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We present a preliminary study of a thalamo-cortico-thalamic (TCT) implementation on
SpiNNaker (Spiking Neural Network architecture), a brain inspired hardware platform
designed to incorporate the inherent biological properties of parallelism, fault tolerance
and energy efficiency. These attributes make SpiNNaker an ideal platform for simulating
biologically plausible computational models. Our focus in this work is to design a
TCT framework that can be simulated on SpiNNaker to mimic dynamical behavior
similar to Electroencephalogram (EEG) time and power-spectra signatures in sleep-wake
transition. The scale of the model is minimized for simplicity in this proof-of-concept
study; thus the total number of spiking neurons is ≈1000 and represents a “mini-
column” of the thalamocortical tissue. All data on model structure, synaptic layout
and parameters is inspired from previous studies and abstracted at a level that is
appropriate to the aims of the current study as well as computationally suitable for
model simulation on a small 4-chip SpiNNaker system. The initial results from selective
deletion of synaptic connectivity parameters in the model show similarity with EEG
power spectra characteristics of sleep and wakefulness. These observations provide a
positive perspective and a basis for future implementation of a very large scale biologically
plausible model of thalamo-cortico-thalamic interactivity—the essential brain circuit that
regulates the biological sleep-wake cycle and associated EEG rhythms.
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1. INTRODUCTION
Computational models are being adopted at an increasing rate as
a tool to investigate the cellular mechanisms of brain rhythms
in both normal and pathological conditions (Aradi and Érdi,
2006; Breakspear et al., 2010; Terry et al., 2011). While com-
putational resource is an obvious constraint in such endeavors,
two further significant obstacles in mimicking the biology are
parallelizing neuronal activity, and “de-syncing” the population
activity from the master-clock of the computer. Our longer-term
interest is in mimicking electroencephalogram (EEG) signatures
of the sleep-wake cycle, by simulating biologically plausible com-
putational models using biologically plausible computational
techniques. In recent years the University of Manchester has been
developing SpiNNaker (Spiking Neural Network architecture), a
bespoke massively parallel machine to mimic the inherent par-
allelism of neuronal activity in real time (Furber et al., 2013).
The brain-inspired parallel and asynchronous architecture of
SpiNNaker permits biologically plausible computation of brain
models—a feature that would otherwise rely on heavyweight
software and its compilation on conventional Von-Neumann
architectures, and yet achieve minimal parallelism. The study
presented here is an initial attempt to design and implement

a thalamo-cortico-thalamic (TCT) circuitry on the intrinsically
parallel SpiNNaker, which can then be scaled up to mimic bio-
logically plausible EEG signatures of the sleep-wake cycle. The
purpose of this work is to demonstrate, as a proof of concept, that
such a model can be implemented on SpiNNaker, and to inves-
tigate the benefits and drawbacks of this approach. It is not our
intention here to produce a model which fully and correctly repli-
cates all brain rhythms measured by EEG in regard to the TCT
circuitry; capturing the complex dynamics involved in that system
is beyond the scope of the current work.

Neuronal dynamics recorded in EEG, often termed brain
rhythms (Buzsáki, 2006), are an inexpensive and popular
means of correlating brain activity with its various functional
states (Wright and Liley, 1996; Nunez, 2000). The feed-forward
and feed-back circuitry between the thalamus and the cortex has
long since been known to play a key role in modulating brain
rhythms associated with the various sleep stages as well as the
sleep-wake transition (Steriade et al., 1993; Steriade, 2003, 2005;
Crunelli et al., 2011). Computational models of the TCT brain
circuit have therefore been the basis for studying neuronal mech-
anisms in sleep (Lumer et al., 1997a; Hill and Tononi, 2005; Traub
et al., 2005; Bojak et al., 2011; Olbrich et al., 2011; Robinson
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et al., 2011) as well as in conditions where the EEG is qualita-
tively similar to certain sleep stages such as epilepsy (Breakspear
et al., 2006) and under anaesthesia (Hutt and Longtin, 2010).
While all such models refer to a similar holistic structure of the
thalamocortical circuit, the models’ internal structure, simulation
platforms and parameterizations are significantly diverse. Thus,
a fundamental aspect in computational modeling of the brain is
the level of abstraction; the level of biological detail incorporated
in a model needs to be appropriate to the problem at hand. For
example, Olbrich et al. (2011) has attempted a multi-scale (time)
model architecture in sleep, while (Bojak et al., 2011) has stressed
on multi-modal models. On the other hand, (Hill and Tononi,
2005) have based their model on that of Lumer et al. (1997a,b)
and have looked into a multi-columnar model of the thalamocor-
tical circuit to mimic brain rhythms of sleep and wakefulness as
well as to understand memory consolidation during sleep (Nere
et al., 2013).

Another key aspect is the source of experimental data for both
model structure and parameterizations. Comprehensive data on
synaptic connectivity in the mammalian visual cortex is avail-
able in the works of Binzegger et al. (2004); Douglas and Martin
(2004) and Neymotin et al. (2011) with some estimation for
parameters which were not available from physiological studies.
Further, extensive physiological data on rodent and other mam-
malian lateral geniculate nucleus (LGN: the thalamic nucleus in
the visual pathway) is available in Horn et al. (2000); Sherman and
Guillery (2001); and Jones (2007). Based on these thalamic and
cortical physiological datasets as well as DTI (Diffusion Tensor
Imaging) data obtained from two human samples, Izhikevich
and Edelmann (2008a) have presented a comprehensive TCT cir-
cuit using minimal parameter spiking neural models (Izhikevich,
2003) to mimic spiking population behavior. The SpiNNaker-
based TCT model presented here is at the level of abstraction
of the model in Izhikevich (2003), and has two modules viz. a
thalamic module and a cortical module. The design and layout
of the thalamic module is as in Bhattacharya et al. (2011) and is
based on physiological data obtained from Sherman (2006). The
cortical module layout and parameterizations are based on a pre-
vious implementation on SpiNNaker (Sharp et al., 2012) that was
designed to test fast, stable and power-efficient performance on
SpiNNaker when compared with other available platforms. The
detailed modeling approach and parameterizations is covered in
section 2. To the best of our knowledge, we are not aware of any
prior instance of mimicking EEG signals using the SpiNNaker
machine; similarly, this is the first instance of implementation of
a TCT model within the SpiNNaker framework.

