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Neurons in sensory areas of neocortex exhibit responses tuned to specific features

of the environment. In visual cortex, information about features such as edges or

textures with particular orientations must be integrated to recognize a visual scene

or object. Connectivity studies in rodent cortex have revealed that neurons make

specific connections within sub-networks sharing common input tuning. In principle, this

sub-network architecture enables local cortical circuits to integrate sensory information.

However, whether feature integration indeed occurs locally in rodent primary sensory

areas has not been examined directly. We studied local integration of sensory features

in primary visual cortex (V1) of the mouse by presenting drifting grating and plaid

stimuli, while recording the activity of neuronal populations with two-photon calcium

imaging. Using a Bayesian model-based analysis framework, we classified single-cell

responses as being selective for either individual grating components or for moving plaid

patterns. Rather than relying on trial-averaged responses, our model-based framework

takes into account single-trial responses and can easily be extended to consider any

number of arbitrary predictive models. Our analysis method was able to successfully

classify significantly more responses than traditional partial correlation (PC) analysis, and

provides a rigorous statistical framework to rank any number of models and reject poorly

performing models. We also found a large proportion of cells that respond strongly to

only one stimulus class. In addition, a quarter of selectively responding neurons had

more complex responses that could not be explained by any simple integration model.

Our results show that a broad range of pattern integration processes already take place

at the level of V1. This diversity of integration is consistent with processing of visual inputs

by local sub-networks within V1 that are tuned to combinations of sensory features.

Keywords: mouse, primary visual cortex (V1), pattern integration, plaid stimuli, model-based analysis, Bayesian

framework, two-photon imaging

Introduction

The brain first dissects the content of a visual scene into its components, such as oriented edges, and
then further combines these to form representations of complex objects. For example, seen through
a small aperture (as given by the receptive field size of a neuron), only the motion component
perpendicular to an edge can be inferred, while the motion component parallel to the edge remains
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ambiguous. Because of this “aperture problem,” integration of
motion frommultiple edges is required to unambiguously resolve
the motion direction of an object (Adelson and Movshon, 1982).
To study motion integration in visual cortex, plaid pattern
stimuli have been extensively used, where two differently oriented
gratings are superimposed leading to the percept of a moving
plaid (Zeki, 1974; Movshon et al., 1983). In monkeys, the classical
view is that cells in primary visual cortex (V1) are selective
primarily to the movement of individual oriented components,
and are therefore classified as component-selective neurons. In
contrast, pattern-selective cells, which respond to the overall
motion of a plaid, are found more often in the specialized higher
cortical area MT (Movshon et al., 1983; Rodman and Albright,
1989; Stoner and Albright, 1992), explained by feedforward
integration of V1 responses within MT (Simoncelli and Heeger,
1998; Rust et al., 2006).

As in many other species, neurons in mouse visual cortex have
been found to be highly tuned to the orientation and direction
of moving bars or gratings (Mrsic-Flogel et al., 2007; Niell and
Stryker, 2008; Andermann et al., 2011; Kreile et al., 2011; Marshel
et al., 2011; Roth et al., 2012) but pattern motion integration
has not been tested (but see Discussion; Juavinett and Callaway,
2015).We asked whether pattern integrationmight already occur
in V1, since rodents’ primary sensory cortices have been shown
to possess a wiring scheme that could support integration of
individual features. Specifically, recordings in rat cortical slices
have revealed the presence of a connectivity scheme across layers
that partitions the cortex into neuronal sub-networks, suitable
for binding independent streams of sensory information (Kampa
et al., 2006).

Here, we used two-photon calcium imaging of neuronal
populations in mouse V1 during presentation of moving gratings
and plaid patterns to reveal the level of feature integration
at this stage of the visual pathway. We used traditionally
defined models for classifying component and pattern cells
(Movshon et al., 1983) under a novel Bayesian framework that
explicitly incorporates trial-to-trial variability in the analysis.
We also estimated the degree of neuronal facilitation and
suppression when using plaid pattern stimulation and found
that a majority of cells were suppressed even though some
neurons showed facilitation in their responses to plaid pattern
stimulation. Neurons not accounted for by this two-step analysis
had responses that suggested a strong influence of local recurrent
interactions. Our results indicate that in the mouse a certain
degree of pattern integration and generation of pattern selectivity
already takes place at the level of the V1. In addition,
neuronal responses revealed a footprint of the underlying circuit
architecture tuned for sensory integration.

Materials and Methods

Animal Preparation
All animal procedures were carried out according to the
guidelines of the University of Zurich, and were approved by
the Cantonal Veterinary Office. Seven C57BL/6 mice and one
Thy1-YFP mouse with C57BL/6 background (2–4 months old,
of either sex) were anesthetized by intraperitoneal injections

with 2.7ml/kg of a solution made of one part fentanyl citrate
and fluanisone (Hypnorm; Janssen-Cilag, UK) and one part
midazolam (Hypnovel; Roche, Switzerland) in two parts of
water. Atropine (0.3mg/kg) and dexamethasone (2mg/kg) were
administered subcutaneously to reduce secretions and edema.
Lactate-Ringer solution (composition in mM: 130.9 Na+, 5.4 K+,
1.84 Ca2+, 111.7 Cl−, 28.3 L-Lactat) was regularly injected
subcutaneously to prevent dehydration. Pinch reflexes were used
to assess the depth of anesthesia. Additional doses of anesthetic
were given as needed to maintain anesthesia. Imaging typically
lasted between 2 and 4 h, as several planes were acquired in each
animal. Recordings from a total of 56 neuronal populations were
obtained.

Two-photon Imaging
Two-photon calcium imaging of neuronal responses upon visual
stimulation was performed as previously described (Roth et al.,
2012). Briefly, V1 was identified using intrinsic imaging. A
small craniotomy (between 500 × 500 and 800 × 800µm2)
was opened above V1, the dura removed and the exposed
cortex superfused with artificial cerebrospinal fluid (ACSF)
(135mM NaCl, 5.4mM KCl, 5mM Hepes, 1.8mM CaCl2, 1mM
MgCl2, pH 7.2, with NaOH). The calcium indicator Oregon
Green BAPTA-1-AM ester (OGB-1; 50µg; Invitrogen, Basel,
Switzerland) was dissolved in 2µl DMSO plus 20% Pluronic F-
127 (BASF, Germany) and diluted with 37µl standard pipette
solution (150mM NaCl, 2.5mM KCl, 10mM Hepes, pH 7.2)
yielding a final OGB-1 concentration of about 1mM. One
microliter of Alexa Fluor 594 (2mM stock solution in distilled
water) was added for visualization of the pipette during two-
photon guided OGB-1 injection. The dye solution was pressure
ejected under visual control through a glass pipette (4–5 M�)
at a depth between 150 and 250µm to stain layer 2/3 neurons
(Stosiek et al., 2003). Brief application of sulforhodamine 101
(SR101; Invitrogen) to the exposed neocortical surface resulted
in co-labeling of the astrocytic network (Nimmerjahn et al.,
2004). Following dye injection the craniotomy was filled with
agarose (type III-A, Sigma; 1% in ACSF) and covered with an
immobilized glass cover slip.

