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The brain is able to flexibly select behaviors that adapt to both its environment and its
present goals. This cognitive control is understood to occur within the hierarchy of the
cortex and relies strongly on the prefrontal and premotor cortices, which sit at the top of
this hierarchy. Pyramidal neurons, the principal neurons in the cortex, have been observed
to exhibit much stronger responses when they receive inputs at their soma/basal dendrites
that are coincident with inputs at their apical dendrites. This corresponds to inputs from
both lower-order regions (feedforward) and higher-order regions (feedback), respectively. In
addition to this, coherence between oscillations, such as gamma oscillations, in different
neuronal groups has been proposed to modulate and route communication in the brain.
In this paper, we develop a simple, but novel, neural mass model in which cortical units
(or ensembles) exhibit gamma oscillations when they receive coherent oscillatory inputs
from both feedforward and feedback connections. By forming these units into circuits that
can perform logic operations, we identify the different ways in which operations can be
initiated and manipulated by top-down feedback. We demonstrate that more sophisticated
and flexible top-down control is possible when the gain of units is modulated by not
only top-down feedback but by coherence between the activities of the oscillating units.
With these types of units, it is possible to not only add units to, or remove units from,
a higher-level unit’s logic operation using top-down feedback, but also to modify the
type of role that a unit plays in the operation. Finally, we explore how different network
properties affect top-down control and processing in large networks. Based on this, we
make predictions about the likely connectivities between certain brain regions that have
been experimentally observed to be involved in goal-directed behavior and top-down
attention.
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1. INTRODUCTION
Our perception of the world around us and the way in which
we respond to it depend on more than just the sensory informa-
tion that is sent to our brains. It also depends on our recent and
past experiences and on our current motivations and goals. While
plasticity can make changes based upon past experiences, top-
down processing allows numerous, faster changes (or switches)
between stimulus-response mapping that can depend on recent
events and current goals, as well as a more efficient way to allow
interactions between concurrent stimuli.

The brain, in particular the cortex, exhibits a hierarchy both
anatomically and functionally. Within this hierarchy, sensory
information progresses “forward” through a series of regions. For
example, in the visual system, stimuli cause neural activity that
begins in the retina, propagates through the lateral geniculate

nucleus (LGN) to the visual cortex, where it progresses through
levels V1 and V2 before splitting into the dorsal (the “where” or
“how” pathway) and ventral (the “what” pathway) streams and
continuing further “upstream” (Goodale and Milner, 1992). In
addition to this “forward” flow of information, there is much
evidence that information also flows “backward” through this
hierarchy. Buffalo et al. (2010) observed attentional effects that
propagated from higher-order visual areas back to lower-order
visual areas (i.e., V4–V2–V1).

This “backward” propagation of information, or top-down
feedback, explains the observations by Womelsdorf et al. (2006,
2008) of context-dependent changes in the receptive field of
neurons in visual cortical area MT. These changes included
shifts of the centers of the receptive fields toward the focus
of attention and narrowings of the receptive fields. Similar to
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this, Cohen and Newsome (2008) observed context-dependent
changes in the noise correlations of MT neurons. Such top-
down effects are also evident in goal-directed behavior, where
the brain is able to perform fast switching between different
“rules” that determine the appropriate response for a given stim-
ulus. Wallis and Miller (2003) and Muhammad et al. (2006)
showed how, during such a behavioral task, different neurons
in the prefrontal (PRC), premotor (PMC), and inferior tempo-
ral (ITC) cortices and the striatum (STR) responded selectively
to either the task rule (desired stimulus-response mapping), the
behavioral response carried out, the visual stimulus being remem-
bered, or whether or not the subsequent stimulus matched this
remembered stimulus.

In order to perform tasks such as top-down attention and goal-
directed behavior, the functional connectivity of cortical networks
must be rapidly and flexibly modifiable. Haider and McCormick
(2009) reviewed the evidence for neural activity producing this
rapid modulation in the functional connectivity. In this study, we
focus on two different mechanisms for rapidly rearranging the
functional connectivity of cortical networks: gain modulation and
communication-through-coherence.

Gain modulation is where one type of input modulates the
gain or sensitivity of a neuron to another type of input (Salinas
and Sejnowski, 2001). Top-down gain modulation of neuronal
responses that is dependent on contextual information or a
different type of stimulus has been observed; however, the neu-
ronal mechanisms underlying it have not been well understood.
Larkum and colleagues found that pyramidal neurons exhibit a
much stronger response when they receive inputs from both feed-
forward and feedback connections (Larkum et al., 1999; Larkum,
2013), which tend to be targeted to the cell’s soma and basal den-
drites and to the cell’s apical dendrites, respectively (Felleman
and Van Essen, 1991). This non-linearity is due to interactions
between the sodium and calcium spike initiation zones of pyra-
midal neurons, which are located at the soma and apical branch,
respectively. This suggests that feedback connections to pyramidal
neurons from higher-order regions can be thought of as modu-
lating the gain of the neurons they target. While gain modulation
provides a means for top-down processing or control, this has not
been fully explored and there are limitations to the influence that
is possible.

Synchronization and oscillations are ubiquitous in the cortex.
Gamma oscillations, in particular, have been shown to be impor-
tant in higher brain functions (Bartos et al., 2007; Fries et al.,
2007), such as (selective) attention (Womelsdorf and Fries, 2007)
and top-down processing (Engel et al., 2001). Communication-
through-coherence (CTC) proposes that coherence between the
oscillations of different neuronal groups modulates and routes
communication through the brain (Fries, 2005). Supporting
this hypothesis, synchronization and phase relations have been
observed to govern interactions between neuronal groups
(Womelsdorf et al., 2007). Gregoriou et al. (2009) showed that the
prefrontal cortex and V4 exhibited long-range coupling of activity
at gamma frequencies, initiated in the prefrontal cortex. There is
much evidence suggesting that gamma (and beta) oscillations are
involved in top-down and bottom-up interactions between the
prefrontal and visual cortices (Benchenane et al., 2011).

Theoretical work has also shown how synchrony or coher-
ence can act as a modulator of the gain of pyramidal neurons
(Tiesinga et al., 2004; Börgers et al., 2005; Mishra et al., 2006;
Tiesinga et al., 2008; Tiesinga and Sejnowski, 2009) and has also
examined how top-down gain modulation can enable networks of
neurons to perform fast stimulus-response remappings (Salinas,
2004). However, this situation has not been explored theoreti-
cally with neurons whose gain is simultaneously modulated by
two different mechanisms: top-down (apical-targeted) feedback
and oscillatory coherence. Furthermore, there has not been suf-
ficient attention paid to understanding how gain modulation
behaves and is controlled in hierarchical networks with several
levels/layers.

In this paper, we develop a simple neural mass model in which
units exhibit gamma oscillations when they receive coherent oscil-
latory inputs to both the apical dendrites (feedback) and the
soma/basal dendrites (feedforward). In this way, activity is mod-
ulated by two different mechanisms: apical-targeted, top-down
feedback and oscillatory coherence. We explore how these units
can be formed into circuits to perform the same types of logic
operations (e.g., “AND,” “OR,” and “NOT”) considered by Vogels
and Abbott (2005). Similar to previous studies involving gain
modulated units (Salinas, 2004), we consider how these logic
operations can be initiated and controlled (i.e., altered) by top-
down feedback. However, unlike previous studies, we identify
the different ways in which this top-down control can be imple-
mented in hierarchical networks. In the same way that top-down
gain modulation can strengthen or weaken the activity of neu-
rons, we show that units can be added to or removed from a
higher-level unit’s logic operation by altering the feedback activ-
ity that this higher-level unit is given. Furthermore, by modeling
units as oscillating with a particular phase, we show that it is pos-
sible for feedback to modify the type of role that a unit has in
the operation. This is not possible with top-down gain modula-
tion alone and requires the additional coherence modulation. We
explore how different network properties affect top-down con-
trol and processing in the networks, and make predictions about
the likely connectivities between the different brain regions that
have been experimentally observed to be involved in goal-directed
behavior and top-down attention.

