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Neural circuits projecting information from motor to sensory pathways are common
across sensory domains. These circuits typically modify sensory function as a result
of motor pattern activation; this is particularly so in cases where the resultant behavior
affects the sensory experience or its processing. However, such circuits have not been
observed projecting to an olfactory pathway in any species despite well characterized
active sampling behaviors that produce reafferent mechanical stimuli, such as sniffing in
mammals and wing beating in the moth Manduca sexta. In this study we characterize
a circuit that connects a flight sensory-motor center to an olfactory center in Manduca.
This circuit consists of a single pair of histamine immunoreactive (HA-ir) neurons that
project from the mesothoracic ganglion to innervate a subset of ventral antennal lobe
(AL) glomeruli. Furthermore, within the AL we show that the M. sexta histamine B
receptor (MsHisClB) is exclusively expressed by a subset of GABAergic and peptidergic
LNs, which broadly project to all olfactory glomeruli. Finally, the HA-ir cell pair is present
in fifth stage instar larvae; however, the absence of MsHisClB-ir in the larval antennal
center indicates that the circuit is incomplete prior to metamorphosis and importantly
prior to the expression of flight behavior. Although the functional consequences of this
circuit remain unknown, these results provide the first detailed description of a circuit that
interconnects an olfactory system with motor centers driving flight behaviors including
odor-guided flight.
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INTRODUCTION

Animals exhibit stereotypical search behaviors in pursuit of potential food sources or mating
partners. More specifically, some animals employ sampling strategies where rhythmic motor
patterns optimize the interaction between stimuli and their affected sensory systems. Consequently,
many of these motor systems project to and modulate how sensory systems process this
information. For example, saccadic eye movements allow us to focus on objects despite having
a fast adapting visual system (Martinez-Conde et al., 2006). Here the neural circuits driving

Abbreviations: AL, antennal lobe; AMMC, antennal mechanosensory and motor center; ATR, allatotropin; BRP, bruchpilot;
BSA, bovine serum albumin; FMRF, FMRF-amide; HA, histamine; HisClA, histamine A receptor; LAC, larval antennal center;
LNs, local interneurons; MDHn, mesothoracic deutocerebrum histamine neurons; MsHisClB, Manduca sexta histamine B
receptor; MsG, mesothoracic ganglia; ORNs, olfactory receptor neurons; PNs, projection neurons; SEZ, subesophageal zone.

Frontiers in Neural Circuits | www.frontiersin.org 1 February 2016 | Volume 10 | Article 5

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://dx.doi.org/10.3389/fncir.2016.00005
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fncir.2016.00005
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2016.00005&domain=pdf&date_stamp=2016-02-16
http://journal.frontiersin.org/article/10.3389/fncir.2016.00005/abstract
http://loop.frontiersin.org/people/277614/overview
http://loop.frontiersin.org/people/263429/overview
http://loop.frontiersin.org/people/314237/overview
http://loop.frontiersin.org/people/6529/overview
http://loop.frontiersin.org/people/52931/overview
http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


Bradley et al. Flight Motor to Olfactory Circuit

these small movements also send a signal canceling the
perception of a moving scene, therefore affording proper
behavioral responses to other stimuli in the environment
(Zaretsky and Rowell, 1979; Ross et al., 2001). Other motor
to sensory circuits have been shown to amplify self-induced
communication signals (Mohr et al., 2003), inhibit reflex
responses (Chalfie et al., 1985), and are involved in sensory/motor
planning (Brainard and Doupe, 2000; Sommer andWurtz, 2002).
While work in other sensory systems have made significant
progress in characterizing motor to sensory circuits (Crapse and
Sommer, 2008), it is not clear whether such circuits are present in
the olfactory system.

When tracking odors, animals typically exhibit behaviors,
such as sniffing, that periodically structure olfactory stimuli
(Halpern, 1983). Each sniff cycle draws odor-laden air into
the nasal cavity during inhalation and forces air out during
exhalation, thus imposing a temporal structure on air/olfactory
receptor interactions that persists in the absence of odor (Adrian,
1942; Kepecs et al., 2007). In this manner, sniffing couples
reafferent mechanical stimuli with odor stimuli resulting in
a temporally structured stimulus that improves physiological
(Verhagen et al., 2007), and presumably behavioral performance.
In the moth Manduca sexta, wing beating causes high frequency
oscillations in airflow over the antennae in a manner analogous
to sniffing (Sane and Jacobson, 2006). These periodic signals
have a potentially strong effect on odor-receptor interactions in
moths (Loudon et al., 1994; Loudon and Koehl, 2000) and are
effectively tracked by antennal and antennal lobe (AL) neurons
(Tripathy et al., 2010). This implies that at least part of the
temporal structure of encoding neuron activity is driven by time-
dependent fluctuations in stimulus concentration (Christensen
et al., 1998; Daly et al., 2011), driven by wing-beating. Simulating
wing-beating effects on odor exposure by pulsing odor stimuli
at wing beat frequencies increases separation of neural ensemble
representations for different odors (Houot et al., 2014) and
enhances behavioral performance in psychophysical assays of
olfactory acuity (Tripathy et al., 2010; Daly et al., 2013). While
AL neurons can track pulsed stimuli when the neck connective
is intact (Houot et al., 2014), AL neurons are unable to do
so when using isolated head preparations (Christensen et al.,
1998; Tripathy et al., 2010). This suggests that the AL receives
input from flight sensorimotor centers that affects the temporal
fidelity with which the AL encodes odors (Christensen et al.,
1998; Tripathy et al., 2010). However, relatively little is known
about neural circuits connecting flight sensory-motor centers and
the AL.

