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Mutations in the gene that encodes Cu/Zn-superoxide dismutase (SOD1) are the cause
of approximately 20% of familial forms of amyotrophic lateral sclerosis (ALS), a fatal
neurodegenerative disease characterized by the progressive loss of motor neurons. While
ALS symptoms appear in adulthood, spinal motoneurons exhibit functional alterations
as early as the embryonic and postnatal stages in the murine model of ALS, the SOD1
mice. Monoaminergic – i.e., dopaminergic (DA), serotoninergic (5-HT), and noradrenergic
(NA) – pathways powerfully control spinal networks and contribute significantly to their
embryonic and postnatal maturation. Alterations in monoaminergic neuromodulation during
development could therefore lead to impairments in the motoneuronal physiology. In this
study, we sought to determine whether the monoaminergic spinal systems are modified
in the early stages of development in SOD1 mice. Using a post-mortem analysis by high
performance liquid chromatography (HPLC), monoaminergic neuromodulators and their
metabolites were quantified in the lumbar spinal cord of SOD1 and wild-type (WT) mice
aged one postnatal day (P1) and P10. This analysis underscores an increased content of
DA in the SOD1 lumbar spinal cord compared to that of WT mice but failed to reveal
any modification of the other monoaminergic contents. In a next step, we compared the
efficiency of the monoaminergic compounds in triggering and modulating fictive locomotion
in WT and SOD1 mice. This study was performed in P1–P3 SOD1 mice and age-matched
control littermates using extracellular recordings from the lumbar ventral roots in the in
vitro isolated spinal cord preparation. This analysis revealed that the spinal networks of
SOD1G93A mice could generate normal locomotor activity in the presence of NMA-5-HT.
Interestingly, we also observed that SOD1 spinal networks have an increased sensitivity
to NA compared to WT spinal circuits but exhibited similar DA responses.
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INTRODUCTION
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative
disease characterized by the progressive degeneration of M1 neu-
rons in the cerebral cortex and motor neurons in the brainstem
and spinal cord. Approximately 20% of familial forms of ALS
cases are associated with inherited dominant mutations in the
gene that encodes Cu/Zn-superoxide dismutase (SOD1). While
ALS syndrome occurs during adulthood in both humans and ALS
animal models, a growing body of evidence shows that spinal
locomotor networks exhibit functional alterations as early as the
embryonic and postnatal stages in mice expressing the human
mutated SOD1 protein, the SOD1 mouse model. Behavioral tests
performed during the first postnatal week revealed a delay in the
maturation processes of sensorimotor modalities such as right-
ing and hind-paw grasping responses in mutant SOD1G85R mice
(Amendola et al., 2004). At the cellular level, developing SOD1G85R

and SOD1G93A motoneurons have been shown to exhibit dendritic
abnormalities and alterations in both excitability and synaptic
inputs compared to the motoneurons of age-matched wild-type
(WT) mice (Bories et al., 2007; Pambo-Pambo et al., 2009; Chang

and Martin, 2011; Filipchuk and Durand, 2012; Martin et al.,
2013). Differences in neurochemical sensitivity have also been
reported between newborn WT and SOD1 mice. Indeed, the clas-
sical rhythmogenic drug cocktail (a mixture of glutamate agonist
plus serotonin) used to activate the locomotor central pattern
generators (CPGs) in the isolated spinal cord preparation of new-
born rodents has been shown to be inefficient in inducing fictive
locomotion in SOD1G85R mice (Amendola et al., 2004). As such
early alterations could prime neuronal circuits and make them
more permissive to pathological changes later in life, it appears
of importance to further decipher the changes undergone by the
spinal motor networks in early developmental stages in the SOD1
models of ALS.

Motoneurons are targeted by numerous extra- and intraspinal
neuromodulatory systems that control both their intrinsic mem-
brane properties and incoming synaptic inputs (for review see
Miles and Sillar, 2011). In addition to their role in excitability con-
trol, neuromodulatory influences contribute significantly to the
embryonic and postnatal development of the spinal cord motor
networks (for review see Vinay et al., 2002; Miles and Sillar, 2011).
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Amongst neuromodulatory systems, monoaminergic – i.e.,
dopaminergic (DA), serotoninergic (5-HT), and noradrenergic
(NA) – pathways have been shown to initiate and facilitate the
expression of spinal motor outputs, to control segmental reflexes
and to play a major role in the maturation of spinal locomo-
tor networks (Barbeau and Rossignol, 1991; Crick and Wallis,
1991; Cazalets et al., 1992; Sqalli-Houssaini et al., 1993; Kiehn
and Kjaerulff, 1996; Sqalli-Houssaini and Cazalets, 2000; Whelan
et al., 2000; Vinay et al., 2002; Barrière et al., 2004, 2008; Han et al.,
2007; Han and Whelan, 2009; Tartas et al., 2010; Miles and Sillar,
2011; Humphreys and Whelan, 2012; Pearlstein, 2013). Alterations
in monoaminergic controls during development could therefore
lead to significant reorganizations of the spinal locomotor cir-
cuits and contribute to the developmental impairments described
in SOD1 motoneurons. However, to the best of our knowledge,
data concerning the possible changes in the spinal monoamin-
ergic inputs in the early developmental stages of SOD1 mice are
not currently available. In the present study, we sought to deter-
mine whether spinal monoaminergic content and sensitivity is
modified in newborn SOD1 mice. Specifically, we performed a
high performance liquid chromatography (HPLC) analysis of the
spinal monoamine contents and compared the effects of 5-HT, DA,
and NA on the locomotor activity recorded extracellularly from
isolated spinal cord preparations from newborn SOD1 and age-
matched control littermates. This study found that well-organized
locomotor-like activity could be generated in the isolated spinal
cord preparation from SOD1G93A mice by classical pharmacolog-
ical activation. We also reported an increased content of spinal
DA content in the second postnatal week, as well as an increased
sensitivity to NA, in SOD1 spinal networks compared to those of
WT mice.