2. MATERIALS AND METHODS
2.1. CORTICAL UNIT MODEL
We model the cortex as being composed of a network of
small units of pyramidal neurons and inhibitory interneurons
(Figure 1A). These units are modeled as neural masses and the
individual neurons are not explicitly modeled. The units receive
two types of inputs: feedforward inputs to the soma and basal
dendrites (blue) and feedback inputs to the apical dendrites (red).
As proposed by Larkum (2013) for individual pyramidal neu-
rons, we hypothesize that these units are associative and generate
much stronger output when they are activated simultaneously by
both of these types of inputs. We further hypothesize that these
units can only be activated by inputs with gamma oscillations.
Importantly, it is an assumption of the model that the input activ-
ity, and the activity elicited in the units, is oscillatory. While inputs
and units in the model are not actually composed of networks of
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FIGURE 1 | Diagram of Model. (A) A cortical unit, composed of pyramidal
neurons and inhibitory interneurons, exhibits activity (green) based on the
feedforward, basal/soma-targeted (blue) and feedback, apical-target (red)
inputs it receives. (B) Table describing how the unit activity depends on
these inputs, as described by Equations (2) and (3). The inputs and outputs
are shown by solid and dashed arrows, which correspond to active and
searching inputs/outputs, respectively. The direction of each arrow indicates
the phase of gamma oscillations (active) or the timing of sporadic,
feedback-propagating bursts (searching). The different rows correspond to
feedforward and feedback inputs, and unit output, respectively. Multiple
feedforward or feedback arrows indicate multiple inputs of these types.
Note that the same effects are achieved with sporadic, bursting feedback
inputs (but not so for feedforward inputs). (C) Modulating effect of feedback
on a unit’s responsiveness to feedforward input, as described by Equation
(2). Without feedback, the unit will remain in the resting state, regardless of
the feedforward input. Coherent feedforward input must be coherent within
itself but also with any feedback activity.

neurons that generate these oscillations, the oscillations do rep-
resent fluctuations of the instantaneous spiking rate of neural
populations and we assume that in the brain they would arise
due to the reciprocal excitation and inhibition within the pop-
ulation. In addition to receiving both feedforward and feedback
input, activation of units requires that these inputs are in phase, or
coherent (Figure 1B). The requirement for units to receive both
feedforward and feedback activity in order to become active can
be thought of as binary gain modulation or a gating of the unit’s
activity (see Figure 1C).

Our model has a coarse time-step equal to half the period of a
typical gamma oscillation (about 7–10 ms). At a given time-step,
the state of each unit, si,t , takes on one of three possible values:

• Resting: units exhibit insufficient activity to affect other units;
• Searching: units exhibit strong but sporadic bursts of activity

that can propagate and affect other units via feedback
connections;

• Active: units exhibit strong, gamma-frequency activity that
affect other units via feedforward or feedback connections.

The activity of units is confined to gamma oscillations and, con-
sequently, units can only be active every second time-step and,
therefore, must have one of two possible phases. In other words,
oscillations in units in the model are simply active states that
occur on alternating time-steps. We intentionally restricted oscil-
lations in the model to having only two possible phases in order
to keep the model sufficiently simple so that networks of units
could be analyzed and their function could be understood. While,
the resting and active states correspond to the on and off states
of binary models, the searching state represents a novel type of
state, where units have not been fully activated but are still able
to pass down the feedback they receive to lower-levels. We refer
to this as the searching state as it can be thought of as searching
lower-level units that the unit sends feedback connections to. It is
then able to ignite activity in units that are receiving feedforward
activity. In this way, top-down feedback allows feedforward activ-
ity to propagate to higher-levels, which it would be unable to do
otherwise.

While individual neurons are able to fire in response to only
feedforward or feedback input, we are hypothesizing that, in
higher-level areas of the cortex, groups/ensembles of neurons
(units) are generally only able to be activated to a sufficient degree
when the neurons in these groups receive both feedforward and
feedback activity. Active units in our model exhibit strong gamma
oscillations and can significantly affect the firing of other units
that they are connected to. However, within a resting unit, the
neurons are still assumed to be firing (perhaps even as gamma
oscillations), although we have assumed that the firing is at a
lower rate and is not sufficient to significantly affect the activ-
ity of other units that they are connected to. In this way, we are
still modeling feedback as modulating the activity of groups of
neurons (as illustrated by Figure 1C). However, because we only
consider three different levels of activity (resting, searching, and
active), the feedback modulation effectively becomes a gating of
unit activity.

The state of each unit is determined by the inputs that it
received from other units in the previous and current time-steps.
These inputs come from other units via connections with short
(∼0 ms, negligible) or long time lags (∼7–10 ms, one time-step).
We denote the sets of short connections into unit i as F̂i and
B̂i (feedforward and feedback, respectively) and the sets of long
connections into unit i as F̄i and B̄i (feedforward and feedback,
respectively). The presence of feedforward and feedback inputs
into each unit are summarized by the Boolean expressions

fi,t =
{ ⋃

j ∈ F̂i

[
sj,t is active

]} ∪
{ ⋃

j ∈ F̄i

[
sj,t−1 is active

]}
,

bi,t =
{ ⋃

j ∈ B̂i

[
sj,t is active or searching

]} ∪

{ ⋃
j ∈ B̄i

[
sj,t−1 is active or searching

]}
, (1)

Frontiers in Neural Circuits www.frontiersin.org August 2014 | Volume 8 | Article 94 | 3

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Kerr et al. Goal-directed control with cortical units

respectively. As mentioned above, the activity of units can be
thought of as having a phase. In this view, activity arriving at a
target unit will have the same phase as the source unit for connec-
tions with short time delays or the opposite phase to the source
unit for connections with long time delays.

The state of unit i is given by

si,t =

⎧⎪⎨
⎪⎩

resting if ¬b∗
i,t

searching if b∗
i,t ∩ ¬f ∗

i,t

active if b∗
i,t ∩ f ∗

i,t,

(2)

where f ∗
i,t and b∗

i,t are Boolean expressions for whether the
basal/soma and apical compartments, respectively, of the pyrami-
dal neurons in unit i receive coherent inputs and become activated
in time-step t. This is illustrated in Figure 1C and shows that units
are only activated if both of these compartments are activated in
its pyramidal neurons. The unit is in the searching state if the api-
cal compartment is activated but the soma/basal compartment is
not. The unit is in the resting state if the apical compartment is
not activated.

Gamma oscillations are generated in the cortex through activa-
tion of either networks of inhibitory neurons, via the interneuron
gamma (ING) mechanism, or reciprocally connected networks of
excitatory and inhibitory neurons, via the pyramidal-interneuron
gamma (PING) mechanism (Whittington et al., 2000; Brunel and
Wang, 2003; Tiesinga and Sejnowski, 2009). Given the role that
inhibitory neurons therefore have in producing gamma oscilla-
tions, we have assumed that the (basal/soma or apical) com-
partments of a unit are shut down by the inhibitory neurons if
they receive non-coherent inputs. Put another way, the incoher-
ent inputs interfere with the rhythmic interaction between the
excitatory and inhibitory neurons in the unit. This is described by

f ∗
i,t = fi,t ∩ ¬fi,t−1 ∩ ¬fi,t − 3, (3)

b∗
i,t = bi,t ∩ ¬bi,t−1 ∩ ¬bi,t − 3.

The compartments cannot be activated in consecutive time-steps
as the inhibitory population constrains the activity to gamma
oscillations. Activity in one time-step not only prohibits activity
in the next time-step, but also two time-steps after that. In this
way, there is a phase given to the activity of units. By consider-
ing the model in terms of phases, the input/output relations in
Figure 1B present another perspective. Provided there is coher-
ent feedback inputs, there is at least the sporadic, searching signal
(green dotted arrows) that can propagate down to lower levels. If,
additionally, there are coherent feedforward inputs that are also in
phase with the feedback, then the unit becomes active and exhibits
strong gamma oscillations (green solid arrows).

2.2. CORTICAL NETWORKS
In this paper, we consider that the previously defined cortical
units are organized into architectures similar to that presented
in Figure 2. Here, the system receives sensory inputs (left) and
produces motor outputs (right). Units in the system represent
abstract concepts, such as percepts and actions, that depend on
the sensory inputs and determine the behavior, respectively. In

FIGURE 2 | Goal-directed Network. An illustration of the proposed cortical
architecture. Sensory, feedforward input (left) is mapped to percepts,
actions, and finally motor responses (right), and this mapping is controlled
by goal-dependent feedback (top). In the diagram, blue, red, and magenta
arrows correspond to feedforward, internal feedback and external feedback
(feedback corresponding to the goals of the system) connections,
respectively. It should be noted that only the connections from active or
searching units have been shown and they would exist other connections
which have not been shown. White, green, and red units correspond to
resting, active, and searching units, respectively.

Figure 2, we divided the architecture into levels (using vertical
black lines). These levels embody a hierarchy in the processing
of information. Feedforward connections are made from units in
lower levels to units in higher levels while the reverse is true for
feedback connections. Here, the number of levels depicted is arbi-
trary and for illustrative purposes; the actual number of levels
is most likely much greater. Similarly, the multiple vertical lines
between the sensory and the percepts, and between the actions
and motor, are only intended to indicate that there would be a
number of levels of processing (e.g., for the visual pathway: those
in the retina, LGN, V1, etc.) in between. The levels aim to con-
vey the idealized version of the functional architecture that we
consider in this paper.

Units in a network require feedback in order to become acti-
vated. For units in the networks that we are considering, this
feedback must arrive from an external source, otherwise no
units can become activated regardless of the sensory, feedforward
inputs that they receive. We assume this external feedback arrives
from higher-level networks or areas of the brain. We rely on the
assumption that there exists at least one high-level region that
provides this feedback to the rest of the brain without receiv-
ing feedback itself. This feedback would be dependent on the
goals, motivation, and state of the system (working memory), and
would control the way in which the network causes percepts to
lead to actions. While these goals must be reasonably persistent,
feedforward activity of certain percepts would assumedly have the
ability to affect these goals; however, we are not going to consider
how these goals persist or change in this paper.

