1' frontiers
in Neural Circuits

EDITORIAL
published: 29 September 2015
doi: 10.3389/fncir.2015.00051

OPEN ACCESS

Edited and reviewed by:
Claude Desplan,
New York University, USA

*Correspondence:
Davide Zoccolan
zoccolan@sissa.it

Received: 30 July 2015
Accepted: 14 September 2015
Published: 29 September 2015

Citation:

Zoccolan D, Cox DD and Benucci A
(2015) Editorial: What can simple
brains teach us about how vision
works. Front. Neural Circuits 9:51.
doi: 10.3389/fncir.2015.00051

®

CrossMark

Editorial: What can simple brains
teach us about how vision works

Davide Zoccolan ', David D. Cox? and Andrea Benucci®

" Visual Neuroscience Lab, International School for Advanced Studies, Trieste, Italy, ? Department of Molecular and Cellular
Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA, ° Laboratory for Neural Circuit and Behavior,
RIKEN Brain Science Institute, Wako City, Japan

Keywords: rodent, development, motion processing, object recognition, illusory contours

Vision is the process of extracting behaviorally-relevant information from patterns of light that
fall on retina as the eyes sample the outside world. Traditionally, non-human primates have been
viewed by many as the animal model-of-choice for investigating the neuronal substrates of visual
processing, not only because their visual systems closely mirror our own (e.g., Orban, 2008; Nassi
and Callaway, 2009 for a review), but also because it is often assumed that “simpler” brains lack
advanced visual processing machinery. However, this narrow view of visual neuroscience ignores
the fact that vision is widely distributed throughout the animal kingdom, enabling a wide repertoire
of complex behaviors in species from insects to birds, fish, and mammals.

Recent years have seen a resurgence of interest in alternative animal models for vision research,
such as rodents (see Huberman and Niell, 2011; Zoccolan, 2015 for a review). This resurgence is
partly due to the availability of increasingly powerful experimental approaches (e.g., optogenetics
and two-photon imaging) that are challenging to apply to their full potential in primates.
Meanwhile, even more phylogenetically distant species such as birds, fish, and insects have long
been workhorse animal models for gaining insight into the core computations underlying visual
processing (see Baier, 2000; Bilotta and Saszik, 2001; Borst et al., 2010; Aptekar and Frye, 2013 for
a review ). In many cases, these animal models are valuable precisely because their visual systems
are simpler than the primate visual system. Simpler systems are often easier to understand, and
studying a diversity of neuronal systems that achieve similar functions can focus attention on those
computational principles that are universal and essential.

This Research Topic provides a survey of the state of the art in the use of non-primate models
of visual functions. It includes original research, methods articles, reviews, and opinions that
exploit a variety of animal models (including rodents, birds, fishes and insects) to investigate
visual function. The experimental approaches covered by these studies range from psychophysics
and electrophysiology to histology and genetics, testifying to the richness and depth of visual
neuroscience in non-primate species. Below, we briefly summarize the contributions to this
Research Topic.

Rodent Studies

Roughly half of the articles in this Research Topic (6 research studies and 4 reviews) focus on the
visual system of two rodent species more commonly used as laboratory animals: rats and mice.
Following a trend that has been established over the past 6-7 years, the mouse studies investigate
tuning properties of visual neurons in low-level visual centers through in-vivo electrophysiology
and, in one case, genetic manipulation (LeDue et al, 2013; Liu et al, 2014), while the rat
studies explore higher-level perceptual functions (such as pattern discrimination) through visual
psychophysics and, in one case, in-vivo neurophysiology (Meier and Reinagel, 2013; Reinagel, 2013;
Rosselli et al., 2015; Vermaercke et al., 2015). The reviews focus on the role of rats and mice as
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models of development and plasticity of the visual system
(Bonaccorsi et al., 2014; Priebe and McGee, 2014), and on the
comparison among the visual cortical organizations of rodents,
primates and other species (Homman-Ludiye and Bourne, 2014;
Laramée and Boire, 2015).

