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Activin A is known as a neuroprotective factor produced upon acute excitotoxic injury of
the hippocampus (in pathological states). We attempt to reveal the role of activin as a
neuromodulator in the adult male hippocampus under physiological conditions (in healthy
states), which remains largely unknown. We showed endogenous/basal expression of
activin in the hippocampal neurons. Localization of activin receptors in dendritic spines
(=postsynapses) was demonstrated by immunoelectron microscopy. The incubation of
hippocampal acute slices with activin A (10 ng/mL, 0.4 nM) for 2 h altered the density and
morphology of spines in CA1 pyramidal neurons. The total spine density increased by
1.2-fold upon activin treatments. Activin selectively increased the density of large-head
spines, without affecting middle-head and small-head spines. Blocking Erk/MAPK, PKA,
or PKC prevented the activin-induced spinogenesis by reducing the density of large-head
spines, independent of Smad-induced gene transcription which usually takes more than
several hours. Incubation of acute slices with activin for 2 h induced the moderate early
long-term potentiation (moderate LTP) upon weak theta burst stimuli. This moderate LTP
induction was blocked by follistatin, MAPK inhibitor (PD98059) and inhibitor of NR2B
subunit of NMDA receptors (Ro25-6981). It should be noted that the weak theta burst
stimuli alone cannot induce moderate LTP. These results suggest that MAPK-induced
phosphorylation of NMDA receptors (including NR2B) may play an important role for
activin-induced moderate LTP. Taken together, the current results reveal interesting
physiological roles of endogenous activin as a rapid synaptic modulator in the adult
hippocampus.
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INTRODUCTION
Activin A is a homodimer of inhibin βA polypeptides, which
belongs to the superfamily of transforming growth factor-β
(TGF-β) (Pangas and Woodruff, 2000). In addition to its roles in
development (Asashima et al., 1990; Kokan-Moore et al., 1991)
and hormonal regulation via hypothalamic-pituitary-gonadal
(HPG) axis (Ling et al., 1986; Vale et al., 1986; Gregory and
Kaiser, 2004), recent studies show new important functions of
activin in tissue repair, fibrosis and inflammatory disease in
various organs, including the brain (Hughes et al., 1999; Wu
et al., 1999). Activin binds to type II receptor (Ser/Thr kinase
receptor) and dimerization of type II and type I receptors
occurs, resulting in phosphorylation the Smad family transcrip-
tion factors, which then leads to gene expression (Pangas and
Woodruff, 2000; Derynck and Zhang, 2003). Smad-independent
pathways are also activated by activin receptors, including
mitogen-activated protein kinase (MAPK) signaling (Ten Dijke
et al., 2000; Derynck and Zhang, 2003; Werner and Alzheimer,
2006).

Recent advances shed light on neuroprotective actions of
activin in the hippocampus, a center of learning and mem-
ory, during excitotoxic injury. For example, activin is essential
in the neuroprotective action following acute excitotoxic lesion
of the hippocampus (Tretter et al., 1996, 2000). Application of
recombinant activin shows neuroprotective effects in cultured
hippocampal neurons upon toxic treatments (Tretter et al., 1996;
Iwahori et al., 1997). A significant elevation of the expression of
mRNA of activin is demonstrated in the dentate gyrus (DG) of
the hippocampus upon excitotoxic high frequency stimulation
(Inokuchi et al., 1996) or after acute injury (Lai et al., 1996, 1997;
Tretter et al., 1996, 2000).

Activin A can also modulates synaptic plasticity of normal
adult hippocampus under some physiological conditions. Activin
plays a role in maintaining the late long-term potentiation (late
LTP, 24 h after stimulation) in adult hippocampal DG and long-
term memory in vivo (Ageta et al., 2010). Activin increases neck
length of spines (morphological change) as well as increasing
synaptic contacts in primary cultured neurons, although the head
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size and the density of spines are not affected (Shoji-Kasai et al.,
2007).

To examine deeply the essential functions of activin in adult
neural circuit of hippocampus under physiological conditions, we
investigated the rapid effect (1∼2 h) of activin including spino-
genesis and early LTP in the hippocampus of adult male rat. To
reveal molecular mechanisms of spinogenesis in downstream of
activin receptors, we focus on the role of several kinases which are
essential for synaptic plasticity. We also performed identification
of the cellular localization of activin as well as subcellular localiza-
tion of activin type IB receptors in the hippocampus, which had
been unknown.

MATERIALS AND METHODS
ANIMALS
Young adult male Wistar rats (12 week-old, 280–320 g) were
purchased from Saitama Experimental Animals Supply (Japan)
and Harlan Sprague Dawley (Indianapolis, IN). All animals were
maintained under a 12 h light/12 h dark cycle and free access to
food and water. The experimental procedure of this research was
approved by the Committee for Animal Research of the University
of Tokyo.

CHEMICALS
Lucifer Yellow was obtained from Molecular Probes (USA).
Cyano-nitroquinoxaline-dione (CNQX), MK-801, PD98059,
SB203580, LY294002, cyclosporin A (CsA), cycloheximide
(CHX), actinomycin D (actD), Ro25-6981 and N-methyl-D-
aspartate (NMDA) were purchased from Sigma (USA). H-89 and
KN-93 were from Calbiochem (USA). Recombinant activin A and
follistatin were kind gifts from Ajinomoto Co. (Japan).

IMMUNOHISTOCHEMICAL STAINING OF HIPPOCAMPAL SLICES
Immunohistochemical staining was performed essentially as
described in previous references (Kimoto et al., 2001; Kawato
et al., 2002; Hojo et al., 2004). Briefly, hippocampal slices were
prepared from rat deeply anesthetized and perfused transcar-
dially with phosphate-buffered saline [PBS; 0.1 M phosphate
buffer and 0.14 M NaCl (pH 7.3)], followed by fixative solution
of 4% paraformaldehyde. The hippocampi were postfixed, cry-
oprotected and frozen-sliced coronally at 20 μm thickness with a
cryostat (Leica CM1510, Germany). Brains from 3 animals were
used, and from each brain two representative coronal sections
including the dorsal hippocampus was selected.

To investigate the distribution of activin type IB receptor and
activin A in the hippocampal formation, we used anti-activin
receptor antiserum (TAL-8043) and anti-activin A antiserum
(TT122G), respectively. These antisera were successfully used in
former studies (Koyano et al., 2002; Fukui et al., 2003).

After application of antiserum at 1/500 dilution, the hip-
pocampal slices were incubated at 4◦C for 18 h in the presence
of 0.5% Triton X-100 and 3% skim milk with gentle shaking.
Biotinylated anti-rabbit IgG (1/1000) in PBS was then applied,
followed by a 30 min incubation with streptavidin-horseradish
peroxidase complex (Vector Laboratories, USA). Immunoreactive
cells were detected in diaminobenzidine-nickel. After dehydration
and embedding in Entellan Neu (Merck), the immunoreactive

cells were examined under microscope, and digital images with
a 2272 × 1704 pixel resolution were taken by a digital camera
(COOLPIX4500, Nikon).

