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The neocortex is a layered sheet across which a basic organization is thought to
widely apply. The variety of spontaneous activity patterns is similar throughout the
cortex, consistent with the notion of a basic cortical organization. However, the basic
organization is only an outline which needs adjustments and additions to account for
the structural and functional diversity across cortical layers and areas. Such diversity
suggests that spontaneous activity is spatially diverse in any particular behavioral
state. Accordingly, this review summarizes the laminar and areal diversity in cortical
activity during fixation and slow oscillations, and the effects of attention, anesthesia
and plasticity on the cortical distribution of spontaneous activity. Among questions that
remain open, characterizing the spatial diversity in spontaneous membrane potential
may help elucidate how differences in circuitry among cortical regions supports their
varied functions. More work is also needed to understand whether cortical spontaneous
activity not only reflects cortical circuitry, but also contributes to determining the
outcome of plasticity, so that it is itself a factor shaping the functional diversity of the
cortex.
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Introduction

The neocortex is a layered sheet across which a basic organization is thought to widely apply
(Douglas et al., 2003). Excitatory and inhibitory connectivity within each layer is local (Perin et al.,
2011; Levy and Reyes, 2012), and excitatory information flows into layer 4 of the cortex, to the
superficial layers, then the deep layers (Thomson and Lamy, 2007). The local connectivity within
a layer and vertical information flow across layers enables the heuristic of a columnar unit of
computation repeated across the cortical sheet, historically termed a ‘‘minicolumn’’.

However, the basic organization is only an outline which needs adjustments and additions.
For example, layer 6 also receives direct thalamic input, such that its latencies in the cat primary
auditory cortex can be shorter than those of the superficial layers (Atencio et al., 2009), and even
comparable in rodent primary auditory and somatosensory cortices to those of layer 4 (Sugimoto
et al., 1997; Constantinople and Bruno, 2013). The modifications to the basic organization must
vary spatially, because cortical areas differ in cytoarchitecture, and receive different inputs (Markov
et al., 2014; Oh et al., 2014). Some areas may deviate substantially from the basic organization.
For example, the presence of layer 4 in motor cortex is debated (Kaneko, 2013). The idea of
a basic organization is thus widely acknowledged, but its most fruitful definition and range
of applicability remain open (Harris and Shepherd, 2015). Computational models support the
notion that varied repetition of a basic organization can explain a wide range of cortical functions
(Buonomano and Merzenich, 1995; Ardid et al., 2007; Serre et al., 2007; Bengio et al., 2015).
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Spontaneous activity is neural activity that is present
even when all of a set of conventional variables are held
constant, as is typically done in a reference or baseline
state. It indicates initial variability, which together with
the dynamics determines response variability (Kisley and
Gerstein, 1999; Curto et al., 2009), and may influence
plasticity (Legenstein et al., 2008; Toyoizumi et al., 2013;
Chaisanguanthum et al., 2014). Spontaneous activity depends
on behavioral state, and is present except in the most
pathological conditions (Buzsáki, 2006; Wang, 2010; Ganzetti
and Mantini, 2013). Across wide swaths of cortex, activity
observed electroencephalographically (EEG) or via local field
potential (LFP) in a quieter behavioral state (which may serve
as a baseline state) often exhibits lower frequency power, which
diminishes in a more active behavioral state; there may also
be increased higher frequency power in the more active state
(Buzsáki, 2006; Harris and Thiele, 2011). For example, the
preponderance of slow oscillations (0.5–4 Hz) in deep non-
rapid-eye-movement sleep decreases and is accompanied by
increased alpha power (8–12 Hz) when a person awakens
(Brown et al., 2010). Analogously, alpha power often decreases
upon sensory stimulation or movement initiation (Buzsáki,
2006), while gamma power (30–80 Hz) often increases with
alertness, visual stimulation or attention (Gray et al., 1989;
Fries et al., 2001; Buzsáki, 2006; Harris and Thiele, 2011).
Because the EEG and LFP represent many neurons, the
decrease in lower frequency power suggests that sensory
stimulation or attention desynchronizes the lower frequency
‘‘noise’’ correlations of nearby neurons, as has been widely
observed (de Oliveira et al., 1997; Fries et al., 2001; Kohn
and Smith, 2005; Cohen and Maunsell, 2009; Mitchell et al.,
2009; Oram, 2011; Smith and Sommer, 2013; Tan et al.,
2014). Crucially, models of a small patch of a cortical layer,
based on data from cortical slices (Figure 1A), have a
robust regime in which external excitation shifts the network
from synchrony to asynchrony (Figure 1B) and increases
the frequency at which synchrony peaks (van Vreeswijk
and Sompolinsky, 1998; Brunel, 2000; Mehring et al., 2003;
Renart et al., 2010; Tan et al., 2014). Thus, key aspects of
a common pattern in the variety of spontaneous activity
occurring with shifts in behavioral state are captured by a basic
organization.