In section 3, we present the preliminary results from this study
based on our observation of the membrane potential time-series
and power spectra of the cell populations. Specifically, the out-
put of the excitatory cells of the thalamus and the cortical layer
4 are studied as a part of the first set of results from the TCT
model simulation on SpiNNaker. An average of three trial runs
of the model with all parameters at their initial values showed the
membrane potential of both cell populations as noisy time series
outputs with the dominant frequency of oscillation within the
alpha band (8–12 Hz), a characteristic of quiet wakefulness. Next,
we performed preliminary engineering of the model parameters

to induce a sleep-wake transitional behavior in the model. The
particular case we examined, which is outlined in more detail
in section 3, was that of disconnecting the thalamic reticular
nucleus (TRN) cell population in the model. This was designed
to alter the thalamo-cortico-thalamic loop, which is responsi-
ble for the maintenance of the quiet wakefulness alpha rhythm,
and simulate the situation during sleep in which cortical areas
become functionally disconnected (Massimini et al., 2005). It
thus provides a good test of the neuronal dynamics of the model
in a situation in which the real dynamics are reasonably well
understood. In previous (Bhattacharya, 2013; Bhattacharya et al.,
2013) as well as ongoing (unpublished) work, lumped parame-
ter models of neuronal population of the thalamocortical circuits
[also known as neural mass models (Marreiros et al., 2009)]
have shown dependence on the TRN connectivity for mimick-
ing qualitative dynamics as seen in EEG patterns of sleep and
quiet wakefulness. Our results showed some important similar-
ities with real sleep EEG time series data (also shown) when the
TRN population is disconnected. However, significant differences
with sleep power spectral data have also been observed; this sug-
gests the model requires further tuning before it can fully capture
sleep/wake thalamocortical dynamics.

It is important to note that the purpose of the work presented
here is to design a working model structure of the TCT circuit on
SpiNNaker such that the model dynamics show some similarity to
known dynamics of sleep and wake EEG in terms of characteristic
spectral power; the intention is not to present a fully tuned model
or a detailed exploration of those dynamics. A discussion on the
motivation of the current work, the drawbacks, the implications
of the initial results presented and future work plans is provided
in section 4.

2. MATERIALS AND METHODS
In this section, we first give a brief background of the SpiNNaker
architecture, followed by a detailed description of the TCT model
and modeling methods adopted in this work. The simulation
methods, and methods for observing results on the SpiNNaker
platform are also outlined.

2.1. THE SpiNNaker MACHINE AND TOOL CHAIN
2.1.1. The architecture
The SpiNNaker project, led by the University of Manchester and
its partners in academia and industry, aims to create a biologically
inspired high performance computing architecture for the simu-
lation of large real-time Spiking Neural Networks (Furber et al.,
2006, 2013). It incorporates characteristics of fault-tolerance and
power frugality, similar to those of the biological brain, whose
low-power and resilient performance is achieved through exten-
sive parallel computation.

A SpiNNaker system is formed by the interconnection of
SpiNNaker chips and boards (Figure 1), each chip being a cus-
tom Application Specific Integrated Circuit (ASIC) containing
18 ARM processors—the likes of which are found in mobile
telephones. Each processor is low-power in operation, but fully
programmable, permitting each to execute arbitrary neural and
synaptic models. Spikes emitted by a simulated neuron in oper-
ation are conveyed as short packets to efferent neurons using
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FIGURE 1 | A 48 chip SpiNNaker board (228 × 233 mm), the building

block from which larger systems will be constructed.

a bespoke network on chip, and further afield to processors
on neighboring chips using a network of connections which
resiliently interconnect the chips to form the SpiNNaker machine.

The maximum number of chips in a SpiNNaker configura-
tion is in excess of 65,000, and with 18 processors on each chip
a machine can exceed one million processors. Even with the
medium performance ARM processors used it is possible to sim-
ulate multiple neurons on each processor in real time, depending
on their model complexity, potentially delivering many hundreds
of millions of point-type neurons in a full deployment (Furber
et al., 2006).

2.1.2. Programming SpiNNaker
The selection of neuron and synaptic models and their intercon-
nectivity is achieved by the user through a high-level modeling
language. This flexible approach becomes increasingly important
as networks grow in size, and it becomes impractical to spec-
ify each individual neuron and its connections—the network
description is therefore made through multiple levels of hierar-
chy. The primary language used in the specification of Spiking
Neural Networks to operate on SpiNNaker is PyNN (Davison
et al., 2009), which is a popular description specification.
Support of the PyNN library is enabled by a software tool-chain
coined “PACMAN,” which has been developed to take this high
level description of the network and perform Partitioning And
Configuration MANagement (Galluppi et al., 2012). For example
a 10,000 neuron network is analyzed by PACMAN, and parti-
tioned into chunks which are manageable for a single processor
using the neuron model specified. If each processor is able to han-
dle 100 neurons of that type, then the partition size necessitates
100 processors and the tools take care of this partitioning and
the necessary inter-connectivity. The next stage involves allocat-
ing the physical processors to this task based on the topology of

the target SpiNNaker machine, the loading of data to it, and the
execution and control of the simulation.

2.1.3. Results recovery
There are two main methods of accessing the results on
SpiNNaker. Firstly PyNN may be used to direct the simulation
to make recordings of parameters periodically, for example neu-
ron membrane potentials over time; and after the simulation this
information may be recovered, processed and plotted. Secondly,
it is possible to recover data from the simulation whilst it is “in-
flight”—also requested through a PyNN parameter, for example
to direct spike outputs to a “dummy” efferent neuron whose role
is to collect and distribute spikes to an external receiver. This sec-
ond method becomes particularly useful in simulations which
run over an extended period, for example on a robot where a
control loop is to be closed (Denk et al., 2013), or to simulate mul-
tiple channels of activity simultaneously, and to this end real-time
visualization software (VisRT) has been developed (Patterson
et al., 2012). In this study we make use of both methods, data is
recovered post-simulation into MATLAB for analysis, and VisRT
is used to gain an insight into the firing rates and rhythms seen in
the simulations for EEG-type channel plots.