MATERIALS AND METHODS
ETHICS STATEMENTS AND ANIMALS
All procedures were conducted in accordance with the local
ethics committee of the University of Bordeaux and the Euro-
pean Committee Council Directive. All efforts were made to
minimize animal suffering and to reduce the number of ani-
mals used in the experiments. Transgenic mice expressing a
mutated human SOD-1 gene from the B6SJL-TgN (SOD1G93A)
1 Gur/J line (SOD1 mice) were purchased from Jackson Labora-
tories. These mice were bred in our laboratory and maintained
as hemizygotes by mating transgenic males with wild-type B6SJL
females. Two hundred thirty-eight newborn mice were used in
this study. All of the experiments and analyses presented here
have been performed blind to the genotype of the animals. Mice
were genotyped from genomic DNA purified from tail biopsies
by PCR using the following primers: 5′ CATCAGCCCTAATC-
CATCTGA 3′ (forward), 5′ CGCGACTAACAATCAAAGTGA 3′
(reverse).

TISSUE PROCESSING FOR POST-MORTEM ANALYSIS
After decapitation, the lumbar spinal cord of postnatal 1 (P1)
or P10 SOD1 and age-matched control littermate male mice was
quickly removed by a laminectomy, placed in dry ice and stored
at −80◦C until experiment processing. When needed, the lumbar
spinal cord was placed on the side and cut in the middle of the

dorso-ventral axis with micro dissecting knives to separate the
ventral and dorsal part of the cord.

POST-MORTEM HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY
(HPLC) MEASUREMENTS
On the day of the biochemical analysis, after weighing the sam-
ples, tissue was homogenized in 0.1 N perchloric acid (HClO4),
sonicated and centrifuged at 13,000 rpm for 30 min at 4◦C.
The tissue contents of monoamines (DA, NA, 5-HT) and their
metabolites (5-hydroxyindole-3-acetic: 5-HIAA a 5-HT metabo-
lite and 3,4-dihydroxyphenylacetic acid: DOPAC,a DA metabolite)
were measured by a sensitive HPLC-electrochemical detection
(ECD) system. Aliquots of the sample supernatant were placed
in an automated autosampler (Shimadzu, SIL-20A, Paris, France)
at 4◦C to be injected into the HPLC column (Hypersyl C18,
150 mm × 4.6 mm, 5 μm; C.I.L.-Cluzeau, Sainte-Foy-La-Grande,
France) protected by a Brownlee–Newguard precolumn (RP-8,
15 × 3.2 mm, 7 μm; C.I.L.-Cluzeau). The mobile phase was deliv-
ered at a flow rate of 1.3 ml/min using a HPLC pump (LC20-AD,
Shimadzu, France) and was composed as follows (in millimoles):
60 NaH2PO4, 0.1 disodium EDTA and 2 octane sulfonic acid plus
7% methanol, adjusted to a pH of 3.9 with orthophosphoric acid
and filtered through a 0.22 mm Millipore filter. Monoamines and
their metabolites were detected using a coulometric cell (Analyt-
ical cell 5011, Coulochem) coupled to a programmable detector
(Coulochem II, ESA, Paris, France). The potential of the elec-
trodes was set at +350 mV for the oxidation and −270 mV
for the reduction. Output signals were recorded on a computer
(Beckman, system GOLD). Under these conditions, the sensitiv-
ity for NA, DA, 5-HT, DOPAC, and 5-HIAA was 3, 1, 8, 6, and
5 pg/10 μl, respectively, with a signal/noise ratio of 3:1. The tissue
content of monoamines was expressed in pg/mg of tissue and cor-
responded to the mean ± SEM values in each group. Differences
of the monoamine content between P1/P10 SOD1 mice and con-
trol littermates were analyzed using repeated measures two-way
analyses of variance (ANOVA) with Sidak’s multiple comparison
tests (Graph Pad Prism). Statistical significance was set at p < 0.05.

