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Principal neurons of the lateral superior olivary nucleus (LSO) respond selectively to
interaural level differences (ILD). To perform this computation, LSO neurons integrate
excitatory synaptic drive from the ipsilateral ear with inhibitory synaptic drive from
the contralateral ear via the medial nucleus of the trapezoid body (MNTB). Previous
research demonstrated that inhibitory terminals from the MNTB to the LSO are
eliminated during development. Furthermore, MNTB synapses display an activity- and
age-dependent long-term depression (iLTD) that may contribute to inhibitory synapse
elimination. However, inhibitory synapses that are stabilized become stronger. Here, we
asked whether MNTB synapses displayed activity-dependent strengthening. Whole-cell
recordings were obtained from LSO neurons in a gerbil brain slice before and after
hearing onset. The inhibitory MNTB afferents were stimulated at a low rate, similar to
spontaneous discharge rates observed in vivo. The MNTB-evoked inhibitory responses
were strengthened by 40–300% when synaptic activity was coupled with postsynaptic
membrane depolarization, exogenous glutamate application, or activation of ipsilateral
excitatory synaptic inputs. This inhibitory long-term potentiation (iLTP) was associated with
increased spontaneous inhibitory postsynaptic current (IPSC) amplitude and frequency.
One hour after iLTP induction, IPSCs could not be de-potentiated by the MNTB stimulation
pattern that induces iLTD in control slices. iLTP could only be induced after hearing onset
(>P12), and was blocked in the presence of a GABAB receptor antagonist. Together, these
results suggest a developmental period during which the induction of iLTP depends on
the conjoint activation of GABAB receptors and postsynaptic depolarization. We propose
that iLTP may support stabilization of un-pruned MNTB connections and contribute to the
emergence of ILD processing in the mature LSO.
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INTRODUCTION
The encoding of sound localization cues, such as interaural
level (ILD) and time differences (ITD), begins in the ventral
auditory brain stem. For ILD coding, the discharge rate of lateral
superior olivary (LSO) neurons is proportional to the integration
of ipsilateral excitatory drive arising from the cochlear nucleus
and contralateral inhibitory drive from the medial nucleus of
the trapezoid body (MNTB) (Boudreau and Tsutchitani, 1968;
Caird and Klinke, 1983; Harnischfeger et al., 1985; Tollin, 2003;
Sterenborg et al., 2010). The inhibitory MNTB afferents form a
tonotopic projection in the LSO that is aligned precisely with the
ipsilateral excitatory projection in the adult (Sanes and Rubel,
1988). Furthermore, this precision evolves as inhibitory synapses
are eliminated during postnatal development (Sanes and Siverls,
1991; Sanes and Friauf, 2000; Kim and Kandler, 2003; Kandler,
2004; Kandler and Gillespie, 2005; Kandler et al., 2009). A similar
elimination of inhibitory MNTB terminals occurs at the medial
superior olivary nucleus, which encodes ITD (Kapfer et al., 2002),
although one study did not find a significant developmental

change in amplitude (Walcher et al., 2011). It is, therefore,
plausible that that the establishment of properly aligned exci-
tatory and inhibitory maps involves the dynamic addition and
elimination of inhibitory synapses. One mechanism that could
participate in synapse elimination, inhibitory long-term depres-
sion (iLTD), has been described previously for MNTB synapses
(Kotak and Sanes, 2000, 2002; Kotak et al., 2001; Chang et al.,
2003). As inhibitory synapses are eliminated and the remain-
ing contacts are strengthened in the rat LSO, there is a 12-fold
increase in inhibitory conductance (Kim and Kandler, 2003).
Here, we describe a mechanism that could account for this
strengthening.

A vast literature on excitatory long-term potentiation (LTP)
and depression (LTD) in the hippocampus and neocortex
supports their involvement in adult learning, memory and
neurodevelopmental disorders (see Bear and Malenka, 1994; Bliss
et al., 2013). Many studies have also shown that inhibitory
synapses can be strengthened or weakened in an activity-
dependent manner. However, the functional consequence of such
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FIGURE 1 | Iaqnduction of inhibitory LTP in P12–15 day neurons. (A) A
schematic of the LSO circuit in brain slice preparation. Filled circle and
arrow indicate auditory brainstem. E: ipsilateral excitatory pathway from
cochlear nucleus (CN), I: MTNB pathway activated by contralateral CN. (B)