2.2. THE THALAMO-CORTICO-THALAMIC MODEL
The TCT model has two modules: cortical and thalamic; all infor-
mation on the model parameters are provided in Tables 2, 3.
The thalamic module consists of the thalamocortical relay (TCR)
cells, the inhibitory interneurons (IN) and the thalamic reticu-
lar nucleus (TRN). The synaptic connectivity layout and values
of the thalamic module cell populations are sourced from Horn
et al. (2000); Sherman (2006); and Jones (2007) and are as in our
previous work (Bhattacharya et al., 2011). The cortical module
cell populations are as described previously in Sharp et al. (2012)
and are further subdivided into layers 2–6. Layer 1 is ignored
in keeping with standard practice due to sparsity of neurons in
this layer. Similarly, layers 2 and 3 are treated as a single layer
in keeping with models based on physiology of the mammalian
visual cortex (Binzegger et al., 2009). Each cortical layer consists
of pyramidal (PY), basket (B) and non-basket (NB) cell popula-
tions. Layer 4 has an additional cell population of spiny-stellate
(SS) cells.

The number of neurons in each cell population of the thalamic
and cortical modules are provided in Tables 3B,C, respectively.
The data on the proportion of cells of each type in the corti-
cal layers are scaled versions of Izhikevich and Edelmann (2008a)
and Sharp et al. (2012), which in turn are inspired by data from
visual cortex of the cat as provided in Binzegger et al. (2004) and
Douglas and Martin (2004). Based on literature reporting phys-
iological data, it is estimated in Hill and Tononi (2005) that a
thalamocortical column containing 94 (i.e., ≈100) neurons cover
a surface area of 1454 μm2. The total number of cells in the TCT
model is 1090 (i.e., ≈1000) and may therefore be thought to rep-
resent a column of interconnected neurons covering ≈0.15 mm2

of thalamocortical tissue.
Each synaptic connectivity parameter between two cell pop-

ulations has two attributes: (1) a probability of connection
P indicating the absence of all-to-all intra- and inter-module
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connectivity; and (2) the weight of the synaptic connectivity C,
expressed as a percentage of the total number of synapses made
on an individual synaptic node on the post-synaptic cell. In the
cortical module, all P are identical to previous work (see Table 2,
in Sharp et al., 2012) to ensure stability and comparability dur-
ing simulation on SpiNNaker; the reader may refer to this work
for details on how the specific values were obtained. All values
for C in the cortical module are as in Izhikevich and Edelmann
(2008a) and Sharp et al. (2012). In the thalamic module, and for
connections between thalamic and cortical cells, the connection
probabilities P are arbitrarily set to 0.25 for the sake of simplic-
ity in this study. The intra-thalamic and corticothalamic values
for C are sourced from previous work (Bhattacharya et al., 2011),
which in turn are based on Horn et al. (2000) and Jones (2007).
The values of C for the thalamocortical efferents to the SS and B
cells of Layer 4 are sourced from Binzegger et al. (2004).

The TCR and IN cells of the thalamic module in the TCT
model are fed with a spike source that follows a Poisson distribu-
tion with a spiking rate of 25 Hz and an all-to-all connectivity. The
inter-module connectivities i.e., connections between the cortical
module and the thalamic modules as well as between the external
input source and thalamic module have an induced delay sim-
ulated by a uniformly distributed random number generator in
PyNN.

2.3. SPIKING DYNAMICS OF THE THALAMO-CORTICO-THALAMIC
MODEL NEURONS

Each neuron in the TCT model is an implementation of the spik-
ing neuron model proposed in Izhikevich (2003), which is now a
widely used template for modeling spiking neuron behavior due
to its computational efficiency and rich dynamics, and is com-
monly referred to as the “Izhikevich model.” Our longer-term
objective is to use the Izhikevich model to implement an appro-
priate spiking behavior for the neurons in each population of
the TCT model based on experimental observations in biology.
An excellent demonstration of how a changing set of parameter
values in the Izhikevich model can simulate the various spiking
dynamics of thalamocortical neurons is provided in Izhikevich
(2004). We have adopted three types of spiking behavior in the
model:

2.3.1. Tonic spiking
Tonic spiking refers to a continuous train of spikes in response to
an external stimulus and is known to be adopted by a cell when

it is communicating information (McCormick and Feeser, 1990);
for example tonic spiking of the TCR cells of the LGN indicate
that they are in a “driver” mode and are passing retinal infor-
mation to the visual cortex (Sherman, 2005). The tonic mode of
spiking can be further classified based on a (qualitative) character-
istic frequency of firing in response to a stimulus: regular spiking
(RS) and fast spiking (FS). A comparison of RS and FS dynamics
simulated using Izhikevich’s model and from in vitro recordings
on thalamocortical neurons is demonstrated in Izhikevich and
Edelmann (2008a) (Figure 10 in the Supplementary Material of
the cited work). We follow this work and parameterize the PY,
SS and TCR populations in the TCT model to adopt similar RS
dynamics in response to stimuli, while the cortical B cells are
parameterized to respond in an FS mode. It may be noted that
all the cell populations displaying the RS mode are excitatory in
nature, while the inhibitory B cell population respond in a FS
mode. For simplicity, we adopt a similar spiking behavior for the
inhibitory IN cell population of the thalamus.

2.3.2. Spike frequency adaptation
This terminology is used to define spiking dynamics where the
inter-spike interval is low at the onset of the stimulus but “adapts”
with passing time and the spiking frequency decreases. The cor-
tical NB cells are modeled in Izhikevich and Edelmann (2008b)
to exhibit a low threshold spiking (LTS) behavior, which is a type
of spike frequency adaptation dynamics. We follow this work and
parameterize the TRN cells in the TCT model to respond in an
LTS mode to a step stimulus.

