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Chandelier cells (ChCs; also called axo-axonic cells) are a specialized GABAergic
interneuron subtype that selectively innervates pyramidal neurons at the axon initial
segment (AIS), the site of action potential generation. ChC connectivity allows for
powerful yet precise modulation of large populations of pyramidal cells, suggesting
ChCs have a critical role in brain functions. Dysfunctions in ChC connectivity are
associated with brain disorders such as epilepsy and schizophrenia; however, whether
this is causative, contributory or compensatory is not known. A likely stumbling block
toward mechanistic discoveries and uncovering potential therapeutic targets is the
apparent lack of rudimentary understanding of ChCs. For example, whether cortical
ChCs are inhibitory or excitatory remains unresolved, and thus whether altered ChC
activity results in altered inhibition or excitation is not clear. Recent studies have
shed some light onto this excitation-inhibition controversy. In addition, new findings
have identified preferential cell-type connectivities established by cortical ChCs, greatly
expanding our understanding of the role of ChCs in the cortical microcircuit. Here we
aim to bring more attention to ChC connectivity to better understand its role in neural
circuits, address whether ChCs are inhibitory or excitatory in light of recent findings and
discuss ChC dysfunctions in brain disorders.
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INTRODUCTION

Discovered in the 1970s, ChCs quickly gained intrigue as a unique and potentially powerful
subtype of GABAergic interneurons that selectively innervates pyramidal neurons at the axon
initial segment (AIS), directly regulating the site of action potential generation (Szentágothai
and Arbib, 1974; Jones, 1975; Somogyi, 1977). In the decades that followed, many studies have
uncovered potential roles of ChCs in brain functions (Li et al., 1992; Klausberger et al., 2003; Zhu
et al., 2004; Howard et al., 2005; Dugladze et al., 2012; Jiang et al., 2013; Viney et al., 2013), and
have led to implications of ChC dysfunctions in brain disorders such as epilepsy and schizophrenia
(DeFelipe, 1999; Lewis, 2011; Marín, 2012; Inan and Anderson, 2014). However, many questions
remain unanswered. One of the most puzzling questions involves whether these GABAergic
interneurons can be excitatory (Szabadics et al., 2006; Woodruff et al., 2010). In addition, how
ChCs are incorporated in neuronal circuits is not clear. The diseases that implicate ChC dysfunction
also involve other cell types, including other interneuron subtypes (DeFelipe, 1999; Lewis et al.,
2012; Del Pino et al., 2013). Recent studies have shed some light onto the excitation-inhibition
controversy and ChC connectivity in the cortex, which may facilitate our understanding of ChC
functions in neural circuits and ChC connectivity dysfunctions in brain disorders. Here we briefly
review ChCs in functional and dysfunctional neural circuits and highlight these new findings.
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ChC CONNECTIVITY

ChC connectivity to the AIS of pyramidal neurons has been
found in many different brain regions of many different
animals, including the human prefrontal cortex (Somogyi,
1977; Fairén and Valverde, 1980; Peters et al., 1982; Somogyi
et al., 1982, 1983; Freund et al., 1983; Kosaka, 1983; DeFelipe
et al., 1985; Kisvárday et al., 1986; De Carlos et al., 1987;
Marin-Padilla, 1987; Lewis and Lund, 1990; Kawaguchi and
Kubota, 1998; Inda et al., 2007). The axonal arborization
of a ChC forms vertically oriented axon terminal boutons
or cartridges, a distinct arrangement resembling candlesticks
on a chandelier (Szentágothai and Arbib, 1974; Jones, 1975;
Szentágothai, 1975; see Figure 1). ChC cartridges align
with AISs of pyramidal neurons, allowing a single ChC to
innervate the AIS with an average of 3–5 boutons. This
innervation average is highly variable. The number of ChC
boutons per AIS is not uniform across brain regions, is
directly correlated with the size of the pyramidal AIS and
may reach as many as 12 (DeFelipe et al., 1985; Fariñas
and DeFelipe, 1991; Cruz et al., 2003; Inda et al., 2007;
Inan and Anderson, 2014). In addition, this mean value is
variable during development, as the number of ChC boutons per
AIS is 32% lower in adult compared to 3-month-old monkeys
(Fish et al., 2013).

