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Functional connectivity in in vitro
neuronal assemblies
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Complex network topologies represent the necessary substrate to support complex

brain functions. In this work, we reviewed in vitro neuronal networks coupled to

Micro-Electrode Arrays (MEAs) as biological substrate. Networks of dissociated neurons

developing in vitro and coupled to MEAs, represent a valid experimental model for

studying the mechanisms governing the formation, organization and conservation of

neuronal cell assemblies. In this review, we present some examples of the use of

statistical Cluster Coefficients and Small World indices to infer topological rules underlying

the dynamics exhibited by homogeneous and engineered neuronal networks.

Keywords: functional connectivity, correlation, neuronal network dynamics, in vitro, graph theory, micro-electrode
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Introduction

One of the most fundamental features of a neural circuit is its connectivity since the single
neuron activity is not due only to its intrinsic properties but especially to the direct or indirect
influence of other neurons (Makarov et al., 2005). As recently reviewed by Yuste (2015), the
era of the “neuron doctrine” has faded: thanks to the technological improvements of the multi-
unit recordings, neuronal assemblies can be considered the physiological units of the brain which
generate and sustain the functional properties as well as the dynamical states of the entire system.
Nervous systems are complex networks par excellence, capable of generating and integrating
information from multiple external and internal sources in real time. Neural networks in the brain
should comply with two competing demands, which might also be considered as fundamental
organizational principles: functional segregation and functional integration, enabling both the rapid
extraction of information and the generation of coherent brain states (Sporns et al., 2000). As
confirmed by recent studies reporting structural analyses of brain networks carried out on datasets
describing the cerebral cortex of mammalian animal models (e.g., rat, cat, monkey), cortical areas
were found to be neither completely connected with each other nor randomly linked; instead,
their interconnections show a specific and intricate organization (Sporns, 2011). These dynamic
interactions were extensively studied by Friston and colleagues in 1994 who emphasized the need
to distinguish between functional and effective connectivity (Friston, 1994). Functional connectivity
refers to the correlation between time series from different neurons without any underlying causal
model; by contrast, the effective connectivity refers to the direct influences that one neuronal
system exerts on another, relying on a network model in which different populations appear
structurally connected. During the last years, graph theory and statistical physics provided a
valuable contribution to map the functional links extracted directly from multiple brain areas by
means of their electrophysiological recordings analysis (Sporns, 2002).

Indeed, the possibility to use a valuable but at the same time reduced and simplified experimental
model to understand the functional properties of neuronal networks has been a great breakthrough.
Nowadays, dissociated neuronal cultures coupled to Micro-Electrode Arrays (MEAs) are widely
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used to better understand the complexity of brain networks.
In addition, the use of dissociated neuronal assemblies makes
possible to manipulate and control their connectivity: in other
words, it is feasible to drive the connectivity of a network
and to study how such a topological configuration can shape
the emergent dynamics. Examples of engineered networks
started in 1975 with the pioneering work of Letourneau (1975)
who investigated the role of different adhesion substrates for
promoting the initiation, elongation and branching of the
axons. A great advancement toward the possibility to design
ad hoc neuronal circuits occurred after the work of Kleinfeld
and coworkers who used photoresist technology to pattern
hydrophobic and hydrophilic materials for controlling neuronal
cell attachment (Kleinfield et al., 1988). More recently, by
exploiting the advances in the technology, it has been possible
to design and build engineered networks: in 2007, Macis
et al. (2007) realized a micro-drop deposition system which
guaranteed the controlled deposition of micro-islands of neurons
in correspondence of the microelectrodes. Following a similar
approach in 2012, Marconi et al. (2012) coupled a few neurons
to one microelectrode of a MEA, by designing a sort of regular
lattice. More recently, following the idea that the brain has a
modular structure, several attempts have been done to recreate
in vitro interconnected neuronal assemblies (Kanagasabapathi
et al., 2011; Levy et al., 2012; Bonifazi et al., 2013; Pan et al.,
2015).

In this work, we will review and present to a broad
readership, the commonly used approaches to estimate
functional connectivity in dissociated networks, and which kind
of network topologies modulate the dynamics of dissociated
neuronal ensembles coupled to MEAs. After a brief description
of the commonly used algorithms and of the metrics used
to characterize the connectivity maps, we will describe some
significant results considering both the spontaneous and

FIGURE 1 | MEA and extracellular signals. (A) The activity of a cortical neural network (28DIVs) presents a mix of bursting and spiking activity (top). Applying a

spike detection algorithm, time series are converted into a serial point process (bottom). (B,C) Examples of Micro-Electrode Arrays (MEAs) made up of (B) 60, (C)

4096 electrodes.

stimulus-evoked activity of homogeneous as well as engineered
neuronal networks.

The Use of Micro-electrode Arrays for
Inferring Functional Connectivity

MEAs are a powerful tool for simultaneously monitoring and
acquiring the electrophysiological activity of neural preparations
at many sites (Figures 1A,B). The electrodes embedded in
such devices can record electrophysiological activity in a
non-invasive way (i.e., extracellularly) and therefore, under
proper maintenance conditions, can allow long-term recordings
(i.e., from hours up to months) (Potter and DeMarse,
2001). Currently, commercial available MEAs usually provide
60–120 electrodes with 100–500µm inter-electrode spacing
(Figure 1B), or high-density configurations with thousands of
microelectrodes (4000–10,000) with a spatial resolution of some
tens of micrometers (Figure 1C; Berdondini et al., 2009; Frey
et al., 2009).

The characteristics of these devices allow different studies on
neuronal networks like electrical (Wagenaar et al., 2005) and
chemical manipulation (Pancrazio et al., 2003), and/or physical
segregation in sub-populations (e.g., Levy et al., 2012).

