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Classical Hebbian learning puts the emphasis on joint pre- and postsynaptic activity,

but neglects the potential role of neuromodulators. Since neuromodulators convey

information about novelty or reward, the influence of neuromodulators on synaptic

plasticity is useful not just for action learning in classical conditioning, but also to decide

“when” to create newmemories in response to a flow of sensory stimuli. In this review, we

focus on timing requirements for pre- and postsynaptic activity in conjunction with one or

several phasic neuromodulatory signals. While the emphasis of the text is on conceptual

models and mathematical theories, we also discuss some experimental evidence for

neuromodulation of Spike-Timing-Dependent Plasticity. We highlight the importance

of synaptic mechanisms in bridging the temporal gap between sensory stimulation

and neuromodulatory signals, and develop a framework for a class of neo-Hebbian

three-factor learning rules that depend on presynaptic activity, postsynaptic variables

as well as the influence of neuromodulators.

Keywords: STDP, plasticity, neuromodulation, reward learning, novelty, spiking neuron networks, synaptic

plasticity (LTP/LTD)

1. INTRODUCTION

After exposure to a stream of repetitive sensory inputs, e.g., cars passing by on a highway, humans
do not remember each input configuration (every single car), but most often only a few relevant
ones, such as the most salient, novel, or surprising items, e.g., a car involved in an accident.
Similarly, after a set of attempts to solve a motor task, e.g., a child trying to open a bottle, the
child does not memorize all the attempts that failed, but only the one that was rewarding. Reward,
novelty or surprise are correlated with neuromodulatory signals, such as dopamine, acetylcholine
or noradrenaline (Schultz, 2002; Ranganath and Rainer, 2003; Yu and Dayan, 2005). Dopamine is
critical for the reinforcement of actions, consistent with theories of behavioral learning (Waelti
et al., 2001; Steinberg et al., 2013) while several other neuromodulators are implicated in the
creation of new memories (Gu, 2002; Hasselmo, 2006; Moncada and Viola, 2007).

Formation of new memories as well as the learning of actions or skills are thought to be linked
to changes in synaptic connections (Hebb, 1949; Martin et al., 2000). Traditional approaches to
synaptic plasticity, influenced byHebb’s postulate (Hebb, 1949), have focused on the joint activation
of pre- and postsynaptic neurons as a driver for synaptic changes (Bliss and Gardner-Medwin,
1973; Artola and Singer, 1993; Malenka and Nicoll, 1999). Spike-Timing-Dependent Plasticity
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(STDP; Gerstner et al., 1996; Markram et al., 1997; Bi and Poo,
1998; Sjöström et al., 2001, can be considered as a temporally
precise form of Hebbian synaptic plasticity, induced by isolated
spikes in pre- and postsynaptic neurons (for reviews see e.g.,
Abbott and Nelson, 2000; Bi and Poo, 2001; Caporale and
Dan, 2008; Sjöström et al., 2008; Sjöström and Gerstner, 2010;
Markram et al., 2011). In many, but not all preparations, repeated
activation of a presynaptic neuron a few milliseconds before
the postsynaptic one yields potentiation of the synapse, whereas
reverse timing yields depression (Abbott and Nelson, 2000). In
theoretical models, this form of plasticity generates numerous
attractive functional features (Gerstner et al., 1996; Kempter et al.,
1999; Song et al., 2000; Song and Abbott, 2001; Clopath et al.,
2010).

However, the functionality of STDP, and more generally
that of Hebbian learning rules, is limited to the class of
unsupervised learning tasks (Hertz et al., 1991). The aim of
unsupervised learning is to adapt a system to the statistical
properties of the environment. While unsupervised learning is
one of the driving forces of developmental plasticity, Hebbian
learning, STDP, as well as other unsupervised learning rules
neglect, by design, any information regarding “reward,” “success,”
“punishment,” or “novelty.” The question then arises of how
neuromodulatory signals interact with neural activity to influence
synaptic plasticity, learning, and ultimately behavior (Gu, 2002;
Hasselmo, 2006; Calabresi et al., 2007).

Recently, a number of experimental studies have mastered
the technical difficulties of controlling pre- and postsynaptic
spiking activity, together with neuromodulator concentration,
in order to study their combined effect on synaptic plasticity
(Seol et al., 2007; Pawlak and Kerr, 2008; Shen et al., 2008;
Pawlak et al., 2010). Parallel theoretical studies have explored
on a more fundamental level the universe of synaptic plasticity
rules that could potentially implement learning in neural circuits
so that a formal neural network memorizes novel stimuli or
sequences, (Brea et al., 2011; Rezende et al., 2011; Brea et al., 2013;
Rezende and Gerstner, 2014) or learns rewarding skills (Xie and
Seung, 2004; Pfister et al., 2006; Baras and Meir, 2007; Farries
and Fairhall, 2007; Florian, 2007; Izhikevich, 2007; Legenstein
et al., 2008; Di Castro et al., 2009; Potjans et al., 2009; Urbanczik
and Senn, 2009; Vasilaki et al., 2009; Frémaux et al., 2010,
2013).

While the broader field of neuromodulation, plasticity,
and behavioral learning has been reviewed before (Martin
et al., 2000; Gu, 2002; Reynolds and Wickens, 2002; Schultz,
2002, 2006; Hasselmo, 2006; Shohamy and Adcock, 2010;
Lisman et al., 2011; Nadim and Bucher, 2014), this review
mainly focuses on the case of STDP under the influence
of neuromodulation and its relation to models of learning.
We first point out the limitations of standard Hebbian
learning and sketch the concept of synaptic plasticity
under the influence of neuromodulation. We then review
experimental studies that combine the paradigm of STDP
with neuromodulation. Finally, we summarize models of the
combined action of neuromodulators and STDP in a unified
theoretical framework and identify open questions for future
experiments.

2. BASIC CONCEPTS: HEBBIAN AND
MODULATED HEBBIAN PLASTICITY

Behavioral learning and memory is thought to be linked to
long-lasting synaptic changes (Hebb, 1949; Barnes, 1979; Morris
et al., 1986; Bliss and Collingridge, 1993; Martin et al., 2000)
that can be experimentally induced by protocols for long-
term potentiation (LTP) (Lømo, 1964; Bliss and Lømo, 1973)
and long-term depression (LTD) (Lynch et al., 1977; Levy and
Stewart, 1983), or STDP (Markram et al., 1997; Bi and Poo,
1998; Sjöström et al., 2001). Before turning to experimental data
of neuromodulated STDP, we discuss in this section the basic
concepts of Hebbian learning (Hebb, 1949) that have influenced
our current-day thinking about synaptic plasticity (Malenka and
Nicoll, 1999; Bliss et al., 2003; Lisman, 2003).

Hebbian plasticity (Hebb, 1949) describes LTP of synapses
that is induced by the joint activation of pre- and postsynaptic
neurons (Brown et al., 1991; Gerstner et al., 2014). In order
to formalize the idea of Hebbian plasticity, we denote the
spike train of a presynaptic neuron by the short-hand notation
“pre.” Similarly, the state of a postsynaptic neuron, including
its (past) spike train, voltage, potentially intracellular calcium
or other important variables, is summarized by “post.” In a
mathematical notation, the change of a weight w from the
presynaptic to the postsynaptic neuron during Hebbian learning
can be described by

ẇ = H(pre, post) (1)

where ẇ describes the rate of change of the weight w and H is
some arbitrary function of the presynaptic spike train and the
state of the postsynaptic neuron.

Experimental support for Hebbian learning comes from
observations that co-activation of pre- and postsynaptic neurons
can induce LTP or LTD, depending on the relative firing
frequency and timing of pre- and postsynaptic neurons (Levy
and Stewart, 1983; Malenka and Nicoll, 1999; Abbott and Nelson,
2000; Bi and Poo, 2001; Markram et al., 2011) and voltage of the
postsynaptic neuron (Artola and Singer, 1993; Sjöström et al.,
2001; Sjöström and Gerstner, 2010). In other words, the activities
of pre- and postsynaptic neurons are crucial factors for the
induction of plasticity.

STDP is a typical example of Hebbian plasticity (Bi and Poo,
2001; Morrison et al., 2008). In the simplest model of STDP, the
state of the postsynaptic neuron is characterized by its recent
firing times. Equation (1) then indicates that changes of the
synaptic weight depend on coincidences between the spikes of
the pre- and postsynaptic neuron (Kempter et al., 1999; Song
et al., 2000; Gerstner and Kistler, 2002; Morrison et al., 2008).
Therefore, STDP, as well as other Hebbian learning rules, is
sensitive to statistical correlations between neurons (Kempter
et al., 1999; Gerstner et al., 2014). Using a standard classification
frommachine learning theory, we can state that Hebbian learning
is “unsupervised” (Hertz et al., 1991; Gerstner et al., 2014),
because it does not incorporate the notion of whether a synaptic
change is useful or not.
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From a theoretical perspective, unsupervised learning is
a comparatively weak paradigm, since the class of learning
problems that can be solved by unsupervised learning is limited.
However, in view of the experimental results discussed in the
next section, we may include in the mathematical picture one
or several neuromodulators that would “gate” Hebbian plasticity
such that up- or down-regulation of synapses happens at
appropriate moments in time. If these neuromodulators convey
information on novelty of (or surprise induced by) a stimulus
or success of (or external reward in response to) an action,
then the resulting learning rules are no longer “unsupervised,”
but become more powerful. To illustrate the potential functions
of plasticity under the influence of neuromodulators, we focus
on two paradigms, reward-based learning and novelty-based
learning.