In order for arbitrary mappings from percepts to actions to
be made, units receive feedback activity and perform logic opera-
tions on their inputs. In a sense, they are “asking” questions or
testing hypotheses regarding the state of these inputs. Higher-
level units will in turn use the outputs of these lower-level units
as inputs. As illustrated in Figure 2, lower-level units, or groups
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of units, represent different percepts formed about the sensory
information received while higher-level units, or groups of units,
begin to more appropriately resemble different courses of action
for the system to perform. The logic operations that each unit
performs can be thought of as hypotheses about the state of the
external world and hypotheses about what (if any) actions should
be carried out.

We consider networks of units to be composed of smaller sub-
networks. For the subnetwork being considered, we refer to the
lowest-level units as being the inputs and the highest-level units as
being the output units. These units are identical in terms of how
they are modeled but play different roles in the larger network.
We assume that only input units receive feedforward activity
from lower-level units outside the subnetwork and only output
units send feedforward activity to higher-level units outside the
subnetwork (it is only their activity that matters to higher-level
areas).

Just as the units in our model require feedback to become
active, networks (and subnetworks) of these units require exter-
nal feedback in order for any of their units to become active. For
a given subnetwork, external feedback can not only be to out-
put units, it can also be to input units and intermediate units
(units that are neither input nor output units). We refer to exter-
nal feedback that arrives at output units as initiating feedback (as
it initiates the output units) and external feedback that arrives
at lower-level units in the subnetwork as orchestrating feedback
(as it orchestrates or manipulates the operations performed by
the output units). These two types of feedback are not differ-
ent in the way that they affect units but are distinguished by the
different functional roles they play. Importantly, their roles are
specified relevant to the subnetwork being considered. For exam-
ple, orchestrating feedback for one subnetwork may be initiating
feedback for another subnetwork. In the network in Figure 2,
external feedback is represented by the dotted red arrows that are
dependent on the current goals.

2.3. LOGICAL OPERATIONS
We consider examples of simple subnetworks, or motifs, in order
to illustrate the functional roles of different types of connections.
Shown in Figure 3, these motifs perform simple logic operations
when initiated by external feedback. The output units, Y1, Y2,
and Y3, send feedback activity to input units, X1, X2, X3, X4, X5,
and X6, and become activated if they receive feedforward activity
in return. Y1 (“X1 or X2”) becomes activated if either X1 or X2
receives coherent, feedforward input, which, because of the long
time lag of the connections, must be out-of-phase with the activ-
ity of Y1 so that they can provide returning feedforward activity
that is coherent with Y1’s activity. Y2 (“X3 and not X4”) becomes
activated only if X3 receives coherent, feedforward input and X4
(which makes a short feedforward connection onto Y2) does not,
as activity from this unit would arrive out-of-phase with Y2’s
activity. In the last motif, the unit in the intermediate layer per-
forms the same operation (“AND NOT”) on its inputs as Y2. Y3
(“X5 and X6”), in turn, also performs the same (“AND NOT”)
operation as Y2 except that the intermediate unit is initiated in
phase with Y3 and so the time lags of the connections between
them are reversed.

FIGURE 3 | Basic Logic Motifs. From top to bottom, motifs in which the
output units compute the operations “X1 or X2,” “X3 and not X4,” and “X5
and X6,” respectively. Arrows correspond to feedforward (blue) and
feedback (red) connections with short (dashed and shorter length) and long
(solid and longer length) time lags. Arrows are also shown connecting the
input units to lower-level units (not shown) and connecting the output units
to higher-level units (not shown) as these motifs function as circuits in a
larger network.

Generally, we denote whether or not the output unit i is acti-
vated by yi, which can either be true or false. This is determined by
the operation that the unit performs, which is given by the binary
function

yi = gi(x;B; B̂), (4)

where the binary vector x denotes whether or not each of the
input units are receiving feedforward inputs of the appropriate
phase, B denotes the set of external feedback (and phase of the
feedback) that each output unit receives (initiating feedback), and

B̂ denotes the set of external feedback (and phase of the feed-
back) that each lower-level unit receives (orchestrating feedback).

We refer to Bφ and B̂φ as the empty feedback sets, where there
is no initiating and orchestrating feedback, respectively, and to
Bi as the set in which only output unit i receives initiating feed-

back. Unless B includes feedback to unit i, gi(x;B; B̂) = 0 for all
inputs. As we have motifs that can perform the “OR” and “NOT”
operations, we can compose these together to form networks to
perform arbitrary logic operations.

3. RESULTS
The brain is able to perform arbitrary mappings from different
stimuli to different behavioral responses and to rapidly modify
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its mappings based on current motivations and goals. In order
to understand how this occurs, we have proposed a model of
groups or ensembles of neurons that when connected into net-
works can produce arbitrary mappings. We explore the different
ways in which they can be controlled by top-down feedback from
higher brain regions and how this depends on the connectivity of
these networks.

3.1. TOP-DOWN PROCESSING
Goals influence the operations of units through providing exter-
nal feedback to the network. For a given set of output units, this
feedback can be divided into initiating feedback, which targets
the output units, and orchestrating feedback, which targets lower-
level units. Where the goals send initiating feedback to multiple
output units, the operations performed by these units may be
either non-interacting or interacting. Where the goals send orches-
trating feedback to units in the network, the operations may
be orchestrated. Each of these types of operations shall now be
described in turn.

3.1.1. Non-interacting operations
Operations performed by output units are non-interacting if
the units perform the same operations when they are initiated
together as they did when initiated separately. This means that
the operations can be performed in parallel without affecting each
other. Using functional notation, we say that the operation of unit
j does not interact with the operation of unit i for orchestrating

feedback to the network B̂ if, for all sets of inputs x,

gi(x;Bi ∪ Bj; B̂) = gi(x;Bi; B̂), (5)

where Bi denotes the set with initiating feedback to only output
unit i and Bi ∪ Bj denotes the union of the sets Bi and Bj with
initiating feedback to only output units i and j.

3.1.2. Interacting operations
Interactions occur when a unit’s operation is modified by other
units being initiated alongside it (i.e., when output units are initi-
ated together). The number of operations that can be performed
in parallel is limited by the number of interactions that occur.
In the most extreme case, there is only one information chan-
nel due to the dependencies between the units and collectively
the output units only perform a single, more complex operation.
Interactions allow top-down processing, as feedback into one unit
can affect the operations performed by other units in the network.
Using functional notation as for non-interacting operations, we
say that the operation of unit j interacts with the operation of unit

i for orchestrating feedback to the network B̂ if there exists a set
of inputs x for which

gi(x;Bi ∪ Bj; B̂) �= gi(x;Bi; B̂). (6)

Figure 4 illustrates the contrast between interacting and non-
interacting operations. It also demonstrates how small changes to
a network with non-interacting operations cause it’s operations
to interact. Figure 4A shows a network where two operations
have overlapping inputs but no interactions occur. Figures 4B,C

FIGURE 4 | Non-interacting and Interacting Operations. (A) Two output
units, Y1 and Y2, which individually perform operations “X1 or X2” and “X2
and not X3,” respectively. Feedforward connections to input units from
lower-level units and feedforward connections from output units to
higher-level units (as shown in Figure 3) have been omitted. (B) Same as
(A) but with an additional feedforward connection which does not change
the individual operations but introduces interactions when they are initiated
together. (C) Same as (A) but Y2 instead needs to be initiated in phase with
the input units for it to perform the same operation. There is also an
additional feedback connection that, similar to the additional connection in
(B), does not change the individual operations but introduces interactions.
(D) Input-output table for the networks in (A–C). The input units (or cues),
X1, X2, and X3, either receive feedforward input (1) or not (0), and the
output units, Y1 and Y2, are either activated (1) or not (0) for each of the
networks initiated with external feedback to only Y1, only Y2, or to both Y1
and Y2. Green (red) outputs are ones that are activated (not activated)
when the units are initiated together but were not activated (activated)
when the units were initiated separately. The final row indicates the
number of inputs that the output unit’s operation depends upon (relevant
inputs), where green (red) indicates that the number has increased
(decreased) from being initiated separately to being initiated together.

provide examples of networks with overlapping motifs where
the same operations are performed when the outputs are ini-
tiated separately but interactions occur when they are initiated
together. These interactions are evident in the table in Figure 4D,
where there exist inputs for which a different output is produced
depending on whether the two hypotheses are initiated separately
or together. The last row in Figure 4D contains the number of
inputs that are involved in the operations performed. Interactions
can cause this to either increase or decrease.

3.1.3. Orchestrated operations
Orchestrating feedback (from an external source) can alter the
operations that an output unit in a subnetwork performs. In this
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case, the feedback manipulates or controls the operations that
are performed. We found dependencies between interactions that
occur between units and the level and type of control that is pos-
sible by orchestrating feedback. We say that the operation of unit i

has been orchestrated if the orchestrating feedback B̂ causes there
to exist a set of inputs x for which

gi(x;Bi; B̂φ) �= gi(x;Bi; B̂), (7)

where B̂φ denotes the empty set where there is no orchestrating
feedback to the network.

Figure 5 shows the mechanisms by which external feedback
adds or removes units from an operation. Without any external
feedback, the operation performed is “X2 or X3.” By adding the
external feedback, X2 is removed from the operation and X1 is
added, making the operation “X1 or X3.” This could be orches-
trating feedback from outside the network (as we have shown) but
it could also be feedback from another output unit that is initiated
with Y1.