However, because the basic organization needs modification
according to cortical area, spontaneous activity is presumably
spatially diverse, even within a behavioral state. For example,
primate prefrontal cortex (PFC) neurons have more spines than
primary visual cortex (V1) neurons (Elston, 2000). By assuming
that spine number indicates recurrent connectivity strength,
Chaudhuri and colleagues argue that PFC and V1 spontaneous
activity differ (Chaudhuri et al., 2015). This possibility can be
understood by noting that a variant of the basic organization
with stronger recurrent connections and more slowly decaying
synapses suggested by prefrontal N-methyl D-aspartate receptor
2B subunits (Wang et al., 2013) exhibits the shift from synchrony
to asynchrony, but with autocorrelations in the asynchronous
state that decay more slowly (Figure 1C; Chaudhuri et al., 2015;
Harish and Hansel, 2015).

Accordingly, this review surveys laminar and areal diversity
in cortical spontaneous activity that might be expected
because there is structural and functional diversity across the
cortex. Behavioral state affects spontaneous activity, so we
use it to structure our comparisons. We shall be interested
in the cortical distribution of spontaneous activity within
particular behavioral states, as well as how the distribution
is affected by shifts in behavioral state. We begin with
broadly-defined behavioral states that are nonetheless sufficiently
specified for some spatial comparisons: fixation, an alert
state in which gaze is held steady; as well as quieter
states of sleep and anesthesia in which slow oscillations are
present. Fixation defines a behavioral state broadly, because
it can be performed in various attentional contexts. Hence,
we will go on to consider more refined behavioral state
specifications by examining the effects of attention, anesthesia
and plasticity on the cortical distribution of spontaneous
activity.

Laminar and Areal Diversity of
Spontaneous Activity During Fixation

Spontaneous activity in macaque V1 varies by layer during
fixation. It alternates between low and high, being low in layers
2/3, 4B and 5, and high in layers 4A, 4C and 6 (Poggio et al.,
1977; Snodderly and Gur, 1995; Gur et al., 2005). Additionally,
layer 2 has more spontaneous activity than layer 3 (Gur and
Snodderly, 2008). Spontaneous activity is affected by ambient
light level (Kayama et al., 1979), but its laminar pattern is similar
in dark and light (Snodderly and Gur, 1995). Stimulus-evoked
cross-correlations vary with V1 layer, but spontaneous cross-
correlations do not (Hansen et al., 2012).

The expectation that spontaneous activity is spatially diverse
is based in part on functional differences among cortical areas,
which may therefore indicate features useful for characterizing
the spatial diversity of spontaneous activity. A feature that
functionally distinguishes cortical areas is the time scale over
which a stimulus affects subsequent activity. Sensory cortical
responses prominently decay nearly to baseline within several
hundred milliseconds after the end of a stimulus, although
appropriate tests show that longer time scales are also present
(Fishman et al., 2001; Super et al., 2001; Micheyl et al., 2005).
In contrast, the firing rates of prefrontal neurons can remain
elevated for several seconds after the end of a stimulus, during the
delay period of a working memory task (D’Esposito and Postle,
2015), with many features of the delay period activity compactly
captured by attractor networks (Wimmer et al., 2014).