2.1. Conceptual Example: Reward-Based
Learning
In a schematic reward-based learning scenario (Arleo and
Gerstner, 2000; Foster et al., 2000; Sheynikhovich et al., 2009;
Frémaux et al., 2013), such as a T-maze (Figure 1A), the present
position of the animal is represented by neuronal activity in the
hippocampus (O’Keefe and Nadel, 1978; Moser et al., 2008). The
animal’s action at the choice point is represented by the activity
of neurons in other brain areas, possibly including the dorsal
striatum (Packard and McGaugh, 1992; Schmitzer-Torbert and
Redish, 2004). Let us suppose that the animal decides to turn left
(a decision represented in the conceptual model of Figure 1B by
the activity of cell assemblies in the striatum) at the junction of
a T-maze (a location represented in the model by cell assemblies
in hippocampus). Thus, in that situation, several assemblies of
neurons in different brain areas are co-activated. According to the
principle of Hebbian learning, the co-activation of presynaptic
neurons in hippocampus with postsynaptic neurons in the
striatum drives learning. However, classical Hebbian learning
cannot account for the fact that the reinforcement of the specific
connection identified by the Hebbian co-activation principle
must also depend on whether the action taken at the junction
leads to a reward or not (Arleo and Gerstner, 2000; Foster et al.,
2000; Xie and Seung, 2004; Pfister et al., 2006; Baras and Meir,
2007; Florian, 2007; Di Castro et al., 2009; Sheynikhovich et al.,
2009; Urbanczik and Senn, 2009; Vasilaki et al., 2009; Frémaux
et al., 2010, 2013).

The difference between a rewarded trial and an unrewarded
one arises from information about the success of the action
(e.g., a food reward) that is obtained by the animal in a given
trial. Indeed, such a success signal is necessary for learning
(Waelti et al., 2001; Steinberg et al., 2013). In neural network
models of behavioral learning, such a success signal is exploited
at the synaptic level to reinforce the correct sequence of actions
(Figure 1B) by modulating Hebbian plasticity.

There is rich evidence for the neuromodulator dopamine
to transmit a phasic success signal that is made available via
ramified projections from dopaminergic neurons to several brain
areas (Schultz, 1998, 2006). Here phasic means an activity peak
that is precisely timed and relatively short compared to the
total duration of an experimental trial. Note that the phasic

FIGURE 1 | Hypothetical functional role of neuromodulated synaptic

plasticity. (A–C) Reward-modulated learning (A) Schematic reward-based

learning experiment. An animal learns to perform a desired sequence of

actions (e.g., move straight, then turn left) in a T-maze through trial-and-error

with rewards (cheese symbol represents location of reward). (B) The current

position (“place”) of the animal in the environment is represented by an

assembly of active cells in the hippocampus. These cells feed neurons (e.g., in

the dorsal striatum) which code for high-level actions at the choice point, e.g.,

“turn left” or “turn right.” These neurons in turn project to motor cortex

neurons, responsible for the detailed implementation of actions. A success

signal, representing the outcome of the actions at the behavioral level (i.e.,

food or no food), modulates (green arrows) the induction of plasticity at those

synapses that have been marked by coincident pre- and postsynaptic activity

(solid black connections), but not of those synapses where either the pre- or

the postsynaptic neuron was silent (dashed connections). Note that several

intermediate layers are possible between each brain area. (C)

Neuromodulatory timing. While action potentials of pre- and postsynaptic

neurons occur on the time scale of milliseconds, the success signal,

representing “reward minus expected reward,” occurs much later (broken time

axis). (D–F) Novelty-modulated learning in a neural network. (D) Novelty is

defined by the occurrence of a stimulus that does not match pre-existing

experience. In this example, a neural network has been trained to recognize an

apple. The first time it sees a banana recognition fails and a novelty signal is

triggered. (E) Schematic of a neuromodulated neural network for

novelty-based learning tasks. Neural assemblies represent known concepts.

Here a “banana” stimulus is presented, failing to activate the “apple” neurons,

but activating a group of other neurons which will, in the future, encode the

“banana” concept. The novelty signal, concurrent with pre- and postsynaptic

(Continued)
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FIGURE 1 | Continued

activation of the banana neurons ensures that synapses (solid lines) between

neurons of the banana “assembly” are strengthened. The synapses of the

“apple” assembly receive the same neuromodulatory signal, but do not

change because pre- or postsynaptic neurons are not simultaneously active.

(F) Neuromodulatory timing. Contrary to the reward-based case, the novelty

signal can be synchronous with neural activity, or arise slightly earlier or later.

(G) Schematic of relation between neuromodulators and functional roles. A

specific neuromodulator (e.g., dopamine) could transmit a signal conveying a

mixture of novelty and success (green axes). A novel event (gray dot) can be at

the same time surprising and rewarding and cause the simultaneous emission

of acetylcholine and dopamine, in different proportions (black axes).

success signal always arrives after the decision. The fact that a
large delay can occur between the neural activity at the point
of decision and the subsequent reward provides an additional
difficulty (Figure 1C) which can be addressed either by Temporal
Difference Learning (TD) (Schultz et al., 1997; Sutton, 1998;
Sutton and Barto, 1998), or by eligibility traces (Baxter and
Bartlett, 2001). Both types of model solutions will be discussed
in Section 4.

2.2. Conceptual Example: Novelty-Based
Learning
Another potential role for modulation of synaptic plasticity arises
during learning of novel stimuli. A familiar visual stimulus
which has already been seen several times does not require
memorization if it is perceived again, whereas a stimulus that is
novel and interesting should be stored (Carpenter and Grossberg,
1988).

We note that in standard Hebbian plasticity, every co-
activation of pre- and postsynaptic neurons will potentially
induce a further change in the connection. In this case, the
memory capacity of model networks where stimuli or concepts
are stored is rapidly reached such that old memories are
overwritten by new ones (Fusi, 2002; Fusi and Abbott, 2007). To
avoid constant overwriting of synaptic memories, it is desirable to
limit the induction or expression of synaptic plasticity to the case
of novel stimuli or concepts (Figure 1D). This could be achieved
if plasticity of synapses requires pre- and postsynaptic activity
together with a novelty signal (Figure 1E). The novelty signal
could be encoded in the phasic activity of a neuromodulator
that gates synaptic plasticity. In contrast to the reward-based
learning scenario (where timing of a reward is delayed with
respect to the act), the timing of a neuromodulatory signal
for novelty could coincide with the period of increased neural
activity (Figure 1F). Novelty (or surprise) is represented in the
brain by multiple mechanisms and correlated with changes in
the pupil size (Nasser et al., 2012) and the P300 component
of EEG (Meyer et al., 1991; Kolossa et al., 2015). Novelty is
also represented by the initial transient of the phasic dopamine
signal (Schultz, 1998; Lisman et al., 2011) and by an increase in
acetylcholine and noradrenaline (Ranganath and Rainer, 2003).
While a direct interaction of acetylcholine with synaptic plasticity
is one possibility (Gu, 2002; Hasselmo, 2006), acetylcholine
can also affect learning of novel stimuli through several other

mechanisms, such as enhancement of excitatory afferent input,
suppression of excitatory feedback, modulation of theta rhythm,
and increase of persistent spiking of individual cortical neurons
(Hasselmo, 2006). Noradrenaline emission linked to arousal
caused by novel stimuli could favor “the development of
persistent facilitatory changes in all synapses that are currently
in a state of excitation” as suggested by early conceptual
theories (Kety, 1972); cited and evidence discussed in Sara
(2009).

2.3. Conceptual Role of Neuromodulators
in Plasticity
Neuromodulators such as acetylcholine, noradrenaline,
serotonin, dopamine (and potentially histamine) not only
change the excitability of neurons (Kaczmarek and Levitan,
1987), but can also influence synaptic plasticity and memory
formation (Rasmusson, 2000; Gu, 2002; Marder, 2012; Kang
et al., 2014; Nadim and Bucher, 2014).

Dopamine signals have been linked to reward (Apicella et al.,
1991; Schultz et al., 1997). Phasic responses of dopaminergic
neurons in the macaque occur not only at the moments of
rewards (Hollerman and Schultz, 1998) but also to stimuli that
are predictive of reward (Schultz et al., 1997). This yielded an
interpretation that dopaminergic neurons encode the “actual
minus predicted reward” (Schultz, 2002).