POSTEMBEDDING IMMUNOGOLD METHOD FOR ELECTRON
MICROSCOPY
Hippocampal slices were prepared by slicing at 4◦C using
a vibratome (Leica, Germany). Freeze substitution and low-
temperature embedding of the specimens was performed as
described elsewhere (Mukai et al., 2007). Briefly, slices were
plunged into liquid propane in a Cryofixation System KF80
(Reichert-Jung, Austria). The samples were immersed in uranyl
acetate solution in a cryosubstitution AFS unit (Leica, Austria),
and infiltrated with Lowicryl HM20 resin. After polymerization,
ultrathin sections (80 nm thickness) were cut using a Reichert-
Jung ultramicrotome and mounted on mesh grids. For immuno-
labeling, sections were incubated with primary antibody for
activin receptor (1/5000) overnight, and incubated with sec-
ondary gold-tagged (10 nm) Fab fragment in TBS. Sections were
counterstained with 1% uranyl acetate, and viewed on a JEOL
1200EX electron microscope (Japan). A search for immunogold-
labelings was performed for at least 30 synapses per each rat.

POLYMERASE CHAIN REACTION
The PCR reaction mixture contained [cDNA (corresponding to
50 ng of total RNA), 1 X GC buffer I, 0.2 mM dNTP mixture,
0.2 μM of each primer, 1.25 units of TaKaRa LA Taq (TaKaRa Bio,
Japan)] in the total volume of 25 μL. PCR cycle condition is as
follows : (1) 95◦C denaturing step for 30 s, (2) 58–65◦C annealing
step for 20 s and (3) 72◦C elongation step for 30 sc with first 95◦C
denaturing for 1 min and last elongation for 15 min. To deter-
mine the optimal number of cycles for samples from hippocampi,
various number of cycles were performed during PCR amplifica-
tion. The primers used and amplification conditions were shown
in Table 1. PCR products (5 μl) were electrophoresed on 2.0%
agarose gels. Gels were stained with ethidium bromide, and visu-
alized under UV light. Images were recorded with Printgraph
(ATTO, Japan). For quantitative analysis, images of the bands
were analyzed using NIH Image software.

SEQUENCING
PCR products on the electrophoresed agarose gels were extracted
using QIAquick gel extraction kit (QIAGEN, Germany) and
cloned into pGEM-T-Easy vector (Promega, USA). Dye termina-
tor cycle sequencing was performed using Thermosequenase II
sequencing kit (Amersham Biosciences, USA), and sequenced by
ABI373A DNA sequencer (Applied Biosystems, USA).

SLICE PREPARATION FOR SPINE ANALYSIS
Adult male rats were deeply anaesthetized and decapitated.
Immediately after decapitation, the brain was removed from the
skull and placed in ice-cold oxygenated (95% O2, 5% CO2) artifi-
cial cerebrospinal fluid (ACSF) containing (in mM): 124 NaCl, 5
KCl, 1.25 NaH2PO4, 2 MgSO4, 2 CaCl2, 22 NaHCO3, and 10 D-
glucose (all from Wako); pH was set at 7.4. The hippocampus was
then dissected and 300 μm thick transverse slices to the long axis,
from the middle third of the hippocampus, were prepared with a
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Table 1 | Primers used for RT-PCR analysis of gene expression, and PCR experimental condition.

Gene Direction Primer sequence : (5′-3′) Product length (bpa) T b
a(◦C) Cycles

Inhibin α Forward TGTCGTCAGGGCAAGAGAACTATG 401 58 31

Reverse ACCTGGTGGCTGCGTATGTGT

Inhibin βA Forward GGGTAAAGTGGGGGAAAACGGGTATG 412 65 31

Reverse GCGCTGGATGCTGCTAGACACTGG

Inhibin βB Forward GGCCGGCCCAACATCACG 393 63 31

Reverse GTCCACCTTCTTCTCCACCACATTCC

Inhibin βC Forward CTCAGCCAGCGCCCCATACTCA 221 63 31

Reverse TGCAGGACCTCCACACCACCAGTAG

Inhibin βE Forward CTGACACCCCAAGGAGAACG 431 65 31

Reverse CCGCTAGAGGGCAGAGTCAG

GAPDH Forward TATGACTCTACCCACGGCAAGTTCAA 830 60 21

Reverse ACCACCCTGTTGCTGTAGCCATATTCAT

abp, base pair(s); bTa, annealing temperature.

Nucleotide sequences referred were as follows; BC08564 and M36453 for inhibin α subunit, M37482 for inhibin βA subunit, M32756-M32758 for inhibin βB subunit,

AF140031 for inhibin βC subunit, AF089825 and AF140032 for inhibin βE subunit. Each pair of PCR primers was designed on different exons of the target gene to

avoid amplification of genomic DNA.

vibratome (Dosaka, Japan). These slices were “fresh” slices with-
out ACSF incubation. Slices were then incubated in oxygenated
ACSF for 2 h (slice recovery processes) in order to obtain widely
used “acute slices.”

IMAGING AND ANALYSIS OF DENDRITIC SPINE MORPHOLOGY
Current injection of Lucifer Yellow
“Acute” slices were incubated with 10 ng/mL activin A or drugs
including kinase inhibitors. Slices were then prefixed with 4%
paraformaldehyde in PBS at 4◦C for 2–4 h. Neurons within slices
were visualized by an injection of Lucifer Yellow under Nikon
E600FN microscope (Japan) equipped with C2400-79H infrared
camera (Hamamatsu Photonics, Japan) and with 40× water
immersion lens (Nikon). Dye injection was performed with glass
electrode whose tip was filled with 5% Lucifer Yellow for 15 min,
using Axopatch 200B (Axon Instruments, USA). Approximately
5 neurons within a 100–200 μm depth from the surface of a slice
were injected (Duan et al., 2002).

Confocal laser microscopy and morphological analysis
The imaging was performed from sequential z-series scans with
LSM5 PASCAL confocal microscope (Zeiss, Germany) at high
zoom (3.0) with a 63× water immersion lens, NA 1.2 (Zeiss).
For Lucifer Yellow, the excitation and emission wavelengths
were 488 and 515 nm, respectively. For analysis of spines, three-
dimensional image was reconstructed from approximately 40
sequential z-series sections of every 0.45 μm. The applied zoom
factor (3.0) yielded 23 pixels per 1 μm. The confocal lateral
(XY) resolution was approximately 0.26 μm. The head diameter
is determined from examination of all XY planes with differ-
ent z-stages which contain a target spine. The head diameter
could be, therefore, determined even in the range of 0.2–0.5 μm.
Confocal images were then deconvoluted using AutoDeblur soft-
ware (MicroCybernetics, USA). The density of spines as well as
the head diameter was analyzed with Spiso-3D (mathematical
and automated software calculating geometrical parameters of

spines) developed by Bioinformatics Project of Kawato’s group
(Mukai et al., 2011; Ooishi et al., 2012a). Spiso-3D has an equiv-
alent capacity with Neurolucida (MicroBrightField, USA) which
however needs time-consuming manual operation. We analyzed
the secondary dendrites in the stratum radiatum, lying between
100 and 250 μm from the soma. The spine density was calculated
from the number of spines having a total length of 50–80 μm.
To distinguish different responses in spine subpopulations, spines
were classified into three categories according to their head diam-
eters: (1) A small-head spine, which has head diameter (D)
between 0.2 and 0.4 μm, (2) A middle-head spine, which has head
diameter between 0.4 and 0.5 μm. (3) A large-head spine, which
has head diameter 0.5–1.0 μm. These three categories were useful
to distinguish different responses upon kinase inhibitor applica-
tion. Because the majority of spines (>95%) had a distinct head
and neck, and stubby spines and filopodium did not contribute
much to overall changes, we analyzed mainly spines having a
distinct head.