There is limited data describing input from flight sensory-
motor centers to the ALs of Manduca. This circuit consists of
a single pair of histamine (HA) immunoreactive neurons that
project from the mesothoracic ganglion (MsG) and bilaterally
innervate both ALs and the antennal mechanosensory and
motor center (AMMC) (Homberg and Hildebrand, 1991;
Homberg, 1994). The purpose of this study was to provide
a detailed morphological description of these mesothoracic to
deutocerebral histaminergic neurons (MDHns) and to identify
candidate post synaptic targets. Using immunohistochemistry,
we found that the MDHns ramify in a subset of ventral

glomeruli in the AL, the AL isthmus, and the coarse neuropil.
A subset of GABAergic local interneurons (LNs) along with
one FMRFamide-ir and one allatotropin-ir (ATR-ir) LN express
the Manduca homolog of the histamine B receptor subtype
(MsHisClB) and thus represent candidate postsynaptic targets of
the MDHns. Furthermore, although the MDHns are present in
larvae and survive metamorphosis there is no expression of the
MsHisClB receptor in larval antennal center (LAC) neurons until
after pupation has occurred, suggesting the MDHns only affect
olfactory processing in adults. The MDHns therefore represent a
novel circuit that provides a potential source of information from
a flight sensory-motor integration system to the olfactory system.

MATERIALS AND METHODS

Animals
Animals were raised using a standard diet (Bell and Joachim,
1976) and rearing procedures (Tripathy et al., 2010). Adult moths
were kept in brown paper bags and placed in an incubator
(Percival Scientific Inc.; 166VLC8) where they were exposed to
a 16/8 reverse light dark cycle set to 25◦C and 75% humidity.
Approximately 10 male or female moths aged 3–9 days were
used for all experimental groups. For larval studies, stage 5 instar
larvae were dissected with trachea removed. Ten larval nervous
systems were used for developmental experiments.

Immunohistochemistry
Immunolabeling was performed as described previously (Dacks
et al., 2010) on both sectioned and whole-mount brains
depending upon the preparation. For HA immunolabeling,
brains were placed in a 4% N-3-dimethylaminopropyl-N’-
ethylcarbodiimide (Sigma–Aldrich, 03449) pre-fixative for 3–4 h
at 4◦C, before being fixed overnight in 4% paraformaldehyde
(Electron Microscope Sciences, 15710) in 1% phosphate buffered
saline (PBS; Sigma–Aldrich, SLBC5890) at 4◦C. For the
MsHisClB antibody, brains were placed in 4% paraformaldehyde
(Electron Microscopy Sciences, 15710; pH 7.3–7.5) at 4◦C
overnight. Following fixation, brains were washed in PBS
(pH 6.9). For sectioned tissue, adult brains and ganglia were
embedded in 5% agarose (Sigma–Aldrich, SLBJ3744V) and
sectioned between 50 and 250 μm (depending on the antibody)
using a Leica VT 1000S vibrating microtome. The tissue was
washed in PBS with 0.5% TritonTM-X100 (PBST; Sigma–Aldrich,
110M0009V), blocked for 1 h with 2% IgG-free BSA, J(ackson
Laboratory, 001-000-162) and incubated in primary antibody
in blocking solution with 5 mM with sodium azide (PBSAT;
Fisher Scientific, S2271). Brains were washed and blocked as
above, then incubated in secondary antibody (1:1000 Alexa 488,
546, or 633 in PBSAT; Alexa fluor R© ; Lifescience Technologies)
overnight at room temperature except for experiments using
MsHisClB and/or GABA in which tissue was incubated at 4◦C.
SYTO 59 (a nuclear label; InvitrogenTM; S11341) was used
to outline the LAC. Tissue was washed several times in Tris
Buffered Saline (TBS; Bio-Rad, 170-6435) and the tissue was
incubated in 1:10,000 SYTO 59 in Tris-HCl (Fisher Scientific,
BP153 for 60 min before mounting. All tissue was washed
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in PBST and PBS, then run through an ascending glycerol
(Sigma–Aldrich, BCBN3647V) series (40%, 60%, and 80%) and
mounted in Vectashield R© (Vector laboratories, ZA1222). For
whole-mount preparations, tissue was run through an ascending
ethanol (Sigma–Aldrich, SHBF6704V) dilution series (30, 50,
70, 95, and 100%) for 10 min each (after the PBS wash), a 1:1
ethanolmethyl salicylate solution for 15min, and finally mounted
in 100% methyl salicylate (Fisher Scientific, MFCD00002214).
All primary antibody information (including dilutions used,
manufacturer, host-species, immunogen and RRID) is included
in Table 1.

Antibody Manufacturing and
Characterization
Rabbit Anti-Histamine
The HA antiserum was raised against synthetic HA conjugated
via a carbodiimide linker to succinylated keyhole limpet
hemocyanin. Control studies showed that the antibody had
no cross reactivity with L-histidine or L-histidine containing
peptides, and pre-adsorbing the antiserumwith the HA conjugate
eliminates labeling (Immunostar histochemical HA antiserum
specification sheet) as did an RNAi knock down of histidine
decarboxylase in Drosophila (Melzig et al., 1996). Finally, pre-
adsorbing the HA antiserum against keyhole limpet hemocyanin
alone did not eliminate HA labeling in Bombus impatiens
(Dacks et al., 2010). Pre-adsorption controls in Manduca tissue
were performed by incubating the rabbit anti-HA antiserum
for 24 h in blocking solution (1 mg/ml BSA in PBSAT) with
HA (Sigma–Aldrich, H7250) at a ratio of 10:1 HA:antiserum.
Non-pre-adsorbed controls in which rabbit anti-HA antibody
was incubated in parallel under identical conditions resulted in
immunolabeling (Figure 1A; n = 5) whereas preadsorbing the
antibody abolished all staining in Manduca optic lobe tissue
(Figure 1B; n = 5).

Mouse Anti-Bruchpilot
Bruchpilot (BRP) is homologous to the protein ELKS/CAST in
mammals and functions as a structural protein at presynaptic
active zones (Wagh et al., 2006). The BRP antiserum was raised

against BRP and western blots showed two bands for two
isoforms of the BRP protein in Drosophila (Wagh et al., 2006).
BRP labeling was absent in BRP mutants (Kittel et al., 2006)
and has been shown to bind to amino acid sequence 1390–1740
(Fouquet et al., 2009). The BRP antiserum produced a single
band at the predicted weight for the Manduca homolog of BRP
in western blots using Manduca brain tissue (Lizbinski et al.,
2015). The purpose of using the anti-BRP antibody in this study
was to highlight the boundaries of neuropil, rather than to make
any conclusions about the distribution of the Manduca homolog
of BRP.