Acetylcholine is necessary to induce plasticity in sensory
cortices (Gu, 2002) and hippocampus (Drever et al., 2011)
as shown in a variety of paradigms including sensory map
remodeling in auditory cortex (Kilgard and Merzenich, 1998; Ma
and Suga, 2005) or inhibitory avoidance training (Mitsushima
et al., 2013). Similarly, noradrenaline and serotonin play a
permissive and facilitatory role for the induction of plasticity
(Seidenbacher et al., 1997; Gu, 2002; Tully and Bolshakov, 2010;
Bergado et al., 2011). More recently, it has been shown that vagus
nerve stimulation triggering release of a mix of neuromodulators
gates plasticity (Engineer et al., 2011). Moreover, neuropeptides
influence learning and plasticity (Hökfelt et al., 2000; Gøtzsche
and Woldbye, 2015).

Even though dopamine is often associated with reward and
acetylcholine with novelty, it is important to note that the
mapping between neuromodulators and functional roles does not
have to be one-to-one. Let us imagine that each functional signal
(e.g., novelty) is carried by a linear or nonlinear combination
of several neuromodulator concentrations (Figure 1G). For
example, the time course of dopamine could contain information
on a mixture of “reward compared to expected reward” and
“novelty.” In parallel, a phasic acetylcholine signal could contain
mixed information on surprise defined as “novelty compared
to expected novelty” and “reward.” Some synapse types could
use the combined action of both neuromodulators to drive
novelty-based learning, while other synapse types in the same
or other brain areas could use the combined action of both
neuromodulators to drive reward-based learning. In addition,
tonic and phasic components of the same neuromodulator could
convey different functional signals (Lisman et al., 2011).

Moreover, other neuromodulators (Noradrenaline,
Serotonin, . . . ) and functional roles (stress, fear, and other
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emotions) could become part of the above picture. For example,
noradrenaline-emitting neurons located in locus coeruleus
and projecting axons to nearly all brain areas are reciprocally
connected to dopaminergic neurons located in the VTA and are
therefore likely to share some, but not all signaling features of
dopamine-emitting neurons (Sara, 2009). Thus, the identification
of a single neuromodulator with one isolated theoretical concept
such as novelty or reward might be inappropriate.

STDP and phasic neuromodulatory signals could interact
in different ways. The simplest picture is that of a direct
interaction between synapses and neuromodulators (Figure 2A).
An example could be the co-location of cortico-striatal synapses

and dopaminergic terminals on the same spine of neurons in
the striatum (Freund et al., 1984; Schultz, 1998, 2002). However,
the involvement of GABAergic neurons raises the possibility that
neuromodulation may affect synapses indirectly (Bissière et al.,
2003), for example by allowing inhibition-mediated suppression
of back-propagating action potentials (Figure 2B) known to
influence the induction of STDP (Golding et al., 2002; Sjöström
and Häusser, 2006). Neuromodulators influencing ion channels
could affect action potential back-propagation (Figure 2C), or
dendritic Ca2+ signaling, in turn modulating LTP and LTD
induction (see e.g., Couey et al., 2007, for an example of
acetylcholine modulation of STDP along these lines).

FIGURE 2 | Possible mechanistic scenarios of neuromodulation of synaptic plasticity. (A) Direct synaptic effect (Goldman-Rakic et al., 1989). A synapse (1)

between two excitatory pyramidal neurons (triangles) is strengthened by the coincident activity of its pre- and postsynaptic neurons, if neuromodulator is released.

Plasticity is absent, weaker, or reversed, if the presynaptic (2) or the postsynaptic (3) neuron is silent (e.g., Schultz, 1998; Bailey et al., 2000). (B) Indirect effect of

neuromodulation. Neuromodulator excites an inhibitory cell (filled circle), causing shunting inhibition on an excitatory neuron. This could prevent back-propagation of

the action potential, thus blocking the induction of plasticity of a synapse, even though the presynaptic and postsynaptic neurons were active (e.g., Bissière et al.,

2003). (C) Direct influence of neuromodulation on action potential back-propagation has a similar effect as in (B) (e.g., Sjöström et al., 2008).
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3. EXPERIMENTAL EVIDENCE FOR
NEUROMODULATION OF STDP

STDP is induced by pairing protocols where pre- and
postsynaptic spikes are induced in a controlled sequence
(Markram et al., 1997; Bi and Poo, 1998; Sjöström et al.,
2001). We review STDP experiments, where neuromodulation is
manipulated during or after the pairing protocol.

3.1. Questions Regarding Modulated STDP
From the point of view of theoreticians, the concepts of Hebbian
and modulated Hebbian learning that we have sketched in the
previous section give rise to three questions that will be useful to
frame our review of the experimental literature.

(i) What is the precise form of the interaction of a pairing
protocol with a neuromodulatory signal? For example, does
dopamine “gate” STDP induction (or classic LTP) in the
sense that dopamine levels below a certain threshold block
STDP altogether whereas super-threshold levels restore
“normal” STDP? In this case we could describe the effect
of dopamine as “permissive.” Or does the amount of STDP
(or LTP) correlate with dopamine in the sense that a higher
dopamine concentrations yields a stronger potentiation, i.e.,
a larger increase of the excitatory postsynaptic potential
(EPSP)? In this case we could describe its effect as
“multiplicative.”

(ii) What is the relevant neuromodulator variable to consider? If
phasic activity is defined as the momentary neuromodulator
concentration close to a synapse minus a baseline,
what happens if the concentration becomes smaller than
the baseline concentration—does the induced change in
synaptic strength switch its sign?

(iii) What are the timing requirements of a phasic
neuromodulatory signal? A standard STDP protocol
of 60 pre-post pairings at 20Hz only takes a few seconds.
Should the phasic neuromodulatory signal arise prior to the
pre-/post-synaptic pairing? Is it necessary that the phasic
neuromodulator signal is present during the pairing? Is it
sufficient if it arrives only a few seconds after the pairing?
How long should the neuromodulatory “pulse” be? Does
precise timing matter at all, or is it sufficient for pairing and
neuromodulator to co-occur within a larger time window,
on the order of minutes to hours?

In the following, we review the published experimental results
addressing the link between neuromodulators and STDP in light
of these three questions (see also the summary in Table 1).

3.2. STDP Protocols in Conjunction with
Neuromodulators
In this subsection, we review experiments that study the
interaction of neuromodulators with STDP. Little is known,
however, about the molecular pathways or biophysical
mechanisms that give rise to these interactions (see Pawlak
et al., 2010, for a review).

The interaction of dopamine with STDP has been studied
in several brain systems. In the amygdala, the link between

dopamine and STDP is indirect via suppression of GABAergic
inhibition (Bissière et al., 2003). However, suppressing
GABAergic transmission altogether by pharmacological means
prevents STDP induction, even in the presence of dopamine,
suggesting a complex interplay between different factors.

In prefrontal cortex layer-5-pyramidal neurons, extracellular
dopamine is necessary to induce LTP with pre-before-post
pairings (Xu and Yao, 2010). Interestingly, STDP induced with
repeated pre-before-post at 30 ms time difference requires
activation of both D1 and D2 receptors, whereas for timings at 10
ms the activation of D2 receptors is sufficient, indicating multiple
mechanisms of dopamine interactions: D2 receptors activation
enables STDP by blocking inhibitory input whereas additional
activation of postsynaptic D1 receptor extends the time window
from 10 to 30 ms (Xu and Yao, 2010). For post-before-pre
pairings, no information is available.

In corticostriatal synapses onto spiny projection neurons
of the dorsal striatum, normal STDP is disabled by blocking
D1/D5 (Pawlak and Kerr) or D2 receptors (Shen et al.). In both
cases, a low baseline concentration (a few nM) of dopamine is
likely to be present in the slice preparation, although the exact
levels are not known. This “baseline” neuromodulator presence
would then be responsible for STDP in the control condition.
The results suggest an interaction of a “gating” type: dopamine
permits STDP, while blocked dopamine receptors prevent
STDP (Pawlak and Kerr, 2008). However, without additional
dopamine concentration “data-points,” a multiplicative—or a
more complicated—interaction pattern cannot be excluded.
Moreover, the type of dopamine receptor at the postsynaptic site
influences the plasticity pattern (Shen et al., 2008). The question
of timing of a phasic neuromodulatory signal is left completely
open by these studies, since they have been performed with
constant extracellular bath concentration.

In striatal neurons of anesthetized mice in vivo, an intricate
protocol to mimic natural phasic dopamine release and
presynaptic activity leads to a small plasticity effect for very short
timings (<5 ms) (Schulz et al., 2010).

Cell cultures of rat hippocampal neurons devoid of
dopaminergic cells exhibit a standard “STDP window” with
pre-before-post pairings inducing LTP and post-before-pre
pairings inducing LTD (Zhang et al., 2009). When dopamine
is added to the extracellular bath, the authors find (i) stronger
LTP, (ii) relaxation of the timing requirement for LTP (longer
pre-post intervals would still yield LTP) and (iii) a sign-flip for
post-before-pre timing from LTD to LTP (see Figure 3C). This
study provides an example of a relation between dopamine and
STDP that is more complex than the simple gating proposed in
earlier experiments.