More recently the scientific community is beginning to use
MEAs for characterizing the underlying functional connectivity,
and its interplay with the expressed dynamics (Massobrio
et al., 2015b), especially by exploiting the high-density systems
which allow a more accurate reconstruction of the network
topology (Maccione et al., 2012). The inferred functional
networks are “translated” into simple graphs in which the
nodes are the neurons, and the links are the connections
among the cells. The following methodological sections will
briefly present some of these basic measures and will define
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some strategies aimed at identifying functional connectivity in
neuronal assemblies.

Graph Theory

Graphs are made up of nodes which represent the neurons
and edges which model the connections (morphological or
functional) among the neurons. If we consider the directionality
of the connection (i.e., from a pre- to a post-synaptic neuron),
the graph is named directed, otherwise it is called undirected.
The structure of the graph is described by the adjacency matrix
[often named connectivity matrix (CM)], a square symmetric
matrix of size equal to the number of nodes N with binary
entries. If the element aij = 1, a connection between the node
j to i is present, otherwise aij = 0 means the absence of
connections.

To allow amathematical analysis, the graph, and consequently
the network topology, can be characterized by a large variety of
parameters (Rubinov and Sporns, 2010). In the field of neuronal
networks, the simplest metrics which allow to have a simple
but clear indication of the kind of underling connectivity are
the Node Degree, the Cluster Coefficient and the Average Path
Length (Sporns et al., 2000) which will be briefly described below.

Node Degree: the in-degree (id) and the out-degree (od) of a
single node are defined as the number of incoming (afferent) and
outcoming (efferent) edges respectively, and the total degree (td)
is their sum (Figure 2A, Modules 1 and 2).

td = id+od (1)

High in-degree values indicate neural units influenced by a larger
number of nodes, while high out-degree values show a large
number of dynamic sources. Depending on the node degree
distribution, we can identify three stereotyped graphs: scale-free,
regular, and random (Figure 2B).

Scale-free networks (Figure 2Ba) (Barabasi and Bonabeau,
2003) are characterized by high-connected units called hubs.
Hubs are nodes with a degree at least one standard deviation
above the network mean. Thanks to this peculiarity, hubs play
a significant role on the neural dynamics (Sporns et al., 2007). In
the scale-free network, the probability that a generic node i has k
connections is given by a power law relationship:

p
(

k
)

∝ k−γ (2)

where γ is the characteristic exponent which ranges
experimentally from 1.3 (slice recordings, Bonifazi et al.,
2009) to 2 (fMRI recordings, Eguíluz et al., 2005).

Regular networks (Figure 2Bb) are ordered and characterized
by high segregation values. The integration level of the network
grows by increasing the number of graph units. In this case, the
probability that i has k connections is given by:

p
(

k
)

= c (3)

where c is a constant.

Random networks (Figure 2Bd) show each node with a
different connectivity degree and the probability that a single unit
has k connections is modeled by a Poisson distribution:

p
(

k
)

∝
e−δδk

k !
(4)

where δ is the average connectivity degree of the network. The
random graph has few local connections and therefore it shows
low segregation values. The integration levels of the network,
instead, follow the logarithm of the number of nodes.

A last case is the small-world network (Figure 2Bc): it
shares the same characteristics of regular and random networks,
constituting a sort of composite model. By increasing the
probability p of rewiring, the order of a regular lattice is
disrupted, and when p = 1 a random graph is generated.
Increasing the probability of rewiring, both the integration and
the segregation levels decrease. In a small-world network, the
distance between two nodes grows according to the logarithm of
the number of nodes of the graph (Watts and Strogatz, 1998).

As stated before, to characterize the topological features of
a network, we need some quantitative metrics. Here below,
we introduced three statistics: Cluster Coefficient, Average Path
Length, and Small-World Index.

Cluster Coefficient: let i be a generic node and ui the spatially

nearest nodes to him (called “neighbors”); let
ki(ki−1)

2 be the
edges that exist among all units within the neighborhood. The
connectivity density index of the topological neighbors of this
node is the Cluster Coefficient (Ci) defined as follows:

Ci =
# of edges between neighbors of i

ki(ki−1)
2

(5)

where k is the number of connections.
The Average Cluster Coefficient, a global metric often used

to quantify the segregation at network level, will be obtained by
computing the average of all Cluster Coefficients of each node
(Figure 2A, Modules 3 and 4).

Average Path Length: let us to consider two generic nodes i
and j of a network V. Let d

(

i, j
)

be the shortest distance between
i and j. The Average Path Length (L) is defined as follows:

L =
2

n (n−1)

∑

i6=j
d

(

i, j
)

(6)

where n is the number of nodes in V. This topological measure
can be used to evaluate the network’s level of integration
(Figure 2A, Modules 3 and 4).

Finally, to detect the emergence of small-world network in
Downes et al. (2012) combined these metrics, defining the Small-
Word Index (SW) as:

SW =

Creal
Clattice

Lreal
LRND

(7)

where C and L of experimental data (Creal and Lreal) are
normalized against the expected values (Clattice and LRND) from
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FIGURE 2 | Basic graph measures and network structures. (A) Node degree is the number of connections of a given node; this panel shows a simple network

divided in four different modules: Module 1, in which we can see a high-connected unit called hub, and Module 2, that presents a low connectivity case. Modules 3

and 4 show two units with high and low values of Cluster Coefficient respectively, and an example of shortest path length; the nodes X and Y are connected by the

shortest possible path (three links), and two different units that we call intermediaries. (B) Classification of the network structure [scale-free (a), regular (b), small-world

(c), and random (d)] and corresponding degree distributions.

an equivalent population of random networks with the same
number of nodes and links.