LTP MEASUREMENTS UPON WEAK-THETA BURST
STIMULATION (TBS) IN CA1
The same “acute” slices used for spinogenesis experiments were
used for LTP investigations. The acute slice was incubated with
activin A at 10 ng/ml (0.4 nM) for another 2 h. The slice was
then transferred to an interface recording chamber, continuously
perfused (2 ml/min) with oxygenated ACSF at 32◦C.

Experimental details with custom multielectrode probes are
described elsewhere (Mukai et al., 2007). Briefly, slices were posi-
tioned on a custom multielectrode probe in which 64 planar
microelectrodes (Alpha MED Scientific, Japan) were particularly
designated to densely cover the important regions containing
essential synaptic contacts of pyramidal neurons of the stratum
radiatum in CA1. EPSP responses were measured with selected
electrodes in CA1. We determined the input-output curve of
fEPSP by gradually increasing the stimulus intensity. The interval
of the stimulation was 45 s. When responses were saturated, we
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calculated the stimulus intensity which gave the half maximum of
fEPSP.

For induction of small sub-threshold long-term potentiation
(small LTP), “weak-TBS” was applied to the Schaffer collaterals.
Here the weak-TBS stimuli were delivered as discrete 3 bursts sep-
arated by 200 ms (Kramar et al., 2009). One burst consists of 5
pulses at 100 Hz. On the other hand, “full-TBS,” consisting of total
50 pulses, was applied to obtain full LTP.

WESTERN IMMUNOBLOT ANALYSIS
Purified hippocampal fractions prepared by centrifugation were
suspended in 125 mM Tris-HCl buffer (pH 6.8), containing 5 mM
2-mercaptoethanol, 10% sucrose, 6% sodium dodecylsulfate and
0.002% bromophenol blue. The fractions were subjected to elec-
trophoresis using a 10% polyacrylamide gel. After transfer to
polyvinylidene fluoride membranes (Immobilon-P; Millipore,
USA), the blots were probed with anti-activin receptor anti-
serum (TAL-8043, 1/10000) for 15 h at 4◦C, and incubated with
horseradish peroxidase (HRP) conjugated goat anti-rabbit IgG
(Cell Signaling, USA). We also verified the specificity of anti-
activin antiserum (TT122G, 1/3000) against purified activin. The
protein bands were detected using ECL plus Western blotting
detection reagents (Amersham, USA). To obtain high quality
images of chemiluminescence from protein bands using ECL plus,
we used LAS3000 Image Analyzer (Fuji Film) with a 16-bit wide
dynamic range.

STATISTICAL ANALYSIS
For spine morphological experiments, the significance of activin
or drug effect was first examined via One-Way ANOVA (analysis
of variance) followed by Tukey-Kramer post-hoc multiple com-
parisons test. For LTP analysis, we defined the LTP ratio as the
average of EPSP slope level for t = 50–60 min. Two-Way ANOVA
was used for multiple comparisons between inhibitor treat-
ments in LTP experiments. Significance was defined as ∗p < 0.05,
∗∗p < 0.01.

RESULTS
ACTIVIN EXPRESSION IN THE HIPPOCAMPUS UNDER PHYSIOLOGICAL
CONDITIONS
We examined the distribution of endogenous activin by immuno-
histochemistry, and found the expression of activin molecules
in the hippocampus in physiological state (Figure 1). Activin-
immunoreactivity was associated in neurons of the CA1, CA3,
and DG region in the hippocampal formation (Figure 1). With
a resolution of light microscopy, only cell body expression is vis-
ible. Results of RT-PCR also supported the existence of mRNA
of inhibin βA, subunit of activin molecule in the hippocampus
(Figure 1, Table 1). Western blot analysis was performed to con-
firm the specificity of antisera used for immunohistochemistry
(Figure S1).

MOLECULAR BIOLOGICAL ANALYSIS OF ACTIVIN
The expression of inhibin β subunit transcripts, which make
activin in the hippocampus, was confirmed via semi-quantitative
RT-PCR. The relative level of inhibin βA mRNA in the hip-
pocampus was approx. 1/20 of that in the 12 week-old

FIGURE 1 | Expression and localization of activin in the adult male rat

hippocampus under physiological conditions. (A) Immunohistochemical
staining of activin with anti-activin IgG. (A1) Coronal section of CA1 region.
(A2) Coronal section of CA3 region. (A3) Coronal section of DG. so,
stratum oriens; pcl, pyramidal cell layer; sr, stratum radiatum. Scale bar,
200 μm. Representative images are shown from approx. 18 photographs
from 6 independent slices from 3 animals. (Supplementary Figure 1A4) No
staining after preadsorption treatments with activin. (B) RT-PCR analysis of
mRNA for inhibin βA, α, βB, βC and βE subunits in the hippocampus (31
cycles). (B1) The expression of inhibin βA subunit transcripts. From left to
right, size marker (Marker), hippocampus (Hi), ovary (Ov). (B2) Inhibin α and
βB subunit. (B3) Inhibin βC and βE subunits. (+): with reverse transcriptase
added; (−): without reverse transcriptase, a negative control. P: Ethidium
bromide staining of PCR products. GAPDH (21 cycles) was used as an
internal control for PCR amplification. Ovary (Ov) or Liver (Li) was used for
positive control. The image is a representative one from duplicate
determinations for each rat of total 4 rats.

ovary (Figure 1). Other members of inhibin family were
also expressed in the hippocampus (Figure 1). The resulting
sequences were identical to the reported cDNA sequences of these
molecules.
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SYNAPTIC LOCALIZATION OF ACTIVIN RECEPTOR IN THE
HIPPOCAMPUS
The cellular localization and expression of activin receptor pro-
tein has been unknown. First we tried to reveal light micro-
scopic investigations of the immunohistochemical staining using
anti-activin receptor antiserum (TAL-8043; 1/5000) were per-
formed to determine the cellular localization of activin receptor
in the hippocampal formation of adult male rats (Figure 2).
Activin receptors distributed over the principal neurons in CA1,
DG regions. With a resolution of light microscopy, only cell
body expression is visible. CA3 neurons had less pronounced
immunoreactivity. Only weak immunoreactivity was associated
in glial cells. Western blot analysis using anti-activin receptor
antiserum yielded the main band of 57 kDa activin receptor
protein (type IB) present in the hippocampus (Figure S1).

