in the
structural connectivity of macaque and cat cortex (Sporns and
Kotter, 2004). In all instances, a subset of motifs reoccurs with
higher-than-chance prevalence, suggesting a functional role in
cortical information processing (Thivierge and Marcus, 2007).
Simulated networks of neurons whose excitatory synapses fol-
low a “relay” motif (Figure 1A)—the most frequent motif in
primate visual cortex—exhibit synchronization with near-zero
time lag (Traub et al., 1996; Vicente et al., 2008). This form
of activity is reported in a spectrum of experiments includ-
ing retinal ganglion cell recordings (Ackert et al., 2006), in
cells of the lateral geniculate nucleus (Alonso et al., 1996),
and in the electroreceptors of the weakly electric fish (Doiron
et al., 2003). Zero-lag synchronization emerges because of the

common input provided by the relay node to the two other
nodes.

While computer simulations of a relay network suggest a
substrate for the emergence of synchronization between neu-
rons, these networks are limited in the scope of their behavior,
and typically follow a limit cycle whose period is determined
by the intrinsic properties of the model (Coombes et al., 2006;
Kopelowitz et al., 2012; Viriyopase et al., 2012). This limit cycle
has been shown to generalize to a large class of neuronal models
that follow a relay motif (Grossberg, 1978). While cortical record-
ings show evidence of limit-cycle oscillations (Rodriguez et al.,
1999), this behavior is typically transient in non-pathological
states. Brain oscillations are usually restricted to short time peri-
ods, and remain coherent for only a limited number of cycles
(Fries, 2005). Furthermore, transient neuronal responses them-
selves carry stimulus-relevant information in visual (Ackert et al.,
2006) and olfactory (Mazor and Laurent, 2005; Geffen et al.,
2009) processing. The question thus arises of how to gener-
ate transient, yet precise synchronization with connectivity that
follows a relay motif, resisting the propensity of this motif to
generate ongoing synchrony in a limit cycle. This question has
received scant attention, despite many studies examining the
impact of connectivity on simulated brain dynamics (Schuster
et al., 1979; Cohen and Grossberg, 1983; Sporns and Kotter, 2004;
Coombes et al., 2006; Thivierge and Marcus, 2007; Vicente et al.,
2008; Goldman, 2009; Ostojic et al., 2009).

Here, we begin by examining neuronal activity in a simplified
mean-field model that allows us to visualize global network activ-
ity using a phase plane plot, a graphical display of how nodes
interact to produce patterns of activity. This model highlights
the effect of key parameters in generating limit cycle activity,
multistability, and stimulus encoding. We then turn to a sec-
ond, more detailed model based on integrate-and-fire neurons, to
show conditions under which a relay network leads to a strict limit
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FIGURE 1 | Limit cycle activity in a simplified relay network. (A)

Illustration of a relay network, where each node is modeled by a
Wilson–Cowan equation (left panel), and generates periodic activity over
time (right panel). The relay node sends/receives activation to/from the two
outer nodes. (B) 3D phase-plane plots show activity at all three nodes of
the Wilson–Cowan model (axis color is associated with the corresponding
population). Each plot represents activity over a short timeframe. Once the
trajectory has completed a full cycle (at 50 ms), it loops back onto itself and
repeats the process.

cycle, thus preventing the encoding of incoming stimuli. Finally,
we describe a mechanism of selective gain inhibition (Vogels
and Abbott, 2009) that promotes stimuli encoding by breaking
up the functional interactions in relay networks. These results
carry important functional implications on how connectivity
constrains patterns of neuronal activity in synaptically-coupled
networks.

MATERIALS AND METHODS
WILSON–COWAN MODEL
Our starting point is a simplified population model where the
fundamental unit is a set of coupled noise-free Wilson–Cowan
equations (Wilson and Cowan, 1972):

ε
dx

dt
= −x + θ

(−wxτ + wyτ + wzτ + I
)

ε
dy

dt
= −y + θ

(
αwxτ − wyτ + I

)
(1)

ε
dz

dt
= −z + θ

(
αwxτ − wzτ + I

)
,

where x, y, and z each represent the mean firing rate of a local
population of neurons, w is a weighted connection, I is a constant
input stimulus (set to zero by default), α is a free parameter (set
to 1.0 by default), θ is a sigmoid function, θ(x) = 1/

(
1 + e−x

)
,

ε > 0 is a rate parameter that governs the speed at which the
firing rate changes, and τ is a fixed synaptic transmission delay.
Unless otherwise stated, connections are set to w = 103, lead-
ing to excitatory connections between populations and inhibitory
self-connections. For illustration purposes only (and bearing in
mind the limited biological correspondence of this simplified
account), we draw an equivalence of 1 time-step = 0.1 ms of

simulated activity. Unless otherwise stated, we introduce a delay
of τ = 1.5 ms in synaptic transmission from one population to
another. We employ an Euler method (integration step of 0.1) for
the integration of Equation 1.

POPULATIONS OF LEAKY INTEGRATE-AND-FIRE NEURONS
In addition to the above mean-field model, we considered a net-
work of integrate-and-fire neurons whose membrane potential is
described by

cm
dV

dt
= (

Vrest − V
) + gex

(
Eex − V

) −ginh
(
Einh+ V

)
(2)

+ Isyn + R
(
Iext + Itonic

)
,

where Vrest is the resting membrane potential, gex and ginh are
synaptic conductances of excitation and inhibition, Eex and Einh

are the reversal potentials of excitation and inhibition, R is a unit-
less scalar gain, Iext is an external current, Itonic is a tonic current,
and cm is the membrane capacitance. The synaptic input Isyn for
a neuron i is given by

Isyn,i =
N∑

j = 1

wij Kj, (3)

where wij is a synaptic weight from neuron j to neuron i, and Kj is
the excitatory postsynaptic membrane potential of a neuron j:

Kj = V0

S∑
s = 1

exp

(
ts − t

τfall

)
− exp

(
ts − t

τrise

)
, (4)

where s = 1,..,S indexes spike times and V0 is a scaling factor.
The rise and fall times of the postsynaptic membrane potential
are given by τrise and τfall, respectively. A spike is triggered when
the membrane potential (Equation 2) reaches its firing threshold
from below. At that point, V is held at 40 mV for 1 ms, then reset
to −70 mV for an absolute refractory period lasting 3 ms. In all
numerical simulations, we imposed a fixed time delay on synaptic
transmission (see parametric values below).

Some of the above model’s parameters were designed to vary
across the population of simulated neurons (Thivierge and Cisek,
2008). This was achieved by randomly drawing parametric val-
ues from a Gaussian distribution with σ = 0.33 times the mean.
Means for these parameters were as follows: gex (0.8 nS), ginh

(−1.5 nS), Eex (0 mV), Einh (−80 mV), τrise(3 ms), τfall (5 ms), fir-
ing threshold (−55 mV), resting potential (Vrest = −60 mV) and
synaptic delays (3 ms). Other parameters were constant across the
entire population of neurons: Itonic (3.5 mV), cm (0.02), R (10),
and V0 (0.09).