Three of the stimulus protocols are shown (see Results for details). Only
Protocol v was effective in inducing iLTP, as shown in (C). (C) A
pre-conditioning MNTB-evoked IPSP evoked by MNTB stimulus (I). Such
IPSPs were obtained at 0.033 Hz for 5 min at VHOLD = −50 mV (baseline). A
single suprathreshold depolarization (500 ms, +5–10 pA) injection was used
to trigger neuronal firing by up to 50 Hz. The ipsilateral excitatory afferents

were then stimulated at 100 Hz 10 ms after the onset of 500 ms
depolarization (10 pulses, dark bar under the trace, E). MNTB evoked IPSP
was timed at 300 ms after the injection of the 500 ms depolarizing pulse
(gray arrowhead). The 0.033 Hz acquisition of IPSP was continued through
the recording session. IPSPs displayed a significant enhancement in
amplitude for at least 20 min (top right trace 20 min after). Bottom panel
shows summary data (mean ± s.e.m.). In 4 neurons, recordings were
continued for an additional 40 min, and the increased amplitude IPSPs
persisted. IPSP means (Y axis) are sub-maximum amplitude and not
normalized.

inhibitory synapse plasticity and the underlying biochemical and
molecular factors are not well understood. Inhibitory plasticity,
including GABAergic LTP and LTD, may contribute to mem-
ory formation or motor learning (Morishita and Sastry, 1996;
Aizenman et al., 1998; Ouardouz and Sastry, 2000). Glycinergic
LTP at the goldfish Mauthner neuron may dampen the escape
response (Oda et al., 1995, 1998), and GABAergic LTP in the

visual cortex may alter visual coding properties (Komatsu and
Iwakiri, 1993; Komatsu, 1994, 1996; Komatsu and Yoshimura,
2000). Since MNTB-mediated iLTD gradually wanes following
hearing onset (Kotak and Sanes, 2000), it is possible that iLTP
emerges during this time. Our results demonstrated that even
very low levels of inhibitory afferent activity, when coupled with
excitatory transmission, can trigger iLTP after hearing onset.
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FIGURE 2 | Glutamate exposure potentiated MNTB-evoked IPSPs.

Control MNTB-evoked IPSPs were recorded at 0.033 Hz. An initial response
is shown in the top trace. While continuing with this stimulation, glutamate
(10 mM) was bath perfused (45 s), and the neuron became depolarized
(gray panel), and discharged intensely (not shown). After the cell had
completely repolarized to its original resting potential, the IPSP amplitudes
were significantly larger. Baseline IPSPs (pre glutamate) and those acquired
during glutamate exposure and then at 5, 25, and 45 min after the cell had
repolarized are shown.

Thus, early binaural cues may be critical in consolidating the
functional maturation of LSO inhibitory synapses.

MATERIALS AND METHODS
All protocols were reviewed and approved by the New York
University Institutional Animal Care and Use Committee. Gerbil
pups (Meriones unguiculatus) aged postnatal (P) days 7–15, were
used to generate 300 µm transverse brain slices containing the
MNTB-LSO circuit (Sanes, 1993). The artificial cerebrospinal
fluid (ACSF) contained (in mM): 125 NaCl, 4 KCl, 1.2 KH2PO4,
1.3 MgSO4, 24 NaHCO3, 15 glucose, 2.4 CaCl2, and 0.4
L-ascorbic acid (pH = 7.3 when bubbled with 95% O2/5% CO2).
ACSF was continuously superfused in the recordingchamber at

3 ml per min at 32 ± 1◦C. Whole-cell current clamp or volt-
age or recordings were obtained from LSO neurons (Warner
PC-501A) and 200 µs current pulses were delivered directly to
the MNTB via bipolar stimulating electrodes to elicit IPSPs or
IPSCs, respectively (Kotak et al., 1998). Ipsilateral excitatory affer-
ents were stimulated by a separate bipolar stimulating electrodes
at specific frequencies (Results) (Figure 1). Recording electrodes
were fabricated from borosylicate glass microcapillaries (1.5 mm
OD), and when filled with internal solution the resistance was
5–15 M�. For current clamp recordings, the internal patch solu-
tion contained (in mM): 127.5 mM potassium gluconate, 0.6
EGTA, 10 HEPES, 2 MgCl2 5 KCl, 2 ATP, and 0.3 GTP. For
both internal solutions, the pH of was adjusted to 7.2 with KOH.
For voltage clamp recordings, the internal solution was similar
to current clamp solution (follows) except potassium gluconate
was replaced by an equimolar concentration of cesium gluconate
to block voltage-dependent potassium channels, and QX-314
(5 mM) was added to block voltage-dependent sodium chan-
nels. The pH was adjusted to 7.2 with CsOH. Further, kynurenic
acid (4 mM) was added to the ACSF to block ionotropic glu-
tamate receptors (Moore et al., 1998). Access resistance was
balanced throughout the recordings and ranged between 10 and
40 M�.