ISOLATED SPINAL CORD PREPARATION
Newborn SOD1 and WT littermate mice aged P1–P3 were deeply
anesthetized with 4% isoflurane, decapitated and eviscerated. A
laminectomy was then performed to expose and remove the spinal
cord. All dissections and recording procedures were performed
under continuous superperfusion with artificial cerebrospinal
fluid (aCSF) containing (in milimoles): NaCl 130, KCl 3, CaCl2
2.5, MgSO4 1.3, NaH2PO4 0.58, NaHCO3 25, and glucose 10,
with a pH of 7.4 when bubbled with 95% O2 + 5% CO2 at room
temperature (24–26◦C).

PHARMACOLOGY
All drugs (N-methyl-D, L-aspartate: NMA; 5-HT, DA, and NA)
were obtained from Sigma (St. Louis, MO, USA). Stock solutions
of 5-HT and NMA were prepared at 0.1 mM in distilled water and
stored at −20◦C. Fresh drug solutions of DA and NA were pre-
pared daily and protected from light exposure. Pharmacological
compounds were bath-applied using a peristaltic pump (flow rate
7 ml/min).
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EXTRACELLULAR RECORDINGS AND ANALYSIS
Motor outputs were recorded extracellularly from the lumbar ven-
tral roots using glass suction electrodes. In each in vitro spinal cord
preparation, motor outputs from the right and left lumbar 2 (rL2,
lL2, respectively) and one L5 ventral root were simultaneously
recorded to investigate both the bilateral segmental alternation
and the flexor/extensor activity (Cazalets et al., 1992; Kiehn and
Kjaerulff, 1996). The neurograms were amplified (×10000) using
high impedance AC amplifiers (200–3000 Hz) built at the labora-
tory and digitized at 5 kHz (Axograph, Sydney, NSW, Australia)
for future analysis. Pharmacologically induced locomotor rhythms
were analyzed using non-stationary analysis techniques in a
Matlab-based software developed at the laboratory. This custom-
made software is similar to SpinalCore, a software developed by
the Lev-Tov group (Mor and Lev-Tov, 2007), and is based on the
MatLab wavelet coherence package provided by Aslak Grinsted
(http://noc.ac.uk/using-science/crosswavelet-wavelet-coherence;
Torrence and Compo, 1998; Grinsted et al., 2004). Two-minute
sections of pairs of neurograms were analyzed using cross wavelet
transform and wavelet coherence. These methods were applied
to high-pass (50 Hz), rectified and low-pass filtered (5–10 Hz)
signals. For convenience, cross wavelet spectrum and wavelet
coherence maps were combined into a mixed cross/coherence
map (Figure 2B1) highlighting coherent, common high power
frequency regions. In these maps, the evolution of the frequency
components of the extracellular signals (y-axis, logarithmic scale)
is represented as a function of time (x-axis), and the power of each
frequency is color-coded with warm colors assigned to high power
regions and cool colors to low power regions. The asymptotic
lines in the mixed cross/coherence maps indicate the cone of influ-
ence. This cone delimits the region where edge effect becomes too
important. The values outside of this cone were thus excluded from
the statistical analysis (Torrence and Compo, 1998; Mor and Lev-
Tov, 2007). The high power band of the generated time/frequency
map was selected as a region of interest (ROI) and arbitrarily
segmented into 1 s bins to compute the mean frequency, coher-
ence, and phase relationship between pairs of neurograms. The
critical level of statistical significance of the wavelet coherence
was calculated using Monte-Carlo simulations (Mor and Lev-Tov,
2007). The power and phase of the mean vector of pairs of ven-
tral root recordings were extracted for each experiment with this
procedure. Using the Igor Pro software (Wavemetrics), angular
distribution tests and Watson nonparametric circular two sam-
ple U2 tests were performed to compare circular data between
WT and SOD1 mice in the different pharmacological conditions
tested.

Motor burst amplitudes were computed in a custom-made
Matlab-based software. For each preparation, the burst ampli-
tude values were normalized to the amplitude measured in
the presence of 10 μM 5-HT for experiments with increasing
doses of 5-HT or to the amplitude observed during bath-
applications of NMA-5-HT (16 μM each; Sqalli-Houssaini et al.,
1993) alone prior to the addition of NA or DA to the bath.
Repeated measures two-way analyses of variance (ANOVA) with
Sidak’s multiple comparison tests were performed to evaluate
monoamines and mouse genotype effects (Graph Pad Prism).
All data are expressed as means ± SEM. Asterisks in the Figures

and Tables indicate positive significance levels of post hoc analysis
(p < 0.05).