Mouse Anti-GABA
GABA antiserum was raised against GABA coupled to BSA
with glutaraldehyde. Controls show that the antibody was highly
specific to GABA and did not react with other amino acid BSA
conjugates (Abcam data sheet). Pre-adsorption controls were
performed by incubating the mouse anti-GABA antiserum for
24 h in blocking solution (1 mg/ml BSA in PBSAT) with GABA
(Sigma–Aldrich, cat # A2129) at a ratio of 10:1 GABA:antiserum.
Non-pre-adsorbed controls in which mouse anti-GABA antibody
was incubated in parallel under identical conditions resulted in
strong immunolabeling (Figure 1C; n= 5) whereas preadsorbing
the antibody abolished all staining in Manduca AL tissue
(Figure 1D; n = 5).

Rabbit Anti-FMRFamide
FMRFamide antiserum was provided by Dr. Eve Marder and
was raised against synthetic RF-amide coupled to bovine
thyroglobulin with glutaraldehyde (Marder et al., 1987).
Preadsorbing the antiserum against synthetic FMRFamide
eliminated labeling in larval Manduca nervous tissue (Witten
and Truman, 1996).

Rabbit Anti-Allatotropin
Allatotropin (ATR) antiserum was provided by Dr. Jan Veenstra
and raised against purified ATR coupled to thyroglobulin
using glutaraldehyde (Veenstra and Hagedorn, 1993). ELISA
did not show cross reactivity with 100 pmol corazonin,

TABLE 1 | Primary antibodies used in this study.

Antigen Immunogen Manufacturer, host,
monoclonal vs. polyclonal

Catalog # RRID Dilution used

Histamine Synthetic HA coupled to succinylated keyhole
limpet Hemocyanin with carbodiimide linker

Immunostar, Rabbit,
polyclonal

22939 AB_572245 1:500

Bruchpilot Bruchpilot peptide sequence (1390-1740) from
head homogenate

DSHB, Mouse, monoclonal Nc-82 AB_2314866 1:50

Manduca sexta HA B
receptor (MsHisClB)

Histamine B receptor peptide sequence
(VNPDIELPQLD)

Bethyl Laboratory (custom),
Rabbit, polyclonal

N/A N/A 1:5000

γ-aminobutyric acid
(GABA)

Purified GABA conjugated to BSA Abcam, Mouse, monoclonal ab49675 AB_880138 1:500

Allatotropin Allatotropin coupled to thyroglobulin with
glutaraldehyde

Dr. Jan Veenstra, Rabbit,
polyclonal

N/A AB_2313973 1:8∗

FMRF-amide Synthetic FMRF coupled to bovine thyroglobulin
with gluteraldehyde

Dr. Eve Marder, Rabbit,
Polyclonal

N/A AB_572232 1:8∗

∗See fluorescent tagging subsection of the methods for details.
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FIGURE 1 | Characterization of the HA GABA and Manduca sexta HA B
receptor (MsHisClB) antibodies. (A) HA labeling in control animals where
the antibody was not pre-adsorbed. HA labeling in the optic lobe which is the
primary neurotransmitter used by arthropod receptor cells. (B) HA labeling in
the optic lobe is abolished after the HA antibody was pre-adsorbed with a
10:1 HA to antibody solution. (C) GABA labeling remains in control animals
where the antibody was not pre-adsorbed with GABA. (D) GABA labeling in
the AL is abolished after the GABA antibody was pre-adsorbed with a 10:1
GABA to antibody solution. For each panel the same dorsal lateral axis is
used. (E) Amino acid sequence alignment of the HA B receptor subunits of
Manduca sexta (MsHB; Msex2.04603-RA), Drosophila melanogaster (DmHB;
ACA13298.1), Apis mellifera (AmHB; ABG75740.1), and Nasonia vitripennis
(NvHB; ACZ51422.1). Asterisks indicate sequence identity across all four
species. Bold font indicates the immunogenic peptide sequence from
Manduca that was used to generate the MsHisClB antibody. (F) Western blot
using MsHisClB receptor antibody on Manduca brain tissue resulted in a
single band at the predicted molecular weight (36 kDa) of the MsHisClB
protein. (G) Frontal section of optic lobe depicting MsHisClB-ir in the lamina
(as labeled by an asterisks). (H) Pre-adsorption with the immunogenic peptide
sequence eliminates all labeling in the lamina. Scale bars = 50 μm. D, dorsal,
L, lateral, A, anterior.

vasopressin, leucokinin IV, or proctolin, but did show significant
immunoreacitivity to the truncated 6–13 analog of Manduca
ATR (Veenstra andHagedorn, 1993). Preadsorbing the antiserum
against ATR eliminated immunolabeling inManduca tissue (Utz
et al., 2008).

Rabbit Anti-MsHisClB
To determine the amino acid sequence of theManduca homolog
of the HA B-type receptor (MsHisClB), we used the Manduca
genome (Agricultural Pest Genomics Resource Database1: to
perform a forward protein BLAST analysis of the Drosophila
melanogaster histamine B-type receptor (HisClB) amino acid
sequence (ACA13298.1). The top match from the Manduca
genome had an e-value of 0.0 (Msex2.04603-RA). We then
reverse blasted this sequence from the Manduca genome into
the Drosophila genome in NCBI and the first three matches
were Drosophila HisClB isoforms (NP_650116.2, NP_731632.1,
and NP_001163591.1), all of which had e-values of 0.0. The
next highest match from the Drosophila genome was the HisClA
receptor (otherwise known as “ora transientless”; NP_524406.1)
which is the other of the two HA receptor types in Drosophila
(Zheng et al., 2002) and had e-values of 3e-148 which is
consistent with both HA receptor types having high sequence
homology (Zheng et al., 2002; Jones et al., 2010). To ensure
that there were not two predicted amino acid sequences from
the Manduca genome with high sequence homology to the
Drosophila HisClB receptor, we took the amino acid sequence
from the Manduca genome with the second highest e-value for
the Drosophila MsHisClB (Msex2.04216-RA; e-value = 1e-119)
and ran a BLAST analysis of this sequence in the Drosophila
genome. The BLAST analysis resulted in an e-value of 7.37e-
158 for the Drosophila ora transientless indicating that the
Manduca protein with the next closest sequence similarity
to Drosophila HisClA was likely not the MsHisClB homolog.
Figure 1E is a sequence alignment of the Manduca HisClB
receptor (MsHisClB) with the sequences for known histamine
B receptors from Drosophila melanogaster (ACA13298.1), Apis
meliferia (ABG75740.1), and Nasonia vitripennis (ACZ51422.1)
(Jones et al., 2010) using the EMBL-EBI Clustal omega tool2
(Sievers et al., 2011).