Synaptic connectivity (wij) was configured to produce three
distinct populations of neurons (with a total of 10,000 neu-
rons per population), characterized by strong within-population
interactions, and weaker between-population interactions. Both
within- and between- population weights were drawn from a
Gaussian distribution with mean of 100 nS (or −100 nS in the
case of inhibitory neurons) and standard deviation of 0.33 times
the mean. Twenty percent of connections were inhibitory. These
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connections were chosen randomly amongst all potential connec-
tions. Only a portion of all possible connections were present:
the probability of a within-population connection between pairs
of neurons was set to 0.9, while the probability of a between-
population connection was set to 0.2. A cartoon illustration of
three regions of neurons where between-population connections
reflect a relay motif is shown in Figure 1A. Three populations
of neurons are labeled by different colors, and arrows represent
between-population connections.

RESULTS
NETWORK CONNECTIVITY AND MEAN-FIELD ACTIVITY
In order to investigate limit cycle activity in interconnected
networks, we performed simplified simulations using a Wilson–
Cowan population model (Equation 1). Activity at each node of
the network was approximated by a single equation that describes
mean population behavior (Figure 1A, right). We simulated a
relay network for 100 s, and displayed the resulting activity on
a phase plane plot (Figure 1B). This plot relates all three nodes
of the network at time-step t vs. t + 1, showing a trajectory
of neuronal activity. A limit cycle on a phase plane is char-
acterized by a closed loop that repeats itself by following the
same trajectory over and over again. While these simulations
are highly abstracted, and represent the Wilson–Cowan equation
of Equation 1 for only a specific set of parameters and initial
conditions, the resulting dynamics provide a clear illustration
of the influence of network connectivity on ongoing dynam-
ics, and are in line with previous work relating relay networks
with the emergence of limit cycle activity (Coombes et al., 2006;
Kopelowitz et al., 2012; Viriyopase et al., 2012). Zero-lag synchro-
nization arises here because of bidirectional connections in the
relay network, allowing two nodes (in blue and red) to coordi-
nate their activity through a third node (in black) that serves as
intermediary. In this way, zero-lag synchronization arises despite
the absence of direct connections between the blue and red
nodes.

In order to weaken (or remove) the limit cycle resulting from a
relay network, it suffices to eliminate the influence of the relay
node on the other two populations of the model (Figure 2A,
left). This is done by setting α = 0 (Equation 1). In this sce-
nario, connections are strictly feedforward, projecting onto the
relay node without feedback. With this configuration, activity in
two of the nodes (red and blue traces, Figure 2A, right) shows
a periodic cycle; the third node (black trace, Figure 2A, right),
however, shows no repeating pattern in terms of amplitude, even
over extended periods of time. If we considered only the activ-
ity of the latter node, we might be led to conclude that the
activity at that node is best described by random amplitude
fluctuations. However, displaying the activity of the model in
a phase plane reveals a hidden structure: while neuronal activ-
ity does not display a simple closed loop, it is constrained to
a limited portion of the total space (Figure 2B). The activity
of the model never repeats itself exactly over time, but follows
an “orbit” that forms a well-defined pattern in the phase plane
plot. Note that one can also change the input I in Equation 1 to
bias the system out of a limit cycle (see Linear Stability Analysis
below).

FIGURE 2 | Activity becomes unstable in a relay network with no

feedback connections. (A) Left: illustration of a three-node network where
connections are strictly feedforward (connections in gray are set to zero,
i.e., α = 0 in Equation 1). Right: pattern of activity obtained for each of the
three nodes in (A) over time. (B) Phase-plane of activity where nodes in (A)

are simulated with a Wilson–Cowan model. (C) Duration (in ms) of stable
cycles in a relay network with both feedback and feedforward connections
between nodes. Each dot shows initial conditions for the relay node and
the two outer nodes.

To evaluate the stability of limit cycle activity in relay networks,
we let An(t) reflect the activity of a given node n at time-step t, and
sought values of d for which

An(t) = An(t + kd) + ε (5)

where ε was set to four orders of magnitude below the resolution
of the model (ε = 10−5 μA) and k is an arbitrary constant integer.
If a solution to d exists, the system is deemed periodic, and the
value of d determines the duration of the period. While the exact
value of this duration was dependent upon the initial conditions
of the system, convergence to a limit cycle was observed across a
range of starting points for A1, A2, and A3 (Figure 2C). This result
shows that a relay network consistently leads to a limit cycle, with
the length of the cycle dependent upon the initial conditions of
the system. The finding that the length of the limit cycle depends
upon initial conditions of the model is consistent with the idea
of multistability in models of neuronal activity (Foss et al., 1996).
Accordingly, a range of stable solutions exist, and each solution
can be reached by activating the model in a particular way.

We repeated the above analysis for a network with feedforward
connectivity (Figure 2A, setting α = 0 in Equation 1) and found
no solution to d across any configuration of initial conditions.
A more formal analysis of stability and of the origins of chaotic
behavior in relay and feedforward networks is presented below.

Two parameters of the Wilson–Cowan model bear a strong
influence on its activity. The first of these parameters is the trans-
mission delay between nodes (the amount of time elapsed before
the activity at a given node influences the activity at another
node). Shorter delays (below 78 ms) did not produce limit cycle
activity (i.e., no solution to Equation 5 was found); above that
value, changes in the value of delays did not markedly alter the
shape of the limit cycle (Figure 3A). In a strictly feedforward
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network, a similar result was found: short delays (e.g., 10 ms)
were not sufficient to generate trajectories in the phase plane plot
(Figure 3B).

A second parameter playing a key role in network activity
is the strength of the connection weights between populations.
Low (w = 102) and high (w = 103) weights between populations
yielded markedly different shapes of attractors (Figure 4). Of par-
ticular interest, a feedforward network generated a limit cycle
when connection weights were low (e.g., w = 102). In this case,
the red and blue nodes oscillate and transmit that oscillation in a
weak form to the black node, which then also oscillates. Together,
these results show that both transmission delays and weight mag-
nitudes influence the production of attractors in the activity of
the Wilson–Cowan model.

To further explore the route that goes from a limit cycle to a
more complex form of activity, we examined the order parameter
α that modulates the influence of feedback connections from
the relay node (see Equation 1). With a value of α = 0.2 and
greater, feedback connections are strong enough to produce a
limit cycle behavior; below that value, however, weaker feedback
results in more complex forms of activity (i.e., where no solution
to Equation 5 was found) (Figure 5).

Next, we examined the response of a Wilson–Cowan model
to a constant input injected into all three nodes. In different
simulations, each lasting 100 s, we varied the intensity of input
(from I = 0,. . . ,104). When connectivity followed a relay net-
work, activity in the network increased in response to inputs
ranging from I = 0 to I = 102, then saturated from I = 102 to

FIGURE 3 | Influence of transmission delay on network activity. (A; left
panel) Illustration of a relay network with both feedforward and feedback
connections. (right panel) Phase-plane plots of activity simulated with a

Wilson–Cowan model. Limit cycle activity emerges as a sharp transition
between a delay of 78 ms and a delay of 79 ms. (B; left panel) Feedforward
network. (right panel) Phase plane plots of activity.

FIGURE 4 | Influence of connection strength on the activity of a relay network. (A) Phase-plane plot of activity in a relay network where all connections
had low (w = 100) or high (w = 1000) values. (B) Same as (A) but with a strictly feedforward network.
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FIGURE 5 | Transition to limit cycle activity. (A) By adjusting a single
parameter α in the model (Equation 1), we can alter the strength of
connections in red, generating either a feedforward network (when α = 0), or
a relay network (when α > 0). (B) By setting the value of α to either 0, 0.1,

0.2, or 0.3 in different simulations, we found that a limit cycle emerges
around a value of α = 0.2, and is maintained for higher values of this
parameter. Below a value of 0.2, the network generates a more complex
attractor.