Fluorescence changes were measured using a custom-built
two-photon microscope with 100 fs laser pulses at 830 or 870 nm
wavelength provided by a Ti:sapphire laser system (Spectra-
Physics). We modulated laser intensity using a Pockel’s cell
(Conoptics). The microscope was equipped with either a 40×
water immersion objective (LUMPlanFl/IR; 0.8 NA; Olympus)
or a 20× water immersion objective (XLUMPlanFI; 0.95 NA;
Olympus). 256 × 256 pixel image frames were acquired at 2Hz
using custom written software (LabView; National Instruments,
USA). The field of view size varied between 183 × 183 and
357× 357µm2.

Visual Stimulation
Visual stimuli were presented on a 21 inch CRT monitor placed
30 cm in front of the contralateral eye roughly at 60◦ along the
body axis of the anesthetized mouse, covering approximately
66 × 77◦ of the visual field. Full-field, full contrast drifting
square wave gratings were generated by the VisionEgg software
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package (Straw, 2008; see Figure 1C). Square wave gratings of
four different orientations (0, 45, 90, and 135◦) were presented
sequentially, followed by presentation of four plaid stimuli
composed of superimpositions of two orthogonal gratings. The
contrast of the superimposed gratings was reduced to 50% and
their intersection created nodes of 100% contrast. To reduce the
total number of visual stimuli, gratings and plaid stimuli drifted
alternately in both directions within a single trial (0–180, 45–225,
90–270, and 135–315◦). Stimulation time was 2 s per direction
leading to a total of 4 s per grating of a single orientation at
a temporal frequency of 1.5Hz and a spatial frequency of 0.04
cycles per degree. Stimulation periods were separated by 5 s of a
gray screen. Stimuli were presented until at least five successful
trials were collected for each imaged region.

Analysis of Calcium Transients
Data were analyzed with ImageJ (National Institute of Mental
Health NIH) and MATLAB (Mathworks). Cells were defined
manually by drawing regions of interest (ROIs) around cell
bodies. Fluorescence signals were averaged from all pixels
inside a ROI and calcium signals were expressed as relative
fluorescence changes (1F/F) after subtraction of a background
(typically from a blood vessel lumen). Response amplitudes
were calculated by averaging three points around the peak
fluorescence change (a 1.5 s time window around the peak) for
each stimulation epoch. The mean pre-stimulus fluorescence
was subtracted from each response. To estimate neuronal
responsiveness, only neurons with responses larger than two
times the standard deviation of the baseline, which persisted
in more than 50% of the trials, were considered as showing
significantly evoked activity (see also Roth et al., 2012). To
estimate neuronal selectivity, neurons that responded selectively
to any stimulus were obtained by performing an ANOVA test
between the responses to all stimuli (gratings and plaids) at a
p-value threshold of 0.05. Neurons that passed this test were
dubbed “selective,” and were used for further analysis. We
calculated the response reliability for each neuron by measuring
the average trial-to-trial correlation of the peak responses for a
single neuron, over all stimuli.

Bayesian Model-based Analysis Framework
To classify the responses of neurons we used a novel Bayesian
model-based analysis framework, applied to an extension of the
Partial Correlation (PC) method (Movshon et al., 1983; Rodman
and Albright, 1989; Movshon and Newsome, 1996; Baron et al.,
2007). Here we describe our formal statistical framework for
rejecting a model, as well as for ranking the predictions for
several models. A schematic figure of the framework is shown
in Figure 2B. The set of observed grating responses for a neuron
is denoted G, with single-trial responses from the set denoted as
gθ j,i. Here θ j is a single stimulus orientation and i is a trial index
ranging between 1 and the number T of single-trial observations
for the given stimulus. For convenience, we also define the vector

g
def=

{
gθ1, gθ2, . . .

}
, consisting of all trial-averaged responses

over the set of different grating stimuli. Here gθ j denotes the
trial-averaged response for a single grating stimulus θ j, that is
gθ j = 1/T

∑
i gθ j,i.

By analogy we construct the set P of all plaid responses for
the neuron, with single-trial responses denoted pθ1+θ2,i (with θ1
and θ2 defining the two grating components that comprise the

plaid stimulus); and define the vector p
def=

{
pθ1+θ2, pθ1+θ3, . . .

}

containing trial-averaged responses to the set of plaid stimuli.
Single-trial responses to one or more grating stimuli (denoted

gθ j,h, gθk,i, . . . ) were used to form a prediction for a single-
trial response of the same neuron to a plaid stimulus p̂θ1+θ2,
under an arbitrary and possibly non-linear model p̂θ1+θ2,l =
m

(
gθ j,h, gθk,i, . . . , φ

)
. Modelm is arbitrary, and φ is an arbitrary

set of model parameters. The precise models used in this work
are described below.

The model m is assumed to be commutative over a given
set of grating component inputs, such that m

(
gθ1,h, gθ2,i, φ

)
=

m
(
gθ2,i, gθ1,h, φ

)
. All combinations of appropriate single-trial

responses are used to generate a set P̂m of predicted plaid
responses for the neuron. The predicted responses P̂m are
compared with the set P of observed single-trial responses to
plaid stimuli. Firstly, a Kolmogorov–Smirnov (K–S) test is used
to compare the predictions from a given model to the set of
single-trial responses to an individual plaid stimulus, resulting
in a K–S test result for each plaid stimulus. These test results
are combined using a Holm–Bonferroni correction for multiple
comparisons, to accept or reject the predictions from a given
model under an α = 5% statistical significance threshold.

Subsequently, the likelihood of observing the set of
experimental plaid responses under the model m is estimated
to perform model ranking; this likelihood is given by

Pr (X = P|m, φ)
def=

∏
θ1,θ2,i Pr

(
xθ1+θ2 = pθ1+θ2,i|m, φ

)
, by

combining the likelihoods of each of the single-trial responses to
the set of plaid stimuli. The individual plaid response probability
distributions Pr (xθ1+θ2|m, φ) are estimated by direct sampling
from the single-trial grating response distributions approximated
by Normal distributions, such that Pr

(
xθ j

)
∼ Norm

(
µθ j, σθ j

)
.

Here µθ j and σθ j are the mean and standard deviations over the
single-trial responses gθ j,i to the grating stimulus θ j. A set of
samples Mθ1+θ2 from Pr (xθ1+θ2|m, φ) is generated by Monte-
Carlo sampling of m

(
yθ j, yθk, . . . , φ

)
, where yθ j ∼ Pr

(
xθ j

)
and

so on. The likelihoods for single-trial observed plaid responses
Pr

(
xθ1+θ2 = pθ1+θ2,i|m, φ

)
are then estimated via a Kernel

density method overMθ1+θ2.
Likelihoods are then used to rank relative accuracy over

several models; a difference of more than 5 decibans was
considered significant evidence in favor of one model
over another (Jeffreys, 1961). We note that our value for
Pr (X = P|m, φ) is not a true likelihood due to the difficulty
in estimating the true probability of a given observation under
a continuous probability distribution. However, any set of
likelihoods being compared are always estimated for the same

neuron over the same set of experimental responses, from
distributions with identical variance.