Further, we identified subcellular distribution (particularly
synaptic and dendritic localization) of activin receptor in hip-
pocampal neurons using anti-activin receptor antiserum (TAL-
8043; 1/5000). An immunoelectron microscopic analysis using
post-embedded immunogold was performed, since this method
can determine synaptic and dendritic localization of activin
receptor with a molecular resolution. The activin receptor was
observed in both the axon terminals and dendritic spines of
principal neurons (Figure 2). Gold particles were clustered in
the postsynaptic and presynaptic compartments, dendrites and

cytoplasm. At postsynapses (spines), gold particles were found
within the cytoplasm of the spine head. In some cases, gold par-
ticles were affiliated within the postsynaptic density. At the presy-
naptic terminals, gold particles were associated with synaptic
vesicles. Significant labeling along dendrites was also found, how-
ever, much less gold particles were observed in axons. Multiple
labeling (3 or more) of immunogold in the pre- and post-synaptic
compartments was confirmed to ensure the specific labeling. A
search for immunogold-labeled activin receptor proteins was per-
formed for at least 30 synapses per each CA1, CA3 and DG region
from more than 100 independent images. The topological distri-
butions of gold particles within the neurons of the CA1, CA3 and
DG were essentially identical.

ACTIVIN PROMOTES ACUTE SPINOGENESIS IN THE HIPPOCAMPUS
We investigated the effect of activin A on the modulation of
the dendritic spine density and morphology in the hippocam-
pus. We analyzed secondary branches of the apical dendrites
located 100–250 μm distant from the pyramidal cell body around
the middle of the stratum radiatum of CA1 region (Figure 3A).
A 2 h treatment with 10 ng/mL (0.4 nM) activin A increased the
total spine density to 1.21 ± 0.05 spines/μm from 1.00 ± 0.05
spines/μm (control, no activin) (Figure 3B). However, the
enhancement was not significant at 1 h after activin treatment
(1.05 ± 0.06 spines/μm). Also to determine the effective activin

FIGURE 2 | Localization of activin type IB receptor in the rat

hippocampus. (A) Immunohistochemical staining of the hippocampal
slice (coronal section) of adult male rat probed with anti-activin receptor
IgG. (A1) CA1, (A2) CA3, (A3) DG. Scale bar, 200 μm. so, stratum
oriens; pcl, pyramidal cell layer; sr, stratum radiatum. Representative
images are shown from approx. 18 photographs from 6 independent
slices from 3 animals. (Supplementary Figure 2A4) No staining after
preadsorption treatments with activin receptor. (B) Immunoelectron
microscopic analysis, using anti-activin receptor IgG, of the distribution of
activin receptor within the axospinous synapses of the hippocampal
principal neurons in the stratum radiatum of CA1 (B1), stratum radiatum

and lucidum of CA3 (B2), and hilus of DG (B3). Representative images
are shown from approx. 100 photographs from 27 independent slices
from 4 animals. Gold particles (arrowheads) were localized in the pre-
and postsynaptic regions (B1–3). In spines (postsynapses), gold particles
were associated with PSD regions as well as within the spine head (B1).
In the presynaptic terminus, gold particles were often associated with
small synaptic vesicles. In dendrites of neurons (B4, CA1 region), gold
particles were often found in cytoplasmic space. A 1:20000 dilution
anti-activin receptor IgG was used to prevent non-specific labeling. pre,
presynaptic region; post, postsynaptic region; den, dendrite. Scale bar,
200 nm for (B1,B3), 300 nm for (B2,B4).
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concentration, we applied activin at 1 and 10 ng/mL. The signif-
icant effect on the total spine density was obtained at 10 ng/mL
activin. Blocking of 10 ng/mL activin by 100 ng/mL follistatin
completely abrogated the enhancing effect of activin on the spine
density (0.94 ± 0.04 spines/μm).

Spine head diameter analysis
The morphological changes in spine head diameter induced
by 2 h treatments were assessed (Figures 3C,D). We classified
the spines into three categories using their head diameter, i.e.,
0.2–0.4 μm as small-head spines, 0.4–0.5 μm as middle-head
spines, and larger than 0.5 μm as large-head spines. In control
slices (0 nM activin), the spine density was 0.48 ± 0.1 spines/μm
for small-head spines, 0.29 ± 0.06 spines/μm for middle-head
spines, and 0.23 ± 0.05 spines/μm for large-head spines. Upon
treatment with activin, the density of large- and middle-head
spines increased significantly from 0.23 to 0.37 spines/μm and
from 0.29 to 0.37 spines/μm, respectively, while the density
of small-head spines was not significantly altered (from 0.48
to 0.43 spines/μm) (Figure 3D). The concurrent application of
activin A and follistatin decreased the density of large-head spines

significantly down to 0.22 spines/μm, while the densities of other
types of spines were not significantly changed (Figure 3D).

ACTIVIN ENHANCES SPINOGENESIS VIA Erk/MAPK, PKA, AND PKC
PATHWAYS
Next we investigated kinase signaling pathways involved in the
activin-induced spinogenesis by using specific inhibitors.

Total spine density analysis (Figure 4A)
Blocking Erk/MAPK, by application of 20 μM PD98059 (Dudley
et al., 1995), abolished the activin effect on the increase of
spine density, resulting in 0.86 ± 0.04 spines/μm. Application
of 10 μM H89 (Chijiwa et al., 1990), a PKA (protein kinase
A) inhibitor, also prevented the effect by activin resulting
in 0.99 ± 0.03 spines/μm. Treatment with 10 μM chelery-
thrine (CHEL) (Herbert et al., 1990), a PKC (protein kinase
C) inhibitor, also prevented the effect by activin resulting in
0.98 ± 0.05 spines/μm. Further, 1 μM KN-93 (Sumi et al.,
1991; Niki et al., 1993), a CaMKII inhibitor, abolished the
effect by activin (1.00 ± 0.05 spines/μm). Interestingly, on
the other hand, 10 μM SB203580 (SB) (Arana-Argaez et al.,

FIGURE 3 | Changes in the density and morphology of spines by

activin and drugs in hippocampal slices. Spines were analyzed along
the secondary dendrites of pyramidal neurons in the stratum radiatum of
CA1 neurons. (A) Representative images of confocal micrographs; spines
along dendrite without drug-treatments (Cont) and spines along dendrite
after activin treatment for 2 h (Act). Maximal intensity projection onto XY
plane from z-series confocal micrographs (MAX-XY), image analyzed by
Spiso-3D (S) and 3 dimensional model (Model) are shown together. Bar,
3 μm. (B) Effect of treatments by activin and glutamate receptor blockers
on the total spine density in CA1 neurons. Vertical axis is the average
number of spines per 1 μm. A 2-h treatment in ACSF without drugs
(Control, total spine numbers = 552, 8 neurons), with 10 ng/mL activin
A (Act), with 10 ng/mL activin and 100 ng/mL follistatin (Act + Fol), with
10 ng/mL activin and 20 μM CNQX (Act + CNQX, total spine
numbers = 977, 11 neurons, P = 0.005), with 10 ng/mL activin and 50 μM
MK-801 (Act + MK). Statistical significance is calculated against activin
treated group and indicated by stars. ∗P < 0.05, ∗∗P < 0.01. (C)