The next section will describe how to extract the topological
structures and how to study the emerging functional connectivity
of neuronal assemblies coupled to MEAs.

Different Types of Connectivity to Describe
Neuronal Assemblies

Three types of connectivity are used to describe the interactions
of neuronal networks: structural, functional and effective.

Structural Connection (Figure 3A)
The structural or anatomical connection indicates the physical
interaction (i.e., a chemical or electrical synapse) that links
a network’s neurons at a given time (Sporns and Tononi,
2002). Therefore, we can determine which neural units can
directly interact with each other. The structural connectivity
ranges over multiple spatial scales, since we can detect
morphological connections both in local microcircuits
and in long-range interactions that link different sub-
networks. In a short time scale (about., less than 1min),
such morphological connections mediated by dendritic spines
are static, while in a longer time scale, they are dynamic,
since physiological mechanisms of learning, plasticity and

development can shape the morphological circuits (Buchs and
Muller, 1996).

Functional Connection (Figure 3B)
Functional connection indicates the correlation between time
series of spikes coming from different neurons. It measures
statistical interdependence without considering any causal
effects; it is time-dependent and “model-free.” Therefore, two
neurons are functionally linked, if we can predict the activity
of one of the two neurons on the basis of the activity of
the other neuron: this means that functional connections are
a subset of the structural ones (Sporns and Tononi, 2002).
Indeed, functional properties of single neurons are strongly
driven by their anatomical connections, dendritic arborizations
and synaptic distributions. Moreover, functional interactions can
contribute to the shaping of the underlying anatomical substrate
through activity-dependent synaptic modifications.

Effective Connection (Figure 3C)
Effective connectivity indicates the presence of a connection
when a neuron on the network directly affects another neuron
through a causal relationship between the activities of the
two neurons. In other words, “effective” means any observable
interactions between neurons that alters their firing activity;
so it is not “model-free” like functional connectivity, but can
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FIGURE 3 | Classification of the neural network connections. (A) Structural connectivity. (B) Functional connectivity. (C) Effective connectivity.

require the specification of a causal model including structural
parameters.

Functional Connectivity Methods for in
vitro Networks

To estimate the functional connectivity of in vitro networks,
there are two different strategies: the first one relies on the direct
analysis of the acquired sequence of voltage values (Figure 1A
top) from each recording electrode (i.e., the time series). The
other approach deals with point processes (e.g., spike trains).
Practically, a spike train is a sequence of samples equal to 1 if
a spike is detected in that sample and 0 otherwise (Figure 1A
bottom).The identification of the peaks from the time series
can be performed in several ways, ranging from simple spike
detection (Maccione et al., 2009; Ide et al., 2010) to spike sorting
techniques (Egert et al., 2002) up to more complex multivariate
approaches (Borghi et al., 2007).

In the literature, there are several works dealing with the
connectivity methods that can be used to infer the functional
connectivity of neural networks (e.g., Cutts and Eglen, 2014).The
aim of this work is not to describe all the connectivity methods,
but rather to show which information is possible to extract
from such an analysis applied to in vitro neural networks
coupled to MEAs. However, to help the reader understanding
the results provided in Section Applications, we briefly introduce
two widely used algorithms belonging to the family of the
correlation methods: Cross-Covariance (CCov) and Cross-
Correlation (CC).

Cross-correlation
Cross-Correlation (CC) is applied to point processes (e.g., spike
trains). It measures the frequency at which one cell called “target”
fires relative to the firing time of a spike in another cell known
as “reference” (Salinas and Sejnowski, 2001). Mathematically,
the Cross-Correlation function represents the average value of
the product of two random processes, which in this case are

the spike trains (Knox, 1981), and it’s evaluated considering
all the possible pairs of spike trains extracted by the active
electrodes. Moreover, connection strength among neurons is
evaluated on the basis of the peak values of each Cross-
Correlation function and the directionality is derived from the
temporal position of the corresponding peak latency. Cross-
Correlation reduces to a simply probability Cxy(τ ) of observing
a spike in y at time (t+τ), if there has been a spike in x at
time t (Rieke et al., 1997); τ is called time shift or time lag.
In this context, it is important to take into account the cross-
correlogram, which is a temporal function that combines the
firing information of one target neuron to a reference one. The
cross-correlogram Cxy(τ ) is computed by counting the spikes
in y and x inside a specific time window ±T. The values used
for the time shift τ depend on the kind of analysis. To solve
intra-neuronal signal propagation (i.e., the propagation of an
action potential along the arborizations of the same neuron),
a thin time lag is necessary (e.g., 0.1–0.5ms): these values are
consistent with the presynaptic propagation speed (Bonifazi et al.,
2005). On the other hand, if the inter-neuronal propagation
(i.e., signal propagation mediated by the synaptic transmission)
has to be characterized, a wider time shift value can be used
(0.8–1.2ms).

To obtain the maximum correlation peak between 0 and 1, it
is possible to normalize Cxy(τ ) as follows:

Cxy (τ ) =
1

√

NxNy

∑Nx

s=1

∑(τ+1τ
2 )

ti=(τ−1τ
2 )

x (ts) y(ts − ti) (8)

where ts is the duration of each spike in train x, Nx is spike’s
total number in x and Ny represents the spike’s total number
in y. In particular, when two spike trains are independent, the
cross-correlogram is flat; if there is any co-variation, one or more
peaks appear (Brody, 1999). By considering the peak amplitude
of each Cross-Correlation function, we define a Connectivity
Matrix (CM) whose highest values are supposed to correspond
to the strongest connections. Moreover, the Cross-Correlation
function is symmetric since Cxy(τ ) = Cyx(−τ ). By exploiting this
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mathematical property, many of the parameters to extract from
the cross-correlogram are symmetric and the computation can
be faster (only half of the Cross-Correlation matrix has to be
computed).