Are the different time scales that functionally distinguish
cortical areas reflected in spontaneous activity? The
autocorrelation of spontaneous activity decays more slowly
in the frontal eye field (FEF) than in visual area V4 (Ogawa and
Komatsu, 2010). Across neurons in the lateral parietal area (LIP),
the time scale of autocorrelation decay correlates positively with
the selectivity of delay period activity for target location (Nishida
et al., 2014). Furthermore, the autocorrelation of fluctuations of
spontaneous activity from the trial average decays more slowly
from the medial temporal area (MT) to LIP to the lateral PFC
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FIGURE 1 | Variant models of a basic organization show variants of a common behavior in which external excitation shifts the network from
a synchronous to an asynchronous state. (A) Basic organization of models of a small patch of a cortical layer. The model networks contain recurrently
connected excitatory and inhibitory neurons which receive external excitation. (B) Rasters indicating spike times of neurons from a model network (van
Vreeswijk and Sompolinsky, 1998; Brunel, 2000; Mehring et al., 2003; Renart et al., 2010). The neurons show some sychronization at low external
excitation, but become asynchronous at high external excitation. (C) Rasters indicating spike times of neurons from a variant model network with stronger
recurrent connections and more slowly decaying synapses (Harish and Hansel, 2015). Like the model network in (B), the neurons of the variant show
some synchronization at low external excitation, but become asynchronous at high excitation. However, this variant model network differs from the model
network in (B), because each neuron of this variant in the asynchronous state has periods of sustained firing such that the autocorrelation of the neuron
decays more slowly.

(LPFC) and orbitofrontal cortex (OFC) to the anterior cingulate
cortex (ACC; Murray et al., 2014). Across LIP, LPFC and ACC,
the time scale over which the autocorrelation of fluctuations
decays correlates positively with the time scale over which a
reward in one trial influences neural activity in subsequent trials
(Murray et al., 2014). The variety of time scales may be due to

each area’s position in the cortical hierarchy and factors intrinsic
to each area (Murray et al., 2014; Chaudhuri et al., 2015).

It is important to keep in mind that the context in which
fixation is performed affects spontaneous activity (Andersen
et al., 1990; Colby et al., 1996). However, the details of the above-
mentioned studies indicate that the laminar differences in V1 and
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the slower decay of autocorrelations at higher cortical levels are
robust across fixation in several contexts.

Laminar and Areal Diversity of Slow
Oscillations

Cortical slow oscillations are present during deep non-rapid-eye-
movement sleep (Steriade et al., 2001; Buzsáki, 2006), ketamine
and urethane anesthesia (Fuster et al., 1965; Fox and Armstrong-
James, 1986; Metherate and Ashe, 1993; Steriade et al., 1993),
and in cortical slices (Sanchez-Vives and McCormick, 2000).
During slow oscillations, the EEG exhibits large amplitude
fluctuations and the membrane potentials of cortical neurons
alternate between depolarized ‘‘up’’ states and hyperpolarized
‘‘down’’ states (Fuster et al., 1965; Metherate and Ashe, 1993;
Steriade et al., 1993). Increased activity during a down-to-up
transition first occurs in layer 5 in cortical slices (Sanchez-
Vives and McCormick, 2000), in the deep layers of the
auditory cortex of urethane-anesthetized rats (Sakata and Harris,
2009) and the suprasylvian areas of ketamine-anesthetized
and sleeping cats (Chauvette et al., 2010). In the sensory-
motor areas of urethane-anesthetized mice slow oscillations
are more greatly attenuated by suppressing the deep than
the superficial layers (Beltramo et al., 2013). The prominence
of the deep layers in slow oscillations in slices and in vivo
suggests they are generated by common mechanisms, but the
extent to which this is the case remains unclear (Crunelli
et al., 2014). In contrast to the aforementioned studies,
current source density analyses of recordings during sleep
from frontal and parietal cortical areas of patients with drug-
resistant focal epilepsy suggest that the superficial cortical layers
are important for generating slow oscillations (Csercsa et al.,
2010).