Histogram of spine head diameters after a 2 h treatment in ACSF without
drugs (Control, closed black diamond), with 10 ng/mL activin (closed red
square), and with 10 ng/mL activin A and 100 ng/mL follistatin (closed blue
diamond), with 10 ng/mL activin and 20 μM CNQX (closed green triangle),
with 10 ng/mL activin A and 50 μM MK-801 (closed purple triangle). (D)

Density of three subtypes of spines. Abbreviations are same as in (A).
Vertical axis is the number of spines per 1 μm of dendrite. From left to
right, small-head spines (Small), middle-head spines (Middle), and
large-head spines (Large) type. ACSF without drugs (open column), Act
(orange column), Act + Fol (blue column), Act + CNQX (green column),
Act + MK801 (purple column) are shown. Statistical significance is
calculated against activin treated group in each spine subtypes and
comparisons reached significance are indicated by stars. The significance
yielded P < 0.05. ∗P < 0.05, ∗∗P < 0.01. In (B,D), results are reported as
mean ± s.e.m. For each drug treatment, we investigated 3 rats, 7 slices,
14 neurons, 28 dendrites and 1400–2000 spines. For control, we used 5
rats, 8 slices, 16 neurons, 31 dendrites and approx. 1700 spines.
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2010), a p38 MAPK inhibitor, did not prevent the activin effect
on spinogenesis (1.12 ± 0.06 spines/μm). A PI3K inhibitor,
10 μM LY294002 (LY) (Vlahos et al., 1994), did not alter the
activin effect (1.20 ± 0.04 spines/μm). One μM cyclosporin
A (CsA) (Wiederrecht et al., 1993), an inhibitor of calcineurin
(PP2B), a phosphatase, reversed the effect of activin (1.04 ± 0.03
spines/μm).

It should be noted that these kinase inhibitors alone did not
significantly affect the total spine density within experimental
error, indicating that the observed inhibitory effects are not due
to simple blockers’ effects (Figure 4D).

Spine head diameter analysis (Figures 4B,C,E)
Since the total spine density is not sensitive enough to describe
complex effects of kinases, the changes in spine head diam-
eter distribution should be analyzed. In inhibitory effect by
MAPK inhibitor, middle-head spines remained unchanged, while
smaller and larger population of spines showed considerable
decrease (Figures 4B,C,E). Even though the total spine density
was not altered by the treatment of LY or SB in the presence
of activin, the density of small-, middle- or large-head spines
changed.

In order to statistically analyze these complicated mor-
phological alterations, we classified the spine head into three
categories depending on their head diameters (Figures 4C,E).
Categorizing spines by two classes (for example, thin or mush-
room) was not sufficient to describe the complex changes of
spine heads. Blocking Erk/MAPK (PD) abolished the effect
of activin on the spine densities, decreasing the density of
large-head spines from 0.37 to 0.22 spines/μm and small-
head spines from 0.43 to 0.18 spines/μm, while significant
change was not observed in middle-head spines (from 0.37
to 0.41 spines/μm). Inhibiting PKA (H89) also decreased the
density of large-head spines from 0.37 to 0.25 spines/μm
and small-head spines from 0.43 to 0.27 spines/μm, with an
increase in middle-head spines (from 0.37 to 0.48 spines/μm).
Inhibiting PKC (CHEL) had a similar effect to that of PKA,
decreasing the density of large-head spines from 0.37 to 0.20
spines/μm and small-head spines from 0.43 to 0.25 spines/μm,
with an increase in middle-head spines (from 0.37 to 0.53
spines/μm).

EFFECT OF OTHER KINASES ON ACTIVIN-INDUCED SPINOGENESIS
Although inhibition of p38 MAPK and PI3K did not signif-
icantly change the total spine density, these inhibitors altered
subpopulations of spines. Inhibition of p38 MAPK (SB) decreased
the density of large-head spines, but increased middle-head
spines without changing small-head spines. PI3K inhibitor (LY)
decreased the density of large-head spines, however, increased
middle-head spines and small-head spines. On the other hand,
although total density of spines was reversed by blocking of
CaMKII (KN93), KN93 increased large-head spines from 0.37
to 0.53 spines/μm, but it decreased small-head spines, with
no significant changes in middle-head spines (Figures 4B,C).
Inhibition of calcineurin by CsA decreased small-head spines,
increased middle-head spines, without a change in large-head
spines.

BLOCKING OF GLUTAMATE RECEPTORS ABOLISHED
ACTIVIN-INDUCED SPINOGENESIS
We investigated the contribution of ionotropic glutamate
receptors to activin effects. The level of Ca2+ or Na+, which is
maintained via ionotropic glutamate receptors, may be essential
for activin-induced spinogenesis. We examined spinogenesis in
the presence of inhibitors of these receptors. CNQX, an inhibitor
of AMPA receptor, and MK-801, an NMDA receptor blocker, sup-
pressed the activin effects on the total spine density (Figure 3B).
Note that these inhibitors alone did not alter the density of
spines.

The morphological changes in spine head size in the presence
of glutamate receptor inhibitors were analyzed (Figures 3C,D).
CNQX decreased the density of large-head spines from (from
0.37 to 0.21 spines/μm) and small-head spines (from 0.43 to 0.24
spines/μm), but increased middle-head spines (from 0.37 to 0.56
spines/μm). MK-801 only slightly decreased large-head spines,
but considerably decreased small-head spines, and increased
middle-head spines.

ACTIVIN-INDUCED SPINOGENESIS IS DEPENDENT ON SYNTHESIS OF
PROTEIN OR mRNA
To investigate whether activin-induced spinogenesis includes new
protein recruitment, we examined synthesis of protein or mRNA
(Figure 5). Cycloheximide (CHX), a protein synthesis inhibitor,
at 20 μM abolished the activin-induced increase in the density
of spines, by decreasing the total density to 0.90 spines/μm.
Actinomycin D (actD), an mRNA synthesis inhibitor, at 4 μM
also suppressed the effect of activin. These inhibitors alone did
not alter the density of spines. Upon CHX treatment, the density
of large-head spines and small-head spines were decreased, with-
out a significant change in middle-head spines (Figure 5). On the
other hand, actD slightly decreased large-head spines, and consid-
erably decreased small-head spines, but increasing middle-head
spines.

ACTIVIN INDUCES MODERATE LTP UPON WEAK-TBS (15 PULSES)
To investigate the effect of activin incubation on the synaptic
transmission, we measured LTP upon weak-TBS in CA1 region
of the adult hippocampal slices. Acute slices were incubated for
2 h with 10 ng/ml (0.4 nM) activin before weak TBS (15 pulses).
The activin treatment established moderate LTP-induction upon
weak-TBS, by increasing the magnitude of EPSP from 119 ± 3
% (small LTP, n = 10 slices) in control slices (with no activin)
to 130 ± 2 % (moderate LTP, n = 10 slices) in activin-treated
slices (Figures 6A,C). Co-incubation of follistatin (100 ng/ml), an
endogenous inhibitor of activin, completely blocked the effect of
activin, resulting in LTP magnitude of 116 ± 4 % (n = 7 slices)
(Figures 6A,C). Note that full-TBS (with total 50 pulses) elevated
the EPSP to 145 ± 4 (full LTP, n = 9 slices), implying that the
activin-induced moderate LTP (130%) is smaller than full LTP
(145%) (Figure 6C).