Cross-covariance
Cross-Covariance (CCov) is applied to time series data (e.g., X
and Y). We define the Cross-Covariance as the probability to
observe a spike in X at time s and a spike in Y at the same time t.
This probability is defined as following:

CCov (s, t) = Cov (Xs,Yt) = E
[

(Xs− µs)(Yt− µt)
]

(9)

where µs and µt are the mean functions defined as E [Xs] and
E [Xt] respectively.

In the stationary case, Cross-Covariance will be a function of
the time lag τ, and can be approximated as:

Cov (X0,Yt) = Cov (X0+τ ,Yt+τ ) = C(τ ) (10)

Meaning that the Cross-Covariance reduced to the Cross-
Correlation in the stationary case. Cross-Covariance shares all
the properties described for the Cross-Correlation (e.g., the
symmetry). Finally, also the maximum Cross-Covariance value
is used as an indication of the strength of functional connection
between neurons (Downes et al., 2012). The time series analyzed
with the Cross-Covariance approach may be acquired not only
by in vitro models but also by others techniques that will not be
discussed in this work, such as electroencephalography (EEG),
magnetoencephalography (MEG), and functional magnetic
resonance imaging (fMRI) (Babiloni et al., 2009).

Connectivity Maps
The aforementioned algorithms enable building a CM. The
CM is a n x n matrix (where n is the number of analyzed
electrodes) whose generic element (i,j) is the estimation of the
strength of connection between electrodes i and j. In detail, the
generic element (i,j) of the CM is the peak (i.e., the maximum
value) extracted from the Cross-Correlation or Cross-Covariance
between the electrodes i and j. Moreover, both Cross-Covariance
and Cross-Correlation allow the determination of the direction
of the connections. This information is stored in the position of
the peak with respect to the central bin of the correlation window.
In detail, given the cross-correlogram between electrodes i and j
obtained through one of the aforementionedmethods, if the peak
is temporally after the central bin, the electrode i is presynaptic
with respect to the electrode j and vice versa (if the peak is
placed in the central bin, no information can be extracted on the
direction of the connection).

Since the CM can be a full matrix of n2 elements, a
thresholding procedure is required to throw away those values
that are close to or in the noise, and not real connections.
This requires setting a threshold for the connectivity matrix
(TCM). Exploring the available works in the literature about the
analysis of functional connectivity of in vitro neural networks, it
is possible to see several thresholding procedures, with different
levels of complexity. The simplest of such procedures, is to use

a hard threshold defined as (µ + n · σ ), where µ and σ are the
mean and the standard deviation computed among all the CM’s
elements, respectively, and n is an integer. Another possibility is
to use shuffling techniques, that allow to destroy the information
stored in the spike timing, obtaining independent spike trains
(i.e., surrogate data). A simple application of this technique is
presented in Maccione et al. (2012), where only the spike trains
relative to a defined number of the strongest connections have
been shuffled.

It is worth noticing that there are more sophisticated and
complex approaches to obtain surrogate data from the spike
trains and to threshold the CM; however, the description of
these techniques is out of the scope of this review. For further
information we suggest the reading of Grun and Rotter (2010)
and references therein. Summarizing, the simplest way to obtain
the TCM and analyze the results in functional connectivity
analysis of in vitro neural networks is to use a hard threshold.
However, this thresholding procedure is strongly dependent on
the distribution of the CM’s values. Shuffling techniques are more
precise and less heuristic, but they are computationally heavy.
Thus, when dealing with the problem of thresholding the CM,
it is important to choose the best compromise between reliability
and computational time, depending on what one wants to claim
from that specific analysis.

Applications

In the following sections, we will review some results regarding
the estimation of the functional connectivity in neuronal
assemblies coupled to MEAs. In particular, starting from the
analysis of the functional connectivity inferred in large-scale
homogeneous neuronal networks (Figure 4A), we then consider
the case of engineered networks, where by means of physical
or chemical constraints, the structural connections are driven
to form interconnected networks (Figure 4B). Finally, we will
consider the effects of different patterns of electrical stimulation
delivered to the networks to shape the functional connectivity.

Connectivity and Dynamical States
In vitro neural networks coupled to MEAs display a spontaneous
activity characterized by the presence of spikes and bursts
(Figure 1A) in a ratio depending on the stage of development
(Wagenaar et al., 2006). Starting from the second week in
vitro (WIV), dissociated neuronal assemblies show sequences
of bursts that give rise to an activity persisting for the entire
network life time (Marom and Shahaf, 2002). During the
maturation phases (3rd-4th WIV), theoretical and experimental
analysis (Abbott and Rohrkemper, 2007; Pasquale et al., 2008)
have highlighted periods of increased activity, called neuronal
avalanches, supporting the evidence of criticality in in vitro
dissociated neuronal networks. Experimental and computational
studies proved that a critical system, like a neuronal assembly,
maximizes its computational properties by optimizing the
information processing (Shew et al., 2011). As reviewed by
Hesse and Gross (2014) the use of the Self-Organized Criticality
allows to connect the microscopic and macroscopic levels of
investigation of a neuronal system. In addition, the use of this
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FIGURE 4 | Sketches of different in vitro neuronal assemblies. (A) A homogeneous network in which neurons are free to connect without any

chemical/mechanical constraint. (B) Interconnected neuronal networks. Left, two small populations are connected by means of a few number of links. Right,

patterned networks where each node can be a small or large number of neurons.