I = 104 (Figure 6A). This result was found with both high (w =
103) and low (w = 102) connection strength. We compared these
results with those obtained when injecting input into a network
with feedforward connectivity. In this case, activity monotonically
increased in response to inputs from I = 0 to I = 103, a broader
range than that obtained with a relay network (Figure 6B). Upon
close inspection, the difference in responses between the relay
and feedforward networks is largely explained by the fact that
the feedforward network exhibits lower activation under weak
input (i.e., mean activation is low when I is small). To further
probe the effect of input on network dynamics, we examined
phase plane plots of activity, as described above. In relay net-
works, for all values of input tested, activity consistently yielded
a limit cycle (i.e., where a solution to Equation 5 could be
found) (Figure 6C). By contrast, in feedforward networks, activ-
ity yielded different patterns depending on the intensity of input.
With weak input (I < 10), activity followed no repeating trajec-
tory (Figure 6D); however, as the intensity of input increased,
network activity settled into a limit cycle attractor. In sum, a
strictly feedforward network led to a greater dynamical range of
responses than a relay network; in addition, a feedforward net-
work resulted in a different attractor depending on the strength
of input, whereas a relay network always resulted in a limit cycle
attractor.

In a final series of simulations, we considered a scenario
where a relay network is embedded in a larger network of
Wilson–Cowan nodes. We began by generating a sparse ran-
domly connected network of 1000 nodes, where one node had
a 1% probability of being connected to any given node in the
network. Then, we selected three nodes at random and forced
their connectivity to follow a relay network (Figure 7A). All con-
nection weights, both within the relay network and outside of
it, were set to w = 103 if a connection was present, and w = 0
otherwise (self-connections were set to w = −103). Examples of
activity generated when a relay network was embedded in a larger

network are shown in Figure 7B. The resulting pattern of activ-
ity can be described as a “noisy” limit cycle, where perturbations
coming from activity in the surrounding network made the tra-
jectory of the limit cycle deviate from its path. Here, embedding
a relay network in a larger network did not result in a fun-
damentally different pattern of activity, but rather a perturbed
version of the original pattern obtained when the relay network
was simulated as a stand-alone network. Of course, increasing
the density of connections within the larger network would lead
to more pronounced perturbations, yet would result in a less
plausible scenario from the point of view of cortical connec-
tivity. Excitatory cortical cells receive only sparse afferents from
other excitatory cells. The probability of contact between two
neocortical excitatory cells that are 0.2–0.3 mm apart is esti-
mated to be p < 0.1, and between two such cells that are more
than 1 mm from each other, p < 0.01 (Braitenberg and Schuz,
1998; Song et al., 2005). Because nodes in the Wilson–Cowan
are aimed at simulating populations of neurons rather than indi-
vidual synaptic contacts, we rely on the latter probability as a
point of comparison. Our simulations of three-node relay net-
works embedded in larger random networks show that patterns of
activity are robust to the influence of ongoing activity generated
from the surrounding network under reasonable conditions of
connectivity.

LINEAR STABILITY ANALYSIS
The above simulations show that relay networks are prone to
oscillations that are caught in a limit cycle, while feedforward
networks generate more complex forms of activity that do not
oscillate in a strict manner. Here, we derive a linear stability
analysis that yields insight into the propensity of a relay net-
work to oscillate compared to a feedforward network. We con-
sider the three node (x,y,z) model of Equation 1, where outer
nodes y and z (red and blue nodes, Figure 1A) project to a
relay node x (black node in Figure 1A) with connection weight
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FIGURE 6 | The response of a relay network to input depends on

connectivity. (A; left) Illustration of a relay network with feedback connections.
(right) In a relay network, mean activation increases monotonically with the
strength of input, but saturates for values of input greater than 102. Black and
blue lines represent nodes of the network in (A) (activation of the red node
overlaps with that of the blue node). Solid lines, weights of w = 1000. Dashed

lines, weights of w = 100. (B; left) Network with strictly feedforward
connections. (right) In a feedforward network, mean activity increases in
response to input, and does not saturate until the strength of input reaches 103.
(C) In a relay network, activity follows a limit cycle regardless of the strength of
input. (D) In a feedforward network, activity follows a limit cycle for stronger
input (102) but not for weaker input (100).

w > 0. Likewise, node x projects back to nodes y and z, but with
a connection strength αw. Here α is an adjustable parameter
between 0 and 1; when α = 1, the three-node system embodies
a relay network, while for α = 0 it represents a feedforward net-
work. This formulation enables us to smoothly move between a
relay and feedforward network. It also enables us to investigate
all system parameters, combinations of parameters, and initial
conditions.

The fixed points of the system in Equation 1, that is, the values
of (x,y,z) for which the derivatives are zero, are given by solutions

of the following non-linear equations:

x∗ = θ
(−ωx∗ + ωy∗ + ωz∗ + I

)
(6a)

y∗ = θ
(
αωx∗ − ωy∗ + I

)
(6b)

z∗ = θ
(
αωx∗ − ωz∗ + I

)
. (6c)

To solve the above system, we first note that the solutions remain
invariant upon interchanging y and z. The same can be said of
the original system (Equation 1). This means that a solution
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FIGURE 7 | Relay network embedded in a broader network of

randomly interconnected nodes. (A) Cartoon illustration of a relay
network (red, blue, and black nodes) embedded in a larger network that has
random connectivity (gray nodes). The actual network that we simulated
had a total of 1000 nodes (not counting those of the relay network itself).
(B) Phase-plane plots showing the activity of a relay network. This activity
is characteristic of a limit cycle where perturbations from ongoing activity in
the surrounding network provide slight alterations to the trajectory. Three
plots show patterns of activity obtained from different probabilities of
connection between nodes in the surrounding network (1, 5, and 10%).
Each run of the model lasted 100 s at a resolution of 0.1 ms.

(x(t),y(t),z(t)) will be the same as a solution (x(t),z(t),y(t)), pro-
vided that the variables y and z have the same initial values; in
other words, y(t) tends to z(t) when time is large enough pro-
vided that y(0) = z(0). As for the fixed point, it will be such
that y∗ = z∗, that is, it will lie on the plane (x∗,y∗,y∗). Numerical
simulations indeed reveal that this is the case, and also that solu-
tions evolve to ones where y approaches z for a large range of
differences between y(0) and z(0). However, solutions where y(0)
differs significantly from z(0) can evolve such that both solutions
are the same, but maintain a fixed time lag between them. One
should note that the value of the input I determines the precise
value of the fixed point. In other words, this system admits a sim-
ple rate coding where the system settles onto a fixed point “rate”
that varies smoothly with the strength of the input. As we will
see below, as certain parameters change, this system undergoes a
“Hopf bifurcation,” or in other words a transition between a sta-
ble fixed point—corresponding to a stable constant firing rate in
the model—to stable limit cycle oscillations of the firing rate. Our
paper mainly concerns the robustness of these oscillations.