Plaid Response Models
Our models for component and pattern responses used in this
paper are extensions of those used in the partial correlation
framework (Movshon et al., 1983; Rodman and Albright, 1989;
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FIGURE 1 | Two-photon calcium imaging of gratings and plaid pattern

evoked responses in mouse V1. (A) Example two-photon image of layer

2/3 neurons at a depth of 273µm in V1; neurons were labeled with the

calcium indicator OGB-1/AM (green) and astrocytes counterstained with

sulforhodamine (SR101, red). The circled neurons correspond to the indicated

traces shown in (D). Scale bar: 50µm. (B) Anaesthetized mouse two-photon

calcium imaging protocol. (C) Visual stimuli. Individual grating components or

plaid stimuli composed of orthogonal gratings drift back and forward during a

single presentation. The relative drift direction of the grating components

defines the direction of the resulting plaid motion. (D) Single trial (gray) and

average (black) calcium traces recorded in response to grating and plaid stimuli

(indicated by icons at top). Each classified response class is represented (see

also Figure 2). “g” and “p” labels on each trace indicate the maximum grating

and plaid responses for that neuron and were used to calculate a Modulation

Index (MI; see Material and Methods). Scale bars: 10 s and 10% 1F/F.

Movshon and Newsome, 1996; Baron et al., 2007). For simplicity
of notation we will leave off the trial index; that is, gθ1 will
refer to a single-trial response gθ1,i from an arbitrary trial i,

under presentation of stimulus θ1. Our “component model”
assumes that a predicted single-trial response p̂θ1+θ2 to a plaid
stimulus is given by the sum of two single-trial responses to the
two individual grating components, normalized by a factor k,

such that p̂θ1 + θ2 = m
(
gθ1, gθ2, k

)
= k(

gθ1+gθ2
2 ). This model

encompasses the original “component cell” proposal of Movshon
(by constraining k = 2); a prediction by the mean of the two
grating components (by constraining k = 1); and any other
degree of suppression or facilitation by allowing k to adopt a
value that optimally predicts the response for a single cell. Our

“pattern model” assumes that a response p̂θ1 + θ2 to a plaid
stimulus is predicted by the grating component gθ3 that drifts in
the same direction as the combined plaid, normalized by a factor
k: p̂θ1 + θ2 = m

(
gθ3, k

)
= k · gθ3. In our model-based analysis,

k is permitted to adopt the optimal value for each cell that best
explains the average response of that cell.

Our framework is modular, and any alternative model that
predicts a set of target responses from a set of observed responses

can be included. Since our framework provides a method for
ranking several models via response likelihood, any number of
response models can be used if desired.

Partial Correlation Analysis
For comparison with our Bayesian model-based analysis
framework, we compared our technique against the PC approach
used in previous literature (Movshon et al., 1983; Rodman and
Albright, 1989; Movshon and Newsome, 1996; Baron et al.,
2007). Briefly, predicted trial-average responses under “pattern
cell” and “component cell” models were formed. Pattern cells
were defined such that the response to a given plaid stimulus
was identical to the grating response for the grating drifting in
the same directions as the vector sum of plaid component drift
directions. Component cells were defined such that responses
to a given plaid stimulus were the linear sum of the grating
responses to the two plaid components. These idealized pattern
and component cell responses to the plaid stimulation were
identical to the ones used in our analysis framework, however,
as stated above, the model-based analysis also encompasses the
variability of neuronal responses, while the PC uses only average
responses.

For a given neuron, the recorded trial-averaged plaid
responses are denoted p; the predicted plaid responses under
the pattern and component cell models are denoted p̂p and p̂c,

respectively. The correlations between observed and predicted
responses are then calculated by ρc = corr

(
p, p̂c

)
and ρp =

corr
(
p, p̂p

)
, and the inter-prediction correlation is given by

ρpc = corr
(
p̂c, p̂p

)
. The partial correlation measures Rc and Rp

are then given by Rc =
(
ρc − ρpρpc

)
/

√(
1− ρ2

p

) (
1− ρ2

pc

)
and

Rp =
(
ρp − ρcρpc

)
/

√(
1− ρ2

c

) (
1− ρ2

pc

)
; the Z-scored versions

of these measures are given by Zc = 1
2

(
log10

1+Rc
1−Rc

)
/
√
1/d and

Zp = 1
2

(
log10

1+Rp
1−Rp

)
/
√
1/d, where d is the degrees of freedom

(number of stimuli minus 3; here d = 5). For a cell to be classified
as component, Rc must be greater than Rp and also greater than
zero, in a one-tailed Z test at a significance above chance level
of α = 0.1 (Movshon et al., 1983; Gizzi et al., 1990; Scannell
et al., 1996; Baron et al., 2007). The same test is used to classify
responses as pattern cells. The remaining cells that meet neither
criterion are left unclassified.

Modulation Index (MI)
We defined an index that estimates the degree of suppression
or facilitation involved in the response to plaid stimuli,
compared with the response of the same neuron to grating
stimuli. The modulation index (MI) is given by the formula

MI = max(pi) − max( g i)
max( pi)+max( g i)

where max
(
g i

)
and max

(
pi

)
are the

maximum trial-averaged responses of a neuron i over the set of
grating and plaid stimuli, respectively.

Response Classification Procedure
Our model-based analysis framework was applied to the
responses of selective neurons (see above), that responded to
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at least one grating and at least one plaid stimulus. For each
neuron, we obtained a pass/fail decision and likelihood estimate
for each of the pattern and component models, and measured
the MI (see above). Neurons for which only a single model
was accepted were classified into the corresponding category
(component-classified or pattern-classified). When both models
were accepted for a given neuron, the model likelihoods were
used to rank the models (see above). If one model performed
significantly better for a given neuron, that neuron was classified
into the corresponding category (component-classified or
pattern-classified).

Neurons for which both models performed equally, or where
both models were rejected, were subjected to a modulation
test. If the MI for these neurons was >0.33 or <-0.33 then
the neuron was categorized pattern-dominant or component-
dominant, indicating a very strong preference for one stimulus
class. These categories also included neurons that responded only
to grating or only to plaid stimuli.

Grating and Plaid Selectivity Index
We defined a selectivity index (SI) that can be applied identically
to both grating and plaid stimuli. The SI for a neuron is defined
over a set of stimulus responses s, where s is a vector of trial-

averaged responses over a set of stimuli: s
def= {s1, s2, . . . , sN},

with any negative responses clipped to zero. The index is

calculated with SI
def= 1 −

[
−1+

∑
j sj/max (s)

]
/ (N − 1).

Neurons that are highly selective over a set of stimuli (for
example, neurons that are highly orientation tuned in response
to a set of drifting gratings of varying orientation) have an SI
close to 1. Neurons that are broadly tuned or unselective for a
set of stimuli (for example if a neuron responds identically to
each stimulus in a set) have an SI close to zero. This metric can
be computed separately over the set of grating or plaid stimuli,
resulting in independent estimates of selectivity over grating and
plaid responses.

Grating/Plaid Response Pairwise Similarity
Analysis
To quantify the relationship between grating and plaid responses
across the recorded population, in a non-parametric manner, we
examined pairs of neurons to measure the similarity between
their grating and plaid responses. Similarity metrics rg

(
i, j

)
and

rp
(
i, j

)
, based on Pearson correlation coefficients, were calculated

between the vectors of trial-averaged responses for two neurons
i and j, separately for the set of grating and the set of plaid
responses. For example, if the vector of trial-averaged grating
responses for a neuron i is denoted g i as above, then rg

(
i, j

)
=

corr
(
g i, g j

)
, where corr

(
x, y

) def=
∑

(xi− x)
∑

(yj− y)√∑
(xi− x)2

√∑
(yi− y)

2
is the

Pearson correlation coefficient between two vectors. We define
a plaid similarity metric rp

(
i, j

)
= corr

(
pi, pj

)
analogously

to rg
(
i, j

)
. These similarity metrics permit an estimate of the

predictability of plaid responses from grating responses in a non-
parametric manner, by comparing the relationship between rg
and rp for the same pairs of neurons.