theory allows to recognize possible pathologies (e.g., epilepsy)
of the brain which disrupt this equilibrium point (Massobrio
et al., 2015a). Such a critical state is at a boundary between
other types of dynamics (sub-criticality and super-criticality).
Indeed, as found in Pasquale et al. (2008), Tetzlaff et al. (2010)
some cultures evolve toward a critical state, but several others
tend toward sub-critical or super-critical states. The network
connectivity organization is one of the possible factors that can
drive the network toward a peculiar dynamic state (i.e., critical,
sub-critical, super-critical). Recent computational studies claim
that a critical state can be sustained if the network organization
(both functional and morphological) presents complex features.
Pajevic and Plenz (2009) found that both random and small-
worlds networks were able to promote critical dynamics in
cortical networks. More recently, Massobrio et al. (2015b) proved
that different topologies of connectivity induce different dynamic
states by pushing the network from sub-critical, to critical, up
to super-critical states. In particular, the synthetic results display
the existence of a tight interplay between the exhibited dynamics
and the topology. Random networks only show super-critical
dynamics in a physiological domain of their firing regime. On the
other hand, scale-free and small-world architectures account for
the variability observed in experimental data and the transition
from sub-criticality to criticality is ruled by the degree of “small-
worldness.”

Most of the indications regarding the kind of topological
organization of these dissociated networks emerges from
computer simulations. This is mainly linked to the difficulties
of determining the network topology of cultures from a limited
number of recording sites (60/120 microelectrodes) with a low
spatial resolution. In Maccione et al. (2012), the authors analyzed
hippocampal cultures at low density (80–200 neurons/mm2)
recorded by a high density CMOS-MEA, made up of 4096
microelectrodes (Berdondini et al., 2009) able to provide
simultaneous multi-site acquisition at high-spatial (21µm inter-
electrode separation) resolution. The use of such a high-density
MEA with low-density cultures has allowed mapping neuronal
signaling in large-scale networks at spatial resolution down to
the cellular level up to a possible identification of its anatomical
connections; moreover, it allows the comparison of the inferred
effective links with the network structure obtained by staining

procedures (Figure 5A). The authors focused on the estimation
of functional connectivity from extracellular electrophysiological
recordings by applying the cross-correlation algorithm on the
acquired spike trains and additional spatio-temporal filtering
procedures, that were used to discriminate between possible
causal relationships and spurious connections, and thus to
improve the reliability of the estimated maps. Finally, they
superimpose the functional-effective detected links to fluorescent
morphological images of the cultures, combining structural
and functional information (Figure 5B). They found that the
strongest functional connections corresponded to the shortest
path length; this information, together with visual comparison
with the morphological image, suggested that possibly direct
synaptic connections were identified. More recently, in Ullo
et al. (2014), the authors focused on the investigation of the
tight interplay between structural and functional connectivity,
combining high-resolution functional data acquired with the
HD-MEA with fluorescence microscopy imaging. Such an
approach can enable the unprecedented mapping of both activity
and structure of neural assemblies at a cellular level. The authors
hypothesized that the presence of a strong structural connection
makes a functional connection more likely to occur. Thus,
they localize neurons with respect to the electrode array and
estimate the structural connectivity using imaging methods;
finally, the structural connectivity graph was used as a prior to
refine the functional connectivity estimated through a Cross-
Correlation analysis (Figure 5C), obtaining a more realistic and
less connected network graph. However, despite the combination
of structural and functional information, no analysis has been
done on the topological parameters determination.

Functional Connectivity during Development
In 2012, the research group led by Nasuto characterized the
evolution of the functional topological features of in vitro cortical
assemblies during development (Downes et al., 2012). The
authors demonstrated the emergence of small-world functional
properties during the development of spontaneous activity. In
particular, they characterized the connectivity graphs extracted
from cultures during the first 5 weeks in vitro (Figure 6A)
by evaluating the degree of segregation and integration. This
analysis was done by applying Cross-Covariance to the raw data
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FIGURE 5 | Structural-functional connectivity analysis on high-density (HD) MEA. (A) Fluorescence image of a neural culture on the HD-MEA and a zoom at

the single neuron level. (B) Functional links superimposed on a fluorescence image of a HD-MEA chip. White squares indicate the neurons more strongly connected,

while white and red branches represent the links among the identified neurons (Adapted from Maccione et al., 2012). (C) Structural connectivity graph reconstructed

using imaging methods combined with the functional connectivity graph obtained by Cross-Correlation analysis to obtain a refined functional connectivity graph

(Adapted from Ullo et al., 2014).

(i.e., time series) for evaluating the Average Cluster Coefficient,
the Average Path Length, and the Small Word Index, respectively
(cf. Section Graph Theory).Young cortical cultures (14 days
in vitro, DIV) started to fire with a random connectivity (low
values of both measures). However, during development, the
functional connectivity changed and the topological features of
the networks evolved toward a small-world topology. Figure 6B
shows an increase of the Average Cluster Coefficient with age (red
line), keeping low and constant the Average Path Length values
(blue line). The SW index (cf. Section Graph Theory) showed,
therefore, a significant reorganization of the network from a
random structure to a small-world architecture (green line).

Another proof of the emergence of small-world topology
during development has been recently provided by Schroeter
et al. (2015). The authors worked on the time series acquired from
hippocampal in vitro neural assemblies, using Cross-Covariance
to infer functional connectivity. Differently from Downes et al.
(2012) they applied Cross-Covariance not to the entire recorded
activity, but only to the detected network bursts. The authors
found the presence of highly connected nodes (i.e., hubs) starting
from DIV 14. In addition, they identify a Rich-Club topology,
that is the presence of hubs more densely interconnected with
each other than expected by chance (Colizza et al., 2006), leading
them to discard the random topology hypothesis (Figure 6C).
Even if both Schroeter et al. (2015) and Downes et al. (2012)
showed the emergence of a small world topology (Figures 6B,D
respectively), only Schroeter and coworkers found the presence
of such a Rich-Club organization, in agreement with recent
in vivo results, demonstrating that the structural network of

the human brain presents a “rich-club” organization (Van Den
Heuvel and Sporns, 2011). These different results could be
partially explained by the different cell density at which cultures
are seeded. Indeed, dense cultures mature faster than their sparse
equivalents (Wagenaar et al., 2006); Downes and coworkers
plated at a cell density of (950–3750) cell/mm2, while Schroeter
and coworkers used a density much lower (180–440) cell/mm2.