Custom affinity purified antibodies were generated in
rabbit (Bethyl laboratories) using Cys-VNPDIELPQLD as the
immunogenic sequence. The immunogenic sequence was highly
conserved across D. melanogaster, A. mellifera, and N. vitripennis
(Figure 1E). For western blots, adult brains were placed in BoltTM
LDS Sample Buffer (Life Technologies, B0007, Life Technologies)
with protease inhibitor cocktail (Research Products International,
P50900) and DNase I (Invitrogen, 18068-015) and kept on ice
for homogenization with a pestle. Samples were heated in a
water bath for 10 min at 95◦C. We used the Novex R© BoltTM
Gel Electrophoresis System (Life Technologies) with Tris-Glycine
SDS Running Buffer at 165V for 2.5 h and BoltTM 4–12% Bis-
Tris Plus Precast Gels (BG04120BOX) to resolve proteins. We
used the iBlot R© Gel Transfer Device (Life Technologies, IB1001)

1www.agripestbase.org
2http://www.ebi.ac.uk/Tools/msa/clustalo/
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program P0 (20 V for 1 min, 23 V for 4 min, 25 V for 2 min)
to transfer proteins to nitrocellulose membranes (nitrocellulose
iBlot R© Transfer Stacks, Life Technologies, IB3010-01). The
WesternBreeze R© Chromogenic Western Blot Immunodetection
Kit (WB7105, anti-rabbit) protocol was used to detect proteins.
Images of membranes were taken with FluorChem Q using
Alpha View Analysis Software. The amino acid sequence of the
MsHisClB receptor has a predicted molecular weight of 36 kDa3
(ExPASy Bioinformatics Resource Portal) and the western blot
resulted in a single band at the predicted molecular weight
of 36 kDa (Figure 1F). HA is the primary neurotransmitter
of arthropod photoreceptors (Hardie, 1989; Stuart, 1999) and
the HisClB receptor is expressed by glial cells in the lamina
of Drosophila (Pantazis et al., 2008). Consistent with this, we
observed a band of MsHisClB labeling in the lamina (Figure 1G).
Pre-adsorbing the MsHisClB antibody in a 10:1 antigenic
peptide to antibody solution eliminated all labeling (Figure 1H).
Pre-adsorption controls were run concurrently with samples
incubated in antibody that had not been pre-absorbed with the
antigenic peptide (Figure 1G), but otherwise treated identically.
Scan settings were increased slightly for preadsorbed tissue so
that autoflourescence outlined brain structures. Finally, RT-PCR
of the insect HisClA showed no band at the predicted height
for the receptor (data not shown) suggesting that the MsHisClB
receptor is the only HA receptor expressed in AL tissue.

Direct Fluorescent Tagging of Primary Antibodies
Both neuropeptide antibodies (anti-FMRFamide and anti-ATR)
and the MsHisClB receptor antibody were produced in rabbit
hosts. Therefore, to double label using the neuropeptides and
the rabbit anti-MsHisClB antibodies we directly fluorescently
tagged each primary antibody using the APEX antibody labeling
kit (Life Technologies, A10468 488, A10475 for 647; Woo et al.,
2010). This method covalently bonds the IgG antibody to a
fluorescent label, and therefore eliminates cross reactivity of
secondary antibodies with primary antibodies raised in the same
animal. To remove contaminants, the labeling tip was hydrated
with 100 μL of wash buffer to which 10–20 μg of IgG antibody is
added and eluted with a syringe: 10 μL of MsHisClB, and 1 μL of
both FMRFamide and ATR antibody, respectively. This solution
was then combined with reactive dye (either Alexa 488 or Alexa
647) containing 2 μL of DMSO and 18 μL of labeling buffer.
This solution then incubated for 2 h at room temperature. The
solution was washed with 50 μL of buffer and eluted through the
tip. Finally, 40 μL of elution buffer is eluted through the tip and
mixed with 10 μL of neutralization buffer to yield a final volume
of ∼50 μL of solution. This solution was then diluted in 350 μL
of PBSAT and tissue was incubated for 48 h at 4◦C.

Retrograde Dye Fills of AL PN Output Tracks
Two to 3 days-old-moths were restrained with dental wax and the
head capsule was opened. Once opened, dextran-Texas Red dye
(ThermoFisher, D-1863) was injected into either the mushroom
bodies or lateral horn (the two projection fields of AL PNs).
Animals were kept alive for 2–3 days post injection and were

3http://web.expasy.org/compute_pi/

fed sugar water to ensure that they survived. After 2–3 days,
animals were sacrificed and ran through the HA staining protocol
described above.

Ablation Studies
To definitively demonstrate that the MDHns are the sole source
of HA to the AL, lesion experiments were performed to ablate
ascending HA-ir fibers from the MDHns or more posterior HA-ir
neurons in the metathoracic and abdominal ganglia. At 1–3 days
post-eclosion the connective between the subesophageal zone
(SEZ) and the prothoracic ganglion was lesioned to destroy all
ascending input to the brain from the thoracic and abdominal
ganglia (including the MDHns; see dashed line in Figure 2D) or
the divide between the mesothoracic and metathoracic ganglia
was cut to destroy all ascending cells posterior to the MsG,
(including pairs of HA cells in the metathoracic ganglia and
the first two abdominal ganglia; see dashed line between the
MsG and the MtG in Figure 2F). Moths were fed sugar water
each day following the ablation to increase survival rates. After
8 days, the brains were dissected for immunolabeling for HA-
ir and BRP-ir. For the ablation of the connective between the
prothoracic ganglion and SEZ we used 6 moths in which we cut
the connective between the prothoracic ganglion and the SEZ and
6 sham operated moths. Successful ablation was verified by a lack
of HA-ir in the remnants of the connective, while sham ablation
(when the connective was not cut) was verified by the presence of
HA-ir in the remnants of the connective. For the ablation of the
boundary between the mesothoracic and metathoracic ganglia,
successful ablation was verified by a lack of HA-ir fibers in the
MsG that originate from the more posterior ganglia. In 10 moths,
2 moths resulted in the successful elimination of the ascending
fibers from the metathoracic ganglion, but this did not result in
loss of HA-ir in the AL.