In order to investigate the dynamical properties of the system,
in particular what combinations of parameters lead to an equilib-
rium (i.e., a fixed point) or an oscillation, an important starting
point is to non-dimensionalize the equations. This will be done
here by scaling the time variable by the delay, leading to a new
continuous dimensionless time T = t/τ that is counted in the

number of delays (e.g., T = 5.677 means t = 5.677τ ). Further
defining k = ε/τ , and new variables X(T) = x(t), Y(T) = y(t),
and Z(T) = z(t), the model evolves according to:

k
dX

dT
= −X

(
T
) + θ

[ − wX
(
T − 1

) + wY
(
T − 1

)
(7a)

+ wZ
(
T − 1

) + I
]

k
dY

dT
= −Y

(
T
) + θ

[
αwX

(
T − 1

) − wY
(
T − 1

) + I
]

(7b)

k
dZ

dT
= −Z

(
T
) + θ

[
αwX

(
T − 1

) − wZ
(
T − 1

) + I
]
. (7c)

The fixed point (X∗,Y∗,Z∗) for this system is identical to that of
Equations 6a–c above, with the substitution of X,Y,Z for x,y,z.
While it is not possible to explicitly solve this transcendental
system, our numerical simulations reveal that there is only one
relevant fixed point (X∗,Y∗,Z∗). Investigating the linear stability
of this fixed point will reveal how solutions behave near this point,
and in particular, if bifurcations can occur between a stable equi-
librium and a stable oscillation. This linearization is done using a
multivariate Taylor expansion, keeping only the first order terms.
We first move the origin (0,0,0) onto the fixed point (X∗,Y∗,Z∗)
by a change of coordinates: X′ = X − X∗, Y ′ = Y − Y∗, Z′ =
Z − Z∗. The resulting linearized system is given by:

k
dX′

dT
= −X′(T

) − wAX′(T − 1
) + wAY ′(T − 1

)
(8a)

+ wAZ′(T − 1
)

k
dY ′

dT
= −Y ′(T

) + αwA′X′(T − 1
) − wA′Y ′(T − 1

)
(8b)

k
dZ′

dT
= −Z′(T

) + αwA′X′(T − 1
) − wA′Z′(T − 1

)
, (8c)

where A = dθ(g)
dg

∣∣∣
g∗ with g∗ = −wX∗ + wY∗ + wZ∗ + I, and

A′ = dθ(h)
dh

∣∣∣
h∗ with h∗ = αwX∗ − wY∗ + I. Both A and A′ are

slopes of the firing function, and act as a feedback gain. One
observation that can be made from the analysis thus far is that,
in order to examine the linear properties of either the relay or
the feedforward networks, the only important parameters are the
ratio k and the products wA and wA′.

A full analysis of this system is beyond the scope of our needs
here, but we will make a few observations. First, this system can
be simplified further by defining two new variables as the sum S
and difference D of Y ′ and Z′, S = Y ′ + Z′ and D = Y ′ − Z′. This
yields the system

k
dX′

dT
= −X′(T

) − wAX′(T − 1
) + wAS′(T − 1

)
(9a)

k
dS

dT
= −S

(
T
) − wA′S

(
T − 1

) + 2αwA′X′(T − 1
)

(9b)

k
dD

dT
= −D

(
T
) − wA′D

(
T − 1

)
. (9c)
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In the (X′,S,D) coordinates, it becomes apparent from Equation
9c that the difference between the activities of the two nodes y and
z behaves independently of the variables X′ and S; these latter two
variables, however, evolve in a coupled manner. It is known that,
since w > 0, the difference D obeys linear delayed negative feed-
back dynamics (Erneux, 2009); consequently, if either (or both)
the delay or the linear connection weight wA′ are sufficiently
large, then the stable fixed point will continuously transition into
a stable oscillation (also known as a stable limit cycle). In technical
terms, this process is termed a supercritical Hopf bifurcation.

Assuming a relay network (α = 1) and the stable fixed point
case, the activities at nodes y and z will be constant and equal
after a transient period (leading to a trivial form of zero-lag syn-
chrony). This is because D∗ = 0 implies that Y ′ and Z′ are at
their equilibrium values of 0, that is, Y = Y∗ and Z = Z∗ (recall
that Y∗ = Z∗). This implies that one can effectively study the
dynamics of the whole model by focusing on Equations 8a,b
alone.

For the feedforward network (α = 0) and the stable fixed point
case, it is clear already from Equations 8b to 8c that the behavior
of Y ′ and Z′ will be the same, up to a time shift that depends on
their initial conditions. In fact, even considering the full dynam-
ics in Equations 1a–c, it is seen that, for the feedforward network,
both variables y and z have the same rule governing their evo-
lution, but behave independently of each other. Further, y and z
are merely a source of external forcing on node x. If the param-
eters are such that y and z tend to a fixed point y∗ = z∗, then
over long periods of time node x will receive an identical constant
forcing from each of these nodes. Node z could be eliminated,
and the weight of the connection from node y doubled—node
x would not see the difference (the same holds true if replacing
y by z).

Alternately, in a feedforward network with α = 0, the parame-
ters can be such that y and z oscillate autonomously. Their sum in
Equation 1a also oscillates at the same period, and qualitatively,
the dynamics of node x amounts to a periodically-driven delay-
differential equation. The dynamics can be very rich in this case,
with chaotic solutions and/or long transients, since the unforced
system x can oscillate on its own, and this oscillation competes
with the one imposed by the sum of y and z. This is the kind of
solution we find in the feedforward network (see Figure 2A).

Coming back now to a relay network (α = 1), but this time
with an oscillation for the difference variable D in Equation 9c,
variables Y and Z will move close and away from each other peri-
odically. This case also potentially leads to a complex solution. But
for the parameters of interest in our study, the feedback from x to
nodes y and z has a stabilizing effect, in the sense that the whole
three-dimensional system usually settles on a limit cycle where all
nodes oscillate at the same frequency.

One can carry out a linear stability analysis to find the regions
of parameter space where a Hopf bifurcation occurs, using the
reduced X-S system of Equations 9a,b. One first substitutes trial
solutions x(t) = xoexp(λt) and y(t) = yoexp(λt) into Equations
9a,b, where λ = μ + iω is a complex eigenvalue (note that we
denote the angular frequency by ω, distinct from the coupling
weight w). Assuming this solution is valid for arbitrary non-
zero constant amplitudes xo and yo, and defining the effective

feedback gains β = wA and β′ = wA′, this yields the characteristic
equation

(
kλ + 1 + βe−λ

)(
kλ + 1 + β ′e−λ

) = 2αββ ′e−2λ. (10)

This equation admits an infinite number of complex conjugate
roots (i.e., values of λ) corresponding to eigenvalues for the sys-
tem of Equations 9a,b linearized around the fixed point. In order
to find the conditions where the roots migrate from the left hand
side to the right hand side of the complex plane (a characteris-
tic of a Hopf bifurcation) we set the real part of the eigenvalue to
zero: μ = 0, i.e., λ = iω in Equation 10. The resulting two equa-
tions obtained by setting both the real and imaginary parts of this
special form of Equation 10 equal to zero define a relationship
between all the parameters and the frequency ω at the onset of
oscillation.