There is considerable diversity in the synchrony between
slow oscillations in different cortical areas within the same
hemisphere of urethane-anesthetized mice, although bilaterally
corresponding regions are more synchronous (Mohajerani et al.,
2010). Such diversity is also present during and varies over the
course of human sleep, with fewer cortical regions exhibiting
slow waves later into sleep (Nir et al., 2011). Asynchrony
may be due to a consistent non-zero phase difference, or a
lack of any consistent phase relationship. Both possibilities
occur. In ketamine-anesthetized guinea pigs, slow oscillations
in corresponding frequency regions of different tonotopic areas
are coherent, having consistent phase differences that parallel
the sound-evoked latencies of the various areas, whereas slow
oscillations of different frequency regions are incoherent (Farley
and Noreña, 2013). Slow oscillations thus resemble spontaneous
gamma activity in reflecting auditory tonotopic organization
(Fukushima et al., 2012).

Spontaneous activity can also distinguish between tonotopic
and non-tonotopic areas, as the tonotopic primary auditory
and non-tonotopic dorsoposterior (DP) fields of ketamine-
anesthetized mice are distinguished by prominent spontaneous
pulses in DP that can be entrained by sound (Stiebler
et al., 1997; Joachimsthaler et al., 2014). Slow oscillations in
ketamine-anesthetizedmice further distinguish the PFC from the

primary visual, somatosensory, and motor cortices, as PFC slow
oscillations have faster down-to-up state transitions, higher firing
rates during up states, andmore regular cycles (Ruiz-Mejias et al.,
2011).

Modulation of Spontaneous Activity by
Attention and Anesthesia

Each previous section focused on spontaneous activity within a
particular broadly-defined behavioral state. Since spontaneous
activity is modulated by behavioral state, it is also interesting
to compare its distribution across behavioral states. Accordingly
we turn now to the effects of varying attentional context and
anesthetic depth on the distribution of spontaneous activity in
the cortex.

An animal may perform a reference behavior such as fixation
following various cues, each of which sets an attentional context
by signaling information about the task to be performed
after the reference behavior. The neural activity during the
reference behavior is conventionally called ‘‘spontaneous’’ or
‘‘baseline’’ activity (Luck et al., 1997; Chawla et al., 1999;
Recanzone and Wurtz, 2000). Its distribution can be cue-
dependent. For example, after monkeys viewed a cue indicating a
particular visual location, baseline activity differentially increased
in extrastriate visual neurons selective for the cued location
(Luck et al., 1997; Recanzone and Wurtz, 2000). Similarly, after
human subjects received a cue indicating either motion or
color (Chawla et al., 1999), target location or color (Giesbrecht
et al., 2006), a particular stimulus modality (Saupe et al.,
2009; Langner et al., 2011) or object category (Puri et al.,
2009), baseline activity differentially increased in cortical areas
selective for the cued feature. The tasks in these studies involved
attention as well as working memory, and the cue-dependence
of baseline activity is thought to involve top-down signals
from frontal and parietal cortical areas (Beck and Kastner,
2009).