2.3.3. Tonic bursting
Bursting behavior in neural dynamics refers to a series of spikes in
quick succession; tonic bursting would thus refer to a train of such
bursts of spikes. The burst spiking mode of the inhibitory TRN
cell population is believed to be centrally important in generat-
ing the synchronized oscillations observed in EEG during slow
wave sleep (Golomb et al., 1994; Destexhe and Sejnowski, 2002).
The TRN cell population in the TCT model is parameterized to
respond in a tonic bursting mode.

All data used to parameterize the cell populations in the above-
mentioned spiking modes is provided in Table 1 and based on the
implementation of the Izhikevich model in Python by Galbraith
(2011). The excitatory and inhibitory synaptic parameters are set
by empirical study in PyNN corresponding to a set of parame-
ters to simulate the desired spiking dynamics. The corresponding

Table 1 | The parameter set corresponding to the spiking dynamics shown in Figure 2.

(dimensionless parameters) (mV) (ms−1) (mA) TCT model cells

a b c d u v τE
syn τ I

syn I

Regular spiking (RS) 0.02 0.2 −65 6 −60 0 5 6 9 PY, SS, TCR

Fast spiking (FS) 0.1 0.2 −65 6 −70 0 5 6 9 B, IN

Low threshold spiking (LTS) 0.01 0.2 −65 6 −70 0 5 6 25 NB

Tonic bursting 0.02 0.25 −50 2 −70 0 5 6 10 TRN

All parameters are based on those provided in Galbraith (2011) for simulation using Python software. The final parameter values are adjusted by empirical study to

simulate similar qualitative spiking dynamics on SpiNNaker.
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dynamics of a single example neuron in a population in
response to an excitatory or inhibitory stimulus is shown in
Figure 2.

3. RESULTS
A typical human EEG recording taken during quiet wakeful-
ness and sleep (Durrant et al., 2013) is shown in Figures 3A–D.
Sleep in birds and mammals is divided into REM (Rapid-Eye-
Movement) and non-REM parts. Non-REM sleep is further
divided into light/transitional sleep (N1), which makes up 5–10%
of the night and is not considered functionally significant; normal
sleep (N2; Figure 3B), which is characterized by the presence of
spindles and K-complexes and is present for 40–50% of the night;
slow wave sleep (N3/SWS; Figure 3C) which is the deepest form
of sleep and characterized by the presence of high-amplitude low-
frequency (“slow”) waves. REM sleep (Figure 3D) is characterized
by a mixed frequency waveform, low muscle tone and rapid eye
movements. Sleep EEG is classified into these different stages
based on 30 s epochs according to standardized sleep scoring cri-
teria (Rechtschaffen and Kales, 1968; Ancoli-Israel et al., 2007).
As a complement to the characteristic waveforms, power spectral
density also differs considerably between sleep stages (Figure 3E).
In particular, spectral power in sleep and quiet wakefulness is
generally analyzed in four bands: delta (1–4 Hz), theta (4–8 Hz),
alpha (8–12 Hz), and sigma (sometimes called the spindle band;
12–16 Hz). Higher frequencies in the beta and gamma ranges are
associated with active wakefulness and task completion and are
not involved in identifying sleep or wake patterns; these bands are

not considered further here. In Figure 3E, the power spectra in
all the sleep stages (REM and non-REM) are dominated by the
delta band. In contrast, the power spectra in quiet wakefulness is
dominated by the alpha band.

In order to test the ability of the model to capture some
basic neuronal dynamics, we ran simulations and compared the
model output to the recorded EEG data in Figure 3. The aver-
age membrane potential of all neurons in each cell population of
the TCT model is considered as the output membrane potential
of the population. Although EEG is believed to represent den-
dritic post-synaptic potentials from pyramidal neurons in the
cerebral cortex, the TCR cell output in thalamocortical popu-
lation models have been shown to mimic alpha rhythmic and
slow-wave EEG characteristics (da Silva et al., 1974; Suffczyński,
2000; Bhattacharya et al., 2013). Along these lines, in this work,
we focus on the TCR cells of the thalamic module and the main
target of their efferents to the cortical module (Gil et al., 1999;
Lee and Sherman, 2008) viz. the Pyramidal cells in Layer 4 (PY4).
Recent studies (Crunelli et al., 2011; Crunelli and Hughes, 2012)
have identified the central role of the inhibitory neurons of the
TRN acting via the TCR neurons in generating both slow oscilla-
tions and spindles that characterize non-REM sleep. In previous
work, we have shown the pivotal role of the TRN cell afferents
in effecting a time-series bifurcation of the TCR cell output in
a population model of the thalamocortical circuit (Bhattacharya
et al., 2013). In this work, we present a preliminary test on the
TCT model by studying the output time series and power spectra
with all model parameters at their base values. We then compare
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FIGURE 2 | (A) Regular spiking (RS), (B) Fast spiking (FS), (C) Low threshold
spiking (LTS), and (D) Tonic bursting dynamics of the Izhikevich
model (Izhikevich, 2003, 2004) simulated on the SpiNNaker chip using the

PyNN interfacing software. Plots in the left (right)-hand-side column
correspond to an excitatory (inhibitory) current stimulus applied between 250
and 750 ms during a 1000 ms simulation time.
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this with the case when the TRN cell population is disconnected
from the model.