3.2. GOAL-DIRECTED BEHAVIOR
Figure 6 shows examples of networks that can perform pos-
sible stimulus-response experiments, where switching between
different rules or goals, is required. Each of the networks in
Figures 6A–C, has two different percepts (stimulus cues) as
inputs, two different actions (levers to pull) as outputs, and a
number of different goals, rules, or stimulus-response mappings
that direct how these inputs lead to different outputs. The tables

correspond to the binary functions, gi(x;B; B̂), where i corre-
sponds to the two levers, or output units, x denotes the cues that

FIGURE 5 | Orchestrated Operations. (A) Motif performing an “OR”
operation over the two input units X2 and X3 has the input unit X2 removed
and X1 added by orchestrating feedback (magenta arrows) from unit Z1
which, like Y1, is initiated out-of-phase with the inputs. (B) Input-output
table for the network in A. The input units (or cues), X1, X2, and X3, either
receive feedforward input (1) or not (0), and the output unit Y1 is either
activated (1) or not (0), in the cases where there is feedback or not from Z1.
The final row indicates the number of inputs that the output unit’s operation
depends on (relevant inputs).

are present, and B and B̂ denote the initiating and orchestrating
feedback, respectively, from the goal units.

In Figures 6A,C, each of the goals only sends initiating feed-
back to the network. In Figure 6A, there are three different goals:
G1, to pull lever L1 when cue C1 is presented (and ignore C2); G2:
to pull lever L2 when cue C2 is presented (and ignore C1); and
G3, to pull lever L1 when cue C1 is presented and pull lever L2
when cue C2 is presented (perform both goals in parallel). These
goals control the network through feedback to the two units cor-
responding to the two lever actions. The inputs of the output units
do not overlap, so trivially their operations (performed separately
by G1 and G2) are non-interacting and so can be performed in
parallel (by G3). Figure 6B shows the input-output table for this.

In Figure 6C, there are also three different goals, the first two
of which are the same as the first two in the network in Figure 6A.
The third goal is to pull levers L1 and L2 when both cues C1 and
C2 are presented (and ignore both C1 and C2 presented alone).
The same feedback from the three goals as in Figure 6A is used
to control the network, but different behavior (Figure 6D) arises
due to differences in the networks. In Figure 6B, we see that the
conditions for L1 and L2 remain the same regardless of whether
they are included in the task or not (i.e., the logic operations can
be performed in parallel). However, we see that this is not the
case in Figure 6D, where different logic operations are performed
when both L1 and L2 are included compared to when they are
considered alone. In this case, the two operations interact.

In Figure 6E, unlike in Figures 6A,C, the goals (except G∗,
which is always active) send orchestrating feedback, which tar-
gets intermediate units in the network. This allows Figure 6E to
demonstrate a more complex stimulus-response situation with
four different goals (tasks) that the system needs to switch
between. These are: G1, to pull lever L1 when cue C1 is presented
and L2 when C2 is; G2, to pull L2 for C1 and L1 for C2; G3, to pull
L1 for C1 and L1 for C2; and G4, to pull L2 for C1 and L2 for C2.
It is due to the orchestrating feedback, which modifies the way the
network maps its sensory inputs to its behavioral outputs, that the
network is able to perform each of these tasks (Figure 6F).

3.3. PHASE-DEPENDENT OPERATIONS
We found that the relative phase between the output units and
the units to which they send feedback can also affect the compu-
tations performed. If a network has feedback connections with a
mix of short and long time lags and all the inputs are in phase,
then some of the units receiving feedback will be activated and
others blocked. Figure 7A shows this situation, where switching
the phase of the feedback switches which of the input units are
activated and which are blocked. It, therefore, modifies the set
of inputs that are used in the operation. For example, if Y1 is
initiated in phase with the inputs, then only X2 and X5 will be
involved in the operation (“X2 and not X5”). But, if Y1 is ini-
tiated out-of-phase with the inputs, then only X3 and X4 will be
included (“X3 and not X4”). Inputs, such as X1, are persistent and
involved in the operation regardless of the phase if they do not
receive the feedback from the output units but instead feedback
from another source (Z1 in this case).

Unlike gain modulation models where units typically do not
have phase, we discovered that, rather than simply adding a
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FIGURE 6 | Stimulus-response Tasks. (A) An example of how the cortical
architecture would be utilized for a stimulus-response task where a subject
pulls one of two levers when presented with one of two sensory cues. The
task switches between one of three “goals”: lever L1 should be pulled for
cue C1 and cue C2 ignored (G1), L2 for C2 and C1 ignored (G2), and L1 for C1
and L2 for C2 (G3). Network activity is shown for when G1 is active. Similarly,
the arrows to the cue units from the left and those leaving the lever units
depict the inputs and outputs of the network (i.e., only “active” connections)
for a particular set of inputs. (B) Input-output tables for the network shown in
(A) for the three different goals. The final row indicates the number of inputs

that the output unit’s operation depends on (the relevant inputs). (C) Same as
(A) but the third task (G3) now involves pulling both levers if and only if both
cues occur together. Note that the feedback from the three goals is the same
as in (A) but there is an extra layer in the network. (D) Same as (B) but for
the network in (C). (E) Similar to (A,C) but with four different goals: L1 should
be pulled for C1 and L2 for C2 (G1), L2 for C1 and L1 for C2 (G2), L1 for either
C1 or C2 (G3), and L2 either C1 or C2 (G4). G* is not actually one of the four
goals but instead always provides feedback (each of the goals could instead
provide this feedback). The feedback from the goals is no longer only to
output units. (F) Same as (B,D) but for the network in (E).

unit to an operation (increasing its gain), units can be added
with different phases and play a different role in the network.
This is shown in Figure 7B, where Y2 and Y3 each send feed-
back of a different phase to an intermediate unit, X5, adding
it to the operation performed by Y1. While both send feed-
back that adds X5 to the operation of Y1, the different phases
of the feedback cause X5 to play a different role in the oper-
ation of Y1. With feedback from Y2, X5 is initiated in phase
with Y1 and so, due to its long feedforward connection, the

operation of Y1 becomes “X4 and not X5.” With feedback from
Y3, X5 is initiated out-of-phase with Y1 and the operation of
Y1 instead becomes “X4 or X5.” In turn, the different phased
feedback causes X5 to perform different operations on its own
inputs (X2 and X3). In this situation, we are only concerned
with the operation of Y1. However, Y2 and Y3, in addition to
modifying the operation of Y1 may also be performing their
own operations with their own sets of inputs but these are not
shown.
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FIGURE 7 | Phase-dependent operations. (A) An output unit connected to
the five input units, X1-X5, which receive orchestrating feedback from unit
Z1 that is out-of-phase with the inputs, performs the operation “(X1 or X3)
and not X4” when it is out-of-phase with the inputs and “X3 and not X1 and
not X5” when it is in phase with the inputs. (B) The operation performed by
output unit Y1 is changed depending on which other output (or external)
units are initiated with it. Intermediate unit X5 is added by either Y2 or Y3
but in different ways, causing it to play a different role in the operation of
Y1, and to perform different operations on its own inputs (X2 and X3).

3.4. THE ROLE OF NETWORK PROPERTIES
We investigated how the properties of the feedforward and feed-
back connections in the network determine the extent to which
interactions occur and the operations can be orchestrated. For
example, the network in Figure 4B is the same as the one in
Figure 4A but with an additional feedforward connection. While
this does not affect the operations when they are initiated sepa-
rately, this additional feedforward connection changes the oper-
ations when they are performed together: the input X1 is added
to the operation performed by Y2. Figure 4C also performs the
same operations as Figures 4A,B when they are performed sep-
arately, provided that the feedback to Y2 is in phase with the
inputs. However, due to a feedback connection from Y2 to X1,
the operations interact when they are initiated together: the input
X1 is removed from Y1’s operation. Similar to feedback from ini-
tiating another output unit, orchestrating feedback from Z1 in
Figure 5A modifies the operation of Y1 by adding X1 and remov-
ing X2. Adding and removing units is analogous to strengthening
or weakening inputs using gain modulation. However, in our
model, as shown in Figure 5B, a unit can be added with feed-
back of a different phase causing it to play a different role in
the operation that it is added to. We quantitatively explored how
these interaction effects depend on different network connections
probabilities in large networks.

3.4.1. Quantifying top-down effects
We quantified the effect of top-down influences by considering
the number of inputs that feedback adds or removes from oper-
ations of each of the two possible phases. The feedback may be
either from other outputs that are initiated or it may be external,
orchestrating feedback. No inputs will be added or removed if,

and only if, no other operations interact with the operations and
orchestrating feedback does not modify the operation. We con-
sidered a two-layer network with NI input units. We defined the
following two-component vectors:

• NR0 whose components are the number of input units of each
phase that are involved in the computation performed by an
output unit (the number of relevant inputs of each phase in
an operation) when it is initiated without any other outputs
initiated or any external feedback.

• NR+ whose components are the number of input units of each
phase that are added to the set of relevant inputs in an oper-
ation when another output unit is initiated or orchestrating
feedback from an external unit is present.

• NR− whose components are the number of input units of each
phase that are removed from the set of relevant inputs in an
operation when another output unit is initiated or orchestrat-
ing feedback from an external unit is present.

