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Behavioral studies of object recognition in pigeons have been conducted for 50 years,
yielding a large body of data. Recent work has been directed toward synthesizing this
evidence and understanding the visual, associative, and cognitive mechanisms that are
involved. The outcome is that pigeons are likely to be the non-primate species for which
the computational mechanisms of object recognition are best understood. Here, we
review this research and suggest that a core set of mechanisms for object recognition
might be present in all vertebrates, including pigeons and people, making pigeons
an excellent candidate model to study the neural mechanisms of object recognition.
Behavioral and computational evidence suggests that error-driven learning participates
in object category learning by pigeons and people, and recent neuroscientific research
suggests that the basal ganglia, which are homologous in these species, may implement
error-driven learning of stimulus-response associations. Furthermore, learning of abstract
category representations can be observed in pigeons and other vertebrates. Finally, there
is evidence that feedforward visual processing, a central mechanism in models of object
recognition in the primate ventral stream, plays a role in object recognition by pigeons.
We also highlight differences between pigeons and people in object recognition abilities,
and propose candidate adaptive specializations which may explain them, such as holistic
face processing and rule-based category learning in primates. From a modern comparative
perspective, such specializations are to be expected regardless of the model species under
study. The fact that we have a good idea of which aspects of object recognition differ in
people and pigeons should be seen as an advantage over other animal models. From this
perspective, we suggest that there is much to learn about human object recognition from
studying the “simple” brains of pigeons.
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Visually recognizing objects in the environment has a clear
advantage for the survival and reproduction of any organ-
ism. Among many functions, it allows an animal to respond
adaptively to sources of food, conspecifics, and possible
threats. Although object recognition poses difficult computa-
tional problems (Rust and Stocker, 2010), humans and ani-
mals alike learn to respond similarly to nonidentical objects
from the same category (categorization) as well as to respond
differently to individual objects from the same category
(identification).

Primates possess what are believed to be the most sophisticated
visual systems among mammals. However, there is another verte-
brate group that has also evolved highly advanced visual systems:
birds (Shimizu and Bowers, 1999; Husband and Shimizu, 2001).
For this reason, birds are the non-primate group in which high-
level vision has been the most studied, and the pigeon is the
species chosen in the majority of such studies (for reviews, see
Cook, 2001; Wasserman and Zentall, 2006; Lazareva et al., 2012).
This research has demonstrated impressive visual capabilities

in pigeons, including the ability to detect and categorize many
different classes of objects in a variety of conditions.

Object categorization and recognition have been studied in
pigeons for 50 years, resulting in the accumulation of a large
body of behavioral data (for previous reviews, see Huber, 2001;
Kirkpatrick, 2001; Lazareva and Wasserman, 2008; Zentall et al.,
2008). This accumulated knowledge affords us a unique oppor-
tunity for studying mechanisms of visual categorization that
might be common to all amniote vertebrates (birds, reptiles, and
mammals), which share a common evolutionary ancestor and
basic organizational properties of their visual systems (Shimizu
and Bowers, 1999; Husband and Shimizu, 2001; Shimizu, 2009).
For these reasons, recent efforts in this line of research have been
directed toward understanding the computational mechanisms
that can explain the accumulated data. Here, we review the
literature on object recognition and categorization in pigeons,
with a special emphasis on the likely mechanisms involved, their
plausible neurobiological substrates, and their evolution across
vertebrates.
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We will focus almost exclusively on object recognition and cat-
egorization. The large body of research on associative categories
(i.e., stimulus equivalence; for a review, see Zentall et al., 2014)
and artificial polymorphous categories (e.g., Lea et al., 2006) will
be glanced here, and only in reference to related phenomena in
object categorization. Furthermore, we will ignore categoriza-
tion based on abstract stimulus properties, such as variability
(Wasserman and Young, 2010), numerosity (Emmerton, 2001),
relational properties (Vasconcelos, 2008), etc.

The review will be organized as follows. In section Behav-
ioral Research on Object Categorization by Pigeons, we will
review basic research on object categorization by pigeons. Because
pigeons are assumed to have little or no experience with the
objects presented to them in categorization experiments, an
important part of this research has focused on object category
learning instead of visual object representation, which is different
from the focus of most human research (Soto and Wasserman,
2012b). Much like research in the area of perceptual learn-
ing in people (Lu et al., 2011), the evidence suggests that the
learning of object categories by pigeons might result from the
enhancement of selective readout from visual areas at a post-
visual level, rather than from the direct modification of visual
representations. Thus, a full account of what we know about
object categorization in pigeons cannot focus exclusively on
vision; we will review the learning mechanisms that might operate
in non-visual areas of the pigeon brain in sections The Role of
Error-driven Reinforcement Learning and Learning of Abstract
Category Representations.

In section Visual Object Representation, we will turn to studies
that have more directly assessed visual object representation in
pigeons. We will show that many aspects of this research can
be explained by feedforward processing of shape information, as
implemented in models of primate vision.

In section The Evolution of Mechanisms of Object Recognition
in Vertebrates: A Working Hypothesis, we will propose our
current working hypothesis regarding the evolution of object
recognition mechanisms in vertebrates, aiming toward explaining
similarities and differences between pigeons and people (and
other primates) found in behavioral studies. Finally, we argue in
section The Neurobiological Mechanisms of Object Recognition:
What We Can Learn From Pigeons that the pigeon could and
should be used as an animal model of some of the computational
processes involved in object recognition by people.

BEHAVIORAL RESEARCH ON OBJECT CATEGORIZATION BY
PIGEONS
BASIC TASKS AND RESULTS
Two basic tasks have been used to study object categorization by
pigeons. Early research used go/no-go tasks, in which a single
response is rewarded in the presence of some stimuli (go trials),
but not in the presence of other stimuli (no-go trials). In the first
published study in this area, by Herrnstein and Loveland (1964),
pigeons were rewarded after pecking at a response key when a
photograph included people, but they were not rewarded for
responses to photographs without people. More recent research
has used forced-choice tasks (see Figure 1A), in which several
responses are made available at the same time (introduced by

Bhatt et al., 1988). Pigeons are rewarded only when they peck at
the response key assigned to the presented stimulus.

A large number of studies using both of these tasks have shown
that pigeons can learn to categorize objects through feedback
and, more importantly, pigeons can generalize discriminative
performance to novel objects never seen before. The typical
pattern of results is high performance with novel objects, but at
a slightly lower level of accuracy than with the original training
objects.

Pigeons are capable of learning categories comprising natural
objects (Herrnstein and Loveland, 1964; Herrnstein et al., 1976;
Herrnstein and De Villiers, 1980; Bhatt et al., 1988; Aust and
Huber, 2001, 2002) human-made objects (Bhatt et al., 1988;
Wasserman et al., 1988; Lazareva et al., 2004, 2006), scene gist
(Kirkpatrick et al., 2014), cartoons (Matsukawa et al., 2004),
human face identity (Soto and Wasserman, 2011), gender (Troje
et al., 1999; Huber et al., 2000) and emotional expression
(Jitsumori and Yoshihara, 1997), and even paintings from differ-
ent artists (Watanabe et al., 1995; Watanabe, 2001).

The fact that pigeons can accurately classify new objects from
known categories suggests that their brains can extract visual
properties which are invariant across diverse members of such
object categories. However, the information that the pigeon visual
system extracts from images is even richer, allowing them to
flexibly categorize the same images at different levels. For exam-
ple, pigeons can learn pseudocategorization tasks (Figure 1B), in
which photographs containing objects from several categories are
randomly assigned to different sets (Herrnstein and De Villiers,
1980; Wasserman et al., 1988). Focusing on category-relevant
visual information would actually hinder performance in pseudo-
categorization tasks. Thus, the birds must be capable of extracting
many different object properties from photographs, some of them
invariant across members of the category and others specific to a
particular object.

In line with this idea, studies that have directly manipulated
object properties in photographs have found that many features
simultaneously control pigeons’ performance in a categorization
task (e.g., Huber et al., 2000; Aust and Huber, 2002; Lea et al.,
2013), with variations in performance being well explained as a
linear function of the presence or absence of such features (Huber
and Lenz, 1993; Jitsumori and Yoshihara, 1997).