Confocal Microscopy
Optical stacks were acquired using an Olympus Fluoview FV
1000 confocal microscope. All scans were taken with either a
20X or 40X oil lens. Confocal planes were stacked with optimized
step sizes for the given objective (1.79 μm for 20X and 0.54 μm
for 40X) in the Fluoview viewer software (FV10-ASW Version
04.00.02.09). All images were scanned at either 512 × 512
or 1024 × 1024 pixel resolution. Cell body counts and size
measurements were performed in Fluoview. Corel Draw (Version
13.0.0.576) was used to organize figures. Vaa3D (Peng et al.,
2010) was used to generate 3D reconstructions of confocal stacks
that could be rotated to resolve the degree to which structures
physically overlap.

RESULTS

Two HA Immunoreactive Cells Project
from the MsG to the AL
Although motor-to-sensory circuits have been extensively
characterized in many sensory systems, there is a dearth of
detailed descriptions of input from motor to olfactory centers.
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FIGURE 2 | Mesothoracic deutocerebrum histamine neurons project
from the MsG to the AL of Manduca sexta. (A) Frontal view of HA-ir
labeling in a whole mount brain preparation. Hatched line outlines the AL
boundary. (B) Saggital view of a HA-ir process entering the AL (bracket).
(C) Frontal view of HA-ir processes entering the SEZ from the cervicothoracic
connective. Notice that four pairs enter the SEZ. (D) HA-ir processes in the
cervicothoracic connective. Brackets highlight three HA-ir processes.
(E) Horizontal view of the HA-ir processes in the prothoracic ganglion. Notice
four pairs ascending from here as well. (F) Horizontonal view of HA-ir in the
MsG, the metathoracic ganglion, and the first two abdominal ganglia. Each
SEZment has a pair of HA-ir cell bodies located in the medial third of their
respective ganglion. Asterisks highlights MDNn cell bodies. (G) Schematic of
the Manduca nervous system highlighting the MDHns (green). Hatched
boundary indicates the MsG. All scale bars = 100 μm. AL, antennal lobe; ef,
esophageal foramen; SEZ, subesophageal zone; CTC, cervicothoracic
connective; PtG, prothoracic ganglion; MsG, mesothoracic ganglion; MtG,
metathoracic ganglion; ab1, abdominal ganglion 1; ab2, abdominal
ganglion 2.

The purpose of this study was to extensively characterize
the structure, candidate targets and development of a motor-
to-olfactory circuit. In Manduca a pair of HA-ir cells (the
MDHns) project from the MsG to the AL (Homberg, 1994).
However, there is very little known about the fine morphological
details of MDHns in either the MsG or the AL. Furthermore,
nothing is known about the potential targets of the MDHns or
their development through metamorphosis. Figure 2 shows the
MDHns in the nervous system including the brain (Figure 2A),
entering the AL (Figure 2B), entering the SEZ from the neck
connective (Figure 2C), in the neck connective (Figure 2D), in
the prothoracic ganglion (Figure 2E), and in theMsG (Figure 2F;
n = 54).

The large MDHn cell bodies (∼60 μm in diameter) are
located on the ventral surface of the MsG (Figure 3A) near
the intersection of the sagittal and coronal midlines, and
extend large primary neurites to the dorsal MsG (Figure 3A;
n = 30). In the dorsal MsG, the MDHns produce a radial
planar sheet of processes, with occasional sparse innervation
of the ventral MsG (Figure 3B). Each MDHn extends a
single axon ipsilaterally through the prothoracic ganglion
and SEZ (Figures 2E and 3A,B), and bilaterally arborizes
in the ventral AL (Figures 2A and 4A). To determine the
extent to which the MDHns innervate the AL, we used
the BRP antibody to delineate glomerular boundaries and
immuno-labeled for HA. Varicose HA-ir processes extensively
innervate a subset of ventral posterior glomeruli (Figures 4A,B;
n = 21) and extend sparsely into the ventral posterior
coarse neuropil of the AL. Reconstructing and rotating the
confocal image stack confirms that the HA-ir processes both
encapsulate and innervate the glomeruli (Figures 4C,D).
There is not much known about the ventral glomeruli in
Manduca other than CO2 being processed in the labial
pit organ glomerulus (Guerenstein et al., 2004), therefore

FIGURE 3 | Mesothoracic deutocerebrum histamine neurons
processes radiate laterally throughout the MsG, but are primarily
restricted to the dorsal aspect. (A) Horizontal view of the MSG showing
two cell bodies with each cell projecting out one side of the ganglia.
(B) Sagittal section of the MsG shows two large HA-ir cells with cell bodies
(black arrow head with a white outline) situated ventrally and a radiating
dendritic field dorsally with the axon (black arrow with white outline) projecting
up the connective between the mesothoracic and prothoracic ganglia. White
dotted line indicates the boundary between the mesothoracic and
metathoracic ganglia. Arrow indicates MDHn cell body in each image. All
scale bars = 100 μm.
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FIGURE 4 | The MDH neurons provide the sole source of HA-ir input to
the ALs. (A) Saggital section of the AL with HA-ir (green). BRP (magenta)
outlines glomeruli of the AL. Dotted line outlines the posterior boundary of the
AL. Scale bar = 100 μm. (B) High magnification view of inset from (A). Highly
varicose HA-ir processes innervate 4–6 ventral posterior glomeruli. Scale
bar = 50 μm. (C) Rotation of image (A) about the y-axis showing HA still
overlapping with BRP labeling. (D) Rotation of image (A) about the x-axis
again showing HA overlapping with BRP labeling, collectively confirming that
HA ramifies glomeruli. (E) Frontal section showing that HA-ir is absent in the
AL following ablation of the cervicothoracic connective. Scale bar = 100 μm.
(F) Sagittal view of HA-ir in the AL following ablation between the MsG and
the metathoracic ganglia in which the lesioning of metathoric HA-ir neuron
axons was confirmed. Dashed lines indicate boundary of AL in (E,F). Scale
bars = 50 μm.

why the MDHns are restricted to this area of AL is
unclear.