In order to understand how network properties affect these met-
rics, we considered a two-layer network with only feedforward
and feedback connections (no lateral connections). The con-
nection probabilities for feedforward and feedback connections
is pff = pff−only + pff+fb and pfb = pfb−only + pff+fb, respectively,
where pff−only, pfb−only, and pff+fb are the probabilities that pairs
of units in each layer are connected with only feedforward,
only feedback, and both feedforward and feedback connections,
respectively. The probability of a feedforward or feedback connec-
tion having a long (short) time lag is given by pF̄ (pF̂ = 1 − pF̄)
and pB̄ (pB̂ = 1 − pB̄), respectively. The connection probabili-
ties for the feedback from other output units or from external
units is given by p∗

fb and the probability of them being long
(short) is p∗̄

B
(p∗

B̂
= 1 − p∗̄

B
). For this situation, we determined the

expressions,

NR0

NI
= pff+fb [α, (1 − α)] , (8)

NR+
NI

= p∗
fbpff−only

[
α∗, (1 − α∗)

]
,

NR−
NI

= p∗
fbpff+fb

[
α(1 − α∗), (1 − α)α∗] ,

where

α = 1 − pB̄, (9)

α∗ = β
(

1 − p∗̄
B

)
+ (1 − β) p∗̄

B
,

and β is the probability that the unit providing the additional
feedback is in phase with the output unit being considered. The
values α and α∗ are the probabilities that feedback from the out-
put unit or the other source of feedback, respectively, arrives with
the same phase as the main output unit. It is only the time lag of
the feedback connection that affects α; however, α∗ also depends
on the likelihood of the other output source being in or out of
phase with the main output unit (i.e., β).
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When the output unit of interest is initiated alone (NR0), only
reciprocally connected units where the feedback is in phase with
the inputs will be involved in the operation. Only input units
which are not reciprocally connected but make a feedforward
connection to the output unit can be added (NR+) and they are
added by receiving feedback that is in phase. This is shown in
Figure 8A, where we plot the total number of units (of either
phase) originally in the operation and the total number added and
removed as functions of the ratio pff−only/pff. As expected, when
there are only reciprocal connections (i.e., pff−only/pff = 0), no
units can be added; when there are no reciprocal connections (i.e.,
pff−only/pff = 1), no units are originally in the operation (and so
none can be removed either).

For a unit to be removed (NR−), it must originally be in the
operation and then receive new feedback that is out-of-phase.
This is shown in Figure 8B, where we plot the original number
of units in the operation and the number of units that are added
and removed for different feedback phase probabilities. For the
original number of inputs and the number of inputs added, the
total number of inputs is fixed but the split between the phases
changes linearly with the value of α and α∗, respectively. The total
number of input units removed is zero when both α = α∗ = 0 or
1. This is because both types of feedback (from the output unit
or the other unit) always arrives with the same phase and so input
cannot receive incoherent feedback. Similarly, Equation (9) shows
that if α = 0 and α∗ = 1, or α = 1 and α∗ = 0, then feedback
from the two sources will always be out of phase. In this case,
input units of only one phase would be involved in the operation
originally and those that receive additional feedback will always
be removed.

From Figure 8, we see that there are separate network proper-
ties controlling the number of units that are added (pff−only/pff)
and the network property controlling the number of units that
are removed (α and α∗). However, in a random network, it would

not be possible to have a mix of phases in the original input units
or in the input units that were added and also avoid having units
removed from operations.

3.4.2. Interactions and shared inputs
In the random networks we consider, there will be some over-
lap between the inputs that comprise the operations of different
output units but this will not depend on network properties
except the likelihood of reciprocal connections and the number
of input units. Whether shared or non-shared inputs are added or
removed from the operations due to interactions depends on the
types of connections involved. Shared inputs are added by inter-
actions due to feedback from reciprocal connections, whereas
feedback without a reciprocal feedforward connection adds non-
shared inputs. However, input units removed by interactions will
always be non-shared as the second output unit must make a
interfering feedback connection to the unit.

3.4.3. Interactions in orchestrated networks
Orchestrated networks provide much flexibility for networks to
be modified to perform arbitrary operations and this control
through high-level, external feedback is a commonly envisioned
architecture for gain modulated networks. There are two possible
extremes for these types of networks. The first extreme is net-
works in which many non-interacting operations are performed
in parallel. The second are networks in which a larger number
of output unit combinations interact to perform a single but
potentially more complicated operation. In these two cases, the
orchestrating feedback controls and modifies the operations or
single operation, respectively.

Considering the first type of network, we investigated the
constraints on orchestrating the network if there are to be no
interactions or if interactions are to be restricted in some way.
An interesting result, shown by Figure 8B, is that pff−only > 0 is

FIGURE 8 | Interaction effects with network parameters. (A) The mean
fraction of relevant inputs (either phase) for an operation initiated alone,
NR0/NI (blue), and the mean increase and decrease in the fraction of relevant
inputs (either phase) when feedback from a second operation or external unit
is also present, NR+/NI (green) and NR−/NI (red), respectively, plotted as
functions of the fraction pff−only/pff (the fraction of unreciprocated
feedforward connections) as given by Equation (8). The values of other
network parameters used were: pff = 0.5, pfb = p∗

fb = 0.5, and α = α∗ = 0.5.

The dashed vertical line shows the fraction of pff−only/pff used in (B).
(B) Same as (A) but varying the probability of the phase of the different types
of feedback: α (phase probability of initiating feedback), α∗ (phase probability
of orchestrating feedback), and α = α∗ (phase probability of any external
feedback), for NR0/NI , NR+/NI , and NR−/NI , respectively. Also shown is the
fraction of relevant inputs of a particular phase (dashed) that, compared to
the fraction of relevant inputs of either phase (solid), illustrates the split
between the two phases.
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required in order to allow external feedback to add additional
units to operations but, as long as pfb > 0, this means that sim-
ilar interactions will occur between the operations [see Equation
(9)]. This suggests the first of the following three possible network
conditions that can control the interactions:

• No internal feedback: In this case (pfb = 0), operations would
require external feedback in order to exist (feedforward activity
would not be able to propagate without external feedback) but
no interactions would be possible due to the fact that output
units could not influence lower-level units at all.

• Homogenous delays for internal feedback: In this case, all of
the internal feedback would have “short” or “long” delays but
not a mix of the two (α = 0 or 1). This means that inter-
actions could cause units to be added to the operations of
other units but not removed. Provided that units performed
operations that contained at least one unit when they are initi-
ated separately, this network condition would also ensure that
if there were no interactions without orchestrating feedback
then the addition of arbitrary orchestrating feedback would not
change this.

• Homogenous delays for internal feedback and no non-
reciprocal feedforward connections: In this case (α = 0 or 1,
and pff−only = 0), no interactions between output units would
be possible and orchestrating feedback would only be able to
remove units from operations.

3.5. ROBUSTNESS TO NOISE
Neural oscillations are observed in local field potentials (LFPs)
(Roelfsema et al., 1997), which correspond to oscillations and
synchrony in the activity of populations of neurons (Gray et al.,
1989; Jia et al., 2013). However, Burns et al. (2011) observed
that, rather than providing a clock-like signal, gamma oscilla-
tions exhibited in LFPs are only auto-coherent for between 2 and
5 cycles. We explored how robust our model is to the introduction
of noise to the gamma oscillations.

In the model, input oscillations are represented by activity on
alternating time-steps. We model noise by introducing stochastic-
ity to these input oscillations. Instead of the probability of activity
on each time-step being 0 and 1 on alternating time-steps, we
model noise by either making these θ and 1 − θ , respectively,
or 0 and 1 − θ , respectively, where 0 ≤ θ ≤ 1 is the amount of
noise present. These are referred to as “simple noise” and “peak-
only noise,” respectively. The second of these ensures that activity
never occurs on consecutive time-steps even though noise has
been added.

As described by Equations (2) and (4), activation of a unit
requires the presence and absence of both feedforward and feed-
back input activity on specific time-steps. Without noise, these
conditions are either fulfilled or not. However, when noise is
present, we can analytically derive the likelihood that all of these
conditions are fulfilled and the output unit is activated. In any of
the networks considered, feedback must activate the apical com-
partment of the output unit for at least two oscillations: one to
put the unit into a searching state and initiate activity in the
input units, and one to match the returning feedforward activ-
ity and activate the unit. This requires the presence of feedback

activity on two time-steps (two apart), the absence of feedback
activity on the time-steps preceding each of these, and also the
absence of activity two time-steps earlier. Modeling with “sim-
ple noise,” these five conditions are satisfied with a probability
of (1 − θ)5, while with “peak-only noise,” the absence of activ-
ity on the correct time-steps is guaranteed and the probability
becomes (1 − θ)2. Using a similar approach, the probabilities for
the feedforward inputs that lead to activation of the output unit in
different networks can be considered. Table 1 shows these feedfor-
ward and feedback probability functions when the noise is present
in both feedforward and feedback inputs and when it is only
present in one of these, and for “simple” and “peak-only” noise.
The product of each of the two probabilities gives the probability
that the output unit is activated.