Analysis of Grating and Plaid Similarity Indices
for Unclassified Neurons
We estimated the number of simple rules that are required
to reproduce the distribution of plaid and grating similarity
indices rg and rp for the unclassified neurons (Figure 5B).
We assumed that two neurons obeying the same rule will
have consistent similarity for both grating and plaid responses
(i.e., rg = rp for these neurons). We randomly divided the
unclassified neurons into n groups of equal size, and set the
plaid similarity indices rp to be equal to rg within each group.
This procedure implies that pair-wise similarity indices within
groups were aligned, whereas similarity indices between groups
were left unchanged from our experimental observations. We
performed this resampling 100 times for each number of rules
n [n = (1..10)], and collected the resulting distributions of pair-
wise correlations. A two-dimensional, two-tailed Kolmogorov–
Smirnov test was used to compare the resampled distributions
with the experimental distribution shown in Figure 5B. If the
distributions were significantly different for a given number of
rules n (p < 0.05), then we considered that number of rules to be
insufficient to explain the experimental distribution of pair-wise
correlations (i.e., reject the null hypothesis).

Results

Two-photon Calcium Imaging of Grating and
Plaid Pattern Responses
We measured visually evoked neuronal responses in layer 2/3
of V1 in anesthetized mice using two-photon calcium imaging
with Oregon Green BAPTA-1 (OGB-1) (Figures 1A,B; n = 8
mice; 56 imaged regions containing 4088 neurons in total). Four
drifting high-contrast gratings and four plaid stimuli composed
of orthogonal gratings were presented to the contralateral eye
of the animal (Figure 1C). Of all imaged neurons 42% were
responsive; 51% of the responsive population were selective for
at least one of the visual stimuli and were considered for further
analysis (n = 877 neurons; selectivity defined by ANOVA at
p < 0.05; see Materials and Methods). Neurons displayed a
variety of responses, with a majority of cells responding strongly
for both gratings and plaid pattern stimulation (example neurons
c1, c2, c5, and c6 in Figure 1D) while other cells responded
only to either gratings (neuron c4) or plaid patterns (neuron c3).
Notably, cells that responded similarly to the set of grating stimuli
could respond very differently to the set of plaid stimuli, and
vice versa (e.g., neuron c1 compared to neuron c2; see also
Figure 5). Neurons in mouse V1 presented a wide diversity of
responses to gratings and plaid pattern stimulation. Therefore,
we first functionally classified these diverse neuronal responses
as component- or pattern-classified.

Classification of Component and Pattern
Responses
Two classes of motion-integrating response classes for plaid
stimuli have previously been described for neuronal responses in
visual cortex (Movshon et al., 1983). Pattern-classified neurons
are defined as neurons preferring a plaid stimulus that drifts
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FIGURE 2 | Analysis and classification of the neuronal responses.

(A) The analysis and classification of the example neurons presented in

Figure 1D (traces labeled c1 through c6) are illustrated. Grating (gray)

and plaid (black) responses are shown on polar plots of stimulus drift

angle (degrees); component and pattern model predictions are also

indicated (blue and red dashed curves, respectively); vertical scale bars

indicate 10% 1F/F for each polar plot. Middle: Pie chart shows our

quantification of response classes for the entire data set of responsive

and selective neurons in mouse V1. (B) A schematic diagram of our

model-based analysis method (see Material and Methods). The set of

single-trial responses to two grating component stimuli and are used to

form a prediction of the response of a neuron to a plaid stimulus under

an arbitrary predictive model. This prediction combines all possible

combinations of trials of the component stimuli, to produce a predicted

distribution for single-trial responses. This prediction is then compared

with the set of experimentally obtained single-trial responses to plaid

stimuli. A Kolmogorov–Smirnov test with multiple-comparisons correction

provides a pass/fail value for each model, for each neuron. The likelihood

of observing the experimentally obtained single-trial plaid responses under

each model prediction is also estimated, in order to rank a set of models.

This framework therefore provides several distinct benefits: the ability to

reject or accept a model as providing a useful prediction, in a rigorous

statistical sense; the ability to rank any number of models in a statistically

justified manner; and the ability to determine whether or not the

predictions between two accepted models are significantly different, within

a rigorous statistical framework.

in a direction identical to the preferred motion direction tested
with grating stimuli. In contrast, component-classified neurons
respond best to plaid stimuli that contain a grating component
matching the preferred grating drift direction for that neuron.
We assigned neurons to these two response classes using
an extension of the Partial Correlations analysis framework
(Movshon et al., 1983; Rodman and Albright, 1989;Movshon and
Newsome, 1996; Baron et al., 2007), which predicts the response
of a neuron to the set of plaid stimuli based on its responses to
the set of grating stimuli (see Materials andMethods; Figure 2B).
The predictions of two models, corresponding to pattern and
component response classes (see Materials and Methods), were
compared to the actual plaid pattern responses (see Figure 2;
dotted lines in polar plots indicate predictions for the example
cells shown in Figure 1D). The performance of both models
was evaluated statistically to accept or reject their predictions as
well as to provide a ranking of the two models (see Materials
and Methods; Figure 2B). If experimentally recorded responses
were significantly more likely under one model than the other,
the neuron was categorized accordingly as either component-
classified or pattern-classified (Figure 2). In our analyzed set
of responsive and selective neurons 31.5% were component-
classified (275/877 neurons) and 3% were pattern-classified
(29/877 neurons).

Some of the neurons that did not fall clearly into
the component- or pattern-classified categories showed clear

preferences for either only gratings or only plaid stimuli
(see for example neurons c3 and c4; Figures 1D, 2). This
selectivity was best captured by comparing the strongest
response of a neuron to a grating stimulus (labeled “g” in
Figure 1D) with the strongest response to a plaid pattern
(labeled “p” in Figure 1D). Using a modulation index (see
Materials and Methods) we defined two further classes:
Neurons with strongly suppressive (MI < -0.33) or facilitatory
responses (MI > 0.33) were placed into component-dominant
or pattern-dominant categories, respectively (Figure 2). We
found 31.5% component-dominant neurons (275/877) and 8%
pattern-dominant cells (70/877) among the analyzed neuronal
population.

In summary, our classification procedure accounted for more
than 70% of the responsive and selective neurons in mouse
V1. Component-selective cells comprised 63%, divided equally
between component-classified and component-dominant neurons.
In contrast, 11% of neurons showed pattern-selective responses
with 3% being pattern-classified and the remainder being pattern-
dominant neurons (Figure 2). The remaining 26% of unclassified
responses showed more complex responses discussed further
below. We conclude that, in addition to the typical component-
selective responses observed in V1 of several species (Movshon
et al., 1983; Gizzi et al., 1990; Baron et al., 2007), a small but
significant proportion of neurons selective for pattern stimuli
also exist in mouse V1.
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Bayesian Model-based Classification
Outperforms Partial Correlation Analysis
Our model-based analysis method offers several advantages
over classification of pattern and component cells using PC
analysis. Firstly, we are able to classify a greater proportion of
responses into pattern and component classes (304 vs. 85 cells;
Figure 3A), without loss of performance (no difference in log
likelihoods; Figure 3B). Model predictions were also significantly
better correlated with the recorded responses of successfully
classified neurons than with responses of unclassified neurons
(Supplementary Figure 1; median correlations 0.55 vs. 0.08;
p < 0.01, rank-sum test). For some cells, the trial-averaged
response used by PC analysis was a poor description of the
cell’s full response, so that our model-based approach assigned
a different category than PC analysis (e.g., Figure 3 trace c7).
The cells left unclassified by our model-based method had
responses that were poorly explained by either of the pattern
or component models (low log likelihoods; Figure 3C), or were
equally well explained by both models (see Figure 3 trace c9).
However, cells left unclassified under the PC analysis in general
had responses that fit reasonably well into one of the pattern
or component models (significantly higher log likelihoods,
p < 0.001; Figure 3C; see Figure 1 trace c2 and Figure 3 trace
c8).