FIGURE 1 | ChCs have unique axonal morphology and innervate
pyramidal neurons at the axon initial segment (AIS). Drawing of a ChC
(purple) and a connected pyramidal neuron (gray) to illustrate the “chandelier”
morphology and the axo-axonic connectivity of ChCs. Arrow indicates the
ChC connectivity site at the pyramidal neuron AIS.

A single ChC innervates hundreds of pyramidal neurons
(Freund et al., 1983; DeFelipe et al., 1985; Somogyi et al.,
1985; Li et al., 1992; Tai et al., 2014). Within the range of its
axonal arbor, a ChC contacts 35–50% of pyramidal neurons
in the somatosensory cortex through postnatal development
(Inan et al., 2013); however, lower innervation values (18–22%)
by single ChCs have been reported when examining a wider
area of the neocortex in postnatal day 18–23 (P18–23) mice
(Blazquez-Llorca et al., 2015). Quantitative analysis showed that
this connectivity reaches a peak of 22–35% at 30–60 µm from
the ChC soma (Blazquez-Llorca et al., 2015). The selective
innervation at the AIS suggests that ChCs tightly regulate
the output of pyramidal neurons. Moreover, each pyramidal
neuron is innervated by multiple ChCs (Inan et al., 2013). As
the number of functional release sites critically regulates the
firing probability (Loebel et al., 2009; Bagnall et al., 2011),
multiple innervations further contribute to the ability of ChCs
to strongly and precisely regulate pyramidal neurons (Buhl et al.,
1994).

ChCs innervate pyramidal neurons in cortical layer 2 (L2), L3,
L5a and L5b (Jiang et al., 2013; Lee et al., 2015). This innervation
of cortical pyramidal neurons shows clustered patterns of both
high and very low densities based on the identification of ChC
cartridges and their apposition to AISs (Fairén and Valverde,
1980; Somogyi et al., 1982; DeFelipe et al., 1985; Li et al.,
1992; Inan et al., 2013; Blazquez-Llorca et al., 2015). This may
be due to differences in ChC morphology or distribution as
ChCs are not distributed uniformly in certain areas of the
cortex (De Carlos et al., 1985). Another possibility is that ChCs
may preferentially target certain neuronal groups over others.
Although the connectivity between GABAergic interneurons and
pyramidal neurons has been hypothesized to be generally non-
selective and based primarily on spatial proximity (Sohya et al.,
2007; Niell and Stryker, 2008; Liu et al., 2009; Bock et al.,
2011; Fino and Yuste, 2011; Packer et al., 2013), this may be
greatly overstated (Varga et al., 2010). Indeed, evidence shows
that ChCs preferentially contact certain pyramidal neurons
over others, such as pyramidal neurons with predominantly
intracortical projections in the auditory and visual cortices, and
centrifugal cells in the piriform cortex (Sloper and Powell, 1979;
Fairén and Valverde, 1980; De Carlos et al., 1985; DeFelipe
et al., 1985; Fariñas and DeFelipe, 1991; Wang and Sun,
2012).