The changes in functional connectivity during development
have been also analyzed by Napoli et al. (2014). However,
differently from the previous works, they investigated network
changes of dissociated cortical neurons focusing on network
responses within selected time windows (50, 100, 150ms) after
stimulus sessions, quantifying the temporal evolution of the
neural population activity through the False Discovery Rate
(FDR) technique. FDR is a statistical significance test that
measures how similar two different distributions are (Napoli
et al., 2014); it is defined as E

[

V
R

]

, where V and R are the number
of false connections and the total number of connections,
respectively. Differently from Downes et al. (2012), Napoli et al.
did not focus on the network topology, but on the connection
length variability that they found significant among different
batches during network development by means of statistical
analysis of stimulus-evoked response dynamics, emphasizing the
importance of the time window choice.

Functional Connectivity in Engineered Networks
In the examples discussed in the previous sections, neurons
were spread homogeneously over the MEA surface, and
free to grow and establish synaptic connections without any
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FIGURE 6 | Topological network properties during development. (A) Organization of the network structure at different stages of development (DIV: 14, 21, 28,

35). (B) Average Path Length (blue line), Average Cluster Coefficient (red line) and Small-Worldness curve (green line); the increase of the small-worldness curve during

development, evaluated as (Creal/Clattice)/(Lreal/Lrand ), shows a significant reorganization of the network (p < 0.05), from a random structure to a small-world

architecture (Adapted from Downes et al., 2012). (C) Functional connectivity during the first 4 weeks in vitro; the hubs (black and yellow dots) promote the small-world

topology; the number and the connection degree of the hubs increase during development. (D) Small-Worldness decreases with network density from 10 to 30 (DIV

28), but increases during the first 4 weeks in vitro (Adapted from Schroeter et al., 2015).

kind of constraint. As the sketch of Figure 4A shows, they
recreate a dense homogeneous network. Indeed, to have more
“connectivity-controlled” networks, and closer to the actual in
vivo segregation/integration of the brain, several attempts have
been performed to “design” engineered networks where the
connectivity is (partially) controlled (Macis et al., 2007; Baruchi
et al., 2008; Fuchs et al., 2009; Kanagasabapathi et al., 2011; Shein-
Idelson et al., 2011; Marconi et al., 2012; Pan et al., 2015). In
most of these works, the goal was to design interconnected or
spatially segregated networks (Figure 4B), where the different
neuronal populations could present different sizes (e.g., from a
few (Marconi et al., 2012), to tens (Macis et al., 2007) to hundreds
(Kanagasabapathi et al., 2011) of neurons), different neuronal
populations (e.g., cortical-thalamic networks, Kanagasabapathi
et al., 2012), or different number of modules (Berdondini et al.,
2006; Kanagasabapathi et al., 2011).

In 2012, Marconi et al. (2012) developed a bio-printing
method to design the topology (and thus drive the connectivity)
of in vitro hippocampal cultures (Figure 7A, left panel).The
authors coupled the micro-contact printing of an adhesion
promoter with the use of an agarose repulsive layer and
investigated the emergent functional connectivity compared
to homogeneous neuronal cultures. By applying a Cross-
Correlation function to the spike trains of patterned and
homogeneous hippocampal cultures, they extracted functional
connectivity maps (two examples are reported in Figure 7A

middle panel). The connectivity matrix was thresholded by
sorting the strongest links. The “quasi-regular” topology induced
a reinforcement of functional connections along orthogonal
directions, shorter connectivity links and a greatly increased
spiking probability in response to focal stimulation. The top

right panel of Figure 7A compares the average link lengths of
homogeneous (black lines) and patterned (red lines) networks.
Patterned networks present shorter links than found in the
homogeneous ones. This link length difference is relevant
only when a few number of links (less than 100), are taken
into account: in other words, when the strongest functional
connections are considered, patterned networks present shorter
links than the ones detected in homogeneous networks. When
the number of links is higher (meaning that a low threshold has
been chosen) such a gap decreases, suggesting the importance
(and the dependence) of the threshold selection in this kind of
measures (cf. Section Connectivity Maps). Another interesting
result regards the degree of clusterization of these networks:
although the clustering coefficient was low and comparably in
both patterned and homogeneous cultures, the mean path length
was always (i.e., independently of the number of considered
links) lower in the patterned topology (Figure 7A, bottom right
panel, red line) than in the homogeneous one (black line).
This result should enhance the efficacy of propagation of the
electrical activities among the neurons of the network. The
complexity of the patterning procedure (i.e., the maximum
number of connections that each node can establish) strongly
shapes the network dynamics (Boehler et al., 2012). Although
the firing rate results comparable between homogeneous and
patterned networks, burst duration monotonically increases as a
function of the complexity of the network circuitry (Boehler et al.,
2012), suggesting that longer bursts might result from networks
that integrate several synaptic pathways (both inhibitory and
excitatory).