Pattern Integration is More Facilitatory than
Component Integration
In primate area MT pattern integration is thought to rely
on convergent projections onto MT neurons. Plaid patterns
composed of overlaid gratings may be integrated by combining
inputs in a supralinear manner (Rust et al., 2006) resulting in
facilitated neuronal responses during plaid pattern stimulation
compared with grating stimulation. We could not directly
measure supralinear integration since this would involve
recording the sub-threshold membrane potential. However, we
used the spiking output of the neurons to analyze the extent
of facilitation during pattern integration by comparing grating
and plaid responses using the MI for all responsive and selective
neurons. Since the calcium dye OGB-1 has a complex non-
linear and saturating response, we cannot determine whether
summation from grating components to plaid responses is supra-
or sub-linear (Nauhaus et al., 2012). However, we can report
whether responses to grating or plaid stimuli were stronger in
general. We note that our approach will tend to underestimate
the extent of plaid facilitation in V1.

Overall, most neurons in the analyzed population expressed
weaker responses to plaid stimulation compared with grating
stimulation (median MI: −0.3) consistent with previous reports
for V1 (Morrone et al., 1982). However, almost a quarter of
these showed facilitation (24%; MI > 0). Interestingly, when
separating the cells into pattern- and component-classified (as
defined by the models), we found that pattern-classified cells
show more facilitatory integration compared with component-
classified cells: 40% of the pattern-classified neurons were
facilitated during plaid pattern stimulation compared with only
20% of the component-classified neurons (Figure 4A; median
MI: 0.0 vs. -0.2, respectively; rank-sum test: p < 0.01). When

all pattern-selective cells were taken together (pattern-classified
plus pattern-dominant), the median MI was 0.4 compared
with -0.4 for all component-selective cells (Figure 4A). These
findings reinforce the view that component cells code for
the orientation of components and undergo cross-orientation
suppression during plaid stimulation (Morrone et al., 1982),
whereas pattern cells integrate component inputs in a supralinear
manner (Rust et al., 2006).

Pattern and Component Neurons are
Differentially Tuned over Their Chosen Stimulus
Types
In order to detect the motion of the plaid stimuli, pattern cells
must integrate inputs tuned over a broad range of orientations
(see also Figure 6). Hence, if pattern integration occurs locally,
the tuning of pattern cells to individual gratings should also
be broader. We tested this hypothesis by measuring a tuning
SI for the classified neurons over the set of grating stimuli
(Figure 4B; see Methods). As expected, we found that pattern-
classified neurons are significantly more broadly tuned to the
orientation of grating stimuli than component-classified neurons
(Figure 4B; median SIg of 0.6 vs. 0.7; p < 0.01, rank-sum test)
as previously suggested without being quantified for primate
area MT (Rust et al., 2006). Pattern-classified cells integrate
inputs from the individual components of the presented plaid
patterns, resulting in broader orientation tuning when tested with
individual drifting gratings.

In contrast, component-classified neurons were significantly
less selective for plaid stimuli than pattern-classified neurons
(Figure 4C; median SIp 0.6 vs. 0.5; p < 0.001, rank-sum test).
This is unsurprising, since component cells are expected to
respond to two plaid stimuli, both of which contain the preferred
component. The selectivity of component-dominant and pattern-
dominant cells was measured over their preferred stimulus class
(Figures 4B,C). In both cases, the -dominant cells were at least as
selective as the corresponding -classified cell class.

Non-pattern, Non-component Neurons Have
Strongly-tuned and Reliable, Yet Unpredictable,
Responses
A substantial fraction of neurons (26%) showed significant
and selective responses to both gratings and plaid patterns,
which, however could not be predicted by either of the pattern
or component models (Figure 5A). These neurons showed
responses that were as reliable as those of classified neurons
(Figure 5C; median trial-to-trial correlations of classified and
unclassified neurons: 0.42 vs. 0.43; p = 0.6, rank-sum
test) and significantly more reliable than unselective neurons
that were rejected for further analysis (Figure 5C; median
trial-to-trial correlations: 0.10; p < 0.001, rank-sum test).
They were as sharply tuned as pattern-classified neurons but
slightly more broadly tuned than component-classified neurons
(Figure 5D see also Figure 4B; median SIg 0.65 vs. 0.71;
p < 0.01, rank-sum test). Thus, they were not missed by the
classification due to unreliable or broadly tuned responses. Some
neurons fell into this category because their responses fell in
between predictions from the component and pattern models
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FIGURE 3 | Model-based classification performs better than partial

correlation (PC) analysis. (A) The distribution of Z-scored partial

correlations for the component (Zc) and pattern (Zp) models is plotted,

along with the decision boundaries used to classify responses under the

PC analysis (dashed lines; see Materials and Methods). Each cell is

plotted with a color and symbol according to its classification under our

model-based analysis method (see text; Materials and Methods). Many of

the neurons left unclassified by the PC analysis are successfully classified

by our model-based approach [see cells plotted in the “Unclassified (PC)”

region]. In addition, some cells classified by the PC analysis are classified

differently, or left unclassified, by our model-based approach. (B) Cells

classified by our model-based approach (gray) are just as well-predicted

as cells classified by PC analysis (black; median LL −32 vs. −32,

p = 0.88, rank-sum test, nMB = 355, nPC = 85). (C) However, cells left

unclassified by the PC analysis could have been reasonably predicted by

one of the two models (black; high LL). In contrast, cells left unclassified

by our model-based approach were much more poorly predicted by one

of the two models (gray; lower LL); this difference between the two

classification approaches was statistically significant (median LL

-36 vs. -32, p < 0.001, rank-sum test, nMB = 177, nPC = 244). Example

traces c7–c9 illustrate cells which are differently classified by PC and our

model-based approach. Gray traces indicate single-trial calcium

responses; the single-trial responses used in our analysis are indicated as

black dots. Blue and red curves indicate predicted single-trial distributions

under the component and pattern models, respectively, generated as part

of our model-based analysis. Insets in c7–c9 indicate both the

model-based and PC classification of the corresponding cell. Labels in

(A–C) indicate the measures corresponding to each example cell. Trace

c7 shows a cell which is classified as a “pattern” cell by PC analysis, but

“component” cell by our model-based analysis. The observed single-trial

responses to plaid stimuli (black dots) are more likely under the

component model than the pattern model (blue vs. red curves). Trace c8

shows a cell that could not be classified under PC analysis, but was

classified as a component cell by our model-based analysis. Trace c9

shows a cell that was classified as a pattern cell by PC analysis, but was

left unclassified by our analysis since the single-trial responses to plaid

stimuli were equally well predicted by the component and pattern models

(blue vs. red curves). Scale bars: 10 s and 10% 1F/F. ***p < 0.001.