Erk/MAP kinase inhibitor prevents activin-induced LTP
Co-incubation of PD98059 (20 μM), an inhibitor of Erk/MAPK,
with activin considerably suppressed the effect of activin,
resulting in LTP magnitude of 121 ± 1 % (n = 7 slices)
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FIGURE 4 | Effects by inhibition of kinases on changes of the density and

morphology of spines in the presence of activin A. Spines were analyzed
along the secondary dendrites of CA1 pyramidal neurons. (A) Total spine
density. Effect of kinase inhibitors in the presence of activin in CA1 neurons.
Vertical axis is the average number of spines per 1 μm. A 2-h treatment in
ACSF without drugs (Control), with 10 ng/mL activin (Act), with 10 ng/mL
activin and 20 μM PD98059 (Erk MAPK inhibitor) (Act + PD), with 10 ng/mL
activin and 10 μM SB203580 (p38 MAPK inhibitor) (Act + SB), with 10 ng/mL
activin and 10 μM H-89 (PKA inhibitor) (Act + H89), with 10 ng/mL activin and
10 μM chelerythrine (PKC inhibitor) (Act + CHEL), with 10 ng/mL activin A and
10 μM LY294002 (PI3K inhibitor) (Act + LY), with 10 ng/mL activin and 1 μM
cyclosporin A (calcineurin inhibitor) (Act + CsA), and with 10 ng/mL activin and
1 μM KN-93 (CaMKII inhibitor) (Act + KN93). Statistical significance is
calculated against activin treated group and indicated by stars. ∗P < 0.05,
∗∗P < 0.01. (B) Histogram of spine head diameters. Abbreviations are the
same as in (A). Vertical axis is the number of spines per 1 μm of dendrite. After
a 2-h treatment in ACSF without drugs (Control, closed black diamond), Act
(closed red square), Act + PD (closed brown triangle), Act + SB (closed orange
diamond), with Act + H89 (closed blue triangle), with Act + CHEL (open blue
triangle), with Act + LY (open green diamond), and Act + CsA (closed purple
circle), and Act + KN93 (open orange square). (C) Density of three subtypes

of spines. Abbreviations are the same as in (A). Vertical axis is the average
number of spines per 1 μm of dendrite. From left to right, small-head spines
(Small), middle-head spines (Middle), and large-head spines (Large). In each
group, control (open column), Act (closed orange column), Act + PD (closed
blue column), Act + SB (closed green column), Act + H89 (hatched orange
column), Act + CHEL (hatched blue column), Act + LY (hatched green column),
and Act + CsA (hatched purple column), and Act + KN93 (closed purple
column). Statistical significance is calculated against activin treated group in
each spine subtypes and comparisons reached significance are indicated by
stars. The significance yielded P < 0.05. ∗P < 0.05, ∗∗P < 0.01. (D) No effect
of kinase inhibitors alone on the total spine density in CA1 neurons.
Abbreviations are same as in (A). (E) Representative spine images of confocal
micrographs used for (A–C): activin plus KN-93 treatment (Act+KN93) and
only KN-93 treatment (KN93); activin plus H-89 treatment (Act+H89) and only
H-89 treatment (H89); activin plus PD98059 treatment (Act+PD); activin plus
chelerythrine treatment (Act+CHEL). Maximal intensity projection onto XY
plane from z-series (MAX-XY), image analyzed by Spiso-3D (S) and 3
dimensional model (Model) are shown together. Bar, 3 μm. In (A,C,D), results
are reported as mean ± s.e.m. For each drug treatment, we investigated 3
rats, 7 slices, 14 neurons, 28 dendrites and 1400–2000 spines. For control, we
used 5 rats, 8 slices, 16 neurons, 31 dendrites and approx. 1700 spines.
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FIGURE 5 | Effects of protein and mRNA synthesis on changes in the

density and morphology of spines by activin. Spines were analyzed along
the secondary dendrites of CA1 pyramidal neurons as in Figure 3. (A) Total
spine density. Effect of inhibitors for protein or mRNA synthesis in the
presence of activin on CA1 neurons. Vertical axis is the average number of
spines per 1 μm. A 2-h treatment in ACSF without drugs (Control), with
10 ng/mL activin (Act), with 10 ng/mL activin and 20 μM cycloheximide (Act +
CHX), and with 10 ng/mL activin and 4 μM actinomycin D (Act + actD).
Statistical significance is calculated against activin treated group. ∗P < 0.05,
∗∗P < 0.01. (B) Histogram of spine head diameters. Abbreviations are same
as in (A). Vertical axis is the number of spines per 1 μm of dendrite. After a
2-h treatment in ACSF without drugs (Control, closed black diamond), Act

(closed orange square), Act + CHX (closed blue triangle), and Act + ActD
(closed green triangle). (C) Density of three subtypes of spines. Abbreviations
are same as in (A). Vertical axis is the average number of spines per 1 μm of
dendrite. From left to right, small-head spines (Small), middle-head spines
(Middle), and large-head spines (Large). ACSF without drugs (open column),
Act (orange column), Act + CHX (blue column), Act + actD (green column).
Statistical significance is calculated against activin treated group in each
spine subtypes and comparisons reached significance are indicated by stars.
The significance yielded P < 0.05. ∗P < 0.05, ∗∗P < 0.01. In (A,C) results are
reported as mean ± s.e.m. For each drug treatment, we investigated 3 rats, 6
slices, 12 neurons, 24 dendrites and 1100–1800 spines. For control, we used
5 rats, 8 slices, 16 neurons, 31 dendrites and approx. 1700 spines.

(Figures 6B,C). Note that incubation with only PD98059 did
not change the small LTP upon weak TBS (117 ± 4 %, n = 5
slices).

NR2B inhibitor prevents activin-induced LTP
Co-incubation of Ro25-6981 (1 μM) (Ooishi et al., 2012b), an
inhibitor of NR2B subunit of NMDA receptors, with activin con-
siderably suppressed the effect of activin A, resulting in LTP
magnitude of 118 ± 2 % (n = 7 slices) (Figures 6B,C). Note that
incubation with only Ro25-6981 did not change the small LTP
upon weak TBS (122 ± 5 %, n = 5 slices).

DETERMINATION OF ENDOGENOUS LEVEL OF ACTIVIN
Endogenous level of activin was quantified by ELISA. Brains
were taken out after deep anesthesia and each brain region was
dissected out. Tissues were homogenized in the buffer [0.32 M
sucrose, 5 mM Tris-HCl, pH 8.0, protease inhibitor cocktail
(Roche)], and homogenates were centrifuged at 20,000×g at 4◦C.
Activin level was measured by ELISA kit (Quantikine Activin
A assay, R&D systems) according to manufacturer’s instruction.
Approximately same concentration of activin (5 ng/mL) in the
hippocampus is obtained with previous studies using wild type
mice (Ageta et al., 2008).