Studies examining the inputs to L2/3 ChCs have elucidated
some ChC cortical connectivity (see Figure 2) and offered some
possible functional roles. Using laser scanning photostimulation,
L2/3 ChCs in the mouse primary somatosensory cortex were
shown to receive excitatory input predominantly from L2/3 and
L5a (with relatively weaker excitatory input from L4), and
receive inhibitory input primarily from L1 and L2/3 (with
relatively weaker input from L5b and L6; Xu and Callaway,
2009). Dendrites from L2/3 ChCs extend branches within
the lamina and send a prominent dendrite upward into L1
(Kawaguchi, 1995; Xu and Callaway, 2009; Woodruff et al.,
2011; Taniguchi et al., 2013; Markram et al., 2015). These
findings led to the hypothesis that the dendrites of L2/3
ChCs, similar to the apical dendrites of pyramidal neurons,
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FIGURE 2 | Connectivity of cortical ChCs. Simplified schematic of some of
the known connections between L2/3 ChCs and other neurons in the cortex.
Arrows at terminals indicate excitation; circles at terminals indicate inhibition.
Starred and boxed region and insert highlights the ChC synaptic contact with
L2/3 pyramidal neurons in which the GABAergic response is not clear. AIS,
axon initial segment; BC, basket cell; ChC, chandelier cell; IN, interneuron of
unknown subtype; MC, Martinotti cell; NGC, neurogliaform cell; PN, pyramidal
neuron; SBC, single-bouquet cell.

allow ChCs to act as circuit switches by receiving input
from other cortical areas via L1. Interestingly, dual recordings
from both pyramidal neurons and ChCs in L2/3, revealed
that the L1 stimulation strength necessary for activation is
significantly less for ChCs compared to pyramidal neurons
(Woodruff et al., 2011). Much insight into L2/3 ChC function
has come from the examination of inputs with in vivo recordings.
Using whisker stimulation, Zhu et al. (2004) demonstrated
that L2/3 ChCs have large receptive fields with lower acuity
than pyramidal neurons and other non-pyramidal neurons. In
addition, simultaneous dual recordings in vivo showed that
L2/3 ChCs respondmore robustly to increased cortical excitation
than other cortical neurons. These results suggest that L2/3 ChCs
have a critical role in balancing excitation and inhibition (Zhu
et al., 2004).

Recent studies have greatly advanced our current
understanding of ChC cortical connectivity with GABAergic
interneurons (see Figure 2). The L1 inhibitory input to
L2/3 ChCs is now known to come from single-bouquet
cells (SBCs; Jiang et al., 2013). Within L2/3, ChCs receive
GABAergic inputs from Martinotti cells (MCs), neurogliaform
cells (NGCs) and from other ChCs, along with some inputs
from basket cells (BCs; Jiang et al., 2015). L2/3 ChCs also

receive input from MCs and NGCs from L5 (Jiang et al.,
2015). In addition, ChC connectivity through gap junctions
has been reported in the hippocampus (Baude et al., 2007),
and in the neocortex between ChCs and between ChCs and
BCs (Woodruff et al., 2011; Taniguchi et al., 2013). These
connectivity patterns may allow for the coordination of
ChCs to synchronize the activity of large populations of
pyramidal cells (Bennett and Zukin, 2004; Howard et al.,
2005).

ChCs are diverse. Along with the diversity in the number of
boutons (see above), ChC axons can vary in their complexity
and localization in different cortical areas and layers, and
depends on the type and age of the animal (Somogyi et al.,
1982; DeFelipe et al., 1985; Inda et al., 2007, 2009; Taniguchi
et al., 2013). Some genetic markers are thought to be specific
for ChCs, such as DOCK7, a molecule essential for ChC
cartridge and bouton development (Tai et al., 2014). However,
ChCs show some diversity in their biochemical content. For
example, studies indicate that only subpopulations of ChCs
express certain gene products used as markers for interneuron
subtypes, such as parvalbumin (Lewis and Lund, 1990; Del Río
and DeFelipe, 1994; Fish et al., 2013; Taniguchi et al., 2013).
This diversity in ChCs suggests complex connectivities and
possibly distinct functional roles. ChCs originate during the
latest stages of cortical neurogenesis and then migrate through
defined routes that lead to a specific laminar distribution in the
cortex (Inan et al., 2012; Taniguchi et al., 2013). This laminar
distribution of ChCs is established prior to their innervation
of pyramidal neurons and has led to the hypothesis that
ChCs may be composed of different layer-specific subgroups,
which establish distinct connectivities and perhaps distinct
functional roles in the cortical microcircuit (Taniguchi et al.,
2013).