LeDue et al. (2013) investigate the stimulus-dependence
properties of contrast adaptation in mouse primary visual cortex
(V1). When a high-contrast stimulus is shown even for a
few seconds, the response amplitude of V1 primate neurons
to subsequent stimuli is weakened. LeDue et al., report the
same stimulus-specificity in mouse V1. This observation opens
the possibility that network, synaptic, and intrinsic cellular
mechanisms contributing to contrast adaptation operate in
mouse V1 in a similar way as in higher mammals.

Liu et al. (2014) present a paper on mouse superior colliculus
(SC) and take full advantage of transgenic technologies. In
particular, the authors study the receptive fields (RFs) of SC
neurons. Such RFs are shaped by converging retinal on- and off-
pathways, guided by molecular guidance cues (e.g., EphAs and
ephrin-As). In addition to these cues, retinal function also plays
a critical role. Knockout mice where retinal activity is altered
during development (nAChR-B2—/—) have SC neurons with
severely disrupted direction and orientation selectivity. Liu et al.,
show that knocking out guidance cues (ephrin-A knockout) has
very little impact on the RFs, making them just slightly larger—an
elegant example of how transgenic technologies can help dissect
the relative contribution of activity-dependent mechanisms and
genetic programs.

In rats, Meier and Reinagel (2013) investigate whether the
detection of a centrally-presented grating is similarly affected
in rats and humans by the concomitant presentation of two
flanking gratings. They report that, in both species, the flankers
with the greatest impact on target detection are those that are
collinear to the target (i.e., they are located and oriented to sit
along a virtual line passing through the three stimuli). However,
while collinear flankers maximally impair detection in rats, they
maximally improve it in humans. This implies that rats, like
humans, are sensitive to higher-order configurations of oriented
elements, but the sign of this phenomenon is the opposite in the
two species. This raises intriguing questions about differences
between neuronal mechanisms that, in rodents and primates,
underlie spatial integration of visual features, spatial attention
and center-surround stimulus interactions.

In a second study, Reinagel (2013) investigates whether
visual sensory decisions in rats are constrained by the speed-
accuracy trade-off that is typical of primate vision. The author
reports that rat accuracy in discriminating static images increases
with reaction time. Additionally, accuracy and speed are both
modulated by task difficulty and the penalty associated with
an incorrect response. This represents an interesting basis for
comparing the dynamics of perceptual decisions in rodents and
primates, and provides useful insights for effectively training rats
in visual discrimination tasks.

Rosselli et al. (2015) also investigate the impact of stimulus
discriminability on rat pattern vision, but focus on the difference
between the perceptual strategies underlying the recognition of
structurally similar vs. dissimilar objects across view changes (i.e.,

variations in position, size and orientation). They report that the
pattern of diagnostic features underlying the discrimination of
highly similar objects are more scattered, more view-dependent,
and more subject dependent, as compared to those found in
a previous study using more dissimilar disciminanda (Alemi-
Neissi et al, 2013). These findings suggest that in rats, as
in primates, transformation-tolerant recognition can flexibly
rely on either view-invariant representations of distinctive
object features or view-specific representations that are acquired
through exposure to multiple object views.

Rat pattern vision is also the topic of the study of Vermaercke
et al. (2015), who compare the discriminability of different pairs
of visual shapes at a behavioral level with their discriminability
at the neuronal level. The authors report that neuronal
discriminability correlates well with behavioral discriminability
only in the extrastriate visual cortical areas that are lateral to
primary visual cortex (V1), but not in V1 itself (where, instead,
they find a good correlation with shape discriminability at the
pixel level). This suggests that rat lateral visual cortex represents
behaviorally relevant shape features, in a way that could be
homologous to the primate ventral stream.