Several neuromodulators interact with STDP in parallel (Seol
et al., 2007). Rat visual cortex layer 2/3 neurons exhibit no STDP
for pairings in baseline conditions, but upon application of an
agonist to noradrenaline receptors of the β family, a triangular
STDP window manifests itself with LTP for both pre-before-
post and post-before-pre pairings of up to 50 ms time difference
(Seol et al., 2007). Conversely, the application of aM1-muscarinic
acetylcholine agonist leads to LTD for both pre-before-post
and post-before-pre. With a combination of agonists for both
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TABLE 1 | Selection of experimental results addressing the interaction of neuromodulation and STDP.

Interaction type Quantitative neuromodulation Neuromodulator timing Details

Dopamine Bissière et al., 2003 Inhibition-mediated

gating

Baseline vs. bath application 5–10 min around

stimulation

Lateral amygdala, mouse

slice

Pawlak and Kerr, 2008 Gating Baseline vs. bath application Always in bath Corticostriatal, rat slice

Shen et al., 2008 Gating Baseline vs. bath application Always in bath Corticostriatal, mouse slice

Zhang et al., 2009 Window shape

alteration

Baseline vs. bath application 10 min around stimulation Hippocampal culture, rat

Xu and Yao, 2010 Inhibition-mediated

gating

Baseline vs. bath application 5–10 min around

stimulation

Prefrontal cortex, mouse

slice

Schulz et al., 2010 Unclear, gating of

anti-Hebbian STDP?

Physiological via visual input and

disinhibition of SC

100–250 ms after pairing Corticostriatal, mouse

Anesthesized

Non-dopamine Lin et al., 2003 Window shape

alteration

Baseline vs. bath application Always in bath Noradrenaline,

hippocampus, rat

Seol et al., 2007 Window shape

alteration

Baseline vs. varying

concentrations of two

neuromodulators

10 min application, 10–60

min prior to stimulation

Acetylcholine and

noradrenaline, visual cortex,

rat

Couey et al., 2007 Window shape

alteration

Baseline vs. bath application 5–10 min around

stimulation

Acetylcholine, prefrontal

cortex, mouse

FIGURE 3 | Experimental evidence for STDP and neuromodulated STDP. (A) A classic example of STDP measurement. Each circle shows a measurement of

synaptic change as a function of the time difference between pre- and postsynaptic spikes. The black line shows a schematic fit of an “STDP window.” Data adapted

from Bi and Poo (1998), hippocampal cell culture from rat. (B) Schematic summary effect of dopamine concentration on the induction of long-term plasticity in

corticostriatal synapses. Adapted from Reynolds and Wickens (2002) who summarize data from many earlier experiments. (C) Effect of extracellular dopamine (DA) on

the STDP window. Adapted from Zhang et al. (2009), hippocampal cell culture from rat. (D) Effect of activation of neuromodulatory pathways on the STDP window.

The noradrenaline (NA) pathway is activated through β-adrenergic receptors, the acetylcholine (Ach) pathway through M1-muscarinic receptors. Adapted from Seol

et al. (2007), rat visual cortex slices.

receptor types, the familiar STDP window is observed, where
pairings pre-before-post lead to LTP, and reverse temporal order
to LTD (see Figure 3D). A protocol where acetylcholine agonists

are applied prior to pairing induces LTD, even if the agonists have
been washed out 30 min before the start of the pairing; similarly,
a protocol with noradrenaline agonists applied and washed out
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40–50 min prior to pairing successfully induces LTP (Seol et al.,
2007). The effect of the presence of neuromodulators after the
pairing is not known.

In rat hippocampus pyramidal neurons, activation of
noradrenaline receptors of the β family relaxes the timing
constraint of pre-before-post pairings for the induction of LTP
(Lin et al., 2003; see also Zhang et al., 2009).

In the drosophila mushroom body, the neuromodulator
octopamine (thought to be functionally similar to noradrenaline)
changes the STDP window from its “classic” shape to LTD for
both timing orders (Cassenaer and Laurent, 2012).

In prefrontal cortex pyramidal neurons, acetylcholine
receptor agonists (of the nicotinic receptor family) change
normal pre-before-post pairings induced LTP to LTD (Couey
et al., 2007). The apparent conflict with the results by Buchanan
et al. (2010) and Sugisaki et al. (2011), who both find that
activation of acetylcholine receptors facilitates timing-dependent
LTP in rodent hippocampus, could arise from differences in
brain region or other factors.

None of the above studies focuses on the precise timing
of phasic neuromodulator signals. In hippocampus, the precise
timing of cholinergic input plays an important role for LTP of
synapses from Schaffer collaterals onto CA1 pyramidal neurons,
when these synapses are driven by low-frequency pulses that
normally are not efficient to induce plasticity (Gu and Yakel,
2011). However, how activity of the postsynaptic neuron would
influence the picture was not tested.

In summary, experimental observations of neuromodulated
STDP suggest a complex interplay of spike- and neuromodulator
timing, concentrations and possibly other factors. Different
neuron and synapse types in different brain regions may use
different mechanisms. The experimental evidence with respect to
the three questions raised above remains incomplete.

3.3. Traditional Plasticity Protocols in
Conjunction with Neuromodulators
In plasticity experiments involving formation and remodeling of
maps in sensory cortices, the exact timing of action potentials
is not controlled. Instead the firing rate of neurons is indirectly
manipulated by suitable stimulation and lesion paradigms. The
influence of acetylcholine, noradrenaline, and serotonin on
synaptic plasticity in sensory cortices with these classical rate-
based paradigms has been reviewed before (Gu, 2002).

Traditional studies of dopamine-modulated plasticity in
cortico-striatal synapses have also relied on “rate-based”
protocols, where no particular attention is paid to the relative
timing of pre- and postsynaptic spikes (see Reynolds and
Wickens, 2002 and Jay, 2003, for reviews). For example,
subthreshold intracellular current injection into striatal neurons
together with simultaneous extracellular high-frequency
stimulation of cortico-striatal fibers leads, under normal in vitro
conditions, to LTD, but not when dopaminergic receptors of the
D1/D5 or D2 family are pharmacologically blocked (Calabresi
et al., 1992). In the absence of extracellular Mg2+, LTP is observed
at normal dopamine levels (instead of LTD), but LTP induction is
not possible if D1/D5 dopamine receptors are blocked (Kerr and
Wickens, 2001). A summary picture in the way dopamine level

modulates plasticity induction has been suggested by Reynolds
and Wickens (2002), with high levels causing LTP, low levels
LTD, and intermediate, as well as total absence of dopamine
causing no changes at all (see Figure 3B).

4. THEORIES OF MODULATED STDP

The scarcity of experimental data along with the complexity
of the observed interactions of neuromodulators with synaptic
plasticity pose a challenge to theoreticians: it is impossible at
this stage to build and constrain plasticity models with the
existing data. Moreover, while phasic neuromodulator signals,
arising from e.g., dopaminergic or cholinergic neurons, are
available inmany brain regions, they act differentially on different
neuron and synapse types (Gu, 2002). Given the variety of
phenomena and the diversity of synapse types, a single unified
model with one set of parameters is not to be expected. Instead,
theoretical neuroscientists aim for a mathematical framework
that would enable them to realize different plasticity phenomena
by different choices of parameters in the same modeling
framework.

As a first step toward such a framework, theoreticians ask
fundamental questions such as: How should an individual
synapse behave to become behaviorally relevant? What are ideal
generalizations of the Hebbian learning principle, so that the
brain as a whole would be able to solve complex learning
tasks reinforced by reward, punishment, novelty, attention, or
surprise?

Before we review theoretical approaches undertaken to
answer these questions, we need to introduce the mathematical
framework that will allow us a categorization of existing models
of STDP under the influence of neuromodulation.

4.1. Formalization of Modulated Hebbian
Plasticity
While Hebbian learning rules have two main factors, i.e., the
presynaptic activity and the state of the postsynaptic neuron,
a synaptic plasticity rule that is influenced in addition by
a neuromodulator will be called a “three-factor rule” in the
following. In general, any three-factor synaptic plasticity rule
incorporating neuromodulation, as well as pre- and postsynaptic
activity, can be written as

ẇ = F(M, pre, post) (2)

where ẇ represents the weight change rate of a particular synapse
from a pre- to a postsynaptic neuron. The variable M on the
right-hand side is the modulator signal. Because it is typically
received and shared by many synapses, its effect is sometimes
called “heterosynaptic modulation” (Bailey et al., 2000). The
variable M represents an extrinsic signal in the sense that it is
generated neither by the synapse itself nor by the pre- and post-
synaptic neurons (Marder, 2012). In the theoretical literature,
the variable M is sometimes called a global factor in the sense
that information conveyed by the time course of M is available
to many (but not necessarily all) neurons and synapses in
parallel (Izhikevich, 2007; Frémaux et al., 2013). As before, the
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acronyms “pre” and “post” represent the spike train of the pre-
and the state of the postsynaptic neuron, respectively. In the
theoretical literature, the variables summarized by “pre” and
“post” are called the local factors of the synaptic update rule in
the sense that the information conveyed by the spikes of one
specific presynaptic neuron and the state of one postsynaptic
neuron are available at the synapse (or synapses) connecting
those two neurons (but not at other synapses). F is a function,
the specifics of which determine the exact type of the learning
rule. Since three-factor rules are a modern generalization of the
original concept of Hebb, they are also called “neo-Hebbian”
(Lisman et al., 2011).