The model is simulated on SpiNNaker for 30 s for each simu-
lation at a resolution of 1 ms, and subsequently downsampled to
200 Hz. The mean membrane potential of the PY4 and TCR cell
population are averaged across three simulation runs to improve
the reliability of the results. A snapshot of the real-time visualiza-
tion of the model simulation on SpiNNaker as seen using visRT

is shown in Figure 4. The human EEG used for comparison is
recorded at 200 Hz from an occipital electrode (O1) referenced
against the contralateral mastoid. Sleep stages are independently
classified by two experts with more than 90% agreement. Both
human EEG and the model output are filtered between 1 and
16 Hz with a Butterworth bandpass filter of order 10 in order to
focus on spectral bands of interest. Power spectral density is esti-
mated using a Welch periodogram with 800 FFT points using a
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FIGURE 3 | EEG characteristics of human sleep and wake. Quiet
wakefulness is represented in panel (A) and is characterized by the
presence of the alpha rhythm, which is absent during sleep (see the
power spectra at the bottom of the figure). Normal sleep, often
referred to as N2 in sleep literature, is represented in panel (B) and is
characterized by the presence of spindles (A, circled in cyan) and
K-complexes (B, circled in green). Slow wave sleep (SWS) is

represented in panel (C) and is characterized by high amplitude slow
oscillations. REM sleep (D) has a mixed frequency pattern, and is
additionally identified by the presence of eye movements and low
muscle tone. The power spectra in the four bands involved in
distinguishing wake and different stages of sleep (E) shows a greater
delta power during the sleep stages, while quiet wakefulness has
stronger alpha power. Data taken from Durrant et al. (2013).

FIGURE 4 | Real time output from the simulation of the TCT model on the SpiNNaker board as observed in visRT. The spiking rate of the TCR (top) and
PY4 (bottom) populations for each period of 25 ms over a total simulation time of 30 s is shown.
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Hamming window half the length of the sampling frequency and
a 50% overlap.

The TCR time-series output with all model parameters main-
tained at basal values (Figure 5A) show a similarity with the EEG
time series in quiet wakefulness (Figure 3A). The correspond-
ing time series output of the PY4 cells are shown in Figure 5C
and show a similarity with their main “driver” cells of the TCR,
albeit with a larger amplitude of oscillation. It may be noted
that the time series plots presented in Figure 5 are unfiltered
data sampled at 5 ms intervals (200 Hz). A power spectra anal-
ysis of both the TCR and PY4 outputs corresponding to basal
parameters show a dominant frequency within the alpha band
(Figure 5E), similar to the power spectra of quiet wakefulness
shown in Figure 3E. Next we disconnect the TRN cell popula-
tion from the TCT model by removing the connectivity from the
TRN to the TCR and vice-versa (see Table 3A). We note a dis-
tinct bifurcation in both the TCR and PY4 time series output
shown in Figures 5B,D, respectively with a reduced frequency of
oscillation compared to the output corresponding to basal param-
eters; an increased amplitude of oscillation is also observed in the
TCR output (Figure 5B). A comparison of the TCR time series

with real EEG data show a resemblance with the SWS time series
(Figure 3C). However, the frequency of the oscillatory activity in
Figures 5B,D appears (on visual inspection) to be higher than
that in Figure 3C. This observation is reflected in the power
spectra of both TCR and PY4 cell populations corresponding to
disconnection of the TRN, showing a dominant frequency within
the theta band (not shown here). This is unlike the power spec-
tra of SWS, which have a dominant frequency within the delta
band. Further, we observe that the amplitude of oscillation in the
PY4 output time series does not show any significant increase
with TRN disconnection, which is not in agreement with the
classic definition of EEG “slowing” (reduced frequency, higher
amplitude).

Overall, and given the preliminary nature of this work, we
would not expect the model parameters to be tuned to give a
perfect replication of human EEG, and indeed we do see substan-
tial differences between the two. The most important difference
between the model output and human EEG at present is the
lack of strong delta power with the TRN cells disconnected
from the model, and this area should be prioritized for further
research.
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FIGURE 5 | Sample of the time series outputs of the (A,B) TCR and

the (C,D) PY4 cell populations for a period of 5 s, clipped arbitrarily

between the 20th and the 25th s from the 30 s (unfiltered) signal

and downsampled to 200 Hz. A comparison with real EEG time series
data of quiet wakefulness (Figure 3A) shows a similarity with the (A)

TCR and (C) PY4 outputs when all model parameters are at their basal
values. A comparison with real EEG time series data of SWS
(Figure 3C) shows a similarity with the (B) TCR and (D) PY4 outputs
when the TRN cell population is disconnected from the model. (E) The

power spectra of the TCR and PY4 cell populations with all model
parameters at their basal values. A dominant alpha rhythm is observed,
similar to that in the real EEG power spectra of quiet wakefulness
(Figure 3E). (The reader may kindly note that the results presented
here is a preliminary attempt in studying the plausibility of simulating
EEG rhythms in models developed on the SpiNNaker computer. At no
point do we expect to see exact match of model results with real EEG
data; rather, we do expect to identify differences between the two that
will inform our ongoing work).
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Table 2 | The synaptic connectivity parameters between the cells of the cortical layers of the TCT model.

⇐
F
ro

m To Layer 2/3 Layer 4 Layer 5 Layer 6

⇒ PY B NB PY SS(2/3) SS(4) B NB PY(2/3) PY(5/6) B NB PY(4) PY(5/6) B NB

La
ye

r
2/

3

PY
59.9 51.6 48.6 4.3 5.6 2.7 5.8 2.7 45.9 44.3 45.5 45.5 2.5 2.5 2.5 2.5

0.137 0.077 0.062 0.03 0.011 0.01 0.01 0.01 0.087 0.135 0.052 0.052 0.027 0.017 0.01 0.01

B
9.1 10.6 11.4 0.2 0.4 0.2 0.5 0.2 1.8 1.7 2.3 2.3 0.1 0.1 0.1 0.1

0.171 0.132 0.123 0.016 0.01 0.01 0.01 0.01 0.032 0.052 0.023 0.023 0.032 0.01 0.01 0.01

NB
4.4 3.4 3.3 0.6 0.8 0.6 0.8 0.6 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1

0.064 0.031 0.026 0.017 0.01 0.01 0.01 0.01 0.01 0.031 0.01 0.01 0.01 0.01 0.01 0.01