(Figures 5E,F; see Materials and Methods). However, neurons
with these ambiguous responses comprised a minority of all
unclassified neurons—more than six times as many neurons were
left unclassified because both models were rejected under our
statistical framework (Figure 5F).

We examined the responses of these unclassified neurons
to investigate whether a simple alternative model would be
able to predict the relationship between their grating and
plaid responses. If there would exist a single rule, no matter
how complex, that can predict the plaid responses for a
neuron given only the grating responses of that neuron, then
neurons with similar grating responses must have similar plaid

responses. We evaluated whether this condition held for the set
of unclassified neurons, by measuring the pair-wise similarity
between recorded neurons over the set of their grating and
plaid responses (Figures 5A,B, rg and rp; see Materials and
Methods). We found a large variation in relationship between
the neurons’ pair-wise similarity of grating responses and their
similarity of plaid responses. First, we observed a broad range of
plaid similarities from pairs of neurons responding similarly to
gratings (Figure 5B; high rg , x-axis) to those presenting different
responses (Figure 5B; negative rg , x-axis). This was also true
when considering their responses to the plaid stimulation (rp,
y-axis). Second, we found that the ability to consistently predict
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FIGURE 4 | Differences in modulation and tuning between component

and pattern cells. (A) Modulation Index (MI) distributions of

component-classified (blue), pattern-classified (red), component-dominant

(blue dashed), and pattern-dominant (red dashed) cells (percentages of

indicated classes). Triangles indicate the medians of the distributions, with

grouped medians indicated below. Pattern-classified cells have a significantly

higher modulation index than component-classified cells, highlighting more

facilitation in this group (medians 0.0 vs. −0.2, p < 0.01, rank-sum test).

Grouping cells according to their overall component- and pattern-preference

(indicated by filled triangles) highlights the considerable facilitation of

pattern-selective responses (medians −0.4 vs. 0.4, respectively). (B) Grating

selectivity index (SI) distribution of classified component (blue) and pattern

(red) cells (see Material and Methods; percentages are of indicated classes).

Pattern-classified cells are significantly less selective for grating stimuli

(median SIg 0.6 vs. 0.7, p < 0.01, rank-sum test, nC = 275 nP = 29).

Component-dominant cells are highly selective over grating stimuli (median

SIg 0.8, nCD = 275). (C) Plaid SI distribution of component-classified (blue)

and pattern-classified (red) cells (see Material and Methods; percentages are

of indicated classes). Pattern-classified cells are significantly more selective

for plaid stimuli (median SIp 0.6 vs. 0.5, p < 0.001, rank-sum test, nC = 275

nP = 29). Pattern-dominant cells are highly selective over plaid stimuli

(median SIp 0.7, nPD = 70). **p < 0.01; ***p < 0.001.

plaid from grating responses was essentially nil. Pairs of neurons
could be found that showed strong similarity in both grating
and plaid responses (Figures 5A,B, neurons c10 and c11), but
more often there was no relationship or even an anti-correlated
relationship (Figures 5A,B, neurons c12 and c13).

No single model, operating on a single-neuron level to predict
plaid responses from responses to gratings, can explain the
responses of the unclassified neurons. We therefore considered
whether several simple rules taken together could explain the
responses of the unclassified population. For this, we performed
bootstrap resampling of the pair-wise grating and plaid
correlations, under the assumption that a number of arbitrary
simple rules exist (see Materials and Methods). We found that
at least five such rules, existing concurrently in the cortical
population, would be required to explain the wide variation of
pair-wise correlations shown in Figure 5B (p < 0.05).

The population of unclassified neurons displayed strong,
selective, tuned, and reliable responses to the set of grating and
plaid stimuli, yet these could not be explained by simple rules
relating grating and plaid responses.

Discussion

We characterized neuronal responses to drifting grating and plaid
stimuli in mouse V1 using in vivo two-photon calcium imaging,
to assess the degree of visual pattern integration in this area.
We found a broad spectrum of neuronal responses ranging from
neurons responding only to gratings to neurons with complex
grating and plaid responses and also neurons that were only
activated by presentations of visual patterns.

Our Bayesian model-based analysis classified a greater
proportion of responses into pattern and component classes,

compared with traditional partial-correlation (PC) analysis,
without a reduction in quality of classification (Figure 3). Our
model-based classification method uses single-trial responses to
form predictions, rather than relying only on averaged responses.
This implies that a successful model must not only explain the
mean response to a stimulus but also match the distribution of
single-trial responses. When the classification under PC analysis
differed from our model-based classification, it was often the case
that the trial-averaged responses used by PC analysis were not a
good description of the full distribution of single-trial responses.

Finally, our Bayesian statistical framework provides the option
to reject models entirely, as well as to distinguish between any
number of models. In comparison, the PC analysis framework
only permits a decision between two models, or to leave
the cell unclassified. As a consequence, PC analysis cannot
distinguish between a cell that responds weakly or unreliably; a
cell that responds strongly but is a mixture between pattern and
component models; and a cell with strong and distinct responses
that does not match either model.

These observations suggest that our approach is more
sensitive and provides a higher-quality classification than PC
analysis.

Control of Statistical Errors
As part of our classification framework, the set of single-trial
model response predictions are tested against the observed
responses, using a Kolmogorov–Smirnov test; multiple
comparisons correction (MCC; Holm-Bonferroni) is used
over the set of predicted stimuli. Models that are not rejected
under MCC are then considered for further classification for
that cell.
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FIGURE 5 | Non-component, non-pattern neurons have

strongly-tuned, reliable and unpredictable responses. (A) Example

response traces of unclassified neurons (see also Figure 1D traces c5

and c6). The responses to grating stimuli were used to compute a

pair-wise grating similarity index rg; pair-wise plaid similarities rp were

computed in the same way (values indicated to the right of each pair

of traces; see Materials and Methods). Scale bars: 20% 1F/F, 10 s.

(B) The population distribution of pair-wise similarities. Indicated points

correspond to the pairs of neurons in (A). (C) Non-component,

non-pattern neurons (gray) were just as reliable as classified neurons

(red-blue dashed curve; medians 0.43 vs. 0.41, p = 0.58, rank-sum

test, nUC = 228, nC = 304); unselective neurons (black) that were

excluded from analysis were significantly less reliable than

non-component, non-pattern neurons (medians 0.43 vs. 0.10,

p < 0.001, rank-sum test, nUC = 228, nUS = 842). (D) Non-component,

non-pattern neurons were not more broadly tuned than

pattern-classified neurons, but were more broadly tuned than

component-classified neurons (medians 0.63, 0.65, 0.71; p < 0.01,

rank-sum test, nP = 29, nC = 275, nUC = 228) (E) The distribution of

log-likelihood differences used to assign neurons to pattern (red) and

component (blue) classes (percentage of neurons accepted by both

models). Discrimination boundaries are shown as dashed vertical lines

(see Material and Methods). Some neurons were left unclassified

because they fell between these boundaries (gray). (F) The proportion

of neurons left unclassified either because they were rejected by both

models (67%; left bar) or because they fell between the model

classification boundaries [11%; middle bar; also indicated in (E)].

Neurons that fell between the classification boundaries are a small

minority of unclassified neurons. The remaining 22% of unclassified

neurons responded to only one stimulus set, but too weakly to be

classified as either component- or pattern-dominant (“weak

responders”). **p < 0.01.