Anesthetic depth also modulates the distribution
of spontaneous activity. Several anesthetics cause EEG
anteriorization in humans, in which EEG power shifts from
posterior to anterior electrodes (Brown et al., 2010). Propofol
anteriorization occurs mainly in the alpha range (Feshchenko
et al., 2004; Purdon et al., 2013). Propofol has been proposed
to increase anterior alpha power by potentiating GABAergic
inhibition in the frontal thalamocortical network, and to decrease
posterior alpha power by inhibiting the hyperpolarization-
activated current Ih in the posterior thalamic network (Vijayan
et al., 2013). Isoflurane, sevoflurane and halothane act like
propofol on the model and were accordingly predicted to cause
alpha anteriorization (Vijayan et al., 2013). Sevoflurane does
cause the predicted alpha anteriorization, but with a theta
coherence not observed with propofol (Akeju et al., 2014).
The spatial modulation of spontaneous activity by isoflurane
anesthesia has been studied in ferrets (Sellers et al., 2013).
Spontaneous LFP in V1 of awake ferrets in a dark room
exhibited a spectral peak near 18 Hz in the deep layers, which
shifted towards 10 Hz with increasing isoflurane concentration.
In comparison, spontaneous LFP in the PFC exhibited increased
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power at all frequencies in all layers, and developed a spectral
peak near 10 Hz in layer 4 and the deep layers with increasing
isoflurane concentration. At the highest concentration the 10 Hz
peak was abolished in V1 but sustained in the PFC, a pattern
reminiscent of alpha anteriorization in humans. Anteriorization
and the diversity of autocorrelation time scales (discussed in the
section on fixation) both indicate differences between occipital
and frontal areas, but it remains to be understood whether they
are due to the same differences in circuitry.

Modulation of Spontaneous Activity by
Plasticity

Longer lasting circuit modifications are likewise reflected in
spontaneous activity. For example, coincident tone presentation
and nucleus basalis stimulation, which alters auditory cortical
frequency selectivity and enhances perceptual learning (Bakin
and Weinberger, 1996; Kilgard and Merzenich, 1998; Reed
et al., 2011), increases the spontaneous firing rates of neurons
in the primary auditory cortex and posterior auditory field of
pentobarbital-anesthetized rats (Puckett et al., 2007). Increased
spontaneous firing rates have also been observed in PFC
neurons of macaques that had learned a working memory task
(Qi et al., 2011). The increased rates were accompanied by
decreased baseline variability (Qi and Constantinidis, 2012b),
and decreased correlations between fluctuations from the trial-
averaged baseline firing of neurons separated by 0.5–1 mm (Qi
and Constantinidis, 2012a). The changes occurred mainly in
neurons that responded during stimulus-presentation or delay
periods of the learned task. On a much larger spatial scale,
changes in spontaneous correlations between visual and fronto-
parietal areas following visual perceptual learning were revealed
by functional magnetic resonance imaging of the blood-oxygen
level-dependent (BOLD) signal in humans, and demonstrated
to correlate with learning (Lewis et al., 2009). Alterations in
the spatial distribution of spontaneous activity in pathologies
such as spatial neglect following stroke (He et al., 2007b) and
tinnitus following hearing loss (Weisz et al., 2005; Vanneste
et al., 2011) have also been identified, and used to help
develop candidate treatments (He et al., 2007a; Langguth et al.,
2013).

Does the spatial diversity of spontaneous activity merely
reflect structural and functional diversity across the cortex, or
might it also have functional significance, perhaps contributing
to the functional diversity? The latter possibility is hinted at by
evidence that spontaneous activity contributes to determining
the outcome of plasticity. For example, stimulation delivered
in urethane-anesthetized rats to a cortical column increased its
spontaneous correlation with a reference column only if the
stimulation was in sync with spontaneous activity in the reference
column (Erchova and Diamond, 2004), a result consistent with
Hebbian plasticity (Fregnac et al., 1988; Jackson et al., 2006).
Correlations between spontaneous activity characteristics and
the rate or outcome of learning have been demonstrated in
mice (Lin et al., 2013), rats (Arduin et al., 2013), monkeys
(Sadtler et al., 2014), and humans (Freyer et al., 2013), suggesting
some role for spontaneous activity in plasticity. Spontaneous