An important aspect of human categorization is that the same
object can be flexibly categorized at several different hierarchical
levels. For example, the photograph of a human can be catego-
rized at the so-called “basic” level as a person, at the “super-
ordinate” level as an animal, and at the “subordinate” level as
“John”. Pigeons, too, have shown the ability to flexibly categorize
the same objects (cars, chairs, flowers, and people) at different
levels, depending on task demands (Figure 1D; Lazareva et al.,
2004). The procedure used to train such flexible categories is
illustrated in Figure 2. When the photograph of a human is
presented together with four response keys, the pigeons learn
to classify it at the basic level (Figure 2A), whereas when the
photograph is presented together with two different response
keys, the pigeons learn to classify it at the superordinate level
of “natural object” (Figure 2B), comprising both people and
flowers.
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FIGURE 1 | Tasks commonly used in the study of object categorization by pigeons: Categorization (A), pseudocategorization (B), subcategorization
(C), and superordinate categorization (D). Panels of different colors represent different responses assigned to the enclosed images.

The success of pigeons in the task shown in Figure 2 is evidence
for the flexibility in their categorization skills. However, it could
be argued that learning to give the same response to two object
categories is a far cry from forming a common superordinate
representation for them. Other evidence shows that pigeons do in
fact learn common superordinate representations in this type of
task. For example, when objects from two perceptually dissimilar
categories are associated with the same response, new learning
obtained with objects from one of the categories automatically
transfers to objects from the other category (Wasserman et al.,
1992; Astley and Wasserman, 1998, 1999). This transfer suggests
that training with a common response leads to the emergence of
a single representation for both categories, which then mediates
new learning about either of them. Such learning of a common
representation for all stimuli associated with the same response
is not restricted to superordinate categories, as it can be found
after training with basic categories (Vaughan and Herrnstein,
1987) and with pseudocategories composed of two or more
perceptually-dissimilar stimuli (Vaughan, 1988). This learning
phenomenon, named stimulus equivalence in the behavioral
literature (for a review, see Zentall et al., 2014), can also be
found when members of a category share a common association
with a particular stimulus or reward, instead of with a specific
response.

In summary, the basic features of object category learning
in pigeons are the following. First, pigeons can learn a vari-
ety of complex object categories and transfer this learning to
novel objects. Second, pigeons can flexibly classify the same
object according to different criteria (e.g., pseudocategories and
superordinate categories). Third, pigeons extract a rich variety
of visual properties from photographic images and use them in
combination to learn the structure of object categories. Finally,

pigeons learn common abstract representations for all members
of the same trained category.

VARIABLES THAT AFFECT OBJECT CATEGORY LEARNING
Several factors affect both the speed with which pigeons learn
new object categories and the level to which they can generalize
this knowledge to unseen objects. One of the factors that has
a strong effect on object categorization by pigeons is the sim-
ilarity relations between objects in the same category (within-
category similarity) and between objects in different categories
(between-category similarity) included in the same training task.
It is generally believed that natural basic object categories have a
higher level of within-category similarity than between-category
similarity, what is termed “perceptual coherence”. For this reason,
several early studies sought evidence as to whether pigeons could
perceive and use such perceptual coherence for categorization, in
contrast to just learning object categories by rote memorization
of the images.

For example, Astley and Wasserman (1992) rewarded pigeons
for pecking at photographs from a target category and mea-
sured to what extent the pecking response generalized to non-
rewarded test objects. Some of these test objects belonged to
the target category and others belonged to different categories.
Higher responding to objects from the target category would be
a indication that pigeons perceive within-category similarity as
being higher than between-category similarity. Such categorical
generalization was high early in the experiment, but slowly fell as
pigeons acquired experience with non-rewarded presentations of
the test stimuli.

Several pieces of evidence suggest that the perceptual coher-
ence of object categories biases pigeons to group objects together
into basic categories, even when this categorical bias goes against
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FIGURE 2 | Schematic layout of a basic-level categorization trial
(A) and a superordinate-level categorization trial (B) in experiments
studying pigeons’ ability to flexibly categorize the same object at
different hierarchical levels.

the prevailing task demands and is therefore costly in terms
of earned food reward. One example comes from experiments
comparing the learning of real categories and pseudocategories
(Figures 1A,B). When the perceptual coherence of categories is
eliminated by randomly assigning objects to pseudocategories,
learning of the task slows down compared to when percep-
tual coherence is maintained (Herrnstein and De Villiers, 1980;
Wasserman et al., 1988).

A categorical bias is also clearly observable in “subcatego-
rization” tasks, in which two different responses are assigned to

objects from the same category. In one experiment (Wasserman
et al., 1988), illustrated in Figure 1C, objects from one category
were assigned to two separate response keys, and objects from a
second category were assigned to two other response keys. In this
task, if the pigeons randomly choose a response key, then they
get 25% correct responses. Pigeons can also learn about which
two response keys are associated with each category, in which case
they get 50% correct responses, but 50% categorical errors. Thus,
this categorization strategy leads to above-chance performance,
but it is not the strategy leading to the best payoff. The optimal
strategy is learning to identify each individual stimulus and its
correct response. When Wasserman et al. estimated the percentage
of trials in which the pigeons were following each strategy, they
found the results shown in Figure 3A. Although it is not the best
strategy, pigeons first learn to categorize stimuli, and only later
learn to identify them.

The categorical strategy shown by pigeons in the early blocks
in Figure 3A is not optimal, but it does produce better reward
payoff than guessing. Soto and Wasserman (2010b; see also Soto
et al., 2012) found that a similar categorical bias can be found
using a go/no-go subcategorization task. In this task, responses
to a group of objects never produce reward, yet early in training
pigeons respond to them at the same level as to rewarded objects
from the same category. That is, pigeons learn first to categorize
objects in subcategorization tasks, regardless of whether or not
this strategy produces reward.

The previous experiments all suggest that pigeons perceive
the within-category similarity of objects in natural photographs
to be higher than their between-category similarity. This result
is not trivial; it is important that the category structures that
pigeons are biased to learn are exactly those that are likely to be
encountered in the natural environment (see Smith et al., 2010).
However, even when they are learning artificial categories, pigeons
(Cook and Smith, 2006) and primates (Blair and Homa, 2003;
Smith et al., 2010) show a bias to learn perceptually-coherent cat-
egory representations before learning information about specific
stimuli.

Differences in between-category similarity also play a role in
category learning. For example, Aust and Huber (2002) concluded
that how much responding to the trained category “person” gen-
eralized to similar or related categories (such as dolls, primates,
mammals, and birds) depended on how many features were
shared by the categories.

When pigeons are concurrently trained to classify the same
categories at both basic and superordinate levels, it is usually
found that they learn the basic task faster for some categories
and the superordinate task faster for other categories (Lazareva
et al., 2004, 2010; Lazareva and Wasserman, 2009). Lazareva
et al. (2010) obtained estimates of the similarity among four
object categories by analyzing generalization data through mul-
tidimensional scaling. Then, they showed that such similarity
estimates could predict whether the basic or superordinate levels
would show an advantage for different pairs of categories. A
superordinate-level advantage is seen when the two categories in
a superordinate set are perceptually similar, whereas a basic-level
advantage is seen when the two categories in a superordinate set
are perceptually dissimilar. This result is interesting because it is in
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FIGURE 3 | Experimental results (A) and simulated results (B) of a study
on the strategies used by pigeons at different stages of learning a
subcategorization task (Wasserman et al., 1988). The “Categorization”,

“Identification” and “Guess” series represent the proportion of trials in which
pigeons and the model used categorization, identification or random guessing
as a response strategy, respectively.

line with one of the hypotheses put forward to explain the basic-
level advantage in humans (Rosch et al., 1976).

Factors related to the training regime also affect category learn-
ing and generalization. One such factor is the number of different
objects in each category presented during training (Kendrick
et al., 1990; Astley and Wasserman, 1992; Wasserman and Bhatt,
1992). As shown in Figure 4A, learning of the categorization task
is slowed and transfer of performance to new images is enhanced
with a higher number of training exemplars. In the extreme case,
in which training images are never repeated, pigeons can still learn
the object categories, but learning is slower than when the training
exemplars are repeated (Bhatt et al., 1988).