RESULTS
SPINAL MONOAMINERGIC CONTENTS IN NEWBORN WILD-TYPE AND
SOD1 MICE
In rats, the first connections between brainstem monoaminer-
gic cells and spinal neurons are established during the last week
of gestation and mature sequentially along the rostrocaudal and
ventro-dorsal axes until the second postnatal week (Commissiong,
1983; Bregman, 1987; Rajaofetra et al., 1989, 1992; Giménez y
Ribotta et al., 1998; Clarac et al., 2004). To get an overview of the
spinal monoaminergic innervation, we first conducted an HPLC
analysis of the endogenous spinal content of biogenic amines and
their metabolites in SOD1 mice and WT littermates (Figure 1A).
To assess the impact of the descending pathway maturation on
monoamine contents, we performed these procedures on the lum-
bar spinal cord samples from both P1 and P10 animals. This
HPLC analysis revealed that the NA and 5-HT contents were
about 20 times greater than the DA content in the lumbar spinal
cord of both P1 and P10 mice. We also observed that regardless
of the mouse genotype, the contents of NA (Figure 1B1), DA
(Figure 1C1) and 5-HT (Figure 1D1) were significantly higher
in P10 animals compared to P1 mice. In contrast, DOPAC and
5-HIAA were not significantly different between the two devel-
opmental stages tested (Table 1). Post hoc pairwise comparisons
conducted between WT and SOD1 mice revealed no significant
change in NA, 5-HT, DOPAC, or 5-HIAA. However, we observed
that the DA content was significantly enhanced in the whole lum-
bar spinal cord of SOD1 P10 mice compared to age-matched WT
animals.

Monoaminergic pathways densely innervate both dorsal and
ventral spinal circuits. To specifically look for changes in the
monoaminergic contents in spinal motor networks, the same
HPLC analysis was repeated on the ventral half of the lum-
bar spinal cord (Figures 1B2,C2,D2). In these experimental
conditions, we observed that the contents of all of the monoamin-
ergic compounds tested (Figures 1B2,C2,D2) except 5-HIAA
(Table 1) significantly increased during development. In contrast
to the aforementioned results obtained using the whole spinal
cord, the mouse genotype had no detectable influence on the
monoaminergic contents measured in the ventral part of the
cord.

RHYTHMOGENIC CAPABILITIES OF SOD1G93A SPINAL NETWORKS AND
SEROTONINERGIC MODULATION
As previously mentioned, Amendola et al. (2004) reported that
NMA (10–20 μM) plus 5-HT (5–20 μM), a mixture known to gen-
erate locomotor-like activity in the in vitro spinal cord preparation
of newborn rodents, induces only tonic activity when bath-applied
to SOD1G85R mouse spinal networks (Amendola et al., 2004). Dra-
matically different alterations in the motoneuronal physiology
have been reported depending on the SOD1 mouse model used
(see for example Meehan et al., 2010; Delestrée et al., 2014). The
question then arises as to whether NMA-5-HT effects are simi-
lar in the SOD1G85R and SOD1G93A high expressor line mouse
strains. To address this question, we compared the efficiency of
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FIGURE 1 | Monoamine contents in the lumbar spinal cord of newborn

mice. (A) Example of HPLC chromatograms of a whole spinal cord sample
from a P10 SOD1 mouse. The chromatograms represent the output
Coulometric signals (nanoampere converted in ±1 V output by the recorder)
produced after their separation by the compounds at the level of the electrode
of oxidation (upper trace; +350 mV) and/or the electrode of reduction (lower
trace; −270 mV) of the Coulometric cell. Most of the quantitative analyses
are performed using the oxidation channel (all compounds of interest except
NA which is often confounded in the solvent front) and NA, DOPAC and DA

quantities can be also analyzed using the reduction channel. (B–D) Contents
of NA (B1,B2), DA (C1,C2), and 5-HT (D1,D2) measured by HPLC assays in
the whole lumbar spinal cord (B1–D1) or in its ventral half (B2–D2) from P1
and P10 WT (black bars) and SOD1 (blue bars) mice. Note the increased
concentration of monoamines with age and the significant difference in DA
content between WT and SOD1 P10 mice. Asterisks indicate positive
significance levels and the numbers in histogram bars refer to the number of
samples tested. NA: noradrenaline, DA: dopamine, 5-HT: serotonin, DOPAC:
3,4-dihydroxyphenylacetic acid, 5-HIAA: 5-hydroxyindole-3-acetic.
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Table 1 | HPLC measurements of 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindole-3-acetic (5-HIAA) contents in the whole or

ventral part of the lumbar spinal cord from P1 and P10 WT and SOD1 mice.

Wild-type SOD1

P1 P10 P1 P10

DOPAC Whole lumbar 14.3 ± 4 (14) 27.8 ± 3 (18) 33.4 ± 10 (17) 26.9 ± 4 (17)

Ventral lumbar 8.8 ± 1 (13) 28.2 ± 8 (7)* 11.5 ± 3 (6) 34.8 ± 9 (7)*

5-HIAA Whole lumbar 148.9 ± 14 174.4 ± 18 154.7 ± 11 176.1 ± 17

Ventral lumbar 99.4 ± 11 122.8 ± 15 100.9 ± 22 128.7 ± 19

The numbers in brackets correspond to the number of samples tested. Asterisks indicate significant differences between the P1 and P10 developmental stages.