All data were collected using a Macintosh G4 platform run-
ning a Mac OS X compatible custom IGOR (WaveMetrics, v3.5)
macro called SLICE. The data were analyzed off-line using a sec-
ond IGOR macro called SLICE ANALYSIS (Kotak et al., 2001).
Custom algorithms were used to measure the amplitude and fre-
quency of sIPSCs (Kotak et al., 2005). Data values are presented
as mean and standard error of the mean (SEM). Initial IPSP/IPSC
amplitudes were compared vs. IPSC amplitudes at the end of the
recording session with a non-parametric test (Wilcoxon; Kotak
and Sanes, 2000). All statistical analyses were performed using the
SAS-based statistical software (JMP v5.0).

RESULTS
The data in this paper were collected from 60 principal neurons
from 42 animals located in the high frequency medial limb of
the LSO, each from a separate brain slice. We first asked whether
iLTP could be induced under normal physiological conditions in a
brain slice preparation without any intracellular or pharmacolog-
ical manipulations. These current clamp recordings were similar
to those employed for the induction of iLTD as described previ-
ously (Kotak and Sanes, 2000) except the stimulation rates and
postsynaptic depolarization was different.

CURRENT CLAMP RECORDINGS
First, to determine whether IPSPs recorded in current clamp
without glutamate receptor antagonists exhibited any change in
strength, we attempted the following protocols. The stimulus to
evoked IPSPs was first calibrated to evoke an IPSP at 50% of
its maximum amplitude. This enabled us to observe the possi-
ble expression of either potentiation or depression. To do this,
MNTB was stimulated in incremental intensity (200 µs, 5 µA
increments) until maximum amplitude IPSP was obtained. We
then selected the stimulus intensity that evoked an approximately
50% maximum amplitude (200 µs, ∼80–90 µA).
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Protocol i: IPSPs were recorded at a rate of 0.033 Hz for
approximately 1 h. Under this condition, no change in ampli-
tude was observed (initial IPSP amplitude: 7.4 ± 0.8 mV vs. IPSP
amplitude at 60 min: 6.3 ± 0.7 mV; t = 2.1, p > 0.05; n = 7).
Protocol ii: Our next step was to test MNTB stimulation rates of
0.1 or 5 Hz. These rates were dissimilar to the rate that produced
iLTD (1 Hz, 15 min) in our previous study. Under these condi-
tions, no significant change in IPSP amplitude was observed for
up to 10 min (not shown). Protocol iii: LSO neurons were held
slightly more depolarized (at −50 mV) than their resting mem-
brane potential (ranged between −51 and −55 mV) by injection
of a small DC current (+5–10 pA). This provided a steady
membrane potential baseline against which inhibitory strength
could be recorded. In addition, a suprathreshold depolarization
(500 ms) was used to increase neuronal firing by up to 50 Hz,
a firing rate that may elevate intracellular calcium to support
induction of iLTP. Furthermore, a single MNTB-evoked IPSP was
timed to occur 300 ms after the onset of postsynaptic depolariza-
tion. This regimen was ineffective in triggering iLTP (n = 4, not
shown). Protocol iv: To test whether glutamatergic transmission
was sufficient to induce iLTP, ipsilateral excitatory afferents were
stimulated at 20 Hz (10 pulses) while cells were held at −50 mV.
This protocol did not induce a significant change in IPSP ampli-
tude (n = 4, not shown). Since each of these protocols was
ineffective, we predicted that the induction of iLTP would require
a greater level of postsynaptic glutamate receptor activation.

The protocol that proved to be effective, involved a combi-
nation of the above manipulations. Protocol v: Cells were held
at −50 mV and a single 500 ms postsynaptic depolarization to
induce up to 50 Hz firing was elicited with current injection.