activity can be an obstacle to long-lasting memories (Fusi
et al., 2005). Reinforcement learning, on the other hand, is
trial-and-error learning requiring variability, and may benefit
from spontaneous activity (Mazzoni et al., 1991). Importantly,
reinforcement learning can be implemented with biologically
plausible models of synaptic plasticity in cortical networks (Bakin
and Weinberger, 1996; Kilgard and Merzenich, 1998; Reynolds
et al., 2001; Legenstein et al., 2008; Gavornik et al., 2009;
Bourjaily and Miller, 2011; Rombouts et al., 2015). It is worth
noting that learning may depend nonmonotonically on neural
variability, and that neural covariability can be key (Legenstein
et al., 2008, 2010). Intriguingly, a model incorporating a learning
rule proposed to explain shifts of excitation and inhibition
reported in a reinforcement learning paradigm (Froemke et al.,
2007; Vogels et al., 2011) suggests that patterned spontaneous
activity can stabilize memories (Litwin-Kumar and Doiron,
2014).

Summary and Future Directions

Let us summarize with an eye towards avenues for exploration.
We have seen that cortical spontaneous activity is spatially
diverse even within a behavioral state, a reflection of structural
and functional diversity across the cortex. We noted theoretical
proposals for the synaptic and intrinsic mechanisms underlying
the diversity in function and spontaneous activity, which has
been surveyed to date largely by observations of extracellular
electromagnetic fields or blood-oxygenation. Further tests of
the models are needed, and may be provided, for example, by
intracellular recordings of membrane potential. During fixation,
membrane potential in macaque V1 is far from spike threshold
with non-Gaussian fluctuations (Tan et al., 2014). In contrast,
some models of frontal areas predict that membrane potential
hovers near spike threshold during fixation (Wang, 1999;
Lundqvist et al., 2010; Vijayan et al., 2013; Chaudhuri et al.,
2015; Harish and Hansel, 2015), resembling that observed in
awake, but non-behaving cats (Steriade et al., 2001). Tests of
such possible differences in membrane potential between V1
and frontal areas during fixation would help us understand how
differences in circuitry among cortical regions supports their
varied functions.

We also saw that behavioral state shifts and plasticity cause
momentary or longer-lasting circuit changes that are reflected
by the spatial distribution of spontaneous activity. Indeed, it is
because spontaneous activity is affected by behavioral state and
cortical location that this review has been structured according
to states, such as fixation by behaving macaques, that are
probably sufficiently specified for the diversity due to cortical
location to be reproducibly observed. With respect to further
characterization of the spatial diversity by intracellular recording
of membrane potential, McGinley and colleagues have recently
performed such recordings in mice trained to perform tone
detection (McGinley et al., 2015). They show that measurements
of pupil diameter characterize behavioral state sufficiently to
predict when task performance is best, so trained mice may
provide another valuable experimental paradigm in which
behavioral state can be sufficiently specified for investigating
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spatial diversity in spontaneous activity. Interestingly, the mice
performed best when spontaneous membrane potential in the
auditory cortex was relatively hyperpolarized (McGinley et al.,
2015), resembling that in V1 during successful fixation by
macaques (Tan et al., 2014).

Finally, we noted that spontaneous activity and the associated
response variability could contribute to determining the outcome
of plasticity. Neuromodulators like acetylcholine therefore
perhaps affect plasticity not only by gating it (Gu, 2002;
Chubykin et al., 2013; Chun et al., 2013), but also by modulating
spontaneous activity and response variability (Zinke et al.,
2006; Goard and Dan, 2009; Zhou et al., 2011). There is
evidence that variability is needed for or enhances some forms

of motor learning in people (Sans-Muntadas et al., 2014;
Taylor and Ivry, 2014) and song birds (Woolley and Kao,
2015). Consequently, more work seems warranted to understand
whether the variability associated with cortical spontaneous
activity has a role in cortical plasticity, so that it is itself a factor
shaping the functional diversity of the cortex.
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