DISCUSSION
We examined the role of activin in an acute effect on adult rat hip-
pocampus under physiological conditions. To date much effort
has been devoted to investigate the role of activin as neuroen-
docrinological factor in hypothalamic-pituitary-gonadal (HPG)
axis (Ling et al., 1986; Vale et al., 1986; Gregory and Kaiser,
2004) or neuroprotective factor in excitotoxic injury (Tretter et al.,
1996, 2000). We attempt to find physiological roles in addition to
pathological roles of activin in the hippocampus (see model illus-
tration of Figure 7). Activin drives a variety of kinases (including
Erk/MAPK, PKA and PKC), resulting in modulation of spine
density and spine head shape. Importantly, some kinases includ-
ing p38 MAPK and PI3K, did not participate in these actions,
indicating that the observed kinase effects are not non-specific
ones.

We used exogenous activin-treatments in the current
work in order to simulate the physiological elevation in activin
level in the hippocampus. Since the acute change in the activin
level in slices is difficult with other methods, these exogenous
application is also used in other studies for investigations of the
role for endogenous activin (Ikegaya et al., 1997; Tretter et al.,
2000; Shoji-Kasai et al., 2007; Kurisaki et al., 2008; Ageta et al.,
2010). Applied concentration of activin in the current study
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FIGURE 6 | (A) Induction of moderate LTP by weak-TBS stimulation after
short incubation (∼2 h) with activin in the CA1 of hippocampal slices.
Slices with 0 ng/ml activin (control, open square, n = 10 slices, 10 rats),
with 10 ng/ml activin (closed circle, n = 10 slices, 10 rats), with 10 ng/ml
activin plus 100 ng/ml follistatin (closed triangle, n = 7 slices, 7 rats), with
respectively. The number of independent experiments is indicated as n.
Vertical axis indicates EPSP slope. Here, 100% refers to the EPSP slope
value of the average of t = −10 to −1 min prior to weak-TBS stimulation.
LTP was induced at time t = 0. Illustrated data points and error bars
represent the mean ± s.e.m. from n of independent slices. (B)

Co-incubation of activin with MAPK inhibitor PD98059 (20 μM) prevented
the induction of LTP (open circle, n = 7 slices, 7 rats). Co-incubation of

activin with NR2B inhibitor Ro25-6981 (1 μM) prevented the induction of
LTP (open square, n = 7 slices, 7 rats). Activin-treated slices (closed circle,
n = 10 slices, 10 rats). Maximal LTP by full-TBS is also shown (closed
circle, n = 7, 7 rats). (C) Comparison of modulation effects by activin
upon weak-TBS as shown in (A) and (B). From left to right; slices without
drugs (Cont), with 10 ng/ml activin (Act), with activin plus follistatin (+Fol),
activin plus PD98059 (+PD), activin plus Ro25-6981 (+Ro) and full-TBS
(full-TBS). The significance yielded p < 0.05. ∗P < 0.05, ∗∗P < 0.01. (D)

Representative raw traces of EPSP, showing sample recordings prior to
(black line) or after (gray line) weak-TBS stimulation. Control (0 ng/ml
activin), Act (10 ng/ml activin), Act+ PD (activin plus PD98059), Act + Ro
(activin plus Ro25-6981). EPSP trace for full-TBS is also shown.

(10 ng/mL = 0.4 nM) is comparable with endogenous level of
activin found in the hippocampus (5 ng/mL = 0.2 nM) (Ageta
et al., 2008).

ACTIVIN RECEPTORS LOCALIZE WITHIN SYNAPSE
Activin has synaptic actions. In primary cultured hippocampal
neurons, activin induces rapid activation (∼1 h) of NMDA recep-
tors (e.g., elevation of Ca2+ influx) via Fyn-kinase dependent
phosphorylation of NR2A or NR2B (Kurisaki et al., 2008). This
activin-induced activation of NMDA receptors is not blocked
by SB431542, an inhibitor of Smad phosphorylation, indicat-
ing that this pathway is Smad-independent. Transgenic mice
expressing dominant-negative activin receptor IB exhibit reduced
NMDA current and impaired LTP at the Schaffer-CA1 synapse
(Muller et al., 2006). The synaptic action of activin is fur-
ther supported by the synaptic distribution of activin type
IB receptor, which is associated with PSD regions (contain-
ing both NMDA receptors and Erk/MAPK) (see Figure 5).
Activin type I receptor was expressed in hippocampal CA1, and
CA3 pyramidal neurons, in addition to the receptor distribu-
tion in DG (Funaba et al., 1997). The synaptic activin recep-
tor probably plays an essential role in rapid signaling, since

the activin-induced modulation of spine morphology and LTP
appeared within 2 h.

ACTIVIN ENHANCES SPINOGENESIS VIA Erk/MAPK, PKA, AND PKC
AND THEIR DOWNSTREAM UNDER PHYSIOLOGICAL CONDITIONS
Upon inhibition of Erk/MAPK, PKA, or PKC, the activin-induced
enhancement of spinogenesis was significantly prevented. Non-
specific effects by only kinase inhibitors were not observed
(Figure 4D). Detailed analysis of spine head diameter revealed
that inhibition of Erk/MAPK, PKA, or PKC decreased density
of large-head spines. Analysis of individual spine head diameters
using the criteria of small, middle, and large classes (using three
classes), was particularly useful to distinguish different effects
of many kinases on the activin-induced spinogenesis as com-
pared with previous classification of mushroom or thin (only two
classes).

Not only Erk/MAPK but also PKA and PKC might
also contribute in reorganization of spines. Importantly
in CA1, MAPK cascade is known to couple with PKA
and PKC via PKC → Raf1 → MAPK and/or PKA →
B-Raf → MAPK in synaptic modulation including LTP
(Roberson et al., 1999). Taking this knowledge into account,
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FIGURE 7 | Schematic illustration of activin-induced spinogenesis via

multiple kinase pathways. (A) Upon activation by activin receptor
complex (ActR), early LTP is suppressed by anti-inflammatory action of
activin. (B) After 2 h of ActR activation, PKA, PKC and MAPK may

promote actin polymerization process, leading to the formation of new
spines. (C) After 2 h of ActR activation, MAPK may phosphorylate
NR2B of NMDA receptors, thereafter moderate LTP is induced upon
weak-TBS.

MAPK may be a key kinase responsible for modulation of
spines.

What is the target of Erk/MAPK in spine reorganization?
Erk/MAPK is known to phosphorylate cortactin, a structural pro-
tein associated to actin (Campbell et al., 1999; Macqueen et al.,
2003). Cortactin interacts with both F-actin and actin-related
protein (Arp) 2/3 complex as well as scaffold protein Shank in the
PSD at the SH3 domain (Weed et al., 1998; Campbell et al., 1999),
resulting in promotion of actin fiber remodeling within spines.
As a good example, upon BDNF stimulation, MAPK phospho-
rylates cortactin through interacting C-terminal of SH3 domain,
resulting in a reorganization of spine morphology (Iki et al.,
2005).

It is thus probable that activin exerts its effect on spines via
cortactin-actin pathway. Cortactin has multiple phosphorylation
sites, including Ser405and Ser418, which are activated by MAPK
(Campbell et al., 1999). Phosphorylation of cortactin may pro-
mote assembly of actin cytoskeletal matrices, resulting in spine
formation or modulation of spine morphology (Hering and
Sheng, 2003). These sites, including Ser113,are putative phospho-
rylation sites also for other serine/threonine kinase (PKA or PKC)
that are activated by activin.