An increased level of ipsilateral excitatory afferent stimulation
(100 Hz, 10 pulses) was timed to occur 10 ms after the onset
of this depolarization. Lastly, MNTB stimulation was timed to
occur 300 ms after the onset of the 500 ms postsynaptic depo-
larization (Figure 1, top panel). Under these conditions, IPSPs
were potentiated for 20 min or longer (Figure 1C; initial IPSP
amplitude: 5.9 ± 0.3 mV, IPSP amplitude 20 min after condition-
ing: 10.1 ± 0.6 mV; Wilcoxon test, X2 = 3.9, p = 0.001, n = 7).
In 4 of these cases, when the recording session was extended,
increased IPSP amplitude persisted for 1 h after the conditioning
protocol (9.7 ± 1.95 mV).

To test whether such co-activation of ipsilateral excitatory
afferents could have involved postsynaptic activation of gluta-
mate receptors to induce iLTP, in separate experiments, glutamate
was bath applied (10 mM, 45 s) in the absence of ipsilateral affer-
ent stimulation (Kotak and Sanes, 1995). Thus, this protocol was
designed to bypass the possible co-recruitment of ipsilaterally
evoked inhibition (Kotak and Sanes, 1997). Sub-maximum IPSPs
were first elicited for 10 min to establish a baseline, before the
application of glutamate. Glutamate treatment depolarized the
LSO neurons from none to by up to 20 mV, and increased the
discharge rate of recorded neurons from none up to 50 Hz. The
MNTB stimulation was maintained during this depolarization
for 30 min and MNTB stimulation continued after the cells had
returned to the starting VREST. As shown in Figure 2, when IPSPs
were recorded after complete recovery of the membrane poten-
tial, we observed significantly enhanced IPSP amplitudes (IPSP
pre-glutamate treatment: 8.4 ± 0.12 mV vs. IPSP 30 min after the
recovery of membrane potential, 12.6 ± 0.2 mV; Wilcoxon test,
X2 = 3.8, p < 0.05, n = 3).

FIGURE 3 | Expression of iLTP is age-dependent. MNTB was
continuously stimulated at 0.033 Hz for 1 h while voltage clamp
recordings were obtained from the LSO neurons in the presence of
ionotropic glutamate receptor antagonist kynuranic acid at VHOLD = 0 mV.
Under these circumstances, IPSCs were recorded as outward currents.

An IPSC recorded 1 h after this stimulation protocol shows a dramatic
enhancement in its amplitude (top right trace) when compared to the
initial IPSC (top left trace). Long-term potentiation of IPSCs was observed
for neurons recorded at P12–15 (gray symbols), but not at P7–11 (black
symbols).
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VOLTAGE CLAMP RECORDINGS

We then asked whether iLTP could be induced by stimulation of the
MNTB afferents under voltage clamp conditions (VHOLD = 0 mV,
ionotropic glutamate receptors blocked, thus in an absence of ipsi-
lateral afferent stimulation) identical to the recording conditions
employed for experiments in which iLTD was induced (Kotak and
Sanes, 2000). For iLTD induction, we had used low frequency
stimulation paradigm (LFS, 1 Hz for 15 min) that led to long-term
inhibitory depression for at least an hour. We could also induce
and perturb iLTD in current clamp conditions using similar LFS
regimen (Kotak et al., 2001). In pilot voltage clamp recordings
when the MNTB was stimulated at a very low rate (0.033 Hz) to
monitor baseline inhibitory strength we observed a small increase
in IPSC amplitude. Therefore, we chose to carry out a full set
of experiments using 0.033 Hz. Continuous stimulation of the
MNTB at 0.033 Hz produced a gradual increase in IPSC ampli-
tude, and this enhancement became progressively larger during
the recording session. As shown in Figure 3, neurons from P12–15
animals displayed a ∼400% increase in IPSC amplitude over the
course of 1 hr, as compared to the initial baseline values (initial
IPSC: 156 ± 26 pA vs. IPSC at 10 min of stimulation: 224 ± 74
pA, Wilcoxon test, X2 = 5, p = 0.02; initial IPSC: 156 ± 26 pA
vs. IPSC at 30 min of stimulation: 472 ± 90, X2 = 7.7, p = 0.005;
initial IPSC: 156 ± 26 pA vs. IPSC at 60 min of stimulation: 495 ±
94, X2 = 8.7, p = 0.003; n = 9). When an identical stimulation
protocol was employed on neurons from P7 to 11 animals, no
significant change in IPSC amplitude was observed for up to
60 min (Figure 3). (Initial IPSC: 220 ± 68 pA vs. IPSC at 10 min
of stimulation: 194 ± 54 pA, IPSC at 30 min of stimulation: 227
± 58 pA, IPSC at 60 min of stimulation: 198 ± 67 pA, Wilcoxon
test, p > 0.05 for each comparison; n = 14).