NMA (16 μm) in the presence of increasing concentrations of
5-HT in activating the spinal locomotor CPGs in SOD1G93A and
age-matched littermate controls. Figure 2A shows that, regard-
less of the 5-HT concentration tested, the bath-application of
NMA-5-HT triggered an alternating bursting activity of the right
and left L2 and homolateral flexor L2 and extensor L5 ventral
roots in both WT (Figure 2A1) and SOD1 mice (Figure 2A2).
This motor pattern, with a mean period ranging from 3 to 4 s
(Figure 2D1), is characteristic of a locomotor-like activity (Caza-
lets et al., 1992; Kiehn and Kjaerulff, 1996). Regardless of the
animal genotype, raising the 5-HT concentration from 10 to 12.5
or 15 μm did not significantly affect the rhythm phase relation-
ships (Figures 2B,C; Table 1), period (Figure 2D1) or motor burst
duration (L2: Figure 2D2, Data not shown for L5). In contrast,
the locomotor burst amplitude was significantly increased in the
presence of 12.5 or 15 μm 5-HT compared to the 10 μm 5-HT
condition (Figure 2D3 for L2 bursts, data not shown for L5).
This 5-HT-induced amplification was, however, not significantly
different between the WT and SOD1 mice.

Overall, these data suggest that the spinal networks of newborn
SOD1G93A mice could generate well-organized locomotor patterns
under NMA-5-HT chemical stimulation and present a WT-like
serotoninergic sensitivity.

NORADRENERGIC MODULATION
In a first series of experiments, the effects of the bath-application
of NA alone (10−5, 5 × 10−5, and 10−4 M (Sqalli-Houssaini
and Cazalets, 2000) or in combination with NMA were tested.
Under these conditions, tonic or very irregular motor activities
were generated in both WT and SOD1 preparations, prevent-
ing accurate measurements from being performed (data not
shown). In this context, we decided to restrict the analysis of
the noradrenergic effects to the modulation of the NMA-5-HT-
induced rhythm. After inducing control fictive locomotion with
NMA-5-HT (16 μm each), WT and SOD1 spinal cords were
challenged with increasing NA concentrations in the presence of
NMA-5-HT (Figure 3). Regardless of the NA concentration and
mouse genotype, the phase relationships of the NA+NMA/5-HT-
induced rhythms were similar to those computed in the absence
of NA (Table 2; Figure 3B; Data not shown for the L2/L5
alternation). In contrast, the locomotor rhythm was strongly
slowed down in the presence of NA (Figure 3A). In WT animals
(Figure 3A1), all of the NA concentrations tested (10, 50, and

100 μm) induced a significant increase in the locomotor param-
eters (period, Figure 3C1; L2 burst duration, Figure 3C2, and
amplitude, L2: Figure 3C3, black bars, L5: data not shown) com-
pared to the NMA-5-HT control conditions. The rhythm period
and L2 burst duration values computed in the presence of 50 μm
NA were also significantly different from the ones obtained with
10 μm NA in WT animals. In SOD1 mice (Figure 3A2), both
the L2 burst durations and amplitude values were significantly
enhanced compared to the NMA-5-HT condition for all of the NA
concentrations tested (Figures 3C2,C3, blue bars). In contrast, the
locomotor rhythm period was only significantly different from the
control condition in the presence of 50 μm NA (Figure 3C1).

Interestingly, a post hoc analysis revealed that the NA-induced
amplification of the L2 (Figure 3C3) and L5 (data not shown)
burst amplitude values observed in the presence of 10 and 50 μm
NA was significantly higher in SOD1 mice compared to WT ani-
mals. This result underscores the differences in the NA sensitivity
between WT and SOD1 spinal locomotor networks.

DOPAMINERGIC MODULATION
As previously described for NA, the superfusion of DA by itself
(10−4 and 5 × 10−4 M) or in combination with NMA (DA:
10−5 M, 5 × 10−5 M and 10−4 M (Barrière et al., 2004; Spalloni
et al., 2011) on in vitro spinal cord preparations failed to generate
regular motor activities that could be accurately analyzed in both
WT and SOD1 preparations (data not shown; see also (Jiang et al.,
1999). The comparison of the dopaminergic modulation between
WT and SOD1 spinal cord networks was therefore restricted to
the NMA-5-HT-induced locomotor like activity. For this purpose,
control fictive locomotion was first acquired in the presence of
NMA-5-HT (16 μm each, Figure 4A) and subsequent DA bath-
applications of increasing concentration (50 and 500 μm) were
realized. Similar to the other two amines tested, DA did not
affect the phase relationships of the NMA-5-HT-induced loco-
motor activity (Table 2 and Figure 4B, data not shown for the
L2/L5 alternation) in both WT and SOD1 spinal cord prepara-
tions. However, irrespective of the mouse genotype, 50 or 500 μm
DA significantly increased the values of all locomotor parameters
(period, Figure 4C1; L2 burst duration, Figure 4C2 and burst
amplitude values, Figure 4C3, data not shown for L5) compared
to the control NMA-5-HT condition. The period of the locomotor
rhythm in WT animals (Figure 4C1) as well as the L2 burst ampli-
tudes in SOD1 mice (Figure 4C3) computed in the presence of
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FIGURE 2 | Serotoninergic modulation of SOD1G93A spinal locomotor