MCC is required to control type-I errors, by limiting either
false discovery rate or familywise error rate—in our framework,
the probability of rejecting any model would otherwise grow as
the number of stimuli is increased. However, MCC in general
serves to increase type-II errors (i.e., the probability of failing to
reject a model that does not describe the observed responses). In
the absence of a technique to directly control type-II errors (since
in general the alternative hypothesis is not known), it is therefore
important to ensure that type-II errors are within reasonable
bounds (e.g., β < 20%; Cohen, 1992).

Within our framework, several tests are required before
final classification of a cell under the model-based analysis
framework. Firstly, the cell must be reliable, responsive and
selective over both sets of stimuli. This ensures that extremely
variable responses, which would lead to any arbitrary model
passing the K–S test, will not be incorrectly classified. In addition

to this criterion, when more than one model passes the K–S
test, the cell is then subject to a Bayesian model comparison
using likelihood ratios (see Materials and Methods). Cells with
highly variable responses, or responses that do not strongly
suggest one model over another, are therefore left unclassified.
For the data presented here, the variability criterion ensures that
only few cells are left unclassified because their responses are
ambiguous under the pattern and component models (Figure 5F,
“indistinguishable” bar).

We estimated the type-II error rate introduced by the
K–S/MCC component of our framework, under the data
presented in this work. The null hypothesis (H0) under the
K–S test is that the distribution of model predicted single-trial
responses is the same as the observed experimental distribution.
We defined our alternative hypothesis (H1) for a given K–S
rejected cell to be the model-predicted single-trial distributions,
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formed from the observed experimental responses. We then
estimated the type-II error rate for our dataset, by performing
a Monte Carlo resampling of experimental responses and
model predictions under the assumption that both are normally
distributed. We found that the K–S/MCC component of our
framework results in a type-II error rate (β) of approximately 7%
for the component model, and approximately 1% for the pattern
model; both well within reasonable bounds.

If required, the statistical tests and MCC method
(Kolmogorov–Smirnov andHolm–Bonferroni, in this paper) can
be replaced with versions with generally higher statistical power.
For example, the two-sample Anderson–Darling or Cramér–von
Mises tests can have higher power than Kolmogorov–Smirnov
(Razali and Wah, 2011). Similarly, Benjamini–Hochberg
multiple comparisons correction might provide a better balance
between control of type-I and type-II errors, as the number of
stimuli increase (Verhoeven et al., 2005). Increasing the α value
chosen for the MCC method will also increase statistical power,
and can be used as a method to balance type-I and type-II error
rates.

Component and Pattern Specific Responses in
Primary Visual Cortex
Neuronal responses were classified as component- or pattern-
classified, first by predicting responses to plaid stimuli from the
neurons’ responses to individual grating components. Extending
previous methods to predict neuronal responses to visual
patterns with a Bayesian analysis framework allowed us to
incorporate neuronal response variability to grating and plaid
stimulation. By applying this model-based analysis framework
we explained more than 30% of the responses of all stimulus-
selective neurons during visual pattern stimulation. In a second
step, we further classified the remaining neurons into component-
and pattern-dominant according to their dominating response to
grating or plaid stimulation. With these two steps we explained
the responses of more than 70% of the total population of
stimulus-selective neurons.

In addition to the 31.5% of component-classified cells, we
found that 3% of the selective neurons in V1 were classified as
pattern cells. Pattern cells have been reported to be nonexistent in
the V1 of other species, such as cats (Gizzi et al., 1990), macaque
monkeys (Movshon et al., 1983) and barn owls (Baron et al.,
2007). Similar to our data in mouse, a range from component- to
pattern-selective responses has also been described in marmoset
monkey V1 (Tinsley et al., 2003). Beside these 3% of pattern-
classified cells, we found 8% of cells responding strongly to plaid
patterns but responding poorly to grating stimuli. This feature
makes them impossible to classify using traditional measures
based on the grating response. However, these cells were highly
selective over the set of plaid stimuli; in fact, they were just as
selective as pattern-classified cells (Figure 4C). Cells responding
strongly to plaid stimuli but only weakly to grating stimuli
were previously reported in area MT of New World monkeys
(Solomon et al., 2011). Solomon et al. argued that these are
pattern cells that receive only weak excitatory drive from stimuli
having a narrow Fourier representation, such as grating stimuli
(Solomon et al., 2011).

In primates, pattern integration appears to be performed at
higher levels of the visual hierarchy, such as area MT (Movshon
et al., 1983; Rodman and Albright, 1989; Stoner and Albright,
1992). Consistent with this tendency, a publication during review
observed rare pattern responses in mouse V1 in cells with
bidirectional tuning, and foundmore prevalent pattern responses
in higher visual areas (Juavinett and Callaway, 2015). However,
it is not known if there is a specific area for pattern integration
in the mouse analogous to primate MT. In line with our finding
of pattern integration, we have previously reported speed-tuned
neurons in mouse V1 (Roth et al., 2012) and highly specific
responses to artificial and natural visual scenes (Kampa et al.,
2011).

The higher fraction of pattern selective cells we observed
in mouse V1might also be explained by our recording technique,
two-photon calcium imaging, which provides a less biased
sample of neuronal response types compared with previous
studies that exclusively used electrophysiological techniques.

Interestingly, some degree of pattern integration in V1 has
been reported in awake primates (Guo et al., 2004) where 9%
of selective neurons were identified as classical pattern cells. It
is therefore possible that the elevated percentage of pattern cells
we observed could be related to differential level of anesthesia
or different type of anesthetics used, or due to a species-specific
reaction to anesthesia. It would be of interest to test if this
proportion of pattern cells will be higher if tested in V1 in
awake mice.

Complex Responses within the Unclassified
Population
A final 26% of cells remained in our analyzed population of
responsive and selective neurons, that could not be classified
as either component or pattern cells (Figure 5). The lack of
definitive classification of these neurons was not due to poorly
tuned or weak responses—these neurons responded robustly and
selectively to both gratings and plaid stimuli (Figures 1D, 2A, 5).
Responses in this population were just as reliable as classified
neurons (Figure 5C) and just as tuned as the pattern selective
population (Figure 5D).

In previous studies, unclassified neurons were explained
simply by their broad tuning (Movshon et al., 1983; Gizzi
et al., 1990). However, since the majority of our unclassified
population were well-tuned and reliable, the degree of stimulus
tuning does not explain the presence of these neurons (Figure 5).
Our stimulus protocol limited the ability to determine neuronal
direction selectivity, however our analysis paradigm would not
fail to classify pattern and component cells solely based on this
property. It has also been shown that the degree of pattern
selectivity of a neuron cannot be predicted by directional
selectivity (Guo et al., 2004; Baron et al., 2007; but see Tinsley
et al., 2003).

A prominent feature of responses in this population was the
poor relationship between grating and plaid responses. Non-
pattern, non-component neurons presented a wide range of
complex responses that were not predictable by small numbers
of rules operating on a single-neuron level (Figure 5B). Non-
component, non-pattern neurons could therefore represent a
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population of cells that encode more complex visual scenes
(Kampa et al., 2011).

Since existing feedforward models for visual integration
suggest that two neurons with similar responses to a particular
stimulus class will also have similar responses to more complex
stimuli, responses within this population were not consistent
with feedforward convergence of component-selective inputs.