For controls, we have previously shown that the baseline of
evoked IPSPs or IPSCs were stable through the entire 90 min
recording session (see Figure 2 in Kotak and Sanes, 2000; Kotak
et al., 2001). In the current study, whereas stimulation at 0.033 Hz
produced robust iLTP after hearing onset, identical recording
conditions and stimulation rates did not lead to any change in
baseline sIPSCs before hearing onset (see Figure 3). Therefore,
we did not perform additional controls. Voltage clamp record-
ings, similar to conditions in our previous iLTD studies (Kotak
and Sanes, 2000; Chang et al., 2003), cells were held depolarized
at 0 mV and 4 mM kynurenic acid was added to the ACSF (pH
7.3 after bubbling with O2/CO2) to block ionotropic AMPA and
NMDA receptors. Spontaneous IPSCs (sIPSC) too were recorded
as outward currents before and after the stimulation protocol at
VHOLD = 0 mV. The very low frequency stimulation paradigm
(0.033 Hz) was then applied continuously through the recording
session (1 h) both to induce plasticity as well as acquire IPSCs.

To assess whether there was any alteration in the presy-
naptic release properties following the conditioning protocol,
spontaneous IPSC (sIPSC) amplitude and frequency were moni-
tored at early (initial 10 min) and late (60 min) periods of the iLTP
expression. As shown in Figure 4, these data indicate that iLTP
was accompanied by a large increase in both the frequency and
amplitude of spontaneous IPSCs (sIPSC amplitude before LTP:
6.3 ± 1.8 pA vs. sIPSC amplitude 60 min afterLTP: 61 ± 19.5 pA;
Wilcoxon test, X2 = 7.8, p < 0.001; sIPSC frequency before

FIGURE 4 | iLTP is associated with increased sIPSC frequency and

amplitude. (A) sIPSCs recorded in an LSO neuron before the induction of
iLTP (top) displayed a low frequency and small amplitudes. In contrast,
sIPSCs recorded from the same neuron after the induction of iLTP, during
the last 5 min of the recording session, displayed a dramatic increase in
frequency and amplitude (bottom). (B) Bar graph shows the significant
increase in sIPSC frequency 1 h following the induction of LTP (p < 0.001)
(top). Similarly, there was a dramatic increase in the mean amplitude of
sIPSCs (p = 0.01) (bottom).
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LTP: 0.28 ± 0.14 Hz vs. sIPSC frequency 60 min after LTP: 1.76 ±
1.2 Hz; Wilcoxon test, X2 = 6.9, p = 0.01). Further, 1 h after iLTP
induction, MNTB-evoked IPSCs could not be de-potentiated
using an MNTB afferent stimulation pattern (LFS, 1 Hz, 15 min)
previously shown to induce iLTD in naive slices (Kotak and
Sanes, 2000). There was no significant difference between the
IPSC amplitude at 60 min after LTP induction (541 ± 178 pA),
as compared to the amplitude after an additional 15 min of
1 Hz/15 min stimulation (531 ± 163 pA; Wilcoxon test, X2 = 1.6,
p > 0.1; n = 3).

Our previous study showed that iLTD in the LSO requires the
activation of GABAB receptors (Kotak et al., 2001). Therefore,
we tested whether inhibitory LTP was also dependent on GABAB

receptor activation using a specific GABAB receptor antago-
nist (SCH-50911) during induction of inhibitory LTP in P12–
15 neurons. The MNTB was stimulated at the frequency that
induced iLTP (0.033 Hz) in voltage clamp condition (Vh = 0 mV)
while the slice was continuously exposed to 10 µM SCH-50911
(n = 4). As shown in Figure 5, the mean IPSC amplitude over
an hour period did not display a significant change (initial
IPSC: 260 ± 68 pA; IPSC at 60 min: 295 ± 56 pA, Wilcoxon test,
X2 = 0.7, p = 0.8, n = 4). Thus, inhibitory LTP was blocked by
the SCH compound.