Another important training factor for studies using a go/no-
go task is whether responses are rewarded to images showing the
category, in what is called a feature-positive task, or to images
showing no category, in what is called a feature-negative task.
For example, Edwards and Honig (1987; see also Aust and Huber,
2001, 2002) trained pigeons to discriminate photographs of var-
ious scenes from photographs of the same scenes with people in
them. Their results, reproduced in Figure 5A, show that pigeons
were quite fast in learning the feature-positive discrimination, in
which responses to people were rewarded, but they were slow in
learning the feature-negative discrimination, in which responses
to scenes without people were rewarded. In fact, learning of
the feature-negative discrimination was as slow as learning a
pseudocategorization task, suggesting that pigeons do not show
any benefit from perceptual coherence when responses to the
category are not rewarded.

Patterns of generalization also vary for feature-positive and
feature-negative tasks. Aust and Huber (2001) trained pigeons
with the “people” category in feature-positive and feature-
negative tasks. After training, pigeons were presented with new
combinations of background scenes and people that involved
contradictory information. For example, either familiar or novel
people, which were associated with one outcome during training

(e.g., reward), could be presented on familiar backgrounds, which
were followed by the opposite outcome during training (e.g.,
no reward). The authors found that feature positive training led
to generalization of the response learned for people to these
conflicting test stimuli, whereas feature negative training led to
no preference to respond or to inhibit responding to conflicting
test stimuli. Again, this finding suggests that learning about the
whole category is possible only when responses to the category
are rewarded, but not when responses to the category are not
rewarded.

THE ROLE OF ERROR-DRIVEN REINFORCEMENT LEARNING
What learning mechanisms could give rise to the features of object
category learning we reviewed in the previous section? We have
recently shown (Soto and Wasserman, 2010b, 2012c) that most
of this research can be explained by a model implementing two
simple assumptions. The first assumption is that objects from
any category are represented by a large common collection of
features or “elements”, with different categories involving different
probabilities that an object from the category will activate each
of those common elements. When the probability of activation
of an element is high in a particular category, that element is
activated by several different objects from that category, rendering
it relatively category-specific. When the probability of activation
of an element is low in a particular category, only a few objects
from the category activate the element, rendering it relatively
stimulus-specific.

The second assumption is that category learning proceeds by
strengthening connections between such elemental representa-
tions and responses through error-driven learning. As in some
reinforcement learning systems (Kaelbling et al., 1996; Sutton
and Barto, 1998), on each trial, the model selects an action
that is likely to maximize predicted reward, usually the action
with the strongest connections to active elements. The differ-
ence between the predicted reward and the reward obtained
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FIGURE 4 | Experimental results (A) and simulated results (B) of a
study on the effect of category size on object category learning by
pigeons (Wasserman and Bhatt, 1992). Category size increases the

number of trials to reach a criterion of 0.7 proportion correct (left) and
increases generalization to novel objects from the trained categories
(right).

after the response is made–reward prediction error–determines
how much the connection between the active elements and
the chosen action should be modified (Rescorla and Wagner,
1972).

Note that this model is deliberately abstract regarding object
representation: the elements do not have specific semantic
content (i.e., they do not represent specific features), they
only play different roles depending on what information they
carry about the category. Furthermore, specific object and
category representations are irrelevant, as they are randomly
sampled in each simulation and the results of many simula-
tions are then averaged to generate predictions. This process
allowed us to ignore many questions about visual representation,

while testing to what extent our two simple assumptions can
explain pigeons’ behavior. The resulting learning model is
compatible with any account of visual processing which pro-
duces representations in line with our assumptions; indeed, we
expanded the model in precisely this direction, as we will see
below.

Our model specifies the conditions leading to the control
of actions by category-specific elements, yielding categorization
learning; it also specifies the conditions leading to the con-
trol of actions by stimulus-specific elements, yielding identi-
fication learning. For example, all instances of the categorical
bias discussed in the previous section are the result of differ-
ences in the rate at which category-specific and stimulus-specific

Frontiers in Neural Circuits www.frontiersin.org October 2014 | Volume 8 | Article 122 | 6

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


Soto and Wasserman Object recognition in pigeons

FIGURE 5 | Experimental results (A) and simulated results (B) of a
study on the feature-positive effect in object category learning by
pigeons (Edwards and Honig, 1987). In the feature-positive
discrimination, objects from a category predict the delivery of reward,

whereas in the feature-negative discrimination, objects from a category
predict absence of reward. In the pseudocategorization task, different
objects from the same category predict either reward or no
reward.

elements are presented in a typical categorization task. Because
category-specific elements are shared by many objects, they are
presented often and their connections with responses can be mod-
ified faster. Stimulus-specific elements are presented less often and
they support slower learning. In short, category-specific elements
have a repetition advantage over stimulus-specific elements.

As seen in Figure 3B, this repetition advantage can explain the
reliance on a categorization strategy shown by pigeons during the
early stages of learning in a subcategorization task (Wasserman
et al., 1988; see Figure 3A). Early in training, category-specific
elements quickly strengthen their connections with the two dif-
ferent responses with which a category is paired, producing
above chance accuracy. However, this tendency also results in
a large proportion of categorical errors due to within-category
generalization. To reduce such categorical errors, the connections
between stimulus-specific elements activated by particular objects
and the incorrect response become inhibitory. This inhibitory
learning is slow due to the low rate of presentation of stimulus-
specific elements, but it eventually leads to better discrimination
performance at the end of training by canceling generalized
excitation from one subcategory to the other.

Note how strongly the repetition advantage effect depends
on the number of objects included in the training set. With
just one object, the effect does not occur because all types of
elements are presented equally often. As the number of objects
increases, category-specific elements are presented quite often
(in the extreme, on each trial from the same category), whereas
presentations of stimulus-specific elements become more and
more rare (in the extreme, once for each object repetition). As
shown in Figure 4B, this analysis explains the effect of category
size on learning rate and generalization. With a small category
size, the same elements are repeated on each trial and learning
about a specific stimulus is fast. However, there is no repetition
advantage effect for category-specific elements and generalization

to new objects is poor, as it depends on control by such common
elements. The opposite is true when category size is increased.

Some particular features of error-driven learning help explain
other results. For example, the faster learning of feature-positive
discriminations, reproduced by the model in Figure 5B, stems
from the fact that such discriminations require the model to
first learn to respond to a number of rewarded stimuli and
then to inhibit generalized responding to non-rewarded stimuli.
This two-stage process is a signature of error-driven learning:
inhibitory learning does not occur without an excitatory context
to provide negative prediction errors, so excitatory learning must
occur first. In the feature-positive discrimination, the repetition of
category-specific elements boosts excitatory learning at the begin-
ning of training, whereas in the feature-negative discrimination,
pigeons must first learn to respond to each individual background
independently, which takes longer. For a detailed explanation of
other feature-positive effects, as well as many other results from
the literature, see Soto and Wasserman (2010b).

DIRECT EMPIRICAL EVIDENCE FOR ERROR-DRIVEN LEARNING
More recent experiments, motivated by the model described in
the previous section, have led to more direct evidence for the role
of error-driven learning in object categorization by pigeons. The
important insight provided by the model is that different tasks can
be used to manipulate the connections between different types of
elements (category-specific and stimulus-specific) and responses.

One example is the blocking design illustrated in Figure 6A. In
the blocking condition (Soto and Wasserman, 2010b,d), objects
from the same category are first assigned to different responses in
a pseudocategorization task (Phase 1). According to the model,
accurate performance in this task requires strong connections
between stimulus-specific elements and the correct responses.
Once the pseudocategorization task is learned, it is possible to
transform it into a true categorization task by dropping half of the
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FIGURE 6 | Schematic diagram of an experiment on blocking of
object category learning (A), together with our model’s
predictions (B) and experimental results of studies with pigeons

(C) and people (D). Bars in the bottom figures represent responding
to novel test objects from the training categories during
Phase 3.

trials, as shown in the middle panel of Figure 6A (Phase 2). Under
normal circumstances, experience with this new categorization
task should lead to strong control by category-specific elements
and good generalization to new objects when they are presented
during a test (Phase 3). In a control condition, pigeons were
exposed only to this categorization task and a generalization
test (Phases 2 and 3). In the blocking condition, however, the
stimulus-response mapping is already known at the beginning
of Phase 2; thus, pigeons should make few, if any, errors in
predicting the correct response for each of the stimuli in this
phase. No prediction error means no category learning; so, the
model predicts less generalization of categorical performance to
new objects in the blocking group than in the control group.