Two reviews focus on the plasticity of the rodent visual system
during development (Priebe and McGee, 2014) and in adulthood
(Bonaccorsi et al., 2014). Priebe and McGee (2014) comment
on some of the major distinctive features of the mouse early
visual system: from the retina to the primary visual cortex. They
then delve into the most studied form of experience-dependent
plasticity in the visual cortex: ocular-dominance (OD) plasticity.
Activity-dependent changes in OD patterns during the critical
period have been observed in all mammals and mice are no
exception. This review highlights the key genetic mechanisms
involved, with special attention to the role of inhibition during
the narrow critical period (P20-32) of plasticity.

Bonaccorsi et al. (2014) provide a comprehensive overview
of amblyopia, with a focus on the role of perceptual learning
as a possible treatment for this condition in both humans and
animals. The authors discuss recent experiments in which adult
amblyopic rats showed a full recovery of visual functions as a
result of extensive training in a spatial frequency discrimination
task. The associated decrease of the inhibition-excitation balance
highlights the fundamental role that the reduction of GABAergic
inhibition can play in restoring cortical plasticity and enhancing
recovery of function in the adulthood. This confirms the
effectiveness of rodent models in the study of visual cortical
plasticity and their role in the development of new therapeutic
approaches.

Two other reviews compare the anatomy, connectivity,
parcellation and hierarchical organization of the visual systems
of different species, with a special focus on primates and rodents
(Homman-Ludiye and Bourne, 2014; Laramée and Boire, 2015).
Homman-Ludiye and Bourne (2014) provide a comparative
review of the studies concerning the cellular, molecular and
genetic mechanisms responsible for visual cortical arealisation
in a variety of mammalian species. The authors draw evidence
from methodological approaches ranging from the application
of anterograde and retrograde tracers, histological mapping
of activity-dependent cellular markers (e.g., immediate-early
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genes), determination of the regulatory events that roughly define
area borders during development (e.g., the graded expression of
transcription factors along brain axes), and understanding of the
molecular guidance cues that refine these borders into the sharp
boundaries of the mature visual cortex. Overall, the review makes
the point that the analysis of multiple species is important to
understand the evolution and development of the mammalian
visual system, with an emphasis on the experimental advantages
that genetically modified mice afford.

In a similar spirit, Laramée and Boire (2015) focus on the
order Rodentia, which represents over 40% of all mammalian
species. This order is incredibly diverse: more than 2000 species
with 1000-fold change in body size and 200-fold change in
brain size. Such diversity within the same order represents a
great opportunity to identify general principles of anatomical
and functional organization. Laramée and Boire (2015) look at
what is preserved and what is lost across species and discuss
such observations in the context of theories of optimality (wiring
economy, small-world networks, etc.), which is a convenient
theoretical framework to reveal the underlying organizational
principles.

“Simpler” Primates Studies

While this Research Topic was mostly focused on non-primate
systems, we included one exception: a review of what is known
about the visual system of a new world monkey, the marmoset
(Solomon and Rosa, 2014). In their review, the authors compare
the “simpler” brain of the marmoset to that of the macaque
monkey, which is still considered the benchmark model for
primate vision. In this thorough and comprehensive review of
the marmoset visual system, Solomon and Rosa (2014) start from
the retina and end in frontal association areas, touching on sub-
cortical structures as well. In this voyage through the marmoset
brain, the authors discuss distinctive functional and anatomical
features that make it a promising alternative to the larger, more
complex macaque brain.

Bird Studies

Object recognition is a topic that is also addressed by two
bird studies, one research article (Wood and Wood, 2015) and
one review (Soto and Wasserman, 2014). Wood and Wood
(2015) follow up on previous work exploring the visual object
recognition abilities of newborn chickens (Wood, 2013). The
authors rely on the innate imprinting behaviors of this species,
in which the chick approaches stimuli that it has previous seen
in its early life. The study reports that the animals are capable of
generalizing from extremely limited exposure to visual objects—
in some cases just a handful of views. These results suggest
that the chicken’s visual system is able to learn robust visual
representations of objects from extremely little training data.
Taking a broader view on avian vision, Soto and Wasserman
(2014) review the large body of work focused on the object
recognition abilities of pigeons. Pigeons have long been known
to exhibit sophisticated visual recognition abilities. The authors
argue that many core components of object recognition behavior

are found across a wide range of vertebrate species, and that birds
represent a fruitful model system for studying these abilities.