Experiments that control presynaptic spiking, postsynaptic
activity, and neuromodulation (see previous Section) roughly
sketch the space of possible candidate functions that we could
use for F. Since, however, data is scarce, no specific function F
can be extracted at present from the experimental data. Instead,
theoreticians have proposed potential candidate functions that
could play the role of F. In particular, the function F of the three
variables is sometimes assumed to consist of a “Hebb-like” term
F1(pre, post) multiplied by a modulator function g1(M), hence
ẇ = F(M, pre, post) = g1(M) · F1(pre, post). Alternatively, the
neuromodulator could directly change the postsynaptic activity,
hence ẇ = F(M, pre, post) = F2(pre, post(M)), but there are also
other options.

In principle, the above mathematical framework of
modulated synaptic plasticity should be applicable to
various neuromodulators. For example, the phasic signal of
noradrenaline-emitting neurons in locus coeruleus which has
been linked to focused attentiveness on task-specific targets
(Aston-Jones and Cohen, 2005) could influence synaptic
plasticity and play the role of the modulator M in Equation
(2). Similarly, in conditioning tasks, reward-related dopamine
signals (Schultz et al., 1997; Schultz, 2002) can play the role of the
modulatorM in Equation (2). In particular, several recent studies

have proposed models to link reward-based behavioral theories
on one side, and models of learning at the level of individual
neurons and synapses on the other side. In the following we
focus on reward-driven learning models and cast them in the
framework of the above three-factor rule.

4.2. Policy Gradient Models: R-max
One of several mathematical schemes to arrive at candidates for
the function F, is to focus on the problem of reward-driven
learning and derive a synaptic plasticity rule from the principle of
iterative reward-maximization (Xie and Seung, 2004; Pfister et al.,
2006; Baras and Meir, 2007; Florian, 2007; Di Castro et al., 2009;
Urbanczik and Senn, 2009; Vasilaki et al., 2009; Frémaux et al.,
2010). In the following, rules derived from reward maximization
are called R-max. More specifically, R-max plasticity rules result
from the application of policy gradient methods (Williams,
1992; Baxter and Bartlett, 2001) to a stochastically spiking
neuron model. Synaptic “eligibility traces” arise from theoretical
considerations and effectively bridge the temporal gap between
the neural activity and the reward signal.

Suppose a presynaptic neuron sends a spike train “pre”
to a postsynaptic neuron with spike train “post.” Similar to
Hebbian learning the synapse will form a transient memory
of coincidences between pre- and postsynaptic spikes. This
transient memory, called the “eligibility trace” in the theoretical
literature and “tag” in the experimental literature, decays over a
time scale τe. While the transient memory persists, the synapse is
marked and therefore eligible for changes later on (Figure 4A).
The actual change of the synapse, however, requires in addition
a neuromodulatory signal M (Crow, 1968). Conceptually, the
neuromodulator could target a specific subset of synapses, or
a large, but random fraction of synapses in the brain. We
emphasize, that even if the anatomical branching patterns are
unspecific, only the synapses which have been previously marked
by the eligibility trace will be changed (Figure 4B).

FIGURE 4 | Schematic of eligibility traces. (A) Joint activity (top) of two neurons (red-filled circles mark active neurons, open circles inactive neurons) leads, a few

moments later (bottom), to the raising of a “flag” at synapses connecting those two neurons. These synapses are now eligible for change. The activity of other neurons

(filled pink circles) does not interfere with the flag, which persists over a short time. (B) Axonal branches of dopaminergic neurons are shown in blue. If a

neuromodulatory signal (green arrows, top) arrives, the synapses with raised flags undergo plasticity (top: synapses of medium strength before phasic

neuromodulatory signal; bottom: synapses after change). Bottom: In a model where the amplitude of STDP is amplified by the neuromodulator, a synapse becomes

stronger (bold arrow) in case of earlier pre-before-post spike timing and weaker (dashed arrow) in case of reversed timing. Synapses remain stable thereafter.
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In the theory of R-max, the eligibility trace evolves
according to

ė = −
e

τe
+

(

H(pre, post)−
〈

H(pre, post)
∣

∣pre
〉)

, (3)

where 〈·|·〉 represents the conditional expected value and H is
a Hebbian function, i.e., it denotes the joint activity of pre-
and postsynaptic neurons. In the special case of a stochastically
spiking postsynaptic neuron driven by excitatory postsynaptic
potentials (EPSPs) arriving from one or several presynaptic
neurons, the function H represents the value of the EPSP
triggered by a presynaptic spike evaluated at the time of a
postsynaptic spike: this is similar to the “pre-before-post” part
of the STDP window (Figure 3A). The maximization principle
used for the derivation of the R-max rule therefore makes a
prediction for “pre-before-post” timing, but no prediction for
“post-before-pre” (in fact, “post-before-pre” does not matter).
While the specific prediction that the shape of the EPSPs should
match the “pre-before-post” part of the STDP window is specific
to one particular spiking neuron model, the principles of R-max
could be generalized to other neuron models.

As mentioned before, the eligibility trace e marks the synapse
for a change later on (Crow, 1968), but does not lead by itself to
a change of the synaptic weight. The weight change requires the
presence of a neuromodulatorM and is proportional to

ẇ = M × e (4)

where M is the neuromodulator. In R-max M could be equal to
the reward (that is,M = R) or to the reward corrected by a bias b
(that is,M = R− b).

The learning rule of Equations (3) and (4) can be qualitatively
described as follows (see also Figure 5A). The term H(pre, post)
detects the coincidence between a pre-synaptic and a post-
synaptic spike, where the timing requirement for the coincidence
is controlled by the duration ǫ of the EPSP. The expected
number of coincidences, 〈H(pre, post)〉, is subtracted: the result
(symbolized by the left box in Figure 5A) is hence the deviation
of the observed pre-post coincidences from the expected number
of pre-post coincidences. This deviation is then low-pass filtered
with an exponential-shaped function to yield the eligibility trace
e, before being multiplied by reward. The time constant τe
of the exponential arises from the integration of Equation (3)
and determines the maximal interval between the pre-post
coincidences and the reward. A large value of τe implies
that coincident activity of pre- and postsynaptic neurons that
occurred a long time back in the past is still memorized by the
synapses at the moment when a reward is received. An eligibility
trace with a long time constant τe allows therefore to bridge the
temporal gap between Hebbian coincidences (that occurred at
the moment when the action was chosen) and reward delivery
(Figure 4). A small value of τe, however, implies that the reward
must be concurrent with, or at most be slightly delayed compared
to neural activity.

R-max is an example of a covariance rule (Loewenstein and
Seung, 2006) because the expected evolution of synapses is

FIGURE 5 | Schematic of reward-modulated learning rules. Boxes on

the left show the magnitude of plasticity as a function of the time difference

1t = tpost − tpre, between post- and presynaptic spike firing. (A) R-max

(Pfister et al., 2006; Baras and Meir, 2007; Florian, 2007; Frémaux et al.,

2010). The learning rule is maximal for “pre-before-post” coincidences (red

line, ǫ) and rides on a negative bias representing the expected number of

postsynaptic spikes 〈post〉 (red dashed line). This Hebbian coincidence term is

then low-pass filtered by an exponential filter, before being multiplied by the

delayed reward R transmitted by a neuromodulator. (B) R-STDP (Farries and

Fairhall, 2007; Florian, 2007; Izhikevich, 2007; Legenstein et al., 2008; Vasilaki

et al., 2009; Frémaux et al., 2010). Similar to A, except for the shape of the

pre-post coincidence window W which is bi-phasic and does not depend on

the expected number of postsynaptic spikes. The Hebbian coincidence term

is, after filtering, multiplied with the neuromodulator transmitting the success

signal M = R− b where b is the expected reward. (C) TD-STDP (Frémaux

et al., 2013). Similar to B, except for the modulating factor which in this case is

the TD error M = δTD. (D) Generalized learning rule. Changing the meaning of

the neuromodulator term M = D allows the switching between different

regimes of the learning rule.

sensitive to the covariance between the reward R and the Hebbian
term

〈ẇ〉 = Cov(R,H(pre, post)) (5)

where the covariance is analyzed on the time scale τe. Covariance
rules have generic properties that have been related to the
matching law of operant conditioning (Loewenstein and Seung,
2006; Loewenstein, 2008).

4.3. Phenomenological Models: R-STDP
While the learning rule discussed in the previous section can
be rigorously derived from optimization principles (“policy
gradient”), other rules based on more heuristic considerations
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have been proposed. A prominent example is reward-modulated
STDP (R-STDP) which has been studied in several publications
(Farries and Fairhall, 2007; Florian, 2007; Izhikevich, 2007;
Legenstein et al., 2008; Vasilaki et al., 2009; Frémaux et al., 2010;
Friedrich et al., 2011).