La
ye

r
4

PY
7.7 6.6 6.2 4.2 4.3 4.1 4.2 4 7.5 7.3 7.5 7.5 1.3 1.3 1.3 1.3

0.049 0.027 0.023 0.03 0.024 0.026 0.015 0.016 0.04 0.057 0.024 0.024 0.024 0.014 0.01 0.01

SS(2/3)
6.9 5.8 5.5 3.6 3.8 3.7 3.8 3.6 2 2 2 2 0.9 0.9 0.9 0.9

0.043 0.024 0.020 0.026 0.021 0.023 0.013 0.014 0.014 0.026 0.01 0.01 0.014 0.01 0.01 0.01

SS(4)
0.6 0.5 0.5 11.5 11.3 11.9 11 11.7 3.3 3.2 3.3 3.3 0.7 0.7 0.7 0.7

0.01 0.01 0.01 0.063 0.061 0.075 0.039 0.047 0.02 0.032 0.011 0.011 0.032 0.01 0.01 0.01

B
X X X 7.2 7.2 7.1 8.4 8.2 5.2 5.2 X X 5.2 5.2 X X

X X X 0.067 0.067 0.076 0.05 0.056 0.01 0.01 X X 0.019 0.01 X X

NB
0.8 0.8 0.8 2.1 2.1 2 2.4 2.3 1.5 1.5 1.1 1.1 1.5 1.5 0.1 0.1

0.033 0.02 0.02 0.073 0.073 0.08 0.053 0.06 0.033 0.047 0.02 0.02 0.027 0.02 0.01 0.01

La
ye

r
5

PY(2/3)
7.4 6.3 5.9 1.2 1.1 0.8 1.1 0.8 11.7 11.3 11.6 11.6 11.9 11.9 0.1 0.1

0.09 0.05 0.042 0.027 0.013 0.096 0.01 0.01 0.113 0.144 0.073 0.073 0.031 0.013 0.01 0.01

PY(5/6)
X X X 0.1 0.1 0.1 X 0.1 1 1.2 1 1 4.9 4.9 4.9 4.9

X X X 0.01 0.01 X 0.01 0.01 0.031 0.054 0.023 0.023 0.131 0.215 0.123 0.123

B
X X X X X X X X 0.8 0.8 0.9 0.9 0.6 0.6 X X

X X X X X X X X 0.067 0.067 0.05 0.05 0.017 0.01 X X

NB
X X X X X X X X 1.1 1.1 1.3 1.3 0.8 0.8 0.4 0.4

X X X X X X X X 0.062 0.062 0.05 0.05 0.025 0.025 0.013 0.013

La
ye

r
6

PY(4)
2.3 2.1 1.8 31.4 31.1 32.7 30.3 32.2 2.3 2.3 2.3 2.3 1.2 1.2 1.2 1.2

0.01 0.008 0.008 0.118 0.0114 0.139 0.072 0.087 0.015 0.035 0.01 0.01 0.052 0.012 0.01 0.01

PY(5/6)
X X X 0.1 X X X X 2.1 2.5 2 2 13.2 13.2 13.2 13.2

X X X 0.01 X X X X 0.02 0.029 0.013 0.013 0.1 0.164 0.096 0.096

B
X X X X X X X X X 0.3 X X 7.7 7.8 7.7 7.7

X X X X X X X X X 0.01 X X 0.125 0.215 0.125 0.125

NB
0.8 0.7 0.6 5.5 5.5 5.8 5.4 5.7 11.5 11.3 11.4 11.4 7.7 7.8 7.7 7.7

0.23 0.015 0.01 0.185 0.135 0.17 0.085 0.105 0.275 0.32 0.17 0.17 0.245 0.24 0.125 0.125

The cortex is classified into six layers based on the cell types and intra-areal connectivities. Of these, Layer 1 is known to be sparsely populated and is mainly

associated with cortico-cortical connections and not considered in this work. Layers 2 and 3 are often treated as a single layer using the nomenclature L2/3 primarily

due to a lack of marked boundary between the two “layers” in terms of the cell-types and spatial layout. The nomenclature of the cells in each layer are—PY:

Pyramid cells; SS, Spiny Stellate cells; B, Basket cells; NB, Non-basket cells. The SS cells of Layer 4 and the PY cells of layers 5 and 6 send out dendritic projections

to other layers and thus are indicated with the layer number as suffix within brackets. Each connectivity parameter between a pre-synaptic population (say K) to a

post-synaptic population (say L) has two attributes and are placed as a 2-element column: the top number in the column is the synaptic connectivity “weight” C,

which is expressed as a percentage of the total number of synaptic connections made by all pre-synaptic populations of L on the latter; the bottom number in the

column is the probability P that a spike by K will be communicated to L. Values of the first attribute C are as in Izhikevich and Edelmann (2008a), and those of the

second attribute P are as in Sharp et al. (2012). All “X” in the table indicate absence of synaptic connectivity between the respective cell populations. “From” refers

to the pre-synaptic cells, and “To” refers to the post-synaptic cells.

4. DISCUSSION
Sleep and its biological relevance and mechanisms have been
of interest in research (Rasch and Born, 2013) and beyond;
a “healthy” sleep pattern have tremendous impact on daily
activities (Mednick and Ehrman, 2006). Thus it is not sur-
prising that sleep disturbances are a common accompaniment

of several neurological and psychiatric disorders (Brown et al.,
2012). Additionally, the time and frequency signatures of sleep
electroencephalography (EEG) in neurological disorders often
provide a better understanding of the disease conditions [for
example in schizophrenia (Gardner et al., 2014); Alzheimer
disease (Jonkman, 1997)]. Furthermore, rapid-eye-movement
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Table 3 | (A) The “weight” of the synaptic connectivities between the

thalamic and cortical module cells as well as between thalamic cell

populations. The probability of connection for inter-module

connectivity is 0.25 in the current model. The synaptic connections

from the retina to the thalamic cells have an all-to-all connectivity. (B)

The population of neurons of each type in the cortical module are

mentioned in the first column and the cortical layers are mentioned

in the top row. The cortical layer references within brackets (for

Layers 5 and 6 and for the SS cells) indicate the dendritic arborization

of the cells to these layers. An “X” indicates the lack of the cell type

in the cortical layer. (C) The population of neurons of each type in the

thalamic module.