The possibility to drive the connectivity among neurons
was also pursued some years before by Macis and coworkers
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FIGURE 7 | Examples of engineered neuronal networks. (A) left, Example of a bio-patterned network aligned with the electrode array; middle, two examples of

functional connectivity maps relative to a homogeneous (black) and a patterned (red) network; right, average link length and mean path length for homogeneous

(black) and patterned (red) cultures as a function of the number of strongest links (Adapted from Marconi et al., 2012). (B) Two examples of patterned networks

realized with a micro-drop delivery system; bottom-left, connectivity map governing the connectivity of this patterned network; right, PSTH maps relative to one

experimental (top), and one simulated phase (bottom) (Adapted from Macis et al., 2007; Massobrio and Martinoia, 2008). (C) Cortical–thalamic co-culture plated in a

dual compartment device (cortical cells and thalamic cells are highlighted with red and green fluorescence staining, respectively). Middle, two examples of functional

connectivity maps related to a cortical-thalamic system. Red, green, and blue links refer to cortical-cortical, thalamic-thalamic, and cortical-thalamic connections,

respectively. Right distribution of the inter-cluster connection in a cortical-thalamic system (Adapted from Kanagasabapathi et al., 2012).

who developed a micro-drop delivery set-up based on a piezo-
dropper system and a motorized X–Y stage which allows the
deposition of small volumes (about 100 pl) of specific adhesion
molecules on the MEAs (Macis et al., 2007). As the top panels of
Figure 7B show, neurons were anchored on the substrate only
in the areas where the adhesion proteins have been deposited,
defining high density sub-networks (about 4’000 neurons/mm2)
interconnected by means of bundles of neurites. The topological
rule existing among these clusters of neurons was estimated by
means of a computational model (Massobrio and Martinoia,
2008) whose connectivity rule is depicted in the left bottom
panel of Figure 7B. The authors demonstrated that the dynamics
displayed by the considered patterned neuronal networks could
be explained by hypothesizing the presence of several short-
and few long-range interactions among the small assemblies of
neurons. The matching between the experimental recordings
and the in silico results was achieved by comparing both the
spontaneous and the stimulus-evoked activity. The bottom right
panels of Figure 7B display the Peri-Stimulus Time Histogram
(PSTH) profiles when the culture in the top panel is stimulated
with a low-frequency (0.2Hz) bi-phasic 1.5 V voltage stimulus
delivered to the top-right electrode. As it might be expected, the
electrodes show site-specific responses reflecting the functional

topographical connectivity of the network: the closest electrode
to the stimulating site shows a fast response, while as far as
the distance increases a more delayed response appears. In
addition, some electrodes displayed an attenuate response to the
stimulus or, in some cases, no evoked activity. Some years later,
Ide et al. (2010) found in homogeneous hippocampal networks
that the probability of evoking a response decreases with a
quasi linear relationship with the distance. The in silico model
well reproduces such a behavior: the closest neurons to the
stimulation site present a fast and marked response, whereas the
others can present a more delayed and attenuate response, or in
some case, no evoked activity.

An intermediate scenario between large-scale homogeneous
assemblies and patterned/ordered networks is the dual
compartment system devised by Kanagasabapathi et al. (2011).
By coupling a Poly-dimethyl-siloxane (PDMS) mask to the
surface of a MEA, the active area was divided in two sub-regions
interconnected by means of an array of micro-channels (3µm
height, 10µm width). The small height of these micro-channels
prevents the movement of cells between compartments while
a length greater than 100µm selects for axons (Morales et al.,
2008) to cross-over to the adjacent compartment and form
a functional network. Figure 7C (left) displays a possible
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application of this system for co-culturing heterogeneous
neuronal populations like cortical (red) and thalamic neurons
(green) to study the reciprocal interactions in terms of dynamics
and connectivity (Kanagasabapathi et al., 2012). The interplay
between cortico-thalamic and thalamo-cortical populations was
investigated, by estimating the functional connectivity between
the two populations by computing Cross-Correlation on the
spike trains. Two examples of functional connectivity maps
evaluated by considering the strongest 20 intra-cluster and 10
inter-cluster connections are shown in the left bottom panel
of Figure 7C. Direction of the links was derived by the peak
latency of the cross-correlogram. The authors found that ∼77%
of the connections are cortico-thalamic, while ∼23% was
thalamo-cortical. By varying the number of connections (i.e.,
from 10 to 30), an increase in the fraction of thalamo-cortical
links was observed indicating that the strongest connections are
from cortical to thalamic population (Figure 7C, bar plot). This
reciprocal connectivity between the two neuronal populations
explains the emergent dynamics: burst events originate in the
cortical region and the presence of strong cortico–thalamic
connections drives the thalamic network to discharge bursts
while reciprocal weak thalamo-cortical connections play a salient
role in the cortical network behavior by modulating the duration
and shape of the burst event.

Shaping the Connectivity by Electrical
Stimulation
The use of dissociated neuronal cultures coupled to MEAs allows
the design of experiments where neurons can be extracellularly
stimulated by means of electrical pulses delivered through
the same electrodes of the device. In this way, it becomes
reasonable to investigate how the emerging neuronal dynamics
can be modulated by the electrical stimulation and, consequently,
whether the underling functional connectivity is modified or
not. Several studies report that depending on the features of the
electrical stimulation (i.e., number of stimulated sites, frequency
stimulation, amplitude of the pulse, etc.) the network activity can
evolve toward new dynamical states. The hypothesis that certain
patterns of activity can change synaptic efficacy is a recognized
milestone (Shahaf and Marom, 2001; Eytan et al., 2003; Bakkum
et al., 2008).