Themain idea is to modulate the outcome of “standard” STDP
(left box in Figure 5B) by a reward term. A synaptic eligibility
trace (middle box in Figure 5B) stores a temporary memory of
the STDP outcome so that it is still available by the time a delayed
reward signal is received. If one writes the timing condition (or
“learning window”) (Gerstner et al., 1996; Kempter et al., 1999;
Abbott andNelson, 2000; Song et al., 2000) of traditional Hebbian
STDP as STDP(pre, post), the synaptic eligibility trace keeps a
transient memory in the form of a running average of recent
spike-timing coincidences

ė = −
e

τe
+ STDP(pre, post) (6)

where τe is the time constant of the eligibility trace. The
running average is equivalent to a low-pass filter (middle box in
Figure 5B).

In R-STDP, the synaptic weight w changes when the
neuromodulator M = R − b signals a deviation of the reward
R from a baseline b,

ẇ =
(

R− b
)

× e . (7)

In most publications, the baseline is chosen equal to the mean
reward b = 〈R〉 which makes R-STDP a covariance rule. Indeed,
if the baseline b in Equation (7) is different from themean reward,
the learning rule does not function properly as a reward-based
learning rule (Frémaux et al., 2010).

If we integrate Equation (6), we can write e as the
running average over past spike-time coincidences e =

STDP(pre, post) = H(pre, post). In this case, R-STDP can be
summarized in a single equation

ẇ =
(

R−
〈

R
∣

∣pre
〉)

×H(pre, post) (8)

where the baseline is the expected reward and the Hebbian
term H(pre, post) is the running average of past spike-
timing coincidences. Our notation of the mean reward

〈

R
∣

∣pre
〉

emphasizes that the mean reward must be evaluated in a
stimulus-specific fashion.

How could the brain evaluate a mean reward? In the simplest
case, the mean reward could be a running average over past
experiences. Indeed, if an agent repeats the same learning task
many times, the running average of past rewards is an excellent
approximation of the mean reward and the agent can learn
a complex behavioral task (Frémaux et al., 2010). However, a
simple running average is useless if the agent has to learn two
(or more) tasks in parallel: in a nontrivial situation, different
learning tasks have different rewards, but the running average
would smooth out these differences, so that none of the tasks is
learned (Frémaux et al., 2010; Herzog et al., 2012).

To achieve learning of multiple tasks in parallel, the running
average has to be task-specific R̄task =

〈

R
∣

∣task
〉

(Frémaux et al.,

2010). If R-STDP is implemented with task-specific averaging of
the reward, R-STDP turns into an example of a covariance rule

〈ẇ〉 = Cov(R,H(pre, post)) . (9)

This is equivalent to Equation (5), i.e., R-max and R-STDP with
mean reward subtraction both compute the covariance of reward
and a Hebbian term H.

R-STDP with a neuromodulatory signal M = R − R̄task is
the most widely used form of reward modulated STDP (Farries
and Fairhall, 2007; Florian, 2007; Legenstein et al., 2008; Vasilaki
et al., 2009; Frémaux et al., 2010; Friedrich et al., 2011). However,
Izhikevich has studied a different scenario which we call “gated-
Hebbian” learning: sparse, positive rewards are given to reinforce
the occurrence of pre-before-post spiking events at particular
synapses (Izhikevich, 2007). In that case Equation (9) does not
hold, but instead we have

〈ẇ〉 = Cov(R,H(pre, post))+ 〈R〉 〈H(pre, post)〉 . (10)

Izhikevich balances the STDP window and the network activity
so that 〈H(pre, post)〉 is slightly negative: combined with positive
rewards (〈R〉 > 0), the second term on the left-hand side of
Equation (10) is negative and causes a downward drift of all
synaptic weights.

If rewards are given conditionally on the occurrence of a
specific pre-before-post spike pairing “target,” the covariance
term in the left-hand side of Equation (10) is zero for all
connections, except for the one single synapse that represents the
target pair. The above form of R-STDP is therefore successful in
a task, where the goal is to strengthen a particular target synapse
and depress all the others. In other words, in the R-STDP model
of Equation (10), rewards are used as a binary gating signal to
switch from general synaptic depression to the potentiation of a
particular synapse.

In summary, R-STDP relies on two critical assumptions. First,
Hebbian plasticity is modulated by reward. Evidence for the
relation of reward to dopamine and the modulation of STDP by
dopamine has been reviewed above. Second, synapses are marked
by eligibility traces to enable the bridging of the temporal gap
between Hebbian coincidences and the occurrence of the reward
signal. An eligibility trace is a transient memory of past Hebbian
coincidence events stored at the location of the synapse. The
biological plausibility of eligibility traces and its potential relation
to synaptic “tags” (Frey and Morris, 1997; Bailey et al., 2000;
Redondo and Morris, 2011) will be explored in the discussion
section.

4.4. Temporal-Difference Learning with
STDP
There is a strong conceptual similarity between the temporal
difference (TD) error which arises in reinforcement learning
and the patterns of activity of dopaminergic neurons during
experiments involving rewards (Schultz et al., 1997; Waelti et al.,
2001; Schultz, 2002; Doya, 2007). In TD learning methods
(Sutton and Barto, 1998), the environment in which the animal
evolves is described in terms of states. The transitions from one
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state to the next are determined by the choice of an action. To
each state, a value is assigned (state value), which corresponds to
the amount of future reward that can be expected if the animal
starts from that particular state. Given the correct value for each
state, the optimal policy consists in choosing the action that leads
to the available state with the highest value. The key problem to
solve is thus to learn the correct values associated with each state.

Naively, one would attempt to solve this problem by running
many trials starting from a given state, and observing the
average reward return obtained. However, TD methods (Sutton
and Barto, 1998) solve this problem more efficiently using
algorithmic ideas inspired by dynamic programming (Bellman,
1957; Bertsekas, 1987): Consistency of state values across
different states requires that the expected reward in one state
(visited at time t) be equal to the mean reward obtained during
the transition to the next state plus the reward expected in the
state visited at time t+1. This consistency relation should hold for
the correct values: if the agent does not yet know the true values,
but works with momentary estimates, the mismatch δTD of the
consistency relation, called the temporal difference (TD) error, is

δTD = “value expected at t + 1”+“reward at transition to t + 1”

− “value expected at t” . (11)

If the estimated state values are updated using the information
contained in δTD, the estimated state values will eventually
converge to the true solution (Dayan, 1992). Updates
proportional to the TD error are the essence of TD learning.

Early modeling studies linking TD and the brain do not use
spiking neurons, but instead rely on networks of dynamic systems
to explain how TD computation can be linked to anatomical
structures (Houk et al., 1995; Suri and Schultz, 1998, 1999,
2001; Joel et al., 2002). Other studies focused on implementing
reinforcement learning algorithms in artificial neural networks,
in particular for navigation problems (Arleo and Gerstner, 2000;
Foster et al., 2000; Sheynikhovich et al., 2009).

In implementations of simulated neural networks, the state
values are often represented in a substructure called the “critic,”
from which the TD error is extracted; the choice of actions takes
place in a different substructure called the “actor.” Recently,
Potjans et al. (2009, 2011) have used an actor-critic network of
leaky integrate-and-fire neurons to solve a simple 5 × 5 grid-
world task with spiking neurons. They propose novel, non-
STDP learning rules which make explicit use of discrete state
transitions.

In Frémaux et al. (2013), a TD learning rule for spiking
neurons is derived analytically, which has the form

ẇ = δTD × H(pre, post) , (12)

where δTD is a continuous time version of the TD error, and H is
the eligibility trace and accounts for a running average of Hebbian
coincidences between the pre- and postsynaptic activities.

The analytically derived Hebbian term is a pre-before-post
coincidence window with the shape of an EPSP. However, using
a bi-phasic STDP window (left box in Figure 5C) leads to a
valid, and well-functioning, learning rule, which we denote as
TD-STDP.

4.5. Beyond Rewards: Other Models of
Three-Factor Learning Rules
In all of the above examples, we have focused on models
of reward-based learning with dopamine as the candidate
neuromodulator (Schultz et al., 1997; Waelti et al., 2001;
Steinberg et al., 2013). The general framework of three-factor
rules (Equation 2) can, however, also be applied to a variety
of learning paradigms where the role of the neuromodulator
M could be different. For example, for the learning of binary
decisions in populations of spiking neurons, a neuromodulatory
signal proportional to the population activity has been suggested
(Urbanczik and Senn, 2009; Friedrich et al., 2011). The
neuromodulator encodes the population decision and allows
individual neurons to compare their private spiking history
with the decision of the population. While such a scheme can
help in binary decision making and is biologically plausible,
it is not clear how it can generalize to non-binary decision
making problems, such as motor learning. Another example is
the learning of complex sequences in spiking neural networks
with several layers. Learning is most efficient if it is triggered
by a “surprise” signal which conveys novelty of the observed
state compared to expected novelty (Brea et al., 2013; Rezende
and Gerstner, 2014; see also Schmidhuber, 1991). For example in
Rezende and Gerstner (2014), the weight changes directly depend
on a Hebbian function H multiplied with a neuromodulator S
that conveys surprise, i.e., ẇ = S · H(pre, post), Phasic signals
of neuromodulators that reach a large fraction of neurons in the
brain are good candidates for transmitting such a surprise or
curiosity signal that gates plasticity (Gu, 2002; Lisman et al., 2011;
Gruber et al., 2014). At the present stage of molecular knowledge,
detailed models of molecular mechanisms can be at most of a
hypothetical nature (Nakano et al., 2010).