The predictions of the model and the performance of pigeons
with novel objects in each condition are shown in Figures 6B,C,
respectively. It can be seen that pigeons showed the predicted
pattern of results. This blocking effect, analogous to effects found
in Pavlovian conditioning (Kamin, 1969), is direct evidence that
object category learning in pigeons is driven by reward prediction
error.

The blocking effect also helps to explain some contradictory
results in the literature. For example, Sutton and Roberts (2002)
used a design very similar to that of Astley and Wasserman
(1992) to study the “perceptual coherence” of object categories,
but found that generalization was the same to objects from any

category, not only the target category. We have shown (Soto
and Wasserman, 2010b) that Sutton and Roberts’ results can be
explained as a blocking effect, in which elements common to all
of the object categories acquire control over performance early in
training.

Other studies have found evidence of an overshadowing effect
in category learning (Soto and Wasserman, 2012a; Soto et al.,
2012). Figure 7A shows a schematic representation of the training
tasks given to pigeons in one of these experiments (Soto and
Wasserman, 2012a). On each trial, two different objects were
presented to the pigeons. In the overshadowing condition, these
objects came from two categories that were both informative
about the correct response. For example, in Figure 7A, both
airplanes and chairs were consistently associated with Response
1. Here, the category-specific elements of both categories should
acquire control over behavior quite fast, quickly reaching a point
in which performance is good and learning stops. At this point,
the two categories overshadow each other: each acquires only a
proportion of the response control that they would have gained
if they had been presented alone. In the control condition, two
objects are presented in each trial, but a single target category
is informative about the correct response. In the example in
Figure 7A, butterflies and cars are informative about correct
responses, but people and flowers are not. In both conditions,
category learning was tested by presenting pigeons with new
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FIGURE 7 | Schematic diagram of an experiment on
overshadowing of object category learning (A), together with our
model’s predictions (B) and experimental results from an

experiment with pigeons (C). Bars in the bottom figures represent
responding to novel test objects from the training
categories.

objects from the trained categories. As shown in Figure 7B,
the model predicts that performance with the target categories
(red bars) should be impaired in the overshadowing condition
compared to the control condition. As shown in Figure 7C, this
prediction of the model matched the pigeons’ behavior. Further-
more, performance with the competing categories (blue bars) was
also close to the model’s predictions.

PREDICTION ERROR AS A GENERAL MECHANISM OF OBJECT
CATEGORY LEARNING
Given the accumulated evidence suggesting that error-driven
learning plays an important role in object categorization by
pigeons and the fact that this form of learning is widespread
across species and tasks (Siegel and Allan, 1996; Bitterman,
2000; Macphail and Bolhuis, 2001), it seems likely that similar

mechanisms underlie object categorization in primates, including
humans.

A repetition advantage effect for category-specific properties
seems to be as important in people as it is in pigeons. For
example, the categorical bias effects and category size effects
that are pervasive in the pigeon literature can also be found
in people and other primates (Homa et al., 1973; Smith and
Minda, 1998; Minda and Smith, 2001; Smith et al., 2010). As
indicated earlier, such effects result naturally from the inter-
action of a repetition advantage for category-specific infor-
mation and error-driven learning (see Soto and Wasserman,
2010b).

The results of behavioral experiments suggest that error-
driven learning plays an important role in object categorization
in people. Just as with pigeons, when people are trained to
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solve a discrimination task by memorizing individual objects in
photographs and their assigned responses, they are impaired in
detecting a change in the training circumstances in which all
of the presented objects are sorted according to their basic-level
categories (Soto and Wasserman, 2010d). That is, people show
a category blocking effect, as illustrated in Figure 6D (see also
Gluck and Bower, 1988; Shanks, 1991; Nosofsky et al., 1992).

We have proposed (Soto and Wasserman, 2012c) that under-
lying these behavioral similarities is an evolutionarily conserved
learning mechanism that might be implemented in the basal
ganglia, which are homologous structures in birds and mam-
mals (Reiner, 2002; Reiner et al., 2005). Many studies impli-
cate the basal ganglia in visual categorization and other visual
discrimination tasks in people and other primates (Ashby and
Ennis, 2006; Seger, 2008; Shohamy et al., 2008). The basal
ganglia receive input from most sensory areas and send out-
put to motor areas, which allows for the sensory integra-
tion and response selection functions necessary for category
learning. The input nuclei in the basal ganglia, collectively
known as striatum, receive dopaminergic input from the sub-
tantia nigra pars compacta (Durstewitz et al., 1999; Nicola
et al., 2000; Reiner et al., 2005) and the plasticity of cortical-
striatal synapses depends on the presence of this dopaminergic
input (Centonze et al., 2001; Reynolds and Wickens, 2002).
As there is considerable evidence that the activity of these
dopaminergic neurons is correlated with reward-prediction error
(Montague et al., 1996; Schultz, 1998, 2002; Waelti et al., 2001;
Suri, 2002), cortical-striatal synapses (pallial-striatal synapses
in birds) may mediate the error-driven learning of associa-
tions between visual representations and responses. As pro-
posed by our model, learning in the striatum during object
categorization tasks would require activity of the presynaptic
visual neurons (stimulus elements in the model), activity of the
postsynaptic striatal neurons (actions in the model), and the
presence of a dopaminergic signal (reward prediction error in the
model).

LEARNING OF ABSTRACT CATEGORY REPRESENTATIONS
Some of the features of object category learning in pigeons men-
tioned in section Basic Tasks and Results cannot be explained
by the reinforcement learning account described in the previ-
ous section. In particular, a model that only learns associations
between stimulus properties and responses cannot explain the
vast behavioral evidence that pigeons (and other vertebrates)
learn a common representation for all members of a category
associated with the same response (“stimulus equivalence”; for a
review, see Zentall et al., 2014).

Evidence from a neurophysiological study suggests that such a
common representation may have a substrate in the nidopallium
caudolaterale (NCL), where neurons can be found that respond
similarly to perceptually dissimilar stimuli associated with a com-
mon response (Kirsch et al., 2009). These results were interpreted
as indicating that categorization learning established category-
selective coding of the stimuli in NCL, and they are similar to
findings in the primate prefrontal cortex (PFC; Freedman et al.,
2001, 2002, 2003).

Just as is the case of the primate PFC, the avian NCL
receives massive dopaminergic projections from the midbrain
(Wynne and Güntürkün, 1995; Durstewitz et al., 1999; Kröner
and Güntürkün, 1999) as well as input from neurons in both
visual and sensorimotor areas (Leutgeb et al., 1996; Kröner
and Güntürkün, 1999). NCL is thus particularly well suited to
integrate information from several different sensory modalities
through dopamine-modulated learning.

This result is important because the observation that neurons
in lateral PFC come to respond selectively to the category of
a stimulus and other behaviorally relevant factors in an object
categorization task (Freedman et al., 2001, 2002, 2003) has led
to wide acceptance, among primate researchers, of the hypothesis
that PFC is the most critical site for object category learning
(Freedman et al., 2003; Jiang et al., 2007; Serre et al., 2007). One
possibility is that primate PFC and avian NCL implement learning
of a common abstract representation for objects belonging to the
same category, whereas stimulus-response associative learning is
implemented in the basal ganglia (Antzoulatos and Miller, 2011).
This possibility could explain why the PFC does not seem to be
necessary for performance and generalization of category learning
in monkeys (Minamimoto et al., 2010).

VISUAL OBJECT REPRESENTATION
In the previous sections, we reviewed a line of research in
pigeons that focused on object category learning. A different,
but related line of research in pigeons has been heavily influ-
enced by the human literature on invariant object recogni-
tion. As in the human literature, this line of research has been
strongly focused on questions about object representation, such
as: Which object properties are important for object recognition
in pigeons? Can pigeons extract invariant object representations?
Can pigeons show invariant object recognition after limited expe-
rience with an object? The following two sections will focus on
this literature.