In Figures 9A,B, we explore the robustness to noise of the
“OR” network when both input units receive feedforward activ-
ity and when only one input unit receives feedforward activity,
respectively. In Figures 9C,D, we explore the robustness to noise
of the “AND NOT” and “AND” networks, respectively, when both
input units receive feedforward activity. We plot the fraction of
trials (out of 1000) in which the output units in each of these
networks were activated for different amounts and types of noise
(shown by markers). For each of these networks (except for the
more complex “AND” network), we compared these simulation
results to analytically derived functions for the probability of acti-
vation of the output units (shown by lines). For “simple noise,”
when θ = 0.5, no oscillations are present (i.e., the likelihood of
activity in any time-step is the same) and very poor performance
is observed. This highlights the importance oscillations play in
these networks. For noise levels of θ = 0.1, the performance
dropped down to as low as 40%. However, we observed that “sim-
ple noise” impairs the performance of the networks much more
than “peak-only noise” in each of the different networks. “Peak-
only noise” where θ < 0.05 was sufficient to ensure activation at
least 80% of the time (shown by black, dashed lines).

4. DISCUSSION
4.1. RELATION TO COGNITIVE PHENOMENA
The networks of cortical units that we have proposed and inves-
tigated provides a high-level model of various cognitive phenom-
ena, including goal-directed behavior and top-down attention.
We described a general architecture for goal-directed behavior
in Figure 2 and demonstrated simple examples in Figure 6. We
considered it out of the scope of this study to explore how
these goals are generated, maintained, or changed; however, we
considered how feedback from goals could quickly switch and
modify stimulus-response mappings. This is crucial in behavioral
settings, where goals or information held in working memory
need to influence the way that stimuli are responded to. In this
study, we have identified the different ways that this influence
can be implemented. We proposed a model with oscillatory, gain-
modulated units that allows feedback to more flexibly manipulate
stimulus-response mappings than models with only gain modu-
lation.

Top-down attention naturally arises in this situation because
units and subnetworks of units are only activated if they receive
feedback corresponding to attention. Stimuli that are not relevant
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Table 1 | Derived functions for robustness of different networks to different types of noise.

Network Location of noise Type of noise Probability of required feedback activity Probability of required feedforward activity

OR (2 inputs) FF+FB Simple (1 − θ )5 1 − [1 − (1 − θ )3]2
Peak-only (1 − θ )2 1 − θ2

FB-only Simple (1 − θ )5 1
Peak-only (1 − θ )2 1

FF-only Simple 1 1 − [1 − (1 − θ )3]2
Peak-only 1 1 − θ2

OR (1 input) FF+FB Simple (1 − θ )5 1 − [1 − (1 − θ )3][1 − θ (1 − θ )2]
Peak-only (1 − θ )2 1 − θ

FB-only Simple (1 − θ )5 1
Peak-only (1 − θ )2 1

FF-only Simple 1 1 − [1 − (1 − θ )3][1 − θ (1 − θ )2]
Peak-only 1 1 − θ

AND NOT FF+FB Simple (1 − θ )5 (1 − θ )3[1 − θ (1 − θ )2]2
Peak-only (1 − θ )2 1 − θ

FB-only Simple (1 − θ )5 1
Peak-only (1 − θ )2 1

FF-only Simple 1 (1 − θ )3[1 − θ (1 − θ )2]2
Peak-only 1 1 − θ

The networks considered are the “OR” network (with either one or both input units receiving feedforward activity) and the “AND NOT” network (with both input

units receiving feedforward activity), while analogous expressions could not be found for the “AND” network. Noise is present in both feedforward and feedback

inputs to the network (FF+FB), only feedback inputs (FB-only), or only feedforward inputs (FF-only). The noise is modeled either as “simple noise” or “peak-only

noise.”

FIGURE 9 | Robustness to noisy oscillations. (A) Performance, given by
the fraction of trials in which the output unit was activated, of the “OR”
network shown in Figure 3 (with both inputs active) to different amounts and
types of noise, θ . These different types are: noise only for feedback inputs
(blue), noise only for feedforward inputs (red), and noise for both feedforward
and feedback inputs (green). The noise can be either “simple noise” (solid) or

“peak-only noise” (dashed). Markers show the average outcome from 1000
simulations and lines show analytically derived curves. (B) Same as (A) but
where one input is active and one is inactive. (C) Same as (A) but for the
“AND NOT” network shown in Figure 3 where one input is active and one is
inactive. (D) Same as (A) but for the “AND” network shown in Figure 3

where both inputs are active and without the analytically derived lines.

to a particular task will be ignored and activity they elicit will not
propagate to higher brain regions. Therefore, bottom-up atten-
tion must work via a different means to those described in this
study, so that salient stimuli can interrupt top-down tasks and
perhaps alter these tasks or goals.

4.2. RELATION TO EXPERIMENTAL FINDINGS
4.2.1. Context-dependent changes to neural responses
Womelsdorf et al. (2006, 2008) observed context-dependent
changes to the receptive field of neurons in the middle

temporal area (MT). The changes included shifts of the
centers of the receptive fields toward the focus of atten-
tion and narrowings of the receptive fields. Cohen and
Newsome (2008) similarly observed that noise correlations
of MT neurons depended on the current behavioral task
being performed. In both of these experiments, the stim-
uli were not being changed and, according to our model,
these context dependent changes are due to changes in the
top-down feedback (either initiating or orchestrating) to these
neurons.
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In low-level areas of the auditory cortex, Zion Golumbic et al.
(2013) observed that attention boosted the activity corresponding
to “attended speech,” but that “ignored speech” remained rep-
resented. However, in higher-order regions, attention becomes
more “selective” and activity representing ignored speech was not
present. Similarly, in the visual system, Hupé et al. (1998) showed
that feedback connections serve to amplify and focus activity of
neurons in lower-order areas and that they were important in dis-
criminating between a figure and the background. Schroeder et al.
(2010) refer to this interaction between sensory and attentional,
top-down signals as “active sensing.” This is consistent with the
model we are proposing where attention, determined by the
goals of the system, “selects” the relevant sensory stimuli, while
ignoring irrelevant stimuli.

4.2.2. Abstract rules and operations
Wallis and Miller (2003), Muhammad et al. (2006), and
Buschman et al. (2012) considered abstract rules that could be
applied in a very similar manner to many different stimuli-
response mappings. The ability of the brain to create such abstract
mappings suggests that it reuses the same circuitries or networks
for multiple analogous purposes. This is consistent with the way
networks in our model can be composed together and embedded
into larger networks. In this case, it is the role of orchestrating
feedback to make sure the reused network receives the appropri-
ate inputs and that its outputs are used correctly. Badre (2008)
reviewed the evidence for hierarchies within goals and rules used
for cognitive control in the PFC where there were increasing lev-
els of abstraction for higher-level goals. This hierarchy of goals
suggests the existence of different levels of goal-dependent feed-
back, each orchestrating different parts of the stimulus-response
mapping required for the over-arching goal.

Buschman et al. (2012) showed that during a stimulus-
response task there was a dominant rule (based on the orientation
of a visual stimulus), which alpha oscillations appeared to sup-
press in order for a different rule (based on the color of a visual
stimulus) to be employed. In our model, this type of behavior may
be exhibited by having orchestrating feedback that would modify
the original, dominant operation or mapping performed by the
network to a secondary mapping. However, our model does not
suggest an explanation as to why alpha rhythms would be involved
in this top-down remapping.

4.2.3. Fast signal propagation and neural coding
In our model, activity takes at most half the oscillation period
(about 7–10 ms for gamma oscillations) to propagate from one
unit to the next. The target unit does not need to integrate its
inputs but can very quickly pass along the “signal” provided that
it receives coherent feedforward and feedback inputs. In other
words, units in the model are assumed to exist in a fluctuation-
driven regime, where, unlike models in which units need to
integrate their inputs, activity can be more rapidly altered. This
is consistent with the range of reaction times (about 300–400 ms)
observed by Wallis and Miller (2003) in their rule-based behav-
ioral experiments. In our model, both the phases and the levels
of activation (absolute firing rate) are important for performing
computations. Our model does not predict that absolute spike

rates are irrelevant but it does make the assumption that they are
only relevant in concert with the appropriate phases.

4.2.4. Pyramidal neurons
Larkum et al. (1999, 2001, 2004) and Larkum (2013) observed
that pyramidal neurons exhibited a much stronger response when
they received inputs both to their soma (and basal dendrites) and
to their apical dendrites than they did when they received only
one of these types of inputs. In addition to the spike initiation
zone at the cell body for action potentials (sodium spikes), there
is a second initiation zone near the apical tuft of layer 5 pyramidal
neurons (Yuste et al., 1994; Schiller et al., 1997; Larkum and Zhu,
2002). This second initiation zone produces broad calcium spikes
within the cell and its existence suggests that pyramidal neu-
rons should be considered to have two functional compartments.
Larkum et al. (1999, 2001, 2004) and Larkum (2013) discuss
how interactions between these two initiation zones, where spikes
from either one lower the firing threshold of the other, provide the
associative mechanism whereby a stronger response occurs when
both somatic and apical inputs are present.