(A) CONNECTIVITY PARAMETERS: INTRA-THALAMIC, THALAMO-

CORTICO-THALAMIC AND RETINO-THALAMIC

From To

Pre-synaptic Post-synaptic

TC
R

Layer 4

TRN PY SS(2/3) SS(4) B

35 25 6 6 13

IN

TCR IN

15.45 23.6

TR
N TCR TRN

15.45 15

La
ye

r
6 P
Y

(4
) TCR IN TRN

46 20 50

P
Y

(5
/
6) TCR IN

16 9

R
et

in
a TCR IN

7.1 47.4

(B) NUMBER OF NEURONS IN THE CORTICAL MODULE

Layer 2/3 Layer 4 Layer 5 Layer 6

(2/3) (5/6) (4) (5/6)

PY 260 90 50 10 140 50

B 30 50 10 20

NB 40 20 10 20

SS(2/3) X 90 X X X X

SS(4) X 90 X X X X

(C) NUMBER OF NEURONS IN THE THALAMIC MODULE

TCR 50

IN 10

TRN 50

(REM) sleep is thought to play a role in memory consolida-
tion involving the non-hippocampal brain parts (Born et al.,
2006). The thalamo-cortico-thalamic circuitry plays a key role
in generating brain rhythms (Steriade et al., 1993; McCormick
and Bal, 1997). Several studies on thalamocortical dynamics have
used mesoscopic scale lumped parameter models to mimic EEG

in healthy conditions (Robinson et al., 2002; Zavaglia et al.,
2006; Deco et al., 2008; Modolo et al., 2013; Moran et al.,
2013), as well as to investigate anomalous EEG in neurologi-
cal disorders (Suffczyński et al., 2004; Roberts and Robinson,
2008; Pons et al., 2010; de Haan et al., 2012). In recent
research (Bhattacharya, 2013), which is along similar lines as
in Lytton (1996); Erdi et al. (2006), the need for detailed synap-
tic mechanisms in thalamocortical lumped parameter models
to facilitate biologically realistic mapping of model features is
emphasized. While extended work on the lumped parameter
model implementing synaptic dynamics remains ongoing, we
believe it is necessary to have a parallel line of investigation using
a population model comprising of network(s) of single neuron
models (i.e., single-neuron-level population model as opposed to
lumped parameter population models) that is similar in struc-
ture to the former. This gives a “two-scale” architecture to the
thalamo-cortico-thalamic framework. The endeavor will be to use
the framework for realistic simulation of EEG dynamics in sleep-
wake transition. Here, we have presented a preliminary study on
inducing a transition from quiet wakefulness to a “slow wave”
(higher amplitude, lower frequency) pattern in the model out-
put, and have shown the similarity and dissimilarity of the model
output with real EEG data of sleep and wakefulness; these are
discussed further below.

The primary issue in building a single-neuronal-level popula-
tion model is the deficiency in available computational resources
in terms of implementing biologically plausible parallel and
asynchronous information transmission and exchange within
the model framework. Another key aspect is energy-efficiency
whereby maximal information processing is carried out using
minimal resources, a mechanism that allows biology to deal
with massive amounts of data in a fast and power efficient
manner. This necessitates specialized computational tools to pro-
vide a low-power, parallel asynchronous framework for build-
ing very-large-scale-biologically-plausible models (VLSBm). The
SpiNNaker (Spiking Neural Network architecture) chip is a plat-
form designed to occupy this space; it meets all of the above
criteria for building VLSBm and has been tested to outperform
current available software and hardware platforms when building
a cortical model of spiking neural networks (Sharp et al., 2012).

In this work we have built a thalamo-cortico-thalamic spiking
neural network for implementation on SpiNNaker. The mini-
framework consists of 1090 neurons to mimic approximately
0.15 mm2 of thalamocortical tissue. We have focussed on the tha-
lamocortical relay (TCR) cells and the cortical Layer 4 pyramidal
(PY4) cells; the layer 4 cells are known to be dominated by the
sensory pathway input from the thalamus compared to inputs
from other cortical areas (Gil et al., 1999). With all model param-
eters at their base values, the TCR time series output and its
power spectra resembles the EEG characteristics of quiet wakeful-
ness. Observation of the corresponding PY4 cell outputs indicate
that the behavior of these cells are largely driven by the TCR
cells. Next, we endeavored to vary specific model parameters to
simulate non-rapid eye movement (non-REM) sleep stages. The
thalamic reticular nucleus (TRN) neurons are implicated in play-
ing a vital role in effecting slow wave oscillation in the EEG such
as observed during slow wave sleep (SWS). To test this feature
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in the model, we disconnect all efferents from and afferents to
the TRN cell population. We observe a distinct transition in the
time series behavior of both the TCR and PY4 cells that resemble
the EEG time series in SWS, albeit at a slightly higher frequency
of oscillation (observed by visual inspection). This observation
is reflected in the power spectra where the dominant frequency
of oscillation for both population outputs are within the theta
band, unlike the dominant delta band frequency seen in all stages
of sleep EEG data. We speculate that the current disagreement
in the power spectra of the SWS simulation on the TCT model
may be addressed by dynamically changing the spiking behavior
of the model cell populations (see below for further discussion
on this). Furthermore, it will be interesting to observe how the
intracortical afferents affect the PY4 cells in comparison to the
TCR afferents (Destexhe, 2008; Lee and Sherman, 2008) and
whether the model behavior conforms to experimental observa-
tions. Nonetheless, we note that the framework presented herein
is a pilot study only, designed primarily to test the ability of the
hardware to capture thalamocortical dynamics. We believe that
the outcome from this study will provide a “basis” for simulating
EEG signals on SpiNNaker-based computational models. Thus, at
this stage, we do not attempt to simulate a true replication of the
sleep-wake dynamics on the model. The larger goal of the work
is to lay the foundations for building a VLSBm of thalamocor-
tical interactivity to simulate biologically realistic sleep rhythms
as observed in EEG. However, further testing and simulation on
SpiNNaker will be required before scaling up the model for realis-
tic simulation of EEG rhythms; we will take this up as an extension
of the current work. Altogether, we believe this is a promising
first demonstration of SpiNNaker as a platform for investigating
thalamocortical circuits in humans.