networks. (A) Representative traces of the fictive locomotion recorded
from the right and left lumbar 2 (rL2 and lL2) and right lumbar 5 (rL5)
ventral roots in the presence of 16 μm NMA and increasing
concentrations of serotonin in WT (A1) and SOD1 (A2) newborn mice.
(B) Mixed cross-coherence time frequency map (B1) computed from the
high pass, rectified and low pass filtered traces presented in the upper
panel recorded in the presence of 16 μm NMA+ 15 μm 5-HT. The
white box on the map represents the region of interest selected for
further analysis. Black and white arrows indicate phase relationships
with a left direction indicating an out of phase relationship. Polar graph
(B2) of the phase (�) relationships between rL2 and lL2 extracted from
the graph in B1. Calibration bars indicate the number of values in the
largest histogram of repartition (5◦bins). The evolution of the frequency

components of the extracellular signals (y -axis, logarithmic scale) is
represented as a function of time (x -axis). The power of the frequency
is color-coded with warm colors assigned to high power regions and
cool colors to low power regions. (C) Polar graphs of the mean phase
relationships between rL2 and lL2 (upper panel) and rL2-lL5 (lower
panel) for all the WT (black dots and line, n = 14) and SOD1 (blue dots
and line, n = 13) spinal cord preparations tested in the presence of
NMA+5-HT 15 μm. Pop: population. (D) Plots of the period (D1), L2
burst duration (D2) and amplitude (D3) in the presence of increasing
concentrations of 5-HT in WT (black bars) and SOD1 (blue bars) mice.
This analysis reveals that SOD1 spinal cords exhibit a WT-like
serotoninergic sensitivity. Asterisks indicate positive significance levels
and the numbers in histogram bars refer to the number of spinal cord
preparations tested.
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FIGURE 3 | Neuromodulatory actions of noradrenaline on

NMA+5-HT-induced fictive locomotion in SOD1 and age-matched

control mice. (A) Representative integrated (
∫

) extracellular recordings from
the right, left L2 and left L5 ventral roots (rL2, lL2, and lL5) in the presence of
NMA+5-HT (16 μm each) alone or with noradrenaline (NA; 10, 50, or 100 μm)
in WT animals (A1) and SOD1 mice (A2). (B) Polar graph of the rL2–lL2 phase
(�) relationships computed in WT (black dots and line, n = 12) and SOD1

(blue dots and line, n = 7) spinal cords in the presence of 100 μm NA.
(C) Plots of the period (C1), L2 burst duration (C2) and amplitude (C3) in the
absence or presence of NA bath-applied at increasing concentrations on WT
(black bars) and SOD1 (blue bars) spinal cord preparations. Note the
significant difference in L2 motor burst modulation between WT and SOD1
mice. Asterisks indicate positive significance levels and the numbers in
histogram bars refer to the number of spinal cord preparations tested.

50 μm DA were significantly enhanced when DA concentration
was raised to 500 μm. In contrast, the other locomotor param-
eters tended to increase in the presence of 500 μm DA but were
not significantly different from those computed in the presence
of 50 μm DA (Figure 4C). These results indicate that DA neuro-
modulatory processes are similar in WT and SOD1 spinal motor
networks. These results are in agreement with the HPLC analysis
of spinal DA content that failed to reveal differences between WT
and SOD1 mice at this developmental stage.

DISCUSSION
FICTIVE LOCOMOTION GENERATION IN SOD1 SPINAL NETWORKS
Our data show that in contrast to what has been previously
described in the SOD1G85R mouse line (Amendola et al., 2004),

coordinated fictive locomotion could be efficiently triggered by
the bath-application of NMA plus 5-HT in the SOD1G93A mouse
spinal cord. Several mutant SOD1 mouse models that serve as
invaluable tools to understand the pathophysiology of ALS have
been developed. To date, 12 lines of transgenic mouse expressing
different human mutated SOD1 proteins are available. Transgenic
SOD1G93A mice are principally used in ALS research, followed
by SOD1G37R, SOD1G85R, and SOD1G86R mice. All of these
models exhibit slightly different time courses of the disease and
associated neurodegenerative processes depending on the SOD1
mutation site, related enzymatic activity, transgene copy number
and genetic background (Jonsson et al., 2006; Turner and Talbot,
2008; Van Den Bosch, 2011). SOD1G93A proteins, for example,
are about 10 times more active than the native SOD1 proteins
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Table 2 | Circular statistics of the phase relationships between right and left L2s in the presence of the different monaminergic concentrations.