We proposed our analogous model for interconnected groups
of pyramidal neurons based on this experimentally-based
description of how pyramidal neurons respond to different types
of inputs. In our model, groups of neurons behave similarly
to individual pyramidal neurons in that they produce a much
stronger response when receiving somatic feedforward activity
as well as apical feedback. However, our model differs in that
the groups of neurons also contain inhibitory interneurons and
because of this they exhibit oscillatory activity in the gamma
frequency range.

4.3. EXPERIMENTAL PREDICTIONS
4.3.1. Requirements of neural activation
In our model, the activation of groups/ensembles of neurons
requires strong coherent feedforward and feedback activity. We
are predicting that, at least during goal-directed tasks, neuronal
ensembles in high-level areas of the cortex are only activated
if they receive feedback from higher regions, or if there has
been recent feedback (regions involved in working memory may
sustain activity without feedback). Similarly, without receiving
activity from lower-level units, our model predicts that high-level
units would at most be able to exhibit sporadic, searching activity
and not strong oscillatory (e.g., gamma frequency) activity.

This prediction does not necessarily extend to lower-level areas
of the cortex, such as V1, in which sensory input alone may be
sufficient to activate groups of neurons (Hupé et al., 1998). There
may also be top-down feedback present during non-goal-driven
behavior, or during resting states, that provides a “default” set of
operations for the network. Similar to this, the presence of a neu-
romodulator may remove (or introduce) the need for top-down
feedback, allowing feedforward activity alone to activate units and
propagate into higher-level regions. For example, there is evi-
dence that cholinergic neurons increase the amount that attention
modulates the activity of cortical neurons (Herrero et al., 2008;
Goard and Dan, 2009; Thiele, 2009; Herrero et al., 2013). In this
situation, acetylcholine may actually decrease the excitability of
the neurons, pushing them into a more goal-driven mode, where
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they are forced to rely on both feedforward and feedback activity
to become active.

We hypothesize that there must also exist coherence between
neurons within an active ensemble and between neurons in differ-
ent active ensembles that are strongly connected. This prediction
is most relevant to the activation of neuronal ensembles during
attentional and behavioral tasks. This type of experimental result
has been observed for alpha and beta frequencies by Buschman
et al. (2012), where there was coherence between neurons in
the PFC during behavioral tasks that involved switching between
different abstract rules.

In addition to coherence, we predict that, at a network level,
activation also requires periodic or oscillatory activity. The rea-
son for this is demonstrated in the first circuit of Figure 3 (“X1
or X2”). Here, feedback arrives at Y1, propagates to X1 one time
step later, and, if this coincides with feedforward input to X1,
feedforward activity travels back to Y1 another time step later.
This means that the returning feedforward activity arrives back at
Y1 one period of oscillation later and Y1 only becomes activated
if the feedback it received was oscillatory, where another round
of synchronous feedback coincides with the delayed, returning
feedforward activity. In this way, oscillations do not simply allow
persistent activation, in many cases, they are necessary for the
output units of subnetworks to become active at all.

4.3.2. Robustness to noise
As shown in Figure 9, simple networks of our cortical unit model
are sensitive to noise in their oscillatory inputs. For realistic noise
levels (θ of 10%) the performance drops to approximately 40–
50% with “simple noise” or 60–80% with “peak-only noise.”
Furthermore, this sensitivity would, in most cases, be amplified
for larger networks with more sophisticated operations. For this
reason, it is critical that future studies explore more detailed and
biologically realistic models of noise in neural oscillations and
explore possible mechanisms for models to cope with this noise.
This would lend biological plausibility to our present model,
which is currently not sufficiently robust to noise. One mecha-
nism that would help improve the robustness to noise would be to
have a redundant architecture, where multiple networks perform
the same operation but receive independent noise.

Figure 9 also showed that simple operations were much more
robust to “peak-only noise” than to “simple noise.” This was
because “peak-only noise,” unlike “simple noise,” can only lead
to absence of activity when it was expected and not the presence
of activity on the other time-steps. Although “simple noise” pro-
vides a good model of noise for individual neurons, “peak-only
noise” may potentially be a more realistic model for the groups
of excitatory and inhibitory neurons that we are modeling. While
activity may fail to be initiated on a given oscillation cycle within
a group of neurons, the inhibitory activity following such neural
activity should reliably suppress further activity for a short period
of time. This fits the “peak-only noise” model in which sustained
activity (activity on consecutive time-steps) is not permitted to
occur.

Another more detailed model of oscillation noise would be one
in which time is modeled as being continuous and the oscillation
period is modeled as stochastic. This would align more closely

with experimental observations, such as those by Burns et al.
(2011). It would also mean that, while the oscillations may not
be auto-coherent over more than a few cycles, the time between
any two consecutive peaks would only vary slightly. Given that
connection delays in our model are at most half the oscillation
period, it is only the auto-coherence over one period that would
be of importance. We speculate that a model similar to ours with
continuous time (and therefore continuous phases) would be very
robust to noise modeled in this manner and this robustness would
likely scale well to larger networks. However, this would depend
on how closely input phases would be required to align in order
for units to be activated.

4.3.3. Different cortical regions
The results from Equation (9) and Figure 8 for large networks
suggest a trade-off between the ability to perform many oper-
ations in parallel and the ability to control these operations in
a top-down manner with feedback. Given that different regions
of the cortex would have different priorities in this regard, this
makes experimental predictions for the connectivity within and
between different regions of the cortex. For instance, within
regions where units would correspond to percepts, interactions
between hypotheses and goal-directed manipulation of hypothe-
ses would be expected to be low as our perceptions are relatively
stable with respect to our goals. In this case, we would expect
that α∗ ≈ 1, pff−only ≈ 0, and p∗

fb ≈ 0. In other words, feed-
back connections from units in one hierarchical level to another
would be expected to have quite similar propagation delays,
feedforward and feedback connections between units would
mostly occur together (i.e., reciprocally), and there would be
few feedback connections coming directly from regions involved
in motivations/goals/behavior. For higher-level regions where
units correspond to actions and more abstract concepts, goal-
directed orchestration of operations, and perhaps also interac-
tions between different operations, would be desired. For the
regions involved in motivation and goals to orchestrate the oper-
ations and control the network, there needs to be feedback
connections from these regions to the units (i.e., p∗

fb > 0).
Wallis and Miller (2003) and Muhammad et al. (2006)

recorded from neurons in the prefrontal (PRC), premotor
(PMC), and inferior temporal (ITC) cortices and the striatum
(STR) during a stimulus-matching task. During the task, two
visual stimuli were presented and, depending on the rule (which
was indicated via a visual cue presented with the first stimulus),
the subject was required to either continue holding a lever or
release the lever. They observed different neurons that responded
selectively to the rule (desired stimulus-response mapping), the
behavioral response carried out, the visual stimulus being remem-
bered, or whether the subsequent stimulus matched this remem-
bered stimulus. We constructed a possible network to carry out
this task (Figures 10A,B). In addition to external feedback that
depends on the rule to be employed, this network receives exter-
nal feedback based on the stimulus being remembered (held in
working memory). Based on the selectivity that was observed of
neurons in different cortical regions, we divided this network into
these different regions (Figure 10C). While this is not necessarily
the exact network used for this task or the correct allocation of
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FIGURE 10 | Stimulus-matching Experiment. (A) Network for responding
to a stimulus (C1, C2 or any other stimulus CX), which is dependent on the
current rule that determines whether to respond to a match or non-match
with the previous stimulus. In contrast to previous tasks, working memory
is required to remember the previous stimulus (P1 and P2 which
correspond to the same stimulus as C1 and C2, respectively) in the same
way that the rules (R1 and R2) are remembered. (B) Input-output table for
the network presented with a stimulus for combinations of rules and
remembered stimuli. (C) Same network as in (A) but with units assigned to
anatomical regions of the cortex.

units to cortical regions, this demonstrates how our model may be
useful in understanding the role of neurons in different regions.

4.3.4. Searching feedback and neuronal avalanches
The sporadic, bursting feedback activity that we proposed to
be exhibited by units during the searching state is based on
the observations by Larkum (2013) of the activity of pyrami-
dal neurons that receive only strong input to their apical den-
drites. We propose that this mechanism exists for ensembles of
pyramidal neurons and that it is used to pass internal predic-
tions/expectations from higher-level ensembles down to lower-
level ensembles. This relies on sharp, sporadic, bursts of activity

being able to propagate along feedback connections down to
lower-levels but not along feedforward connections up to higher-
levels. Neuronal avalanches observed in vitro (Beggs and Plenz,
2003) may correspond to spontaneous examples of these search-
ing signals within networks that are not receiving any sensory
inputs. Of interest would be the calcium activity, due to the acti-
vation of the calcium spike initiation zone on the apical branch,
of pyramidal neurons during neuronal avalanches.

4.3.5. Apical-targeted feedforward connections
We have assumed that higher level areas connect to lower level
areas via feedback (apical-targeted) connections and that, in
return, the lower level areas connect to the higher level areas
via feedforward (soma/basal-targeted) connections. While this
seems to be the prevalent pattern in the cortex, exceptions
are likely to exist. Apical-targeted feedforward connections, for
example, would allow salient, lower-level features/hypotheses to
prompt/pose higher level hypotheses. The opposite (soma/basal-
targeted feedback connections) may also exist but it is not clear
the functional role that these connections could play.