In addition to the MDHns, HA-ir neurons in the metathoracic
and first abdominal ganglia (Figure 2F) extend processes to the
brain via the cervicothoracic connectives. The processes of these
HA-ir from other ganglia intertwine with those from the MDHn
in the prothoracic ganglia (Figure 2E), making it difficult to
definitively ascribe the HA-ir processes in the AL as belonging

exclusively to the MDHns. Furthermore, there are ∼20 pairs
of HA-ir neurons in the SEZ and protocerebrum of Manduca
(Homberg and Hildebrand, 1991). To demonstrate that the HA-
ir processes in the AL originate from the MDHns, we performed
two ablation experiments (Figures 4E,F). In the first experiment,
we cut the cervicothoracic connective between the prothoracic
ganglion and brain in adult moths and kept the moths alive
for 8 days. This protocol eliminates HA-ir processes arising
from cells in the thoracic and abdominal ganglia (including the
MDHns), but leaves the processes from other HA-ir neurons in
the brain intact (notice HA-ir ventral to the AL outlined by dotted
line with no HA-ir overlapping with BRP-ir outlining glomeruli
Figure 4E). Ablation of thoracic and abdominal sources of HA-
ir was confirmed via elimination of HA-ir entering the ventral
SEZ. Ablating the cervicothoracic connective eliminates all HA-
ir in the AL (Figure 4E) indicating that the HA-ir processes in
the AL originate from the ventral nerve cord, posterior to the
cut site. It is possible that cutting the cervicothoracic connectives
indirectly affects other HA-ir neurons in the brain, which might
contribute to AL HA-ir processes we observe. However, we
find no evidence to support this notion. In the second ablation
experiment, we lesioned the thoracic ganglia at the boundary
between the metathoracic ganglion and MsG. This ablates all
ascending HA-ir processes posterior to the MDHns (i.e., the
HA-ir cells in the metathoracic and abdominal ganglia) but
leavesMDHn processes intact. These experiments show that after
ablating the cells posterior to the MDHns that there is still HA-ir
in the AL (Figure 4F). Together these experiments suggest that
the MDHns are the exclusive source of the HA-ir processes in
the AL.

The MsHisClB Receptor is Expressed in
a Subset of GABAergic LNs, One
FMRFaminergic LN and One
Allatotropinergic LN
To determine the candidate targets of the MDHns, antibodies
were generated against the Manduca homolog of the HA
B-type receptor (MsHisClB; Figure 1 and see Materials and
Methods). Insects possess two HA receptor types, HisClA and
HisClB (Gisselmann et al., 2002; Zheng et al., 2002), both
of which are ligand-gated chloride channels (McClintock and
Ache, 1989; Hardie, 1989). Each receptor is homomeric with
two genes coding for the two subunits HisCl-α1 and HisCl-
α2 (Gisselmann et al., 2002). These receptors are members of
the large cys-bridge superfamily of ligand-gated ion channels
comprised of four transmembrane domains (Gisselmann et al.,
2002). The MsHisCIB antibody produces extensive labeling in
the lamina of the optic lobes of Manduca where histaminergic
photoreceptors terminate (Figure 1G) which is consistent with
HisClB receptor expression by glial cells in the lamina of
Drosophila (Pantazis et al., 2008). Within the AL, MsHisClB-ir
was observed in every glomerulus, which was surprising as the
MDH neurons only innervate a set of ventral glomeruli. The
MsHisClB antibody produces only a single band in western blots
at the predicted height for the MsHisClB receptor (Figure 1F;
n = 5) and all labeling is eliminated by pre-adsorption with
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FIGURE 5 | Within the AL the MsHisClB receptor is expressed by a subset of GABAergic LNs and one FMRF-amidergic and one ATRergic LN.
(A) MsHisClB (green) and GABA (magenta) co-labeling in the lateral cell cluster of the AL. MsHisClB-ir is expressed in all AL glomeruli. Scale bar 100 μm.
(B) GABA-ir and MsHisClB-ir expression in the lateral cell cluster. (C,D) Inset from (B) highlights a single large MsHisClB-ir cell body that does not express GABA.
(E) FMRFamide-ir (cyan) and MsHisClB-ir (green) expression in the lateral cell cluster. (F,G) Inset from (E) highlights a single large cell body that expresses both
MsHisClB-ir and FMRFamide-ir. (H) ATR-ir (orange) and MsHisClB-ir (green) expression in the lateral cell cluster. (I,J) Inset from (H) highlights a single large cell body
that expresses both MsHisClB-ir and FMRFamide-ir. All scale bars = 50 μm unless otherwise noted.

the immunogenic sequence (Figures 1G,H; n = 6), making it
unlikely that this antibody is labeling additional proteins. It
is, however, possible that the MsHisClB-ir reflects distribution
of the MsHisClB receptor during transport throughout the
cell as opposed to distribution of the receptor at functional
synapses.