INVARIANCE IN OBJECT RECOGNITION BY PIGEONS
Following the human literature, much research in object recog-
nition by pigeons has focused on whether or not this species
can show recognition that is invariant to changes in identity-
preserving variables, such as rotation, scaling, illumination, etc. In
general, the results of psychophysical experiments all point to the
same conclusion: pigeons’ object recognition after training with
a single object image is controlled by a variety of properties that
are irrelevant to object identification. In order to show invariant
object recognition, pigeons require training with variations in
such irrelevant properties.

For example, experiments that have explored whether pigeons
show view-invariant object recognition after being trained with
only one object view have uniformly found significant costs of
object rotation on accuracy, regardless of the type of object used to
generate the experimental stimuli (Cerella, 1977; Lumsden, 1977;
Wasserman et al., 1996; Peissig et al., 1999, 2000, 2002; Friedman
et al., 2005). Similarly, other experiments have found that, after
experience with a single image view, pigeons’ object recognition
is affected by variations in size (Larsen and Bundesen, 1978;
Pisacreta et al., 1984; Peissig et al., 2006), shading (Cabe, 1976;
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Cook et al., 1990; Young et al., 2001), and position (Kirkpatrick,
2001).

Although object recognition in people is far from being com-
pletely invariant (Jolicoeur, 1987; Hayward and Tarr, 1997; Tarr
et al., 1998; Kravitz et al., 2008), it is clear that humans show
greater invariance than do pigeons (Biederman and Ju, 1988;
Biederman and Cooper, 1992; Biederman and Gerhardstein,
1993; Hayward, 1998). For example, people, but not pigeons, have
been shown to exhibit view-invariant recognition when they are
tested with the appropriate stimuli (Biederman and Gerhardstein,
1993) and show view-invariant recognition of novel views of an
object which are interpolated between experienced views (Spetch
and Friedman, 2003). Furthermore, some factors that are known
to foster view-invariance in people do not have the same effect
in pigeons. People show rotation costs when recognizing bent-
paperclip objects (e.g., Edelman and Bülthoff, 1992), but these
costs are reduced when a single diagnostic geometrical volume
(“geon”) is added to each object (Tarr et al., 1997). The same
results are not observed in pigeons (Spetch et al., 2001), which
show decrements in performance as a function of rotational
distance regardless of the object components.

On the other hand, pigeons show generalization behavior that
is closer to true view invariance as the number of training views is
increased (Wasserman et al., 1996; Peissig et al., 1999, 2002). This
finding is essentially another manifestation of the category size
effect described earlier and can be explained in the same way: that
is, as arising from a repetition advantage effect for view-invariant
properties, which are repeated often across different views and
therefore are frequently paired with the correct responses.

If this explanation of view-invariance learning in pigeons
is correct, then it should be possible to arrange conditions in
which training with multiple views of an object does not lead
to higher invariance, by reducing the advantage of view-invariant
properties over other properties during training. Soto et al. (2012)
recently tested this hypothesis by training pigeons with object
views similar to those shown in Figure 8A. In the training images
for the overshadowing condition, across variations in viewpoint,
there is a pronounced feature that is not view-invariant and
that can perfectly predict object identity: the orientation of the
main axis. The repetition of this feature across views should
produce something akin to the category overshadowing effect
explained earlier and impair view-invariance learning. On the
other hand, in the control condition, pigeons are trained with
the same views of less elongated objects; this training eliminates
the competing non-invariant feature of main-axis orientation,
which should result in higher invariance. Figure 8B shows that
performance with new views was above chance for the control
condition and below chance for the overshadowing condition, just
as predicted.

Humans do sometimes show rotational costs in object recog-
nition tasks (Hayward and Tarr, 1997; Tarr et al., 1998), which
diminish after training with multiple views (Mash et al., 2007).
These findings raise the possibility that view-invariance learning
in people might follow similar principles as in pigeons, being
driven by prediction errors. A role for error-driven learning
has been found in human object categorization (Soto and
Wasserman, 2010d) and there is evidence that categorization

and identification depend on similar neural representations and
computations (e.g., Hung et al., 2005).

This possibility has remained unexplored in the primate lit-
erature, which has focused instead on looking for evidence of
unsupervised learning of invariant object representations (Cox
et al., 2005; Li and DiCarlo, 2008, 2010, 2012). It must be noted
that the evidence gathered so far does not rule out a role for
reward prediction error in invariance learning. In the monkey
experiments carried out by Li and DiCarlo (2008, 2010), for
example, animals were rewarded for looking at the presented
objects. In similar human experiments (Cox et al., 2005), people
were engaged in a task that involved “correct” and “incorrect”
responses and learning was not observed when experience was
delivered passively (Li and DiCarlo, 2012). Thus, these experi-
ments do involve presentation of explicit and implicit rewards
and clearly raise the possibility that learning is driven by rein-
forcement (Li and DiCarlo, 2010). Although one study (Li and
DiCarlo, 2012) reported evidence of unsupervised learning inde-
pendent of reward magnitude and timing, it did not show that
reward is not necessary for invariance learning. On the other
hand, Yamashita et al. (2010) have provided evidence that reward-
based discrimination, and not simple exposure, is necessary for
invariance learning at least under some circumstances.

The role of unsupervised learning mechanisms in object recog-
nition by pigeons has also remained unexplored. As our dis-
cussion of the primate literature shows, one reason is that it is
quite difficult to study unsupervised learning in isolation from
the influence of reward, particularly in nonhuman animals. This
is an important issue that should be addressed by future research.

WHAT INFORMATION IS EXTRACTED FROM IMAGES BY PIGEONS?
Despite the difference in invariant recognition shown by people
and pigeons, there is considerable evidence that the two species
rely on similar image information during object recognition
tasks (Wasserman and Biederman, 2012). For example, both
primates and pigeons seem to extract nonaccidental properties
from images of geons and rely heavily on them for recognition
(e.g., Biederman and Bar, 1999; Vogels et al., 2001; Kayaert
et al., 2005; Gibson et al., 2007; Lazareva et al., 2008). Gibson
et al. (2007) trained pigeons and people to discriminate four
simple objects, each shown from a single viewpoint. Using the
Bubbles technique (Gosselin and Schyns, 2001), it was deter-
mined that both species relied more heavily on image prop-
erties that are relatively invariant across changes in viewpoint,
such as cotermination and other edge properties, than on prop-
erties that vary across changes in viewpoint, such as shad-
ing. This result is depicted in the leftmost group of bars in
Figure 9.

Results such as those shown in Figure 9 do not mean that
pigeons rely only on view-invariant properties for object recog-
nition. As mentioned earlier, pigeons are sensitive to changes in
object viewpoint, size, location, and shading, which means that
all of these properties are extracted and used by pigeons during
object recognition tasks. The inability of pigeons to show one-
shot view invariance is not the result of an inability to extract
view-invariant representations. Instead, it is more likely that
pigeons extract a rich variety of visual properties from images and
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FIGURE 8 | Schematic diagram of an experiment on overshadowing of view-invariance learning (A) and results from an experiment with pigeons (B).
Bars in panel (B) represent responding to novel views of the training objects presented during Phase 2.

FIGURE 9 | Relative use of different regions of interest during geon
recognition by pigeons, people, and a hierarchical model of object
recognition.

can only gradually learn to focus on those that are relevant for a
given task through a reinforcement learning mechanism.

Several experiments have found evidence that pigeons repre-
sent not only local shape properties, but also the spatial struc-
ture of objects (Van Hamme et al., 1992; Wasserman et al.,
1993; Kirkpatrick-Steger and Wasserman, 1996; Kirkpatrick-
Steger et al., 1998). In one study, Van Hamme et al. (1992)
trained pigeons to recognize line drawings of objects, sim-
ilar to those shown in Figure 10A, in which half of an
object’s contour was deleted. This technique allowed the exper-
imenters to train the pigeons with one contour image and to
test them with its complement, which shared no local fea-
tures with the training stimulus. As shown in Figure 10B,
pigeons recognized these complementary contours with con-
siderable accuracy, suggesting that their visual system could
infer object structure from the partial contours seen during
training.