4.4. NEURONAL ENSEMBLES AND LATERAL CONNECTIONS
Units in our model are not necessarily local or spatially distinct
groups of neurons, but are instead defined by their functional
connectivities. In other words, units are better thought of as
strongly interconnected ensembles of neurons. We have assumed,
in this study, that units consist of distinct, non-overlapping
groups of neurons. It may be, however, that there is a large overlap
between the neurons that make up each unit.

We considered feedforward and feedback connections between
units but not lateral connections. In this situation, feedforward
activity depends on feedback activity but feedback activity does
not depend on feedforward activity as it can only determine
whether units are in “searching” or “active” states [see Equation
(2)]. This means that there are no “loops” present in networks
that can lead to unstable dynamics. Lateral connections add con-
siderable complexity as they potentially introduce these “loops.”
However, assuming that units in the same layer consist of overlap-
ping groups of neurons, it may be better to think of lateral con-
nections between units as interactions between these overlapping
ensembles, in which the ensembles either inhibit each other (both
cannot be active: winner-take-all), reinforce each other (perform-
ing an “OR” operation), or require co-activation (performing an
“AND” operation). In the situation, where units laterally inhibit
each other, the hypotheses they represent are incompatible. This
is similar to multistable perceptual phenomena, such as binocular
and monocular rivalry, where there is competition between two
incompatible perceptions. Leopold and Logothetis (1999) showed
that, during binocular rivalry experiments, a greater number of
neurons in higher-level areas are correlated with the perception
than in lower-level areas, suggestive of top-down processing.

4.5. RELATION TO GAIN MODULATION
Previous studies consider gain modulation, caused by feedback
signals, as a means of performing top-down processing and
cognitive control. In the study by Salinas (2004), fixed feed-
back dependent on the current rule was used to modulate the
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gain of neurons with feedforward connections on output neu-
rons. This is functionally similar to the last two layers of the
network we considered in Figure 6E, where there are only feed-
forward connections between the layers and external feedback
orchestrates/modulates the inputs to be considered. In contrast
to such studies, our model exhibits an exaggerated and sim-
plified example of non-linear gain modulation, where feedback
modulates feedforward signals above a threshold, which can-
not be otherwise achieved and which permits further propaga-
tion of the signal (see Figure 1C). It remains to be explored
how our findings, regarding interacting, orchestrated, and phase-
dependent operations, extend to the case where activities and
connection strengths are continuous. Instead, our model has
only binary inputs, states (besides the searching state), and
connections. Because of this, our simplified model is not well
suited to integrating many individual inputs and determining
whether all are present or a threshold has been reached. A more
detailed model with continuous activation levels and connec-
tion strengths would be more suited to these types of com-
putation. However, we suggest that this type of processing is
potentially more prevalent in lower-level regions of the cor-
tex and that, in higher-level, associative areas, it may play a
smaller role.

With only gain modulation, feedback can either increase or
decrease the gain of a neuron and, therefore, how strongly it is
involved in an operation, but it cannot change the role that it
plays in the various operations in which it is involved. Here, how-
ever, the top-down feedback can have different phases that can
initiate units with different phases giving them different roles in
operations.

4.6. FUTURE EXTENSIONS
4.6.1. Synaptic plasticity
When investigating how network properties affected top-down
processing, we only considered randomly connected networks,
whereas when we considered a specific task, the networks we
used had a very specific structure. This specific structure would
need to emerge due to some form of activity-dependent synaptic
plasticity. Spike-timing-dependent plasticity, for instance, would
be expected to reinforce connections between active, coherent
units (Kerr et al., 2013). It may also be that, in the case where
a set of connections only ever inhibits the activity of the target
unit, synaptic plasticity only maintains the connections onto the
inhibitory neurons that cause this inhibition. This would mean
that this set of connections becomes only able to inhibit and
not activate the target unit. In addition to this, it remains to be
investigated how robust certain networks or motifs are to the
introduction (removal) of units to (from) operations through
synaptic plasticity. We speculate that networks with fewer inter-
actions may be more robust in this regard but this remains to be
explored.

4.6.2. Analysis of networks with three or more levels
Our exploration of network properties only considered the case of
a two-layer network of units. We would expect that interactions
between different operations would be amplified in a network
with more layers because more units and connections, which

can cause the interactions, are involved. However, connections
do not need to be restricted to being between adjacent layers.
For instance, this is not the case in Figures 6, 7B. An analysis of
how different network properties affect top-down processing and
interactions becomes more complicated in this case.

4.6.3. Other phases and frequencies
We have assumed that active units in our model oscillate at
one of only two different phases. This simplified model could
be extended to include a continuous range of phases, better
capturing the complexity of networks in the brain. More pos-
sible phases would increase the number of different operations
in which units/ensembles could be used. With more than two
phases, activation of units would not require the exact match-
ing of phases but only that the phases are sufficiently similar. In a
more detailed model, there may be degrees of activation depend-
ing on how similar the incoming phases are. In addition to having
many phases, neurons within an ensemble may actually exhibit a
range of phases rather than just a single phase. This would further
complicate the ways that units affect each other through lateral
“connections,” where neurons are shared between units, or actual
feedforward and feedback connections, where the phase of the
individual source and target neurons differs within the units.

Our model would similarly apply to other inhibitory-based
rhythms (Whittington et al., 2000), such as beta frequency oscil-
lations. In fact, there is experimental evidence to suggest that beta
frequency oscillations, either alone or interacting with gamma
oscillations, may represent a better candidate for top-down mod-
ulations (Engel and Fries, 2010; Benchenane et al., 2011). For
example, Buschman et al. (2012) showed that neurons in the PFC
synchronized to beta frequencies during a rule-based behavioral
task.

A number of other roles for gamma oscillations have been
proposed based on experimental observations. Schroeder and
Lakatos (2009) argued that the amplitude of gamma oscillations
is often coupled to the phase of, or “enslaved” to, lower frequency
oscillations (e.g., delta or theta) and propose that non-enslaved
gamma oscillations are only exhibited during a “vigilance” mode
when there is no task relevant rhythm. Arnal et al. (2011) pro-
posed that gamma oscillations represent bottom-up prediction
errors, indicating when sensory signals misalign with top-down
predictions represented by beta oscillations.

This study focuses on a single spectral band associated with
sensory processing and motor pattern generation. However, mul-
tiple frequencies are likely present at the same time and future
work exploring this situation would be very interesting. For
example, there is evidence to suggest that feedback activity would
likely be at lower frequencies (e.g., beta) while feedforward activ-
ity would be at higher frequencies (e.g., gamma) (Arnal et al.,
2011; Bastos et al., 2012). The role of these different frequency
oscillations, and how they may interact in situations such as
this, while out of the scope of the current study, promises a
rich area for exploration. Unless the lower frequencies are sub-
harmonics of the higher frequencies, how different frequency
oscillations would interact poses a problem that needs to be inves-
tigated. Alternatively, computations with different frequencies
could potentially operate in parallel to each other.
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4.6.4. Detailed models of neural activation
In this study, we have considered only three discrete activation
levels for units of neurons (resting, searching, and active). An
area for future work is to consider more detailed models of neu-
ral activation in which units have continuous levels of activation.
In this case, feedback could be modeled as smoothly (although
most likely non-linearly) modulating the sensitivity, or gain, of
units to feedforward input, rather than simply gating the activity
of units. The conditions under which top-down feedback would
play a major role in activating and modifying neural ensembles
and the computations that they preform remains to be explored.
Another interesting area of investigation would be modeling the
effects of neuromodulators, such as acetylcholine, on neural acti-
vation and exploring how such neuromodulators could switch
a network between bottom-up, forward-driven and top-down,
feedback-driven modes of operation.

4.6.5. Phase-locking of top-down oscillations
Feedforward and feedback phases propagate forwards and back-
wards, respectively, according to connections that have been
established through plasticity mechanisms, which remain to be
explored in this context. However, there would ultimately be
the bottom-most feedforward phases and the top-most feedback
phases and, in order for them to synchronize and activate along
the appropriate network pathways, some sort of coordination
between these phases would be necessary. In order to accom-
plish this, high-level areas of the brain would need to perform
“phase-locking” (as opposed to the “phase-matching” focussed
on in this study) between their top-down signals and the bottom-
up signals in lower-level areas. This “phase-locking” would occur
over the network as a whole and would allow “phase-matching”
to perform the operations as described in this study. This type
of synchronization must be ubiquitous in the brain and at high
frequencies, such as gamma and beta, it should be possible to per-
form this “phase-locking” quickly. Together with an investigation
of a model in which there are continuous phase ranges, future
work lies in investigating how this type of “phase-locking” could
be carried out between top-down and bottom-up oscillations.

4.6.6. More specific connections
While we separated inputs into two types (apical and basal),
each of these could be further split up into individual dendritic
branches that locally integrate their own inputs (Larkum et al.,
2009) and can be targeted specifically by certain inhibitory inputs
(Palmer et al., 2012). Targeted inhibition to specific branches and,
therefore, inputs would allow neurons/units to perform much
more complicated computations and, in particular, would be use-
ful in allowing neurons to be re-used for different operations. In
addition to this, excitatory connections to a unit could specifically
target either the excitatory or inhibitory neurons in the unit.
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