ARE ChCs INHIBITORY OR EXCITATORY?

Whether ChCs are inhibitory or excitatory is not currently
agreed upon. ChCs activate GABAA receptors and a greater
understanding of the response mediated by these receptors is
needed. Activation of GABAA receptors in mature neurons
is typically associated with inhibition owing to the flow
of anions such as Cl− through the membrane, leaving the
membrane potential below threshold (Kaila, 1994). However,
GABAA receptors are capable of mediating excitation if the
transmembrane gradient of Cl− is reversed (Misgeld et al.,
1986). GABA-mediated excitation is thought to occur in
developing neurons until around P7 due to an intercellular
Cl− regulation that results in the efflux of Cl−, which
raises the membrane potential above threshold (Obata et al.,
1978; Mueller et al., 1984; Ben-Ari et al., 1989; Cherubini
et al., 1991; Owens et al., 1996; Rivera et al., 1999; Ben-
Ari, 2002; Owens and Kriegstein, 2002). Because intracellular
Cl− homeostasis may be altered by experimental procedures,
these observations have been questioned (Bregestovski and
Bernard, 2012; Dzhala et al., 2012; but see Ben-Ari et al.,
2012b). Recently, in vivo recordings have demonstrated that
GABA generally depolarizes but inhibits postsynaptic neurons
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in developing (P3–4) mice (Kirmse et al., 2015). However,
concerns about the results of this study have been raised
due to experimental procedures that can alter the recorded
GABAergic activity (Ben-Ari, 2015). Thus, the effect of
GABA observed is highly dependent upon experimental
procedures, but currently GABA is generally believed to be
excitatory only during development and may be restricted
to some cortical plate neurons (Ben-Ari, 2014, 2015). In
mature neurons, GABA is mainly inhibitory and is generally
believed to be excitatory only under certain circumstances
when paired with excitatory input (Gulledge and Stuart,
2003).

ChCs in L2/3, on the other hand, have been shown to be
capable of mediating excitatory activity in brain slices from
animals well past the developmental period when GABA-
mediated excitation is thought to occur (Szabadics et al.,
2006). The GABA-mediated excitation by ChCs was attributed
largely to differences in the intracellular Cl− regulation at
the postsynaptic AIS (Szabadics et al., 2006; Khirug et al.,
2008; Báldi et al., 2010), a cellular subregion known to be
molecularly and physiologically unique (Rasband, 2010; Bender
and Trussell, 2012; Kole and Stuart, 2012). To avoid changes
in intracellular Cl− concentrations, Szabadics et al. used the
gramicidin perforated patch technique (Szabadics et al., 2006).
Some subsequent studies in L2/3 using this technique have
strengthened their claim (Khirug et al., 2008; Woodruff et al.,
2009). However, no direct evidence has been found if this
actually occurs in vivo. Nevertheless, a possibility for ChC
excitation is hypothesized to occur during ‘‘down’’ states, when
pyramidal neurons are hyperpolarized and sodium channels
are deinactivated (Szabadics et al., 2006; Woodruff et al.,
2011).

Because the perforated patch technique may still alter
GABAergic activity, concerns with this technique and the results
obtained were raised (Glickfeld et al., 2009; Woodruff et al.,
2010). Using a novel noninvasive approach that avoids the
perturbations with perforated patching, hippocampal ChCs were
found to strictly mediate inhibition (Glickfeld et al., 2009; Bazelot
et al., 2010; Chiang et al., 2012). Other novel techniques used
in the cortex also indicate that ChCs are inhibitory. Using
noninvasive methods combined with an innovative technique
to activate axo-axonic synapses, Wang et al. (2014) showed
that ChCs in the piriform cortex are inhibitory and mediate
reversal potentials similar to thosemediated by BCs. Noninvasive
techniques that replicated in vivo conditions indicated that
L2/3 ChCs were predominately inhibitory (Woodruff et al.,
2011). In vivo studies that clearly demonstrate whether ChCs
are inhibitory or excitatory are lacking, but some results
suggest that ChCs are not excitatory (Klausberger et al., 2003,
2005; Massi et al., 2012; Somogyi et al., 2013; Viney et al.,
2013).