In 2008, Chiappalone et al. (2008) found that the application
of a high frequency tetanic stimulation without (ST) or with
a 0.2Hz low-frequency (IN) in phase or 1Hz iso-frequential
(ISO) co-activation was able to induce a global network synaptic
potentiation. The PSTHs of Figure 8A show the network
response before (black line) and after (red line) the tetanus
delivery. The network response clearly increased because of
a synaptic potentiation that can be appreciated by looking at
the increase of the number of the effective connections of the
network (Figure 8B, red vs. black lines). In addition, it was found
that the functional topological structure did not change during
the spontaneous activity of neuronal networks. Low SW index
values and weak statistical differences among them (Figure 8C)
suggest a random network architecture. This result supported the
initial hypothesis that external electrical stimulations increase or

stabilize the integration rather than segregation processes during
spontaneous activity.

In 2010, Le Feber et al. (2010) tried to find a correlation
between neuronal connections and slow-frequency stimulation
protocols able to induce synaptic changes. They applied to
cortical cultures in the mature stage of development biphasic
current pulses at a frequency of 0.2–0.33Hz) to investigate
possible modifications on the network functional connectivity,
and consequently synaptic efficacy. In addition, the authors
investigated the relevance of the stimulation site, by delivering
such low frequency pulses both from one site and from
different randomly chosen sites. They found that electrical
stimulation (independent of the stimulation sites) affects the
number of functional links, as well as the average magnitude
of changes. However, although the stimulation site does not
affect the variations of connectivity, it is worth noting that
the delivery of a stimulus from one electrode does not
necessary induce the same functional connectivity changes
when the network is stimulated from another one. Only the
magnitude of changes were preserved. The weak point of
this work is that the authors did not make any claim about
possible changes in the topology of the networks induced by
the stimulation. A change of the number of the functional
links, as well as, a change of the efficacy of the links
do not necessary mean a change in the topology of the
network. To the best of our knowledge, no studies about
the interplay between topology and electrical stimulation have
been performed. In the light of in vivo clinical applications
like Deep Brain Stimulation (DBS), understanding whether
electrophysiological changes of specific brain regions (providing
therapeutic benefits for otherwise-treatment-resistant disorders)
are sustained by reversible or irreversible alterations of the
topological architecture (Kringelbach et al., 2007) will be a great
breakthrough.

Final Remarks

Although the idea that brain functions derive from the
interactions among neurons has been accepted for decades, only
in the last years has it been possible to estimate the “connectome”
(Sporns et al., 2005). Advances in technological development
combined with powerful computational data-analysis tools, have
accomplished new avenues for understanding the interplay
between structure and function of the human brain (Sporns,
2013). The ways to infer connectivity are numerous, since
also the definition of connectivity is not unique. As reviewed
by Feldt in 2011, three major families of connectivity can be
described: structural, functional and effective connectivity (Feldt
et al., 2011). These types of connectivity (equally important)
reflect three parallel levels of investigation: the anatomical
connections, the statistical interdependencies and the causal
relationships between neurons belonging to the same network.
However, tight interdependencies can be found among these
connectivity definitions. As reviewed by Bullmore in 2009,
“direct comparisons of structural and functional connectivity
[. . . ] suggest that structural connections are highly predictive
of functional connections. [. . . ] current evidence suggests that

Frontiers in Neural Circuits | www.frontiersin.org 11 October 2015 | Volume 9 | Article 57

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Poli et al. In vitro functional connectivity

FIGURE 8 | Effective and functional connectivity analysis. (A) PSTHs showed a network synaptic potentiation during evoked responses after the tetanus delivery

(black and red lines indicate the phases before and after tetanus, respectively). (B) Map of the effective connections: a huge increase of the connections (red and

black links correspond to the post- and pre-tetanus connections respectively) was found between pre- and post-tetanus phases, explaining the potentiation effect of

the network. (C) Emergence of a random structure during spontaneous activity, the histogram shows the low SM index values evaluated for three different stimulation

protocols (tetanic stimulation without (ST) or with a 0.2Hz low-frequency (IN) in phase or 1Hz iso-frequential (ISO) co-activation, inset) and for each recording phases

(A,B Adapted from Chiappalone et al., 2008).

topological parameters are generally conserved between structural
and functional networks” (Bullmore and Sporns, 2009). Thus,
the estimation of functional and/or structural connections,
at different investigations levels (i.e., in vitro and in vivo
models), is possible. However, independently of the scale of
investigation, a common approach can be found: a network
can be treated as a graph. In graph theory (Harary, 1969),
a network is defined as a set of nodes connected by means
of edges. The advantage to treat a neural assembly as a
graph is that it can be characterized by applying the metrics
used to define the properties of a graph itself. The step
immediately before the graph is the definition of the actual
connections (structural, functional or effective) of the network.
In this work, we reviewed some recent insights regarding
the functional connectivity properties emerging from multi-
site recordings of in vitro neuronal preparations. Although this
experimental model is extremely simple, dissociated neuronal
assemblies coupled toMEAs are widely used to better understand
the complexity of brain networks (Schroeter et al., 2015).
Despite recent advances in electrophysiology and imaging,
the possibility to investigate specific in vivo neuronal circuits
is still limited and the extracted connectivity maps difficult
to solve and understand because of the three dimensional

connectivity. Thus, a simplified, but at the same time valid
in vitro model is necessary to perform investigations about the
emergent connectivities and their interdependences with the
observed dynamics (Shein et al., 2009). The use of dissociated
cultures, which allows network-engineering and simultaneous
multi-site electrical recordings, allows to bridge the gap. In
this work, we presented some examples of the use of this
experimental model taking into account different experimental
protocols (e.g., spontaneous vs. stimulus evoked activity, Downes
et al., 2012; Napoli et al., 2014), different neuronal preparations
(e.g., homogeneous vs. heterogeneous cultures, Kanagasabapathi
et al., 2012) and network layouts (e.g., homogeneous vs.
interconnected networks, Marconi et al., 2012) for characterizing

the emergent topological properties which sustain the actual
dynamics.
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