In mice, a population of direction-selective retinal ganglion
cells project to the dLGN, and some of these signals are relayed
to V1 (Barlow et al., 1964; Cruz-Martín et al., 2014) suggesting
the possibility that pattern cells could be formed by integrating
these inputs. However, cells that integrate inputs from direction-
selective RGCs would be responsive and selective to grating
components, and exhibit either component-cell responses (if they
suffer from the aperture problem, and respond to individual
drifting grating components of a plaid); and perhaps also respond
to the optimally drifting plaid, if they are able to respond to
the drifting nodes formed between overlapping gratings in the
plaid stimuli. However, a missing mechanism would be required
to explain the facilitating pattern-selective and pattern-dominant
responses exhibited by many neurons.

Consequently, our results suggest that cellular responses to
complex visual patterns are dominated by network interactions,
rather than feedforward influences. It is possible that feedback
projections from higher visual areas contribute to the complex
selectivity we observed, but considering the dominance of local
inputs in terms of proportion of synaptic input, it is probable
that local recurrent interactions strongly shape complex plaid
selectivity (Muir and Kampa, 2012).

Various Degrees of Pattern Motion Integration
Occur Locally in V1
Several lines of evidence indicate that diverse degrees of pattern
motion integration occur locally in V1 and are mediated by the
specific micro-circuitry within this area.

Firstly, a broad range of pattern integration is visible in mouse
V1. We described cells that encode individual components
(component-selective cells) as well as neurons that responded
predominantly to visual patterns (pattern-selective cells). But
in addition to these classes, we also observed a proportion of
responsive and reliable unclassified cells that could stand as
intermediates in the process of plaid integration.

Simple integration of tuned responses can explain some
of this variation (Figure 6). Component cell responses are
intuitively built by neurons that have sharp tuning to a single
orientation (Figure 6B). The response of such a component
neuron to drifting gratings follows the input orientation tuning,
and the neuron responds to drifting plaids that contain the
appropriate grating component. A possible intermediate is shown
in Figure 6C, that responds to two orientations of grating stimuli.
This class of responses could be produced by neurons that
integrate two narrow-bandwidth input components tuned to two
different directions.

Secondly, integration of the orthogonal components of visual
stimuli is reflected in the broader tuning of pattern selective cells
compared with neurons that respond to the component gratings
alone (Figure 4B). This can be explained by the integration

FIGURE 6 | Pattern integration and hypothesized sub-network

circuitry. (A) Schematic network diagram showing excitatory sub-networks

integrating information from two grating components. (B–D) Simple integration

of tuned input components (shaded areas) can produce a wide range of

responses to both gratings (solid curves) and plaids (dashed curves).

(B) A classical component cell produced by a single narrow-bandwidth

orientation- or direction- tuned input (orange shading). Direction-tuned input

and responses are shown over 180◦ of orientation, to match our experimental

paradigm. Shown to the right is a neuron with this class of response (see also

trace I in Figure 1D). (C) An example cell that integrates two

narrow-bandwidth input components tuned to two different directions (orange

and green shading). Shown to the right is a neuron with this class of response.

(D) Integration of broadly tuned input components (orange and green

shading), produces a broadly tuned “pattern” cell response to drifting gratings

(blue curve) and plaid (red curve); shown to the right is a neuron with this class

of response (see also pattern classified cell c2 in Figure 1D).

of broadly tuned inputs (Figure 6D). Broad tuning of input
components, combined with integration within the network,
produces a broadly tuned response to drifting gratings with a
peak at the preferred orientation that matches the preferred drift
direction of a plaid stimulus.

Finally, pattern integration has been shown to be supralinear
in primates (Rust et al., 2006). Consistent with this observation,
we find pattern-classified cells to respond with significantly
more facilitation to drifting plaids compared with the
component-classified cells (Figure 4A). In addition, we observed
a population of pattern-dominant cells that were both strongly
facilitating (Figure 4A) and strongly selective over plaid stimuli
(Figure 4C). Due to the dynamics and response saturation of
calcium indicators, we cannot determine whether responses
are supralinear in our experimental data. However, indicator
saturation will in general reduce the effect of supralinear
responses, leading to a reduction in the apparent amplitude
of the strongest responses. As measured by our modulation
index (MI), response saturation will tend to decrease its absolute
magnitude, pushing MI toward zero. Therefore, the facilitation
we observed in response to plaid stimuli would, if anything, be
stronger if the firing rates of the neurons were measured directly.

The presence of significant facilitation might be explained
by amplification due to highly recurrent excitatory connectivity
within the sub-networks in the superficial layers of cortex
(Douglas et al., 1989; Binzegger et al., 2004; Muir and Kampa,
2012) and also by dendritic mechanisms in cortical neurons
leading to supralinear integration of synaptic inputs (Williams
and Stuart, 2002; Gulledge et al., 2005). Response amplification
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has recently been shown to be an important feature of the
cortical response in mouse V1 (Lien and Scanziani, 2013; Li et al.,
2013a,b). Here we propose that the structure of local cortical
connections might tune the selectivity of that amplification.

Pattern Motion Integration by Local Microcircuits
The integration of visual patterns observed in mouse V1
reveals a footprint of local sensory integration by specific sub-
network connectivity. The integration of different component
responses into a pattern selective output has been demonstrated
in converging feedforward models for primate visual cortex
(Rust et al., 2006). In rodents, it has been shown that the
local organization into sub-networks is tuned for integration
of different sensory features (Kampa et al., 2006) (Figure 6A).
Neurons composed into an inter-connected sub-network in layer
2/3 receive common input from layer 4 (Yoshimura et al., 2005)
and encode collective stimulus properties such as the orientation
of drifting gratings (Ko et al., 2011; Cossell et al., 2015). Multiple
stimulus components could then be integrated by subsequent
sub-networks to provide highly-specific responses to complex
combinations of visual stimuli (Kampa et al., 2006; Muir and
Kampa, 2012). This proposal is illustrated in Figure 6A. Under
this scheme, two recurrent sub-networks, in layer 2/3 of V1,
would receive feedforward weak orientation-tuned inputs, which
are amplified through recurrent excitatory connections within
each sub-network (orange and green neurons). A third excitatory
sub-network shares some connections with the orange and green
sub-networks, and so integrates both these component inputs
with similar recurrent amplification (joint orange and green
neurons). A similar connectivity scheme has been found to exist
across layers in rodent neocortex (Kampa et al., 2006).

We have previously shown that neurons in mouse V1 are
highly tuned to natural and artificial visual scenes (Kampa et al.,

2011). While most neurons responded specifically to a particular
visual scene, a minority of the neurons also encoded information
about multiple scenes. Together, these findings suggest that
individual components of a visual scene are encoded by
specific sub-networks. Pattern integration occurs in overlapping
sub-networks that receive recurrent inputs comprising several
individual components (Figure 6A). Integration based on sub-
network connectivity could support a wide range of response
types, ranging from component to pattern cells as we show
here for mouse V1. However, it is likely that this mechanism
is not restricted to visual cortex since similar connectivity
schemes have been found across cortical layers and in several
cortical areas (Song et al., 2005; Yoshimura et al., 2005; Kampa
et al., 2006; Otsuka and Kawaguchi, 2008, 2011; Brown and
Hestrin, 2009; Anderson et al., 2010; Perin et al., 2011). Sub-
network connectivity could therefore be a general mechanism for
information integration in cortex.
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