A widespread current concern in the computational neu-
roscience community is the non-trivial task of populating the
parameter space of computational models; the task gets harder
with increasing model size as experimental data with defini-
tive values for specific parameters are difficult to acquire. We
have sourced appropriate model parameter values from Binzegger
et al. (2004); Izhikevich and Edelmann (2008b); Bhattacharya
et al. (2011); Galbraith (2011); and Sharp et al. (2012). Model
layout and neuronal dynamics are from Sherman (2006) and
Bhattacharya et al. (2011) and Izhikevich (2003, 2004), respec-
tively. The absolute values of the model parameters often require
appropriate scaling for the simulation platform, and a common
approach to deal with this aspect has been to normalize all model
parameters to a “simulator-friendly” scale. Along these lines, sev-
eral assumptions and simplifications have been made in this
study:

First, burst spiking dynamics of the thalamic cells that are
crucial for generating slow wave oscillations (Jeanmonod et al.,
1996; Magnin et al., 2005) are explored minimally. The thalamo-
cortical relay (TCR) cells are tested for tonic spiking behavior
in this work, which best align with the awake state of the brain.
We speculate that the results reflect this behavioral mode of
the TCR cells, clearly showing a resemblance with both time-
series and power spectra of EEG in quiet awake state. However,
the TCR displays burst spiking dynamics during the stages of
sleep. Similarly, the TRN cells are known to show rich spiking

dynamics (e.g., rebound bursting, low threshold spiking) that
underlie sleep-wake oscillatory activity. These variant dynam-
ics of the TCR and TRN cells will be further investigated in
our ongoing work. Thalamic interneurons are more problematic;
there are to our knowledge no references in the modeling litera-
ture relating specifically to the spiking dynamics of the thalamic
interneurons (Destexhe et al., 1998). However the cortical basket
cells, which are also categorized as local interneurons depend-
ing on their function and dendritic arborization, are described
in Izhikevich and Edelmann (2008a) using Fast Spiking (FS)
dynamics. We have arbitrarily adopted this spiking behavior for
the IN cells. Overall, much more detailed exploration and simu-
lation of the individual thalamic cell spiking dynamics needs to
be performed to preview the parameter space that would allow
full replication of EEG in different sleep stages and the sleep-wake
transition. It needs to be mentioned here that a high number
of synaptic efferents from the thalamic interneurons are dendro-
dendritic (Cox and Sherman, 2000). However, this aspect does
not affect the synaptic transmission in the TCT framework as
it comprises of spiking neuron models, and does not take into
account the detailed axonal and dendritic attributes related to
spike transmission and reception.

Second, the Izhikevich model uses common excitatory and
inhibitory synaptic parameters for all cell populations of exci-
tatory and inhibitory types. This is a significant limitation and
requires modification in future versions of the model to enable
a direct comparison with the current lumped parameter models
that include neurotransmitter and receptor dynamics.

Third, the neuronal population in the thalamus represents a
loose estimate as no definitive data on the number of thalamic
cells within a cortical column is available from literature. We
preserve the (intra-thalamic) proportion of thalamic cells in the
(Izhikevich and Edelmann, 2008a) thalamocortical model (only
“specific nucleus” parameters are considered; the “non-specific
nucleus” parameters are ignored), but scale this up by a factor
of 102. This may be contrasted with a factor of 10 scaling of the
number of cortical cells. Thus the model is designed to place
increased emphasis on the thalamic behavior and its effects on
cortical oscillations for our test purposes.

Fourth, our objective is to simulate EEG in sleep and quiet
wakefulness. Thus, the simulated retinal input to the model needs
to conform to discharge rates of the retinal spiking neurons dur-
ing the resting state. In an early work on the cat retina (Kuffler,
1953), it is observed that the resting state discharge rate of a sin-
gle retinal neuron is approximately 25 Hz. This is in agreement
with the spike source rate provided as input to the TCT model in
this work. However, in a relatively recent work (Robinson et al.,
2004), it is estimated that the resting state firing rate of retinal
input is 11 Hz, while in an alert awake state this is in the range
12–20 Hz. Thus, it would need further work to test these varia-
tions in experimental data and the effects on the model output in
context to mimicking sleep-wake EEG.

Fifth, the probability of connection between the intra-thalamic
cells as well as for the feedforward and feedback connections
between the thalamus and the cortex is arbitrarily set at 0.25 by
empirical study on SpiNNaker. This will need further attention
and more detailed tuning in future work.

Frontiers in Neural Circuits www.frontiersin.org May 2014 | Volume 8 | Article 46 | 10

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Bhattacharya et al. EEG simulation on SpiNNaker

Finally, the conduction delay for thalamocortical and corti-
cothalamic communication is implemented using a uniformly
distributed function to generate a random delay. However, data
acquired from physiology and tested on computational models is
available in literature (Roberts and Robinson, 2008). This will be
explored for implementation in future work.

In conclusion, we have presented a pilot study which involved
building biologically plausible networks on a biologically plau-
sible computational platform—SpiNNaker. The study examines
the feasibility of simulating EEG rhythms of sleep and wake-
fulness by implementing a thalamo-cortico-thalamic framework.
The longer-term aim is to build a VLSBm of thalamo-cortico-
thalamic synaptic interactivity on SpiNNaker, which will then
be validated with real EEG data collected during sleep (Durrant
et al., 2013). The work presented here gives a preliminary study
of this approach. Ongoing work to build a similar framework
with the lumped parameter approach will provide a “multi-
scale” architecture to the model in both space and time. Together
these models should provide new insights into the mechanisms
which give rise to the rich thalamocortical dynamics seen in the
human brain.
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