With respect to the Hopf bifurcation, the feedforward case
(α = 0) is well-documented (Erneux, 2009). In particular, a
bifurcation occurs when increasing either the delay or β; the
higher the one is, the smaller the required value of the other in
order for the Hopf bifurcation to occur (if both parameters are
high, the system is clearly in the oscillation regime). From the
first factor on the left hand side of Equation 10, the frequency
of the zero-amplitude solution born at the bifurcation is given by

ω = √
β2 − 1/k, with β being the first root of tan[√β2 − 1/k] =

−√
β2 − 1. The same expressions but with β ′ substituted for β

apply to the second factor on the left hand side of Equation 10.
Numerically, we find that the X system starts oscillating when the
coupling strength is w ≈ 9.15 with the delay fixed at 1. At this
onset, the S system still goes to a fixed point. This is so because,
as the coupling strength w increases, the first factor acquires a
purely imaginary root before the second factor does. This situ-
ation where X oscillates but S does not is possible because of the
unidirectional coupling from S (i.e., Y and Z) to X.

In the relay case (α > 0), the analysis of the roots of Equation
10 is much more involved and beyond the scope of this paper.
Numerically, we find that even for very small values of α, choosing
w ≈ 9.15 as in the previous paragraph now yields an oscillation
in S, and a larger amplitude oscillation in X. Both the X and S
oscillations are at the same frequency, i.e., it is a global oscillation
of the whole bi-directionally coupled system. In other words, a
smaller delay or effective feedback gain A or A′ can then generate
oscillatory activity. Thus, based on the transition between a fixed
point and a limit cycle, the relay network is more prone to oscillate
when compared to the feedforward network.

In summary, our stability analysis reveals that both the
relay and feedforward networks can exhibit a Hopf bifurcation.
Transitions to the limit cycle are favored by an increase in two
parameters: the delay, or the product of the connection weight
and the slope of the firing function evaluated at the fixed point
(the parameters k and I also have an effect, but this was not
explored here). Upon increasing α we find that the network is
more prone to oscillate (c.f., Figures 1A, 2A). In the feedforward
case, when the outer nodes (red and blue nodes in Figure 2A) are
in a limit cycle regime, the third node (black node in Figure 2A)
produces complex dynamics via the interaction of its intrinsic
oscillation and the unidirectional periodic forcing from the two
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outer nodes. This system can be largely understood with only one
variable instead of three. By increasing the value of α, we transi-
tion from a feedforward to a relay network where the dynamics of
the whole system settle onto a limit cycle.

Taken together, simulations and analysis of the Wilson–Cowan
model show a key role of delays, connection strength, and relay
connectivity on the ability of the model to generate limit cycle
activity. Further, results show that a feedforward network yields a
broader range of responses to stimuli than a relay network. While
these results reveal that the elimination of feedback projections
from the relay node to the outer nodes can break the network out
of a limit cycle, it is unclear how this could be achieved in living
synaptic networks. In the next section, we explore a mechanism
by which selective inhibition of relay neurons provides a network
with the ability to escape its limit cycle and modulate its activity
in response to incoming stimuli.

A RELAY NETWORK WITH SPIKING NEURONS
We now turn to a more detailed model of neuronal activity based
on 30,000 integrate-and-fire neurons divided into three distinct
populations, resulting in a global connectivity that followed a
relay network (Figure 8A, see Materials and Methods) (Thivierge
and Cisek, 2008, 2011; Rubinov et al., 2011). Simulated activity in
this network (Figure 8B) shows the appearance of a global limit
cycle, with two of the populations (in red and blue) exhibiting
synchronization with near-zero time-lag (Vicente et al., 2008).

This pattern of activity never faded away for as long as the simu-
lation was carried out (in this case, 5 min). Extensive simulations
revealed that the emergence of a limit cycle was not sensitive
to initial conditions of the network. This result mirrors those
obtained with the mean field model described above. Notice,
however, that while the overall pattern of activity in the network
follows a limit cycle, the precise spike times of individual neurons
do not, because of intrinsic fluctuations in the model (no exter-
nal noise was added, see Equation 2). In addition, notice that not
all neurons are synchronized, and some of the neurons remain
quiescent throughout.

While precise synchronization may convey information about
the input to a neuronal circuit (Thivierge and Cisek, 2008),
we argue that a strict limit cycle imposes severe constraints on
the behavior of circuits in response to an incoming stimulus.
Consider a periodic stimulus that is delivered at a fixed square-
pulse voltage (width of 5 ms) across all neurons (Figure 9A). By
varying the inter-stimulus interval and voltage intensity, we can
examine conditions under which network activity is modulated
by the incoming stimulus. Simulated network activity was gen-
erated for 30 s and a periodic stimulus was delivered during that
entire time to all neurons. A network configured according to a
relay network (Figure 9B) exhibited only marginal modulations
in mean firing rate in relation to either the intensity (Figure 9C)
or the frequency (Figure 9D) of stimulation. This rigid behavior
is explained by the fact that a relay network is highly entrenched

FIGURE 8 | Selective gain inhibition prevents limit cycle activity. (A)

Relay network, with neurons divided into three subpopulations (shown in red,
black, and blue, see Materials and Methods). Arrows indicate the presence of
between-population connections. (B) Spike raster of spontaneous activity for
100 neurons from the relay network in (A), with gain inhibition set to its
default value (ginh = 1.5 nS). (C) Influence of gain inhibition on mean firing
rates across a whole network. Each value of the graph is obtained from a

simulation where we increased gain inhibition above its default value (1.5 nS)
by a given percentage for neurons of the population in black (A) while gain
inhibition for the other two populations was held at its default value. This
increased gain inhibition reduces the excitatory coupling from the relay
neurons (black) to other populations. (D) Spike raster for 100 neurons of relay
network from (A), with gain inhibition set to ginh = 2.25 nS (corresponding to
a 50% increase from baseline).
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FIGURE 9 | Responses to a periodic stimulus delivered to all

neurons of an integrate-and-fire network. (A) Temporal evolution of
the stimulus. All stimuli had pulses lasting 5 ms each; different stimuli
varied according to the frequency (Hz) and amplitude (μA) of these
pulses. (B) Network with a relay configuration. The network was
composed of three subpopulations of neurons, each having gain
inhibition set to ginh = 1.5 nS. (C,D) Response to external stimuli in a

relay network. We monitored mean firing rates within each population
of neurons in response to different current intensities (C) and stimulus
frequencies (D). (E) Network where one subpopulation of neurons (the
“relay neurons”) had gain inhibition set to ginh = 2.25 nS (a 50%
increase from the default value). (F,G) Responses to external stimuli in
a relay network with increased gain inhibition as shown in (E). All
simulations were run for a total of 30 s of activity. Vertical bars = SEM.

in limit cycle activity (Figure 8B); this activity cannot easily be
dislodged from this attractor by incoming stimuli. Put differently,
a system that has reached a state of global oscillation cannot easily
be affected by external perturbations (Golubitsky et al., 2006).

SELECTIVE GAIN INHIBITION
A synaptic configuration based on a relay network is highly preva-
lent in mammalian cortex (Sporns and Kotter, 2004; Song et al.,
2005), yet the above simulations show that such a network pro-
motes the emergence of a limit cycle where activity is largely
unaffected by an incoming stimulus. To reconcile these observa-
tions, one possibility is that cortical neural circuits are capable
of dynamically reconfiguring their pattern of functional interac-
tions such that an architectural substrate based on a relay network
could disengage from its strict limit cycle behavior and generate
more flexible responses to incoming stimuli.