Furthermore, when both shape and spatial relations can
be used as cues to solve a recognition task, pigeons rely on
both of them and show a trade-off between their reliance
on one source of information vs. the other; that is, the
more a pigeon relies on shape for recognition, the less it
relies on spatial information, and vice-versa (Kirkpatrick-Steger
and Wasserman, 1996). Such trade-offs can be explained as
another form of overshadowing: when two object properties are
equally reliable for identification, they compete for control of
performance.

FEEDFORWARD SHAPE PROCESSING CAN EXPLAIN OBJECT
RECOGNITION IN PIGEONS
Comparative studies have revealed similarities and differences
in high-level vision by pigeons and people not only at the
behavioral level, as described in the previous section, but also
at the neurobiological level. Although primate and avian visual
systems are each organized into two main visual pathways, the
tectofugal pathway is used for complex visual discrimination tasks
in pigeons, whereas the thalamofugal pathway is used for such
tasks in primates (Shimizu and Bowers, 1999; Wylie et al., 2009).
Still, these pathways show similar functional organization, which
has led to the proposal that they might be analogous (Shimizu and
Bowers, 1999). For example, the avian tectofugal pathway and its
pallial targets are organized into parallel subdivisions in charge
of processing motion and shape (Wang et al., 1993; Shimizu and
Bowers, 1999; Laverghetta and Shimizu, 2003; Nguyen et al., 2004;
Fredes et al., 2010), which is similar to the organization of the
primate thalamofugal pathway and its cortical targets (Mishkin
et al., 1983; Ungerleider and Haxby, 1994).

Furthermore, there is evidence that one of the main mecha-
nisms thought to be responsible for visual shape processing in
the primate thalamofugal pathway is also at work in the avian
tectofugal pathway. This mechanism, first proposed by Hubel and
Wiesel (1962, 1968), relies on feedforward processing across visual
areas that are hierarchically organized in terms of the complexity
of the visual information that they represent. Neurons at each
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FIGURE 10 | Examples of the stimuli used by Van Hamme et al. (1992) to study transfer of recognition performance from partial contours to their
complementary contours (A), together with the performance of pigeons (B) and a hierarchical model (C) during test.

level of the system integrate information from neurons at the
previous level to build selectivity for shape features of increasing
complexity and tolerance to variables such as size and location
(for a short review and references, see Soto and Wasserman,
2012c). Li et al. (2007) found that the receptive fields of neurons
in the pigeon nucleus isthmus (sensitive to oriented gratings) are
constructed by feedforward convergence of receptive fields from
neurons in the tectum (which have center-surround organiza-
tion), as proposed by the hierarchical model of Hubel and Wiesel
(1962, 1968). Also in accord with hierarchical processing, there is
a large increase in receptive field size from early to later areas in
the avian tectofugal pathway (Engelage and Bischof, 1996).

Thus, hierarchical and feedforward processing of shape
information–a central mechanism for most current neurocom-
putational theories of object recognition in primates (e.g.,
Fukushima, 1980; Perrett and Oram, 1993; Riesenhuber and
Poggio, 1999, 2000; Rolls and Milward, 2000; Serre et al., 2007)–
might be widespread across vertebrate visual systems. If this
is true, then behavioral differences between pigeons and peo-
ple must be explained by some other mechanism. We Soto
and Wasserman (2012c) recently offered a proof of concept
for this hypothesis, by showing that a hierarchical model of
object recognition in the primate ventral stream (a version of
the HMAX model described in Serre et al., 2007), coupled
with a reinforcement learning model (see Section The Role
of Error-driven Reinforcement Learning), can explain much of
the available behavioral data in object recognition by pigeons

reviewed in sub-sections Invariance in Object Recognition by
Pigeons and What Information Is Extracted From Images by
Pigeons?

The success of this model was surprising for two reasons.
First, the model could better explain pigeon behavior than human
behavior. Just as pigeons but unlike people, the model’s recog-
nition was strongly affected by changes in viewpoint, size, and
shading. In the case of size, the model could even reproduce the
logarithmic relation between physical and perceived object size
that has been found in pigeons (Peissig et al., 2006). Furthermore,
invariant recognition was not fostered by variables that seem to
do so for people, such as adding geons to paperclip objects.

Second, although this model uses a “bag of features” to
mediate object representation, the results of several simulations
showed that such representations can be much richer than one
would initially assume. As shown in Figure 10C, the model has no
problem reproducing the ability of pigeons to recognize objects
from their complementary contours (Van Hamme et al., 1992).
This result was originally interpreted as showing that a feature-
based representation (such as that proposed by Cerella, 1986)–
lacking explicit information about the spatial relations among
features–could not explain object recognition in pigeons. This
interpretation is only partially correct, because the simulated
results suggest that the feature pool in the model can implicitly
represent information about spatial structure.

The model also reproduces the bias to rely on nonaccidental
properties in geon recognition found in people and pigeons
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(Gibson et al., 2007), as depicted in Figure 9. The model is
successful despite the fact that it was not designed to do so, as
in the case of other theories of object recognition (structural
description theories; see Biederman, 1987). Instead, the bias
emerges in the hierarchical model from simple principles of
biological visual computing and because the features in the model
have been trained through exposure to natural images (see Serre
et al., 2007). Coterminations and elongated edges are both quite
common in natural images (Geisler et al., 2001) and they could
reliably distinguish between the objects used by Gibson et al.
(2007).

The success of the hierarchical model in explaining the pigeon
behavioral data has no equal in the current literature. Together
with the results of neurophysiological studies (Engelage and
Bischof, 1996; Li et al., 2007), the success of this model suggests
that feedforward and hierarchical processing of visual informa-
tion play important roles in object recognition by pigeons, as they
do in primates.

THE LIMITS OF GENERALITY: PIGEONS’ RECOGNITION OF HUMAN
FACES
Up to this point, we have focused on the mechanisms of visual
object recognition that are likely to be shared by pigeons and peo-
ple. However, the evolutionary lineages of both species diverged
more than 300 million years ago; surely, we can expect their
visual systems to show important differences due to adaptive
specialization.

For example, it is likely that there are specialized mechanisms1

of face perception in people and other primates (Pascalis and
Kelly, 2009). However, a comparative analysis requires taking
into account the fact that face recognition is a complex form
of behavior, likely to result from the interaction of many mech-
anisms, including general processes shared with other species
(de Waal and Ferrari, 2010; Shettleworth, 2010). Determining
which aspects of human face perception are due to specialized vs.
general mechanisms requires comparative research; here, pigeons
are becoming a key species to determine the role of general
recognition processes (Soto and Wasserman, 2011).

Only a handful of behavioral studies have compared human
face recognition by pigeons and people. They have led to a
complex pattern of results, suggesting that some properties of
face perception in people are likely to be the result of specialized
processes, whereas others might result from general processes.
Regarding specialized processes, it has been found that, while
people and other primates show an advantage in discriminating
upright faces over inverted faces, the same advantage is not found

1Note that specialized and general are used here to refer to the distribution of a
cognitive mechanism across species, with specialized referring to a mechanism
that can be found in only a few species and general referring to a mechanism
that can be found across a variety of species. The distribution of a mechanism
across species should in turn depend on whether the computational problem
solved by such mechanism is widespread across environments (see Soto and
Wasserman, 2012c). Importantly, how a mechanism is distributed across
species is different from the issue of whether such mechanism is domain-
general or domain-specific. Thus, when we propose that any complex ability
is likely to be influenced by specialized processes, we mean processes that are
only present in one or a few species (e.g., language), not processes that are
domain-specific.

in pigeons (Phelps and Roberts, 1994). It is widely believed that
faces are perceived in a “holistic” or “configural” way to a larger
extent than other objects (for reviews, see Maurer et al., 2002;
Richler et al., 2008) and inversion effects have been proposed as a
manifestation of holistic face perception (Farah et al., 1995). That
is, holistic processing might be a specialized mechanism for face
perception in primates.