In the AL we observed 11 (±0.81 SEM, from 3 moths) and
9.3 (±0.43 SEM, from 3 moths) MsHisClB-ir cell bodies in males
and females, respectively, in the lateral cell cluster (Figure 5A).
The sex differences observed may be due to neurons that project
to the macroglomerular complex in males, as we see widespread
labeling therein (Figure 5A). We observed two classes of
MsHisClB labeled cells differing in cell body size. In each AL
there were 1–2 larger MsHisClB-ir cells (23.98 μm ± 0.73 SEM
diameter; n = 10) with the remainder having smaller cell bodies
(14.79 μm ± 0.52 SEM diameter; n = 10). LN cell bodies are
found only in the lateral cell cluster and fall within in two

populations based on cell body size being either ∼12 μms or
∼20 μms in diameter (Hoskins et al., 1986) whereas we calculate
an average PN cell body size of 8.16 μm (±0.16 SEM) from our
retrogradely filled PNs, thus the size of MsHisClB-ir cell bodies
is consistent with LNs. Furthermore, we do not observe HA-ir
processes innervating any of the AL output tracts (Supplementary
Figures S1A,B), nor is there any MsHisClB-ir within the output
tracts (Supplementary Figures S1C,D). TheMsHisClB-ir neurons
collectively branch in every glomerulus (Figure 5A; n = 37),
again consistent with the MsHisClB receptor being expressed
by LNs, rather than PNs. To further functionally characterize
these MsHisClB-ir cells, we co-labeled for several transmitters,
including GABA (Hoskins et al., 1986), FMRFamide (Homberg
et al., 1990), and ATR. All but one MsHisClB-ir labeled neuron
was GABA-ir (Figures 5B–D; n= 19) with one cell co-labeled for
MsHisClB and FMRFamide and one cell co-labeled for MsHisClB
and ATR (Figures 5E–J, respectively; n = 5,10, respectively).
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Together these results suggest that any influence of the MDHns
on AL processing is exerted via a population of GABAergic and
peptidergic LNs. The expression of the MsHisClB receptor by AL
neurons and the MDHn being the sole source of HA-ir in the AL
suggests that the MDH neurons provide some form of input to
the AL. This does not, however, imply that the MDH neurons
do not also provide input to circuitry within the MsG. MsHisClB
receptor is also expressed within the MsG (Supplementary Figure
S2), however, both the MDHns and HA-ir neurons from the
metathoracic and abdominal ganglion (Figure 2F) innervate the
MsG, suggesting that HA also plays a role in network function
within the MsG.

MDHns Survive Metamorphosis but the
LAC lacks MsHisClB Expression
There are many neurons that survive metamorphosis, often
being repurposed to take on new tasks to match the dramatic
changes in behavioral demands between the larval and adult
life stage. In Manduca, motor neurons survive metamorphosis,
but their morphology and biophysical properties are altered
dramatically to allow them to take on life-stage specific tasks,
for instance, transitioning from participating in walking motor
programs as larvae to flying motor programs as adults (Duch
and Levine, 2000). Given that odor-guided flight is an adult
specific behavior, we predicted that the MDHns would either
not be present or the MsHisClB-ir would not be expressed in
the LAC. Similar to adults (see Figure 3A), fifth instar larvae
have a pair of large HA-ir cells in the MsG that ascend to the

FIGURE 6 | The MDHns survive metamorphosis, but the MsHisClB
receptor is not expressed in the LAC. (A) Horizontal view of HA-ir in the
fifth instar larval MsG shows highly similar cell morphology and radiation
patterns of fine processes as in the adult MsG. (B) HA-ir in the larval brain
(green) shows extensive branching in the tritocerebrum (dash-dot line), but
very little innervation in the LAC (dashed line). Syto-59 (magenta) highlights the
boundary of the tritocerebrum and LAC. (C) MsHisClB-ir (green) is present in
the tritocerebrum, but not in the LAC. LAC and tritocerebrum highlighted with
Syto-59 (magenta) as in (B). All scale bars = 100 μm.

brain (Figure 6A). As in adults, the cell bodies are also located
ventrally near the intersection of the sagittal and horizontal
midlines of theMsG, with a single axon ipsilaterally projecting up
each connective. Furthermore, the HA-ir processes also radiate
in all directions in the dorsal MsG as in the adult. Because
the LAC does not express BRP-ir, we used Syto-59 to label the
nuclei of cell bodies that surround the LAC (Figures 6B,C) as
a means of highlighting the boundaries of this brain region. In
the larval brain, HA-ir is most abundant in the tritocerebrum
(Figure 6B; dash line) just ventral and lateral to the larval LAC
(small dotted line) with a small amount of HA-ir entering the
LAC (n = 17). This suggests that the MDHns are present and
project to the olfactory system of larval Manduca. However,
there are no MsHisClB-ir neurons within the LAC, despite
the presence of MsHisClB-ir collaterals in the tritocerebrum
(Figure 6C; n = 6). This suggests that while the MDHns
provide sparse innervation of the LAC, they likely do not play
a functional role in the larval olfactory system, at least via the
MsHisClB receptor, although it is possible that the MsHisClA
receptor is expressed there. What role this circuit would play
in the larval olfactory system is not clear as the larva do
not fly, but there could be information pertaining to walking
patterns.

DISCUSSION

Animals use a variety of behavioral strategies to optimize internal
representations of the external world, including repetitive
motor patterns that alter stimulus structure. Nervous systems
have concurrently evolved circuits that provide information
to sensory systems about impending behaviors that will affect
sensory input. Although this has been well-documented in
many sensory systems, very little is known about neural
circuits projecting from neural centers governing odor-guided
behaviors to olfactory networks. The goal of this study was
to characterize a novel sensory-motor to olfactory circuit that
projects from flight sensory-motor centers to the primary
olfactory processing center in insects. We found that the
MDH circuit provides the only source of HA to the AL and
affects a small but diverse population of widely projecting
LNs in adult Manduca (Figure 7). Our data suggest that
the MDHns provide histaminergic inhibitory input to the
AL that could modify olfactory processing within the context
of flight or other MsG mediated activity such as walking
patterns.