It is unclear, however, how biological circuits may be able to
disengage from strict limit cycle activity. Under the reasoning that
relay neurons (in black, Figure 8A) are responsible for driving

zero-lag synchrony, we suggest that if we tune down the influ-
ence of that subpopulation, we may prevent the emergence of a
global attractor. There are several ways in which this could be
achieved; here, we describe one candidate mechanism based on
selective gain inhibition (Vogels and Abbott, 2009). By tuning up
the inhibitory gain (ginh, Equation 2) of relay neurons, we can
selectively reduce activity in these neurons. In turn, less activity
would flow from the relay neurons to other neurons in the model,
thus altering the global patterns of neuronal activity.

To test the idea of selective gain inhibition, we simulated
spontaneous activity in a network with a global connectivity
based on a relay network, and, in different simulations, applied
gradually increasing values of gain inhibition to relay neurons
(Figure 8C). When gain inhibition was increased by 50% from
its baseline value (from 1.5 to 2.25 nS), network activity was no
longer characterized by synchronized activity (Figure 8D com-
pared to 8B). Spontaneous activity in this regime yielded an
overall low firing rate (mean rate of 1.01 Hz, s.d. 0.44) and
followed no strict repeating pattern over time. Importantly, a

Frontiers in Neural Circuits www.frontiersin.org March 2014 | Volume 8 | Article 22 | 10

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Thivierge et al. Attractor dynamics

balance of gain inhibition was necessary: if inhibition was too
low (<50% increase from baseline), network activity remained
comparable to baseline (Figure 8C). Conversely, if gain inhibition
was too high (100% increase from baseline), activity in the relay
population vanished completely.

To examine the effect of selective gain inhibition on a network’s
response to an incoming stimulus, we began with a network
whose global connectivity follows a relay network, as described
earlier. Then, we increased gain inhibition by 50% in all of
the relay neurons (Figure 9E). In response to increasing stim-
ulus intensities, the two neuronal populations sending input to
the relay neurons modulated their mean firing rate in a near-
monotonic fashion (Figure 9F). The same two populations also
increased their firing rate in proportion to increased stimulus fre-
quency (Figure 9G). A network with increased gain inhibition
was thus able to modulate its firing rate based on an incoming
stimulus, and did not remain stuck in a persistent state of activ-
ity. Put differently, increased inhibition in this circuit resulted in
increased responsiveness to stimuli.

In follow-up simulations, we injected a network having selec-
tive gain inhibition (ginh = 2.25 nS) with a stimulus consisting
of a constant current (30 μA) lasting 2000 ms. After that time,
the stimulus was reduced to 5 μA and held constant for 2000 ms
(Figure 10A). During presentation of the first stimulus (30 μA),
activity was highly synchronized and strongly periodic. As soon
as the first stimulus ended and the second stimulus (5 μA) began,
the network became quiescent. Neurons thus produced a highly
synchronized and periodic response to a stronger stimulation,
and relatively little response to a weaker stimulation. This simula-
tion shows the capacity of a network with selective gain inhibition
to generate synchrony based on stimulus amplitude. Such tran-
sient responses would not be possible without selective gain
inhibition, given that a network configured with a relay network

follows a persistent limit cycle attractor (Figure 8B) and does not
modulate its response to incoming stimuli (Figures 9C,D).

To further examine the transient synchronization of a network
in response to a stimulus, we designed, as above, a relay network
where we increased the gain inhibition of the relay population
of neurons (Figure 8A, in black) by 50% from its baseline value
(from 1.5 to 2.25 nS). We then injected a constant stimulus of
30 μA into all neurons for a 10 s period. We computed the cross-
correlation between each pair of neurons during the stimulus
presentation:

Cij = E
{[

xi(t) − Ei
] [

xj(t) − Ej
]}

√
E
{[

xi(t) − Ei
]2

}
E
{[

xj(t) − Ej
]2

} , (11)

where xi(t) and xj(t) are the time-series of two given neurons
having means Ei and Ej, respectively. Next, we obtained a cross-
correlogram of activity by taking the mean cross-correlation
across all pairs of neurons. We found prominent zero-lag syn-
chronization (Figure 10B, leftmost panel, vertical dashed line),
as typical of activity for relay networks (Vicente et al., 2008).
Hence, selective gain inhibition did not disrupt the capacity
of a relay network to generate zero-lag synchronization. When
we repeated the above simulation with a weaker input current
(5 μA), cross-correlations no longer displayed a prominent peak
at zero time-lag as obtained with a stronger stimulation of 30 μA
(Figure 10B, middle panel). Selective gain inhibition thus pre-
vented a relay network from spontaneously generating zero-lag
synchronization.

In a final series of simulations, we injected a 10 s input of
various intensities (from 0 to 45 μA) into a relay network with
selective gain inhibition as described above. For each input inten-
sity, we computed the mean zero-lag cross-correlation across

FIGURE 10 | Transient synchronization in response to stimulation. (A)

Spike raster showing responses of 100 neurons from a relay network to a
strong external current (Iext = 30 μA, solid black line) followed by a weak
current (Iext = 5 μA, solid gray line). Gain inhibition of the relay neurons was
set to ginh = 2.25 nS (50% higher than baseline) throughout the simulation.

(B) Mean cross-correlation of the network during presentation of a strong
current (left panel) and a weak current (middle panel). Right panel: Mean
cross-correlation as a function of external current. Black and gray arrows
show a weak (Iext = 5 μA) and strong (Iext = 30 μA) current as simulated in
(A). Vertical dashed line: zero time-lag.
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all pairs of neurons. This value increased as the input intensity
was gradually amplified from 0 to 45 μA (Figure 10B, rightmost
panel, gray and black arrows), then remained stable from 30 to
45 μA. The network thus modulated its degree of zero-lag syn-
chronization in response to inputs of various current intensities,
within a given range.

Taken together, our results show that selective gain inhibition
can modulate the behavior of a relay network, such that the net-
work can generate zero-lag synchronization in response to an
incoming stimulus, yet does not remain stuck in a global attractor
dominated by a fixed limit cycle.

DISCUSSION
While there is a growing consensus that patterns of structural
connections in the brain provide the backbone for a rich reper-
toire of activity (Bullmore and Sporns, 2009), here we argue
using both simulations and mean-field analysis that a relay net-
work imposes strict constraints on the types of dynamics pro-
duced by a network. Going further, simulation results using
spiking neurons suggest that a mechanism of selective gain inhi-
bition allows a network to modulate its patterns of activity
and escape the rigid constraints imposed by synaptic connec-
tivity, providing flexible and transient responses to an incoming
stimulation.

While there are several examples of transient zero-lag synchro-
nization in the central nervous system, a prominent one is found
in the response of direction-sensitive (DS)—ON ganglion cells in
the visual system (Ackert et al., 2006). In these cells, GABAergic
inhibition forces activity to desynchronize following a transient
phase of stimulus-induced zero-lag synchronization initiated by
gap junction couplings between DS-ON and wide-field amacrine
cells. While GABAergic inhibition suppresses zero-lag synchro-
nization, it leaves intact the broad synchronization profile of
cross-correlations at non-zero time lags. An analogous behavior
was observed in our simulated spiking neurons, where selective
gain inhibition suppresses stimulus-induced zero-lag synchro-
nization (Figure 10B, leftmost panel) but leaves intact the broad
profile of cross-correlations (Figure 10B, middle panel). Zero-lag
synchronization amongst neighboring DS-ON cells is the prod-
uct of shared excitation passing exclusively through an indirect
gap junction coupling that operates through polyaxonal amacrine
cells. Similarly, in simulations of spiking neurons, zero-lag syn-
chronization emerges between two populations of neurons that
are coupled exclusively through an indirect excitatory pathway
involving a third population of neurons (Figure 8A).