NMA 16 μm

+ 5-HT 10 μm + 5-HT 12.5 μm + 5-HT 15 μm

WT SOD1 WT SOD1 WT SOD1

Mean vector 0.901 0.875 0.893 0.89 0.942 (14) 0.924 (13)

Mean angle −3.11 3.11 −3.12 2.99 −3.13 3.04

NMA + 5-HT + DA 50 μm + DA 500 μm

WT SOD1 WT SOD1 WT SOD1

Mean vector 0.893 0.876 0.960 0.954 0.957 (16) 0.910 (11)

Mean angle −3.09 2.98 3.02 −3.10 3.02 −3.02

NMA + 5-HT + NA 10 μm + NA 50 μm + NA 100 μm

WT SOD1 WT SOD1 WT SOD1 WT SOD1

Mean vector 0.950 0.931 0.971 0.975 0.968 0.964 0.961 (12) 0.954 (7)

Mean angle −3.09 3.03 3.13 3.08 3.06 3.08 −3.105 3.139

16 μm NMA and 16 μm 5-HT were used to induce control locomotor-like activity. The number of preparations tested in each condition is indicated in brackets.
Circular two sample test analysis revealed no significant differences between the experimental conditions tested.

while in contrast, SOD1G85R mutant proteins are almost inactive.
Striking discrepancies between SOD1 models have been previ-
ously reported concerning motoneuron excitability (Meehan et al.,
2010; Delestrée et al., 2014). Pambo-Pambo et al. (2009) have also
shown that motoneurons are more immature in the SOD1G93A low
expressor line (SOD1G93A low) compared to SOD1G85R . Indeed, in
newborn mice, SOD1G93A low motoneurons have a more depolar-
ized resting membrane potential and appear to be more excitable
than SOD1G85R and WT motoneurons. The difference between
SOD1G93A and SOD1G85R mouse lines in NMA/5-HT’s effec-
tiveness in triggering fictive locomotion further emphasizes the
heterogeneity of SOD1 mouse mutants. This observed hetero-
geneity certainly parallels the complex etiology of ALS and stresses
the importance of the complementary use of the different SOD1
mouse models to explore the different aspects of this motor
disease.

In the present study, the NMA-5-HT-evoked rhythm was nei-
ther qualitatively nor quantitatively different between SOD1 and
WT animals. These results suggest that whereas different groups
have described early developmental alterations in motoneuron
functioning, the locomotor outputs recorded from motoneuron
axons in SOD1 mice are similar to the WT locomotor outputs. In
the SOD1G93A model, motoneurons at birth have been shown to
be more immature, more excitable than WT motoneurons and to
present a different dendritic branching pattern (Kuo, 2003; Pieri
et al., 2003; Kuo et al., 2005; Pambo-Pambo et al., 2009). The ques-
tion then arises as to whether these changes have a real impact on
motoneuron output or whether the whole spinal network in charge
of locomotion generation operates in such a way that these alter-
ations are compensated. For example, it is well known that after
a lesion, the spinal locomotor networks undergo a restructuring

and can, after training, adapt their functioning and produce almost
the same locomotor pattern that existed before the lesion (Barbeau
and Rossignol, 1987; Rossignol et al., 2008). Such compensatory
mechanisms may occur in newborn SOD1 spinal networks to
ensure normal locomotor network function. A limitation of the
present study is that locomotor activity was assessed using extra-
cellular recordings. Further research is needed to further decipher
the impact, at the cellular level, of the previously reported impair-
ments in motoneuron excitability and morphology on the motor
circuits.

SPINAL MONOAMINERIGIC NEUROMODULATION
Our HPLC data of either whole or ventral half spinal samples
show that the monoaminergic rates rose between birth and the
second postnatal week in the lumbar enlargement. This result
is in agreement with developmental studies that have reported a
progressive rostrocaudal gradient of the monaminergic innerva-
tion associated with an increase in axonal density (Commissiong,
1983; Rajaofetra et al., 1989, 1992; Giménez y Ribotta et al., 1998;
Pappas et al., 2008; Pearlstein, 2013). Interestingly, we report an
increased content of DA in the whole lumbar spinal cord of P10
SOD1 mice compared to WT animals. As this discrepancy was
not observed in ventral spinal cord samples, our results provide
insights into changes in the DA contents in the dorsal part of
the SOD1 lumbar cord. This area is densely innervated and con-
trolled by dopaminergic pathways (for review see Millan, 2002).
Significant damages in the sensory system have been described
in the presymptomatic stages in SOD1 models (Guo et al., 2009;
Filali et al., 2011). Altered sensorimotor development character-
ized by a delay in maturation processes has also been reported
in newborn SOD1 mice (Amendola et al., 2004). The increased
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FIGURE 4 | Effects of dopamine on NMA+5-HT-induced fictive