The MDHn processes project laterally across the MsG
(Figure 3A), yet are most dense in the dorsal MsG (Figure 3B),
suggesting that while they may integrate information from
both sides of the animal, they are likely to interact with
cells that are restricted to the dorsal aspect of the MsG.
The MsG contains wing and leg motor neurons, sensory
afferents, CPG components, and modulatory neurons some
of which occupy specific MsG regions. The dendritic fields
of wing elevator and depressor motor neurons are located
in the dorsal region of the MsG in Manduca (Rind, 1983)
whereas most of the sensory afferents from the wings are
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FIGURE 7 | Schematic of the proposed MDHn circuit. (A) Manduca with overlaid nervous system cartoon. (B) Schematic of the MDHn cells from the thoracic
ganglia to the AL. Only one cell is shown in detail with processes radiating in the MsG, a small process in the prothoracic ganglion, projecting up the cervicothoracic
connective, a branch to the AMMC, and bilateral projections to each AL. (C) MDHn projection entering the ventral AL (green) along with the proposed AL circuitry.
For the sake of simplicity, only the processes from MsHisClB-ir expressing neurons (green outline) are shown. MsHisClB-ir GABAergic (pink with green outline) and
peptidergic (cyan or orange with green outline for FMRFamide and ATR, respectively) LNs ramify each glomerulus. Other cell types are also present including PNs
(open circles), GABAergic LNs (pink circles with black outlines), ATR LNs (orange circles with black outline), and FMRF LNs (blue circles with black outline). AL,
antennal lobe; oe, esophageal foramen; SEZ, subesophageal zone; CTC, cervicothoracic connective; PtG, prothoracic ganglion; MsG, mesothoracic ganglion; MtG,
metathoracic ganglion; ab1, abdominal ganglion 1; ab2, abdominal ganglion 2.

localized in both the dorsal and ventral MsG in a closely
related species of hawkmoth, Agrius convolvuli (Ando et al.,
2011). In addition, there are a population of non-spiking,
GABAergic LNs that project to the dorsal side of the MsG
of the locust (Watson and Burrows, 1987), and populations
of octopaminergic (Stevenson et al., 1992), serotonergic and
dopaminergic neurons (Claassen and Kammer, 1986) that project
throughout the MsG. The extensive branching of the MDHns
in the MsG suggests that these neurons interact with one
or more components of the MsG. The potential cumulative
effect of multiple inputs onto MDHns makes understanding the
input to this neural circuit challenging. Single neurons releasing
multiple neurotransmitters alone can have state dependent effects
on network output (Swensen and Marder, 2000; Nusbaum
et al., 2001). Furthermore, this complexity is compounded when
considering the MDHns impact a heterogeneous population of
AL LNs.

Arthropod HA receptors are ligand gated Cl− channels
(McClintock and Ache, 1989; Hardie, 1989) sharing ∼45%
amino acid similarity to the alpha3 subunit of the human
glycine receptor (Zheng et al., 2002), thus the effect of HA
on MsHisClB expressing LNs is likely inhibitory in nature.
Within the AL there are ∼300 LNs that belong to a diverse
set of subtypes based on morphology, neurotransmitter content
and physiological response properties (Chou et al., 2010;
Reisenman et al., 2011). These LNs mediate diverse processing
mechanisms such as lateral inhibition for gain control (Olsen
and Wilson, 2008). In addition, these widely branching LNs
activate metabotropic receptors whose effects occur on longer
and more variable time scales than ionotropic receptors.
Therefore the overall network effect of MDHn activity is
variable in both the spatial and temporal domain making
this circuit difficult to characterize. One potential mechanism
would be suppression of GABA, FMRFamide and ATR release
by select LNs within the AL. Theoretically, decreasing the

influence of these predominantly inhibitory LNs could act
to disinhibit the inhibitory AL local network, which could
lead to a refinement of PN activity. While the role this
refinement has on AL output activity is not clear, it could
be in response to the rapid oscillatory nature of the stimulus
experience which is driven in part by wing-beating (Sane and
Jacobson, 2006). Finally, while invertebrate sensory-motor to
sensory circuits typically function to filter reafferent stimuli,
we suggest that it is unlikely that the MDHns function in
this manner because non-olfactory responses persist in fully
intact preparations (Tripathy et al., 2010). Therefore, it may
be that MDHn activity indirectly refines PN spatiotemporal
response patterns to modify the information output to higher
order processing centers during flight. Indeed evidence suggests
that the fine temporal structure of AL/OB output patterns
contain substantial information about odor identity (Daly et al.,
2004; Staudacher et al., 2009; Rebello et al., 2014). However,
future studies investigating both the activity patterns of MDHns
during flight behavior and the consequences of HA release
on AL response properties are necessary to confirm this
hypothesis.

Many active sampling behaviors rapidly sample the sensory
field providing discrete epochs of input to a sensory system; for
example, micro-saccadic eye movements mentioned above. In
addition, the details of temporally structured reafference may
be dependent on the behavior of the animal. For instance,
when exposed to a novel stimulus mice and rats increase
their sniff frequencies (Kepecs et al., 2007; Wesson et al.,
2008a,b) and sniff frequency modulation is dependent on
the specifics of the behavioral task such as free exploration,
detection, and discrimination. Insects also show stereotyped
active sampling behaviors that are temporally structured. Bombyx
mori require wing beating to track pheromone plumes despite
their inability to fly (Obara, 1979) and male oriental fruit moths
continue to fan their wings as they track a calling female
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even though their final approach is on foot (Baker and Carde,
1979).

From a whole nervous system perspective, it is perhaps not
surprising that network-specific processing of information must
be adjusted based on inputs from many disparate networks.
It is becoming increasingly apparent that networks receive
input from a large number of different sources and thus
must integrate a variety of ongoing contexts. The mammalian
Raphe nuclei provide widespread serotonergic input, yet they
also receive input from many other brain areas (Dorocic
et al., 2014; Liu et al., 2014; Weissbourd et al., 2014). More
specifically, the olfactory systems of animals receive a variety
of inputs from other brain regions including serotonergic
(Kent et al., 1987; McLean and Shipley, 1987; Dacks et al.,
2006), dopaminergic (Dacks et al., 2012), cholinergic (Macrides
et al., 1981; Mandairon et al., 2006), octopaminergic (Dacks
et al., 2005; Sinakevitch et al., 2005; Sinakevitch and Strausfeld,
2006; Dacks and Nighorn, 2011), and GABAergic (Gracia-
Llanes et al., 2010; Nunez-Parra et al., 2013) cells all of
which modify sensory processing within different, sometimes
competing contexts. Our data support the hypothesis that
olfactory processing in Manduca may also be adjusted within
the context of ongoing activity in the MsG via the histaminergic
MDHns.
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