The emergence of zero-lag synchronization through an indi-
rect excitatory pathway has been reported in other computational
work (Vicente et al., 2008); however, previous work did not
address the question of how a network can transiently synchro-
nize and desynchronize in response to stimulation. Using two
different models of neuronal activity, we showed that patterns of
activity in a relay network generally remain stuck in a strict limit
cycle and are highly unresponsive to external stimuli. This limita-
tion is particularly problematic given the high prevalence of relay
networks in brain regions that play a central role in the integra-
tion of polysensory information, including dorsolateral prefrontal
cortex, posterior cingulate cortex, and insula (Sporns et al., 2007).

These regions, by their anatomical location and functional role,
are expected to be highly responsive to input activation. Our sim-
ulation results provide a potential mechanism whereby a fixed
anatomical substrate based on a relay network can, through selec-
tive gain inhibition, modulate its firing rate in response to an
incoming stimulus. This mechanism is similar in essence to a
recent gating network (Vogels and Abbott, 2009) where responses
can be gated “on” by a command signal that disrupts the precise
balance of excitation and inhibition. In our case, increased gain
inhibition provides a way of breaking the fixed limit cycle attrac-
tor of a populations of neurons. In living systems, synapse-specific
gain inhibition could be achieved by homeostatic mechanisms
that dampen network reverberation, as evidenced in CA3 pyra-
midal cells (Kim and Tsien, 2008). It could also be achieved via
cholinergic modulation, which performs cell-specific targeting
and exhibits rapid response times (Ford et al., 2012; Taylor and
Smith, 2012).

Zero-lag synchronization is proposed to play a num-
ber of functional roles in neuronal information processing.
Synchronized activity may enhance the saliency of incoming
stimuli, thus controlling the flow of information transmitted to
downstream neurons. Zero-lag synchronization also provides an
exquisite mechanism for precise temporal responses to rhyth-
mic stimuli (Thivierge and Cisek, 2008, 2011), and may in
itself constitute a unique channel for information transmission.
Conceptually, a code based on synchronized action potentials
necessitates a fewer number of presynaptic neurons to gener-
ate a postsynaptic response, and therefore allows for a greater
number of input combinations than a code based on asyn-
chronous activity (Stevens, 1994). In DS-ON ganglion cells,
transient zero-lag synchronization is proposed to play a role in
movement detection (Ackert et al., 2006), where a prominent
synchronized/desynchronized response reinforces the presence of
movement along a cell’s preferred direction.

The transient synchronization of a neuronal population in
response to a stimulus is supported by a range of experiments in
cat cortex (Gray and Singer, 1989) as well as human electroen-
cephalography (Rodriguez et al., 1999). A simulated network that
generates synchronized oscillations only as long as a specific exter-
nal signal is applied—and returns to a non-synchronized state
once the signal is removed—is consistent with experiments where
oscillations are observed only during the presence of a particular
stimulation (Doiron et al., 2003; Ackert et al., 2006).

CONCLUSION AND FUTURE WORK
Taken together, our simulation results show that a variety of
factors—including patterns of synaptic connectivity, delays in
synaptic transmission, synaptic efficacies, selective gain inhi-
bition, and surrounding network activity—contribute to both
spontaneous and evoked activity in local neuronal networks.
These factors provide a panoply of constraints and degrees of
freedom that shape the landscape of behaviors that emerge from
the interaction of neurons in synaptic circuits of the brain.
Future work could extend our results by investigating how con-
nectivity schemes (e.g., allowing both excitatory and inhibitory
connections) delimit the patterns of activity produced in local
populations of neurons.

Frontiers in Neural Circuits www.frontiersin.org March 2014 | Volume 8 | Article 22 | 12

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Thivierge et al. Attractor dynamics

ACKNOWLEDGMENTS
This research was supported by grants to Jean-Philippe Thivierge
from the NAKFI Keck Future Initiatives, NSERC Discovery, and
CIHR operating funds. André Longtin was funded by an NSERC
Discovery Grant. Authors are thankful to Mikhail Rubinov for
comments on an earlier draft of the manuscript. The authors
declare no competing financial interests.

REFERENCES
Ackert, J. M., Wu, S. H., Lee, J. C., Abrams, J., Hu, E. H., Perlman, I., et al. (2006).

Light-induced changes in spike synchronization between coupled ON direction
selective ganglion cells in the mammalian retina. J. Neurosci. 26, 4206–4215. doi:
10.1523/JNEUROSCI.0496-06.2006

Alonso, J. M., Usrey, W. M., and Reid, R. C. (1996). Precisely correlated fir-
ing in cells of the lateral geniculate nucleus. Nature 383, 815–819. doi:
10.1038/383815a0

Braitenberg, V., and Schuz, A. (1998). Cortex: Statistics and Geometry of Neuronal
Connectivity. New York, NY: Springer. doi: 10.1007/978-3-662-03733-1

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical
analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.
doi: 10.1038/nrn2575

Cohen, M. A., and Grossberg, S. (1983). Absolute stability of global pattern forma-
tion and parallel memory storage by competitive neural networks. IEEE Trans.
Syst. Man Cybern. 13, 815–826. doi: 10.1109/TSMC.1983.6313075

Coombes, S., Doiron, B., Josic, K., and Shea-Brown, E. (2006). Towards blueprints
for network architecture, biophysical dynamics and signal transduction. Philos.
Trans. A Math. Phys. Eng. Sci. 364, 3301–3318. doi: 10.1098/rsta.2006.1903

Doiron, B., Chacron, M. J., Maler, L., Longtin, A., and Bastian, J. (2003). Inhibitory
feedback required for network oscillatory responses to communication but not
prey stimuli. Nature 421, 539–543. doi: 10.1038/nature01360

Erneux, T. (2009). Applied Delay Differential Equations. Berlin: Springer.
Ford, K. J., Felix, A. L., and Feller, M. B. (2012). Cellular mechanisms underlying

spatiotemporal features of cholinergic retinal waves. J. Neurosci. 32, 850–863.
doi: 10.1523/JNEUROSCI.5309-12.2012

Foss, J., Longtin, A., Mensour, B., and Milton, J. (1996). Multistability and delayed
recurrent loops. Phys. Rev. Lett. 76, 708–711. doi: 10.1103/PhysRevLett.76.708

Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communi-
cation through neuronal coherence. Trends Cogn. Sci. 9, 474–480. doi:
10.1016/j.tics.2005.08.011

Geffen, M. N., Broome, B. M., Laurent, G., and Meister, M. (2009).
Neural encoding of rapidly fluctuating odors. Neuron 61, 570–586. doi:
10.1016/j.neuron.2009.01.021

Goldman, M. S. (2009). Memory without feedback in a neural network. Neuron 61,
621–634. doi: 10.1016/j.neuron.2008.12.012