Surprisingly, other studies have shown similarities in the way
people and pigeons process human faces. For example, both
species use information near the eyes and chin to discriminate
gender and they use information near the mouth to discrimi-
nate emotion (Gibson et al., 2005). Also, in both people (e.g.,
Schweinberger and Soukup, 1998; Fox and Barton, 2007; Ellamil
et al., 2008; Fox et al., 2008) and pigeons (Soto and Wasserman,
2011), recognition of emotional expression depends on variations
in identity, whereas recognition of identity is relatively indepen-
dent of variations in emotion. It is possible that the origin of this
latter interaction in people is decisional rather than perceptual
(Soto et al., 2014), which would make the similarity across species
easier to reconcile with the existence of specialized face perception
processes in primates.

Overall, these results challenge the common assumption that
a specialized human face perception system must underlie all
observed aspects of human face recognition, being somehow
“encapsulated”, or free from the influence of more general pro-
cesses. Furthermore, they serve to underscore the fact that the
evolution of a face recognition system did not solely involve the
specialization of perceptual processes, but also the specialization
of the human face as an efficient transmitter of social signals
(Smith et al., 2005; Schyns et al., 2009). The human face could
have been specialized through evolution to transmit signals that
would be easily decoded by existing visual processes. If such visual
processes are also present in birds, then the fact that some aspects
of face recognition are similar in pigeons and people seems less
surprising.

THE EVOLUTION OF MECHANISMS OF OBJECT
RECOGNITION IN VERTEBRATES: A WORKING HYPOTHESIS
The ultimate goal of comparative studies of high-level vision
is to understand how biological visual systems have evolved
mechanisms to solve the challenging computational problems
posed by the environment (Soto and Wasserman, 2010a). It is
likely that some of the computational problems that are posed by
object recognition are present in many environments, leading to
the evolution of a core system of processes that are required to
solve object recognition tasks across species. Other computational
problems may be specific to the environment of one or a few
species, leading to the evolution of more specialized processes.

Figure 11 represents our current working hypothesis regarding
the evolution of mechanisms of object recognition in birds and
mammals. This diagram is a useful way to summarize what is
known about the evolution of a complex form of behavior in a
large group of animals. The outer part of the diagram consists
of a phylogenetic tree, which provides information about the
evolutionary relations among species that are being compared.
The leaves in this tree include the genera that are most commonly
studied in comparative cognition. There is no information about
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FIGURE 11 | Diagram summarizing our current working hypothesis
regarding the computational mechanisms involved in object
recognition across vertebrates. The outer portion of the diagram
consists of a phylogenetic tree, with leafs representing the most
commonly studied genera in comparative cognition. The concentric

circles at the center represent different hypothesized computational
mechanisms. If a line is drawn from a particular leaf to the center of
the diagram, then the colors intersected by the line represent those
mechanisms hypothesized to be present in that particular
genus.

the object recognition abilities of most of these genera; so, they
are included simply as a reference. The genera that have been
studied to some extent are highlighted: homo (i.e., humans),
macaca (macaques) and columba (i.e., pigeons). Rattus (rats) is
also highlighted, as recent studies have started to shed light on
their object recognition skills (e.g., Zoccolan et al., 2009; Brooks
et al., 2013).

The center of the diagram provides information about which
species are thought to possess a specific mechanism. Each concen-
tric circle of a different color represents a different hypothetical
mechanism. To know which mechanisms are hypothesized in each
species, we can draw an imaginary line from that species to the
center of the diagram. If the line crosses a colored area in the
circle representing a particular mechanism, then this means that
the species is thought to possess that specific mechanism. The core
system of mechanisms that are shared by many species is shown at
the center of the diagram, by circles that are completely colored.
More specialized mechanisms are shown toward the periphery.

As illustrated in Figure 11, at least three processes seem to
be part of the core system of object categorization in verte-
brates: error-driven learning, feedforward processing of visual
information, and learning of a common representation for objects
in the same category. Of these, there is considerable evidence
that error-driven learning is a core mechanism that is present
across vertebrates and used in all object categorization tasks.
Furthermore, the best candidate structures for implementing this
mechanism, the basal ganglia, are homologous across amniote

vertebrates, suggesting that this is an evolutionarily conserved
mechanism. There is also considerable evidence for feedforward
visual processing in primates, but the evidence in other species
is less clear. In pigeons, only computational evidence and a
couple neurophysiological studies support this hypothesis, so
clearly more research is necessary. There is also evidence of
learning common representations across all vertebrates, coming
from the literature on learned equivalence (see Zentall et al.,
2014). Regarding these two latter mechanisms, current neu-
robiological evidence suggests that they are not implemented
in homologous structures across vertebrates, although they are
implemented in structures thought to be analogous in birds
and primates. These analogous mechanisms could have evolved
separately in these different groups, due to similar evolutionary
pressures.

Two more specialized mechanisms have been proposed for
primates, as shown in Figure 11. We warn that the proposed dis-
tribution of these mechanisms across species is highly speculative.
Still, the evidence suggests a specialized mechanism for “holistic”
face processing in people and other primates, which is not present
in birds. It is also likely that birds have evolved specialized mecha-
nisms of visual categorization; for example, flight might have had
an important impact on birds’ evolved ability to categorize scenes
from different perspectives (Kirkpatrick et al., 2014).

The evolution of a specialized rule-based learning mecha-
nism in primates (and perhaps other mammals) could explain
a number of differences found between these species and
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birds–including many of the differences reviewed here. So, this
hypothesis merits more detailed discussion.

There is a growing body of evidence suggesting that at least
two learning systems may underlie the categorization abilities of
people (e.g., Ashby et al., 1998; Ashby and Ell, 2001; Ashby and
Valentin, 2005). One of them is a procedural learning system,
believed to be implemented by the circuitry of the basal ganglia
and based on slow, error-driven associative learning. The other
is a rule-based learning system, believed to be implemented in
the PFC and based on hypothesis testing supported by working
memory and executive attention. This rule-based system can eas-
ily learn category structures in which good performance requires
selectively attending to a single dimension, while ignoring other
dimensions.

Recent comparative studies (for a review, see Smith et al.,
2012a) have suggested a dissociation between these learning sys-
tems in people, rhesus monkeys (Smith et al., 2010), and capuchin
monkeys (Smith et al., 2012b). On the other hand, neither pigeons
(Berg and Grace, 2011; Smith et al., 2011) nor rats (Vermaercke
et al., 2014) have shown evidence of such dissociations, even when
tested with the same stimuli and similar procedures as people.
These results have been interpreted as evidence that the rule-based
categorization system is present in primates, but is not found in
other mammals and birds.

Assuming that this interpretation is correct, how can we
explain the differences between people and pigeons in object
recognition tasks? Rule-based learning in people is extremely
fast (Smith et al., 2011, 2014) and it generalizes perfectly across
irrelevant stimulus dimensions (Casale et al., 2012). Thus, after
limited exposure to a specific object, people can selectively attend
to those visual dimensions that are important for object identi-
fication and ignore those visual dimensions that are irrelevant,
such as viewpoint, shading, size, etc. Such learning would require
that people separately represent relevant and irrelevant shape
dimensions, so that attention can select some dimensions while
ignoring others (Demeyer et al., 2007). The results of psychophys-
ical studies agree with this idea: people encode shape information
separately from viewpoint information (Stankiewicz, 2002; Blais
et al., 2009).

Pigeons, on the other hand, may only slowly learn to select
relevant information and ignore irrelevant information through
the procedural learning system. That is why pigeons do not
show invariant object recognition unless they are trained with
variations in irrelevant object dimensions.

This hypothesis also explains why people, but not pigeons,
exhibit view-invariant recognition of bent-paperclip objects when
a geon has been added to them (Spetch et al., 2001). An ideal
observer analysis shows that the task of recognizing objects
composed of both bent-paperclips and geons across changes
in viewpoint is very difficult, whereas the task of recognizing
geons by themselves across changes in viewpoint is very simple
(Tjan and Legge, 1998). This analysis suggests that the reason
why people show view-invariant recognition of bent-paperclip
objects when a geon is added is because they can quickly learn to
selectively attend to the geon in order to decrease task difficulty.
Pigeons might not be able to show such fast changes of selective
attention.

Finally, the hypothesis of a rule-based mechanism present in
primates, but not birds, can also explain why many research
findings suggest that people and pigeons extract similar informa-
tion from images, but show performance differences on invari-
ance tests. Similarities could be due to similar visual processing,
whereas differences could be due to differences in post-visual
processing.