LIMK might also involve in the regulation of spinogenesis
through Rho-ROCK pathway. It has been known that TGFbeta
family receptors regulate the phospharylation of LIMK (Bernard,
2007).

Accumulating evidence indicates that Erk/MAPK is a rapid,
Smad-independent signaling pathway of TGF family receptors,
including activin (Ten Dijke et al., 2000; Derynck and Zhang,
2003; Lee et al., 2007). Via interaction with Ras, TGF family recep-
tors induce phosphorylation of Erk/MAPK within 2 h (Lee et al.,

2007). On the other hand, Smad pathway via gene transcription
(Derynck and Zhang, 2003) typically needs longer hours. For
example, phosphorylation of Smad2 requires 4 h after induction
of activin expression by acute electroconvulsive shock treatment
(Dow et al., 2005).

Figure 4A shows the inhibition effects of kinases, including
CaMKII, in the basal low Ca conditions (around 0.1–0.2 μM).
In this low Ca level, CaMKII is not highly activated (Pi and
Lisman, 2008), and CaMKII action should be very different from
that in the high Ca level (∼10 μM). In earlier studies (Yuste
and Bonhoeffer, 2001; Lee et al., 2009; Hamilton et al., 2012),
activity-dependent spine growth effects (spine size enlargement)
by CaMKII have been observed in which high level Ca influx
occurs (through NMDA receptors) upon stimulation by gluta-
mate or high frequency electric stimulation. Due to the low Ca
condition, Figure 4 results suggest new and interesting aspects.
For example, CaMKII may maintain the shorter F-actin filaments,
therefore by blockade of CaMKII, F-actin filaments might be
elongated, resulting in significant conversion from small head to
middle head and from middle head to large head spines. From
similar considerations, the PKA/PKC/Erk MAPK may maintain
longer F-actin filaments, therefore by blockade of PKA/PKC/Erk
MAPK under activin treatments, large spines (with long F-actin
filaments) may be converted to middle spines, and small spines
were lead to disappear. KN93 effects may not be solely attributed
to CaMKII, since KN93 may also inhibit other CaMKs.

CONTRIBUTION OF NMDA RECEPTORS AND RNA/PROTEIN SYNTHESIS
Blockade of NMDA receptors by MK-801 inhibited the activin-
induced increase of the total density of spines (Figure 3). MK-
801 probably further decreased the Ca level below the basal Ca

Frontiers in Neural Circuits www.frontiersin.org June 2014 | Volume 8 | Article 56 | 11

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Hasegawa et al. Activin modulates synaptic plasticity

level by suppression of Ca exchange through spontaneous open-
ing/closing of NMDA receptors. By the presence of MK-801,
middle-head spines were increased and small-head spines were
considerably decreased. Decrease of Ca level to below the basal
level may shrink small spines, leading to the disappearance of
small spines, and may convert large-head spines to middle head
spines, by suppressing PKA/PKC/Erk MAPK functions which
might enlarge spines (Figure 4). Since inhibition of new pro-
tein synthesis by CHX as well as inhibition of gene transcription
by actD abolished activin-induced spinogenesis (Figure 5), rapid
transcription/translation might also contribute to spinogenesis.

ACTIVIN INDUCES MODERATE LTP UPON WEAK-TBS
The current study demonstrates that activin-treatments induced
moderate LTP upon weak-TBS (Figure 6). Induction of moderate
LTP upon weak-TBS stimuli by the presence of neurotrophic fac-
tors such as BDNF or estradiol is observed (Kramar et al., 2004,
2009). On the other hand these neurotrophic factors fail to fur-
ther enhance strong tetanus-induced LTP (Ooishi et al., 2012b),
probably because strong tetanus stimulation (typically 100 Hz,
1 s) elevates EPSP to a saturated level which cannot be further
enhanced by neurotrophic factors. Activin-treatments also could
not further enhance the full LTP induced by full TBS in our study.

The rapid action of activin is driven via Erk/MAPK, because
PD98059 completely suppressed the activin-induced moderate
LTP. Since Erk/MAPK is localized in spines and the PSD frac-
tions (Mukai et al., 2007), the activation of Erk/MAPK may
phosphorylate tyrosine of NR2B as shown in the case of estradiol-
induced MAPK signaling (Dominguez et al., 2007) or leptin-
induced MAPK signaling (Irving et al., 2006). The involvement
of NR2B is supported by the observation that NR2B inhibitor
Ro25-6981 suppressed the activin-induced LTP. The rapid phos-
phorylation of NR2B by activin is found in hippocampal neurons
(Kurisaki et al., 2008). We therefore hypothesize that the signal-
ing pathway is as follows: activin → type II receptor → Erk/MAP
kinase → activation of NMDA receptor by phosphorylation of
NR2B → increase of Ca2+ influx though NMDA receptors during
weak-TBS → enhanced phosphorylation of AMPA receptors →
enhancement of the magnitude of LTP (Figure 7).

PHYSIOLOGICAL AND PATHOLOGICAL FUNCTIONS OF ACTIVIN IN
EARLIER STUDIES
We found a significant endogenous expression of activin
molecules in hippocampal glutamatergic neurons in CA1, CA3,
and DG region, along with the expression of activin mRNA. A
much less expression of activin A was observed in glial cells.

To date, activin expression and neuroprotective effects upon
excitotoxic injury have been extensively investigated (Tretter
et al., 1996, 2000). Electroconvulsive shock shows upregulation
of activin mRNA in the hippocampus (Inokuchi et al., 1996; Dow
et al., 2005). It is suggested that local upregulation of endogenous
activin A may be of crucial importance for neuroprotection in
hippocampal neurons (Iwahori et al., 1997; Tretter et al., 2000).

In addition to above neuroprotective roles of activin, recent
evidence suggests physiological roles of activin in the brain.
Activin modulates the long term memory and late-LTP in vivo
(Ageta et al., 2010). Mice overexpressing follistatin have a severe

deficit in adult hippocampal neurogenesis that affects mainte-
nance of fear memory (Kitamura et al., 2009). Current study adds
further importance of physiological function of activin about
synaptic plasticity. Significant expression of activin and its recep-
tors in healthy neurons of CA1, CA3 and DG supports physiologi-
cal role of activin. Its role may be regulation of neuronal plasticity,
including enhancement of spinogenesis or LTP under moderate
stimulation (weak-TBS). Further efforts are needed to unravel a
possible underlying mechanism of activin to enhance memory
processes in the hippocampus in physiological conditions.

SIMILARITY TO ESTRADIOL-INDUCED SPINOGENESIS
Comparison between activin and 17β-estradiol about spinogene-
sis is interesting, since these two sex-hormones are synthesized in
the hippocampus. Estradiol induced rapid increase in spines by
approx. 1.4-fold in the adult male hippocampus and this increase
was inhibited by Erk MAPK inhibitor (Mukai et al., 2007). Both
activin- and estradiol-induced spinogenesis was suppressed by
NMDA receptor blocking.
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