5. DISCUSSION

5.1. A General Framework for
Reward-Modulated STDP
The learning rules reviewed above (Equations 3, 4, 8, and 12)
broadly fall in two different classes. The first class contains
covariance-based learning rules, such as R-max (Equation 3)
or R-STDP as in Equation (8). These learning rules move the
synaptic weights in the mean over many trials. In any single trial,
stochasticity of the postsynaptic neuron is needed to make the
agent explore different actions. The covariance between neural
activity and reward will eventually drive learning in the right
direction, via a running average over a large number of trials. For
that reason covariance-based rules are slow: they typically need
thousands of trials to converge to a good solution.

The second class consists of spike-timing dependent variants
of TD-learning such as TD-STDP (Equation 12), as well as the
gated scenario of R-STDP (Equation 10). For learning rules
in this class, weight updates after a single trial typically move
the synaptic weights in the desired direction. This implies that
learning is possible after just a few trials. However, in the case
of TD learning, the presynaptic neurons must provide a useful
representation of the state of the agent. How such representation
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can be learned (using some variant of unsupervised learning) is
not part of standard reinforcement learning theory.

From the point of view of synaptic plasticity, all of the above
learning rules can be implemented as a three-factor rule

ẇ = M ×H(pre, post) , (13)

where M represents the neuromodulator (third factor), and H is
the running average of Hebbian coincidences, measured either
through the standard bi-phasic STDP window, or the pre-before-
post coincidence window only. To switch between the different
variants of neuromodulated spike-timing dependent learning,
the neuromodulatorM has to take on different roles:

M =































R− 〈R〉 −→ covariance-rule

δTD −→ TD learning

R −→ gated Hebbian learning

S −→ surprise/novelty-modulated STDP ,

const −→ non-modulated STDP ,

(14)
where S is a measure for surprise, novelty, or curiosity and
const denotes some positive constant. While the first three
cases fall in the class of reward-based learning, the fourth one
represents curiosity or surprise driven learning. The last case
(with constant factor) represents standard unsupervised STDP
(or other voltage or rate-dependent variants of Hebbian learning)
where the action of neuromodulators is irrelevant. The similarity
of different three-factor rules (Figure 5D) raises the possibility
that, depending on brain region and neuron type as well as on
the availability of various neurotransmitter, slight modifications
of the same molecular plasticity mechanisms could implement
different learning schemes.

5.2. Subtraction of the Expected Reward
There are similarities, but also subtle differences between the five
different roles that the neuromodulatorM takes in Equations (13)
and (14). In the first and second line of Equation (14) the
neuromodulatory term M can be described as “actual reward
minus expected reward,” similar to the formulation of the activity
of dopaminergic neurons (Schultz et al., 1997; Schultz, 2002).
However, in the first line the term “expected” takes a different
meaning from that in the second line. In the covariance form
of R-STDP (first line in Equation 14), “expected” refers to the
statistical expectation of the reward. In practice, the expected
reward can be implemented as a (task-dependent) running
average over previous trials, as discussed earlier. In the case of
TD-STDP (second line in Equation 14), however, “expected” is
to be understood in the sense of predicted. In practice, reward
prediction requires that for each state (or each state-action pair)
expected reward values are estimated.

These differences have important consequences for learning.
The covariance form of R-STDP can function properly only if
the neuromodulatory signal M is zero on average. This requires
the expected reward 〈R〉 to be known. If a running average
of the reward is used as an approximation to the statistical
expectation, the running average must converge before correct

learning can occur. In contrast, TD-STDP will only learn while
the neuromodulatory signal (the TD error) is not equal to zero.
As soon as the state values have converged to their correct
values, the TD-error vanishes and so does the neuromodulatory
signal. Learning thus only occurs during convergence of the
value estimation; after convergence, learning stops. The fact that
convergence in TD and covariance learning occurs on different
timescales (fast for TD, slow for covariance, see Frémaux et al.,
2013) suggests that the twomight be used in a combined manner.
The feasibility of such a learning system deserves further study.

Experimental data on phasic dopamine signals are consistent
with the notion of “actual reward minus expected reward” once
the dopamine baseline is subtracted (Schultz et al., 1997). Indeed,
blocking experiments show that learning of compound stimuli
reappears when a phasic dopamine signal is artificially switched
on (Steinberg et al., 2013), but remains blocked in the absence of
phasic dopamine (Waelti et al., 2001). The fact that dopaminergic
neurons also fire in response to reward-predicting stimuli (which
are not rewarding by itself!) suggests that dopaminergic firing
contains information related to a TD error (Schultz et al., 1997).
Recently, mechanistic ideas of how such a TD signal could be
calculated in the brain have started to appear (Cohen et al.,
2012). Interestingly, phasic and bi-phasic responses of dopamine
to novel stimuli suggest that dopamine may also transmit novelty
related information (Schultz, 1998; Waelti et al., 2001; Redgrave
and Gurney, 2006; Lisman et al., 2011).

5.3. Eligibility Traces and Synaptic Tagging
An eligibility trace is a transient memory of past Hebbian
coincidence events stored at the location of the synapse.
Eligibility traces are an essential part ofmost three-factor learning
rules, Equation (13), because they bridge the temporal delay
between the sensory input and/or action on the one side and the
moment of reward delivery on the other side.

From a theoretical point of view, eligibility traces appear for
a variety of reasons. One of them is the extension of finite
horizon policy gradient methods to so-called infinite horizon
problems (Baxter and Bartlett, 2001; Pfister et al., 2006). In that
case, a decaying trace is used to set the time horizon, with the
heuristics that recent policy choices should get more credit for
rewards than distant ones. A similar argument, albeit with a
weaker theoretical foundation, is made in the case of reward-
modulated STDP with eligibility traces (Klopf, 1982; Seung,
2003; Farries and Fairhall, 2007; Florian, 2007; Izhikevich, 2007):
synapses that underwent pairing just before a reward should
get a stronger reinforcement than those that underwent pairing
earlier. In standard TD-learning, eligibility traces are sometimes
added “ad-hoc” to speed up learning (Sutton and Barto, 1998). In
spiking networks, eligibility traces arise directly from the need of
extracting a smooth signal from spike trains, in order to be able
to derive a TD error minimizing learning rule (Frémaux et al.,
2013).

From a functional perspective, eligibility traces fulfill a similar
role as the synaptic tagging mechanism of Frey and Morris
(1997, 1998). In experiments on synaptic tagging and capture
(Frey andMorris, 1997, 1998; Redondo andMorris, 2011), strong
stimulation of hippocampal neurons through a presynaptic
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input is sufficient to elicit late LTP, whereas weak stimulation
only causes a transient synaptic efficacy change (early LTP)
that decays on the time scale of 1 or 2 h. However, when
the neuron is subject to both strong and weak stimulation at
two different presynaptic pathways, both sets of synapses get
consolidated (Frey and Morris, 1997). Crucially, this happens
even if the weak stimulation happens 1 h prior to the strong
stimulation, suggesting the weakly stimulated synapses keeps a
slowly decaying “tag” (Frey and Morris, 1998). Models of tagging
and consolidation (Clopath et al., 2008; Barrett et al., 2009)
further highlight the structural similarities between eligibility
traces in reward-based learning and synaptic tagging. However,
there are notable differences between synaptic tagging and
eligibility traces, most prominently the different time scales of
the synaptic memory traces: for tagging the decay of traces
occurs on the time scale of ∼1 hr (Frey and Morris, 1997;
Reymann and Frey, 2007; Redondo and Morris, 2011), whereas
it is in the range of a few hundred milliseconds for eligibility
traces in reinforcement learning (Arleo and Gerstner, 2000;
Foster et al., 2000; Izhikevich, 2007; Sheynikhovich et al., 2009;
Frémaux et al., 2013). Nevertheless, the fact that the molecular
machinery necessary to maintain synaptic traces exists (Lisman
et al., 2011) exists in the context of synaptic consolidation, also
lends biological plausibility to the concept of eligibility traces:
the implementation of eligibility traces could use a signaling
chain that is analogous to that for synaptic consolidation, but
with shorter time constants. The timing requirement between
spike pairings and dopamine deserves additional experimental
investigation.