Fish and Amphibian Studies

High-level visual functions, such as shape processing and object
recognition, are also addressed by several behavioral studies on
fish in this Research Topic.

The perception of illusory shapes and boundaries is the
subject of two reviews/opinions (Agrillo et al., 2013; Rosa Salva
et al.,, 2014) and one research article (Fuss et al., 2014). Based
on the observation that different groups of teleost fish exhibit
both modal and amodal completion (e.g., perception of illusory
contours, as in the Kanizsa figures), Agrillo et al. (2013) argue
that fish represent an excellent experimental model for studying
the development of gestalt principles of visual perception in
newborn animals. In particular, the authors stress the potential
of investigating such principles in the zebrafish, one of the main
model organisms for the study of neurodevelopmental genetics.

Along these lines, Fuss et al. (2014) present new results
suggesting that bamboo sharks perceive at least some illusory
contour stimuli in a manner similar to how they are perceived
in other non-fish species. Bamboo sharks generalize training
with visual shapes to their equivalent Kanizsa figures, though
results with some illusions, such as Mueller-Lyer figures, are
less clear. These results speak both to the universality of certain
mechanisms of contour perception and to the ability to probe
detailed behavior in a wide range of fish species.

In their review, Rosa Salva et al. (2014) stress the important
advantages of working with fish for comparative studies of
brain evolution. Fish diverged from other vertebrates about
450M years ago, and diversified into a collection of taxa. This
diversification makes fish an excellent model system to study
how recognized homologies have evolved using diverse neural
resources and substrates. The authors discuss a number of
complex visual processing functions in relation to visual illusions,
2nd order motion, perceptual binding, attentional prioritization,
etc. Together, these observations challenge the assumption that a
complex neural circuitry (e.g. an associative cortex) is needed for
adaptive object perception.

Two other behavioral studies investigate object categorization
(Newport et al,, 2014) and spectral sensitivity (Siebeck et al.,
2014) in fish models. Newport et al. (2014) assess the ability of
the archer fish to categorize objects using a range of challenging
psychophysical tasks. While it is difficult to train these fish to
perform some more complicated tasks, such as match-to-sample
and odd-one-out tasks, the fish are able to robustly learn two-
alternative forced choice tasks, providing a powerful window into
the visual abilities of this species.

Siebeck et al. (2014) examine luminance perception in reef
fish, focusing in particular on spectral sensitivity of luminance
vision. They find that, as in many terrestrial vertebrates, long and
medium wavelength cones contribute to luminance perception,
but short wavelength (blue) cones do not.

Finally, one research article uses the retina of an amphibian,
the bullfrog, to study the effect of dopamine on the processing of
visual information (Xiao et al., 2014). Dopamine is synthesized
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and released by interplexiform and amacrine cells in the bullfrog
retina and is known to exert a number of important modulatory
effects on retinal responses. The authors, by systematically
changing the duration of visual stimuli and using an information-
theoretical approach, dissect the complex role of dopamine in the
encoding of stimulus duration.

Insect Studies

The Topic also includes two articles focusing on motion
perception and visual tracking behavior in insect models
(Aptekar et al., 2014; Egelhaaf et al., 2014). Aptekar et al. (2014)
present methods and software for probing the motion processing
system of Drosophila. This work represents just one example of
the high degree of sophistication in stimulus generation and data
analysis that exists for interrogating the visual system in insets.
Finally, in their review, Egelhaaf et al. (2014) take a broader
perspective on motion processing in insects, noting that their
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