DISCUSSION
The major finding of this study is that inhibitory MNTB
synapses onto the LSO display an activity-dependent long-term

FIGURE 5 | GABAB receptor blockade perturbs inhibitory iLTP. MNTB
was continuously stimulated at 0.033 Hz for 1 h while voltage clamp
recordings were obtained from P12 to 15 LSO neurons in the presence of
an ionotropic glutamate receptor antagonist (VHOLD = 0 mV). The GABAB

receptor blocker, SCH-50911 (10 µM), was present throughout the
recordings. Under these conditions, IPSC amplitudes did not show any
significant change toward potentiation. Each bar represents the mean
current (±s.e.m.) calculated at the beginning of the experiment, and at 20,
40, and 60 min.

potentiation (iLTP) following hearing onset (P12) but not prior to
that. This contrasts with the induction of an equally robust iLTD
before hearing onset (Kotak and Sanes, 2000). We do not imply
that transition from no iLTD to iLTP occurs suddenly or precisely
at hearing onset; rather, such plasticity mechanisms may develop
gradually and may even become more pronounced during the
several weeks thereafter as sound coding properties associated
with ILD are consolidated in the LSO. We had proposed that iLTD
before hearing onset may underlie the elimination of redundant
inhibitory synapses in LSO and MSO (Sanes and Siverls, 1991;
Sanes and Takàcs, 1993; Kotak and Sanes, 2000; Kapfer et al., 2002;
Kim and Kandler, 2003). Even as the numbers of inhibitory bou-
tons per axon are decreased (Sanes and Takàcs, 1993), the strength
of individual existing connections becomes much stronger as
revealed by the increase in the amplitude of inhibitory events
(Sanes, 1993; Kim and Kandler, 2003). Therefore, we propose that
the emergence of iLTP may be one form of plasticity to support
inhibitory synapse stabilization and strengthening in vivo.

When coupled with MNTB stimulation, either postsynaptic
depolarization alone, or activation of ipsilateral excitatory affer-
ents alone, was not sufficient to induce iLTP under current clamp
conditions. We propose two mechanisms that could mediate
iLTP in an intact developing animal. First, sufficient postsynaptic
depolarization could result from the synergistic activity of devel-
oping excitatory terminals and/or the co-release of glutamate
from the MNTB terminals themselves (Gillespie and Kandler,
2005; Case and Gillespie, 2011; Alamilla and Gillespie, 2013).
Second, it is possible that very low levels of glutamatergic afferent
activity can activate postsynaptic metabotropic glutamate recep-
tors, which trigger prolonged depolarizations and calcium entry
by low levels of synaptic activity (Kotak and Sanes, 1995; Ene
et al., 2003) that may be sufficient to support iLTP. This is consis-
tent with our observation that IPSPs could be potentiated by the
direct application of glutamate that may have led to calcium influx
via activation of ionotropic as well as metabotropic glutamate
receptors (Figure 2).

Our previous results have shown that GABAB receptors are

involved in the generation of iLTD (Kotak et al., 2001). Similarly,
it appears that GABAB receptors are involved in iLTP. Both sets of
experiments were performed in voltage clamp conditions where
the internal recording solution contained QX-314, which blocks
the postsynaptic GABAB receptor-gated K+ channel (Nathan
et al., 1990; Andrade, 1991). The fact we did not observe iLTP in
the presence of a selective antagonist (SCH-50911) could be con-
sistent with either pre- or postsynaptic GABAB receptor signaling
(Figure 5). One reason for this is that blockade of the GABAB

receptor-gated potassium conductance by QX-314 in the pipette
solution leaves open the possibility that other second messen-
gers are involved (Kotak et al., 2001). In addition, the increase
in sIPSC frequency that occurs during iLTP (Figure 4) sug-
gests that a presynaptic mechanism may accompany postsynaptic
strengthening.

The adjustments of auditory neuron response properties
to dynamic range, frequency, or sound location during early
life may well depend on activity-dependent synaptic plasticity
mechanisms (Sanes and Constantine-Paton, 1983, 1985; Knudsen
et al., 1984; Joseph and Hyson, 1993; Zhang et al., 2001;
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Magnusson et al., 2008). For mature LSO principal neurons to
properly compute ILDs, the excitatory and inhibitory synapses
must become precisely matched along the tonotopic axes during
development (Moore and Caspary, 1983; Spangler et al., 1985;
Cant and Casseday, 1986; Sanes and Rubel, 1988; Glendenning
et al., 1991; Sanes and Siverls, 1991). Our observations raise the
possibility that increased inhibitory synapse strength may per-
mit these to stabilize during the time when specificity is achieved
in vivo.
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