Still, the value of the multiple systems hypothesis depends on
how future research is able to eliminate alternative explanations
of the comparative results. For example, it is possible that pigeons
do posses a rule-based mechanism; but, unlike primates, they do
not perceive the dimensions of line width and orientation used by
Smith et al. (2011) as separable and thus cannot selectively attend
to them. Indeed, some evidence suggests that these dimensions
might interact for pigeons (Berg and Grace, 2011; Berg et al.,
2014); so, an urgent issue is to determine whether such perceptual
interactions do exist using traditional tests of separability adapted
to animal research (e.g., Blough, 1988; Soto and Wasserman,
2010c, 2011) or, better still, adapting tests of separability that
control for the influence of non-perceptual factors (Ashby and
Soto, in press; Soto et al., 2014).

Another possibility is that quantitative differences in visual
processes may explain behavioral differences between pigeons and
people. Feedforward visual processing gradually increases toler-
ance to identity-preserving variables across several hierarchically
organized layers (see Serre et al., 2007). If the pigeon visual system
has a smaller number of layers than the human visual system, then
we could expect pigeons to show object recognition that is more
sensitive to changes in size, rotation, etc.

Although this is an interesting possibility, it cannot explain
why primates, but not pigeons, seem to use two different strategies
to categorize artificial stimuli varying along dimensions that are
not identity-preserving in natural objects (width and orientation
of lines, see Smith et al., 2012a). Furthermore, this hypothesis
cannot explain why people show invariant recognition in some
behavioral studies after experience with a single image of a novel
object. Such behavioral invariance (in contrast to the invariance
shown by neurons), requires a readout mechanism that is able to
ignore variations along identity-preserving variables (Goris and
Op de Beeck, 2009, 2010). The availability of a rule-based readout
mechanism in people would allow one to explain why humans
can show invariant recognition after experience with a single
image of an object. The absence of such a readout mechanism
in pigeons would explain why this species does not show this
behavior.

If the hypothesis of multiple learning systems turns out to be
correct, then future research will be required to determine exactly
which aspects of the rule-based system are specialized in primates.
As indicated earlier, the NCL is an area of the pigeon brain that
seems to support the same executive functions as the primate PFC
(Güntürkün, 2005). Thus, it is likely that some of the mechanisms
involved in the rule-based system are available to pigeons, and
the main difference from people is either merely quantitative or
restricted to a few of the processes involved in rule learning.

One possibility is that pigeons do not deploy selective atten-
tion in the same way as primates (Smith et al., 2012a) or that
they do not perceive any visual dimensions independently, but
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process all stimuli holistically (Berg et al., 2014). These ideas
are in line with studies of compound generalization in pigeon
associative learning, which suggest that pigeons process visual
stimulus compounds as configurations rather than as the simple
sum of their component elements (e.g., Rescorla and Coldwell,
1995; Aydin and Pearce, 1997), whereas people show much
more elemental processing in analogous tests (e.g., Collins and
Shanks, 2006; Soto et al., 2009). Although pigeons might deploy
some forms of dimensional attention during categorization tasks
(Mackintosh and Little, 1969; but see Hall and Channell, 1985;
Castro and Wasserman, 2014), perhaps the fast switching of
dimensional attention that is required for testing hypotheses
about category rules is unique to primates (for more on selec-
tive attention in pigeons, see Zentall, 2012; Vyazovska et al.,
2014).

Although the rule-based system is also thought to require
holding hypotheses about possible rules in working memory, it
has been shown that neurons in the pigeon NCL–the area of the
avian brain also thought to be involved in learning of abstract
category representations (Kirsch et al., 2009)—have similar work-
ing memory functions as neurons in the primate PFC (Diekamp
et al., 2002; Rose and Colombo, 2005). This fact makes it unlikely
that working memory is the critical component of the rule-based
system that is absent in pigeons.

THE NEUROBIOLOGICAL MECHANISMS OF OBJECT
RECOGNITION: WHAT WE CAN LEARN FROM PIGEONS
The neuroscience community has focused almost exclusively on
nonhuman primates for studying the neurobiology of visual cog-
nition, perhaps due to their evolutionary proximity to humans.
From a truly comparative standpoint, however, other animals are
just as useful as nonhuman primates for the study of the core
processes involved in visual object recognition. Using pigeons as
an animal model for the study of object recognition offers many
advantages. The most important advantage, as demonstrated by
the present review of the literature, is that we know far more about
pigeons’ object recognition abilities than about those of any other
species, excluding people and rhesus macaques. Furthermore,
comparative data are available for most human results in the
pigeon literature, so we have a good idea as to just what is similar
and different in people and pigeons; such parallel data sets help
us understand the limits of our generalizations from the animal
model to humans. Finally, behavioral and neurobiological evi-
dence suggests that birds possess highly advanced visual systems,
comparable to those of primates in their level of sophistication
(Shimizu and Bowers, 1999; Cook, 2001; Husband and Shimizu,
2001; Wasserman and Zentall, 2006).

Given these advantages, it is rather puzzling that pigeons are
not being used more widely as a model for the neurobiological
basis of object recognition (and other forms of high-level vision).
Worse still, neuroscientists studying object recognition in pri-
mates have thus far ignored the behavioral and neurobiological
literature on pigeons as a source of information for their own
research. This omission suggests an implicit belief that this liter-
ature is useless for understanding human vision, perhaps due to
the evolutionary distance between pigeons and people. We believe
that this position comes both from the unfortunate, but popular

misconception about the pigeon brain and from the failure to
adopt a truly comparative approach in the study of visual and
cognitive neuroscience.

The reluctance to accept the idea that anything about the
primate brain can be learned from the study of the avian brain
might have its origins in the old terminology used to describe
bird brains, which suggested that these consist entirely of basal
ganglia (Colombo and Scarf, 2012). This perspective is now
outdated (Reiner et al., 2004, 2005; Jarvis et al., 2005), as there
is considerable evidence that an important proportion of the
avian brain consists of pallial areas, many of them homologous
to cortical areas in mammals.

Current thinking in comparative psychology recognizes that
most forms of complex behavior are the result of many underlying
processes, some of them specialized in a single species, others
shared across many species, and most somewhere in between
these extremes (de Waal and Ferrari, 2010; Shettleworth, 2010;
Soto and Wasserman, 2012c). No species will provide a perfect
animal model of human behavior. For example, comparative
studies have found differences between the human brain and that
of other primates–including great apes–across all studied levels of
organization, from genes to the size and connectivity of large areas
(Preuss, 2011).

All of this work suggests that the only way to appropriately
use animal models is by understanding what is shared and
what is not between people and each specific model animal.
Unfortunately, a much more common approach is to choose
a model animal based on face validity and to glibly assume
that the mechanisms underlying behavior in the model animal
are similar to those in people. The belief that a species that is
closer to people in the phylogenetic tree must provide a better
model for any cognitive process is one manifestation of such
reliance on face validity. Underlying this idea is the (clearly
incorrect) assumption that the rate of evolutionary change is
fixed across traits, environments, and species. From a truly com-
parative perspective, researchers should avoid relying on face
validity to choose the species that they study. Instead, they should
rely on the results of comparative studies–including behavioral
research. In precisely this respect, the pigeon offers many manifest
advantages.

We propose that pigeons can provide an excellent animal
model for the study of the core processes involved in visual object
recognition. Only in the study of specialized processes may other
models be proven to afford a better alternative. In those cases,
researchers should seek strong behavioral evidence regarding the
computational mechanisms involved, just as has been done in
pigeons over the last 50 years. After such research is performed,
we would be in a better position to determine exactly what
we are studying when we investigate object recognition in such
species. Fortunately, we do not need to take another 50 years in
order to reach a good understanding of the mechanisms of object
recognition in rats, cats, and other mammals, as we can learn from
the successes and failures of the pigeon research.

We have shown here that the behavioral study of object recog-
nition in pigeons has yielded important insights into the general
computational mechanisms used by vertebrates to solve this vital
visual task and into the evolution of these mechanisms. Similarly,
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we believe that much will be learned about the neurobiology
of object recognition from the study of the “simple” brains of
pigeons.
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