locomotion in SOD1 and age-matched control mice. (A) Representative
integrated (

∫
) traces of NMA + 5-HT (16 μm each)-induced fictive

locomotion recorded extracellularly from the right, left L2 and left L5 ventral
roots (rL2, lL2, and lL5) in the absence or presence of dopamine (DA, 50 or
500 μm). Upper panels present traces obtained in WT animals (A1) and
lower panels in SOD1 mice (A2). (B) Polar graph of the rL2-lL2 phase (�)
relationships computed in WT (black dots and line, n = 16) and SOD1 (blue

dots and line, n = 11) spinal cords in the presence of 500 μm DA.
(C) Plots of the period (C1), L2 burst duration (C2) and amplitude (C3) in
the absence (NMA + 5-HT alone) or presence of increasing concentrations
of DA in WT (black bars) and SOD1 (blue bars) mice. These data show that
the SOD1 genotype has no effect on the DA neuromodulation when
investigated at the extracellular level. Asterisks indicate positive significance
levels and the numbers in histogram bars refer to the number of spinal
cord preparations tested.

DA content in the SOD1 dorsal spinal cord found in this study
may contribute to these early alterations. It has been shown that
both a reduction or an amplification of the monaminergic spinal
content leads to a delay in spinal circuit maturation (Nakajima
et al., 1998; Cazalets et al., 2000; Vinay et al., 2002), suggesting
that a precise intraspinal level of these compounds is required

for normal spinal cord network development. In the present
study, we observed that regardless of the mouse genotype, the
three monoamines tested potentiate locomotor activity by boost-
ing the amplitude of the ventral root bursts and increasing the
locomotor period. While DA contents were increased in the P10
SOD1 lumbar spinal cords, we failed to report any modification
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in DA neuromodulation in SOD1 mice. This discrepancy could
be explained by the fact that extracellular recordings were per-
formed on spinal cord preparations from P1-P3 mice, ages where
DA rates are similar between SOD1 and WT mice. The sustainable
locomotor activities necessary for neuromodulatory studies are
difficult to achieve in in vitro preparations from P10 mice (but see
(Jiang et al., 1999). To assess the impact of the DA content increase
on both basal membrane properties and DA sensitivity of the P10
lumbar motoneurons, patch-clamp recordings in spinal cord slices
will be needed to investigate the effects of DA antagonists and ago-
nists on these neurons. Dose-response curves will also have to be
performed to assess and compare DA sensitivity in WT and SOD1
motoneurons.

It is generally acknowledged that changes in the period and/or
phase relationships of the locomotor rhythm reflects effects on the
locomotor CPG while modifications in the burst amplitudes are
associated with changes in the motoneuron or last order interneu-
ron excitability (Miles and Sillar, 2011). In SOD1 mice, the period
and phase relationships of the rhythm expressed in the presence of
the three monoamines tested were similar to those found in WT
animals. The modulation of burst amplitude was also comparable
between SOD1 and WT mice in the presence of 5-HT and DA. In
contrast, the amplitude values of the bursts recorded in the pres-
ence of NA were more amplified in SOD1 mice compared to WT
littermates. These results suggest that the monoaminergic neu-
romodulation of the locomotor CPG is preserved and normal in
newborn SOD1G93A mice but that SOD1 motoneurons exhibit an
increased sensitivity to NA compared to WT motoneurons. As the
spinal cord size is not different between SOD1 and WT mice (per-
sonal unpublished observation), this effect could not be explained
by differences in NA penetration into and the final concentra-
tions attained within the spinal tissue (see for example Brumley
et al., 2007). Lumbar motoneurons express the α1, α2a, and β1

receptors at birth (Rekling et al., 2000; Tartas et al., 2010). We
have previously shown in newborn rats that the activation of these
receptors increased the lumbar motoneuron excitability partly via
the inhibition of the inwardly rectifying K+ current, KIR, a key
determinant of neuronal excitability (Tartas et al., 2010). In addi-
tion, NA, through the activation of presynaptic α1 and β receptors,
enhanced the synaptic transmission originating from the upper
lumbar segments in motoneurons (Tartas et al., 2010). Possible
alterations in the expression of Kir channels and/or noradrener-
gic receptors could sustain part of the increased sensitivity to NA
in SOD1 spinal cord by modifying both the intrinsic membrane
properties of motoneurons and the excitatory synaptic inputs
they receive. Up-regulation of NA receptor number, for exam-
ple, could lead to NA supersensitivity in SOD1 motoneurons.
This kind of phenomenon has been described for DA receptors
in diverse pathological conditions (see for examples: Briand et al.,
2008; Seeman, 2013).

Due to their lack of Ca2+ buffering proteins, motoneurons are
more prone to excitotoxicity than other neurons. An excess of
excitatory inputs has been hypothesized to play a major role in
the neuronal degeneration observed in ALS (Turner et al., 2013).
The NA hypersensitivity we reported in the present study could
trigger aberrant depolarizations and subsequent Ca2+ entries in
the lumbar motoneurons leading to progressive damage to the

intracellular machinery. It is thus of interest to further decipher
the cellular basis of the NA neuromodulation in newborn SOD1
motoneurons and to investigate the NA antagonist effects on the
SOD1 mouse life span.
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