Golubitsky, M., Josic, K., and Shea-Brown, E. (2006). Winding numbers and aver-
aged frequencies in phase oscillator networks. J. Nonlinear Sci. 16, 201–231. doi:
10.1007/s00332-005-0696-3

Gray, C. M., and Singer, W. (1989). Stimulus-specific neuronal oscillations in orien-
tation columns of cat visual cortex. Proc. Natl. Acad. Sci. U.S.A. 86, 1698–1702.
doi: 10.1073/pnas.86.5.1698

Grossberg, S. (1978). Decisions, patterns, and oscillations in the dynamics of com-
petitive systems with applications to Volterra-Lotka systems. J. Theor. Biol. 73,
101–130. doi: 10.1016/0022-5193(78)90182-0

Kim, J., and Tsien, R. W. (2008). Synapse-specific adaptations to inactivity in hip-
pocampal circuits achieve homeostatic gain control while dampening network
reverberation. Neuron 58, 925–937. doi: 10.1016/j.neuron.2008.05.009

Kopelowitz, E., Abeles, M., Cohen, D., and Kanter, I. (2012). Sensitivity of global
network dynamics to local parameters versus motif structure in a cortexlike
neuronal model. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85:051902. doi:
10.1103/PhysRevE.85.051902

Mazor, O., and Laurent, G. (2005). Transient dynamics versus fixed points in
odor representations by locust antennal lobe projection neurons. Neuron 48,
661–673. doi: 10.1016/j.neuron.2005.09.032

Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I.,
et al. (2004). Superfamilies of evolved and designed networks. Science 303,
1538–1542. doi: 10.1126/science.1089167

Mountcastle, V. B. (1997). The columnar organization of the neocortex. Brain 120
(Pt 4), 701–722. doi: 10.1093/brain/120.4.701

Ostojic, S., Brunel, N., and Hakim, V. (2009). How connectivity, background activ-
ity, and synaptic properties shape the cross-correlation between spike trains.
J. Neurosci. 29, 10234–10253. doi: 10.1523/JNEUROSCI.1275-09.2009

Rodriguez, E., George, N., Lachaux, J. P., Martinerie, J., Renault, B., and Varela, F.
J. (1999). Perception’s shadow: long-distance synchronization of human brain
activity. Nature 397, 430–433. doi: 10.1038/17120

Roxin, A., Hakim, V., and Brunel, N. (2008). The statistics of repeating patterns
of cortical activity can be reproduced by a model network of stochastic binary
neurons. J. Neurosci. 28, 10734–10745. doi: 10.1523/JNEUROSCI.1016-08.2008

Rubinov, M., Sporns, O., Thivierge, J. P., and Breakspear, M. (2011).
Neurobiologically realistic determinants of self-organized criticality in net-
works of spiking neurons. PLoS Comput. Biol. 7:e1002038. doi: 10.1371/jour-
nal.pcbi.1002038

Schuster, P., Sigmund, K., and Wolff, R. (1979). Dynamical systems under con-
stant organization. III. Cooperative and competitive behariour of hypercycles.
J. Differ. Equ. 32, 357–368. doi: 10.1016/0022-0396(79)90039-1

Song, S., Sjostrom, P. J., Reigl, M., Nelson, S., and Chklovskii, D. B. (2005). Highly
nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol.
3:e68. doi: 10.1371/journal.pbio.0030068

Sporns, O., Honey, C. J., and Kotter, R. (2007). Identification and classification of
hubs in brain networks. PLoS ONE 2:e1049. doi: 10.1371/journal.pone.0001049

Sporns, O., and Kotter, R. (2004). Motifs in brain networks. PLoS Biol. 2:e369. doi:
10.1371/journal.pbio.0020369

Stepanyants, A., Tamas, G., and Chklovskii, D. B. (2004). Class-specific features of
neuronal wiring. Neuron 43, 251–259. doi: 10.1016/j.neuron.2004.06.013

Stevens, C. F. (1994). Neuronal communication. Cooperativity of unreliable neu-
rons. Curr. Biol. 4, 268–269. doi: 10.1016/S0960-9822(00)00062-2

Taylor, W. R., and Smith, R. G. (2012). The role of starburst amacrine cells in visual
signal processing. Vis. Neurosci. 29, 73–81. doi: 10.1017/S0952523811000393

Thivierge, J. P., and Cisek, P. (2008). Nonperiodic synchronization in het-
erogeneous networks of spiking neurons. J. Neurosci. 28, 7968–7978. doi:
10.1523/JNEUROSCI.0870-08.2008

Thivierge, J. P., and Cisek, P. (2011). Spiking neurons that keep the rhythm.
J. Comput. Neurosci. 30, 589–605. doi: 10.1007/s10827-010-0280-1

Thivierge, J. P., and Marcus, G. F. (2007). The topographic brain: from
neural connectivity to cognition. Trends Neurosci. 30, 251–259. doi:
10.1016/j.tins.2007.04.004

Traub, R. D., Whittington, M. A., Stanford, I. M., and Jefferys, J. G. (1996). A mech-
anism for generation of long-range synchronous fast oscillations in the cortex.
Nature 383, 621–624. doi: 10.1038/383621a0

Vicente, R., Gollo, L. L., Mirasso, C. R., Fischer, I., and Pipa, G. (2008).
Dynamical relaying can yield zero time lag neuronal synchrony despite
long conduction delays. Proc. Natl. Acad. Sci. U.S.A. 105, 17157–17162. doi:
10.1073/pnas.0809353105

Viriyopase, A., Bojak, I., Zeitler, M., and Gielen, S. (2012). When long-range zero-
lag synchronization is feasible in cortical networks. Front. Comput. Neurosci.
6:49. doi: 10.3389/fncom.2012.00049

Vogels, T. P., and Abbott, L. F. (2009). Gating multiple signals through detailed
balance of excitation and inhibition in spiking networks. Nat. Neurosci. 12,
483–491. doi: 10.1038/nn.2276

Wilson, H. R., and Cowan, J. D. (1972). Excitatory and inhibitory interac-
tions in localized populations of model neurons. Biophys. J. 12, 1–24. doi:
10.1016/S0006-3495(72)86068-5

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 08 December 2013; accepted: 02 March 2014; published online: 20 March
2014.
Citation: Thivierge J-P, Comas R and Longtin A (2014) Attractor dynamics in local
neuronal networks. Front. Neural Circuits 8:22. doi: 10.3389/fncir.2014.00022
This article was submitted to the journal Frontiers in Neural Circuits.
Copyright © 2014 Thivierge, Comas and Longtin. This is an open-access arti-
cle distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, pro-
vided the original author(s) or licensor are credited and that the original pub-
lication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Neural Circuits www.frontiersin.org March 2014 | Volume 8 | Article 22 | 13

http://dx.doi.org/10.3389/fncir.2014.00022
http://dx.doi.org/10.3389/fncir.2014.00022
http://dx.doi.org/10.3389/fncir.2014.00022
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

	Attractor dynamics in local neuronal networks
	Introduction
	Materials and Methods
	Wilson-Cowan Model
	Populations of Leaky Integrate-and-Fire Neurons

	Results
	Network Connectivity And Mean-Field Activity
	Linear Stability Analysis
	A Relay Network with Spiking Neurons
	Selective Gain Inhibition

	Discussion
	Conclusion and Future Work
	Acknowledgments
	References