5.4. Role of the Post-before-pre Part of the
STDP Window
All theoretical studies of STDP from an “optimality perspective”
highlight the relevance of the pre-before-post part of the STDP
window, but do not reliably predict a significant post-before-pre
effect (Pfister et al., 2006; Bohte and Mozer, 2007; Toyoizumi
et al., 2007; Parra et al., 2009). The fundamental reason is
the direction of causation: pre-synaptic spikes only affect later
post-synaptic spikes and (classic unsupervised) STDP detects
these causal relations and makes them even stronger. The same
argument of causality also applies to reward-modulated forms of
STDP (Pfister et al., 2006; Florian, 2007). In practice, it was found
that including a post-before-pre part of the learning window
generally does neither help nor harm (Izhikevich, 2007; Farries
and Fairhall, 2007; Frémaux et al., 2010, 2013). The main reason
to include a post-before-pre dependency is that for unsupervised
(i.e. not modulated) STDP, a bi-phasic learning window was
found (e.g., Markram et al., 1997; Bi and Poo, 1998). However,
for the case of dopamine modulated STDP, the currently available
experimental evidence for the role of post-before-pre pairings
is inconclusive (Pawlak et al., 2010). Thus, the role of the post-
before-pre part of reward-modulated learning rules remains an
open question for further theoretical and experimental studies.

5.5. Implications for the Search of
Experimental Evidence
Experimental evidence for the interaction of STDP with
neuromodulation is still incomplete. This provides an

opportunity for theoreticians to identify the most critical
aspects that would be worth further experimental study.

The precise timing of a phasic neuromodulatory signal with
respect to spike pairing is a crucial element in all theoretical
models. While stimulation of dopaminergic axon bundles
with bipolar electroces is a traditional means to elicit phasic
dopamine release, it has now also become possible to to control
neuromodulatory signals with optogenetic methods (see e.g., Tsai
et al., 2009; Steinberg et al., 2013, for optogenetic activation of
phasic dopamine signals in behaving animals). First steps have
been taken in Gu and Yakel (2011), who control the precise
timing of the neuromodulator and the presynaptic neuron, but
not that of the postsynaptic cell. Instead of precise control of the
neuromodulatory timing, a number of studies (e.g., Seol et al.,
2007; Pawlak and Kerr, 2008; Zhang et al., 2009) focus on the
precise relative timing of the pre- and postsynaptic spikes. There
is no strong theoretical prediction as to the exact shape of either
part of the STDP window, except that the time-dependence (or
shape) of the pre-before-post window should roughly match the
shape of an EPSP.

The reversal of plasticity under negative reinforcement is
another critical feature of most theoretical models of reward-
modulated STDP. This means that a spike pairing that would
result in LTP under positive reinforcement would result in
LTD under negative reinforcement and vice versa. Limited
experimental evidence of this phenomenon exists (Reynolds and
Wickens, 2002; Seol et al., 2007; Zhang et al., 2009) but more
experiments are necessary to test the theoretical prediction that
negative reinforcement should reverse the polarity of synaptic
plasticity.

The existence of a “critic” structure in the brain is suggested
in (i) theories of covariance-based learning, because an accurate,
task-dependent reward prediction system is necessary (Frémaux
et al., 2010), and by (ii) actor-critic architecture-based models
of TD-learning, because the TD error needs to be calculated
(Potjans et al., 2009, 2011; Frémaux et al., 2013). Strong
evidence for such a critic structure is provided by the research
by Schultz et al. (e.g., Ljunberg and Schultz, 1992; Schultz
et al., 1993; Hollerman and Schultz, 1998; Waelti et al., 2001):
since the dopamine signal represents “reward—expected reward,”
some upstream structure must calculate the expected reward.
Experimentally found activity of ventral striatum neurons in a
maze navigation task (van der Meer and Redish, 2011) closely
resembles that of simulated critic neurons (Frémaux et al., 2013).
This further strengthens the case for the existence of a TD-based
critic. Herzog et al. (2012) raise the possibility that the critic can
bemisled when two tasks are very similar, yet yield differentmean
rewards, which leads to the blocking of learning. This interesting
possibility opens the way for psychophysics experiments probing
the functioning of a potential critic structure in more detail.

The role of neuromodulators is likely to be diverse. Even
in the extreme case often considered by theoreticians where
phasic neuromodulatory signals are available unspecifically to
all synapses (which we do not believe to be true in the
brain), neurons and synapses can be targeted specifically (Disney
et al., 2006, 2007) given a set of plasticity rules that depend
on (i) activity and type of presynaptic neuron; (ii) activity
and type of postsynaptic neuron; (iii) the received mixture of
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FIGURE 6 | Specificity of synaptic changes (schematic). In a network

with several neuron types (here two types, orange and blue filled circles) and

several neuromodulators (green arrows for neuromodulator M1 and magenta

for M2), synaptic changes can be highly specific, even if phasic signals of

neuromodulators have broad and unspecific target regions. Hypothetical

examples, from top to bottom (red = active neuron): A connection from orange

to orange becomes stronger (bold arrow), if both neurons and neuromodulator

M1 are active; the same connection becomes weaker (dashed arrow), if in

addition M2 is active; a connection from orange to blue is strengthened if both

neurons and both neuromodulators are active; in the same situation, a

connection from blue to orange is not affected; a connection from blue to blue

is strengthened if both neurons and both neuromodulators are active; the

same connection becomes weaker if only the postsynaptic neuron is active.

neuromodulators (Figure 6). Dopamine is the neuromodulator
most often associated with reward signals, but other important
molecules include acetylcholine, noradrenaline and serotonin.
These various neuromodulators might carry different signals
separately or even together (Figure 1G) (Schultz, 1998; Waelti
et al., 2001; Redgrave and Gurney, 2006; Lisman et al., 2011)
and synapses may react to the specific mix of neuromodulators
(Seol et al., 2007; Svensson et al., 2001; Katz and Edwards, 1999).
Candidate roles for neuromodulatory signals predicted by theory
include population decision signals (Urbanczik and Senn, 2009;
Friedrich et al., 2011), reinforcement learning meta-parameters
(Doya, 2002), or novelty-based “surprise” (Schmidhuber, 1991;
Rezende and Gerstner, 2014). From a theoretical perspective,
there is no need of a one-to-one mapping from neuromodulators
to specific functions, but a mixed coding scheme would be
sufficient (Figure 1G).

Models of behavioral learning associate abstract
representations of sensory input to motor outputs (see e.g.,
Figure 1B). Reward-based learning with TD methods requires
a compact representation of states (derived from sensory input)
and actions (output), and becomes intractable when the number
of states and actions become large (Sutton and Barto, 1998).
In contrast, policy gradient methods do not need input and
output complexity reduction in order to work properly, but they
converge faster on a compact representation (Farries and Fairhall,
2007; Frémaux et al., 2010). Unsupervised learning methods

(e.g., Kohonen, 1990; Hinton and Sejnowski, 1999; Franzius
et al., 2007) are one way to achieve compact representations
of inputs in complex learning tasks (Arleo and Gerstner, 2000;
Arleo et al., 2004; Swinehart and Abbott, 2006; Franzius et al.,
2007; Sheynikhovich et al., 2009). It remains an open question
whether the development of compact representations of sensory
input in the brain is purely unsupervised Hebbian (as it seems to
be the case, e.g., in inferotemporal cortex, Li and DiCarlo, 2012),
or whether, in some brain areas, it is also influenced by reward
and novelty information.

5.5.1. Outlook

Most of the model networks studied in this review consist of
layers of homogeneous neurons connected to each other in a
simple “feed-forward” structure. In contrast the brain features
highly recurrent networks of various neuron types. Recurrent
networks could, in principle, provide a rich reservoir of activity
states (Buonomano and Maass, 2009; Sussillo and Abbott, 2012)
and implement complex computations (Nessler et al., 2013;
Sussillo, 2014). How learning of the recurrent connections (Laje
and Buonomano, 2013; Hennequin et al., 2014) can be achieved
by STDP under neuromodulation, while maintaining sustained
balanced network activity (van Vreeswijk and Sompolinsky,
1996; Brunel, 2000; Vogels et al., 2005) remains an open
question.

The multiple ways in which neuromodulators can interact
with neural activity (Kaczmarek and Levitan, 1987; Nicola et al.,
2000; Marder, 2012; Nadim and Bucher, 2014) combined with
complex network structures suggest many different mechanisms
of interplay between them (Marder, 2012). In this review we
only focused a small subset of questions that relate to long-term
synaptic plasticity. Even there, we have been coarse—for example
we did not mention the additional complexity induced by the D1
and D2 dopaminergic receptor families, known to be expressed
in different proportions across types of neurons (Missale et al.,
1998; Seamans, 2007; Pawlak and Kerr, 2008; Shen et al., 2008).
Dopamine receptors in turn are coupled to G-proteins linking to
a large family of signaling cascades (Nicola et al., 2000).

We also neglected the direct influence of neuromodulators on
synaptic strength and short-term plasticity (Nadim and Bucher,
2014). In many cases, theoretical models should simplify, and
therefore neglect complexity, in as much as they aim to extract
simple functional rules, or concepts, linking neuromodulation
and plasticity. However, for the purpose of reproducing and
understanding biophysical experiments and, e.g., predicting the
manifold actions of pharmacological drugs and their interactions
with neurotransmitters, detailed models of neuromodulated
plasticity will eventually be needed.
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