ChC-mediated excitation is an enigmatic issue. This is
largely due to the complications when recording GABAergic
responses. Nevertheless, currently those experiments using the
least invasive techniques, along with in vivo data, suggest that
ChCs are inhibitory, as originally assumed (Somogyi, 1977) and
demonstrated above and by others (Buhl et al., 1994; Maccaferri

et al., 2000; Tamás and Szabadics, 2004; González-Burgos et al.,
2005; Jiang et al., 2013, 2015; Lee et al., 2015).

ChC DYSFUNCTIONS IN BRAIN
DISORDERS

ChC dysfunctions are well associated with schizophrenia (Lewis
et al., 2005; Lewis, 2011; Marín, 2012). Evidence indicates the
GABA membrane transporter 1 (GAT1) is decreased in axon
terminals of ChCs (Woo et al., 1998), whereas the GABAA
receptor α2 subunit is increased in pyramidal neurons in
schizophrenia (Volk et al., 2002). These pre- and postsynaptic
alterations are significantly prominent in L2/3 (Pierri et al., 1999;
Volk et al., 2001; Lewis, 2011). The postsynaptic alterations
were originally assumed to be compensatory (Volk et al.,
2002). If ChCs are excitatory in L2/3, decreased GAT1 may
be a compensatory response for decreased excitatory inputs
to pyramidal neurons in schizophrenia (Lewis et al., 2012).
However, if L2/3 ChCs are inhibitory, then the alterations may be
causative or contributory. Future studies will need to examine the
effect of these alterations on ChC-mediated GABAergic activity
in L2/3.

Schizophrenia is associated with significant changes in neural
activity. These changes are shown with both structural and
functional alterations and result in abnormal neural network
oscillations and synchrony (Meyer-Lindenberg et al., 2001;
Uhlhaas and Singer, 2010; Yu et al., 2012). Disruptions in gamma
oscillations, which are associated with some of the cognitive
dysfunctions in schizophrenia, may result from dysfunctions
specifically in ChCs and BCs (Lewis et al., 2012). Schizophrenia
patients exhibit many disturbances in cognition, including
impairments in attention and sensory processing (Elvevåg and
Goldberg, 2000; Javitt, 2009). L2/3 ChCs are part of a cortical
interneuronal circuit that is thought to be involved in the
selection of attentional and salient signals (Jiang et al., 2013).
Dysfunctions of L2/3 ChCs in schizophrenia would then lead
to dysfunctions in this circuit, and therefore cause disruptions
in attention. The mechanisms underlying schizophrenia are
thought to result in part from abnormalities in the development
of GABAergic interneuronal circuits (Le Magueresse and
Monyer, 2013; Schmidt and Mirnics, 2015). Recent advances
in the understanding of ChC development may also lead to
hypotheses for how ChC circuitry is altered in schizophrenia.
Because the migration of ChCs to L2/3 occurs by P7 when
GABA is thought to be excitatory (Anderson and Coulter,
2013; Taniguchi et al., 2013), ChC excitation could have a
role in brain maturation and brain disorders (Ben-Ari et al.,
2012a).

ChC dysfunction is also implicated in epilepsy (DeFelipe,
1999; Dinocourt et al., 2003). Evidence indicates that ChCs may
prevent runaway excitation. ChC axon terminals are lost at the
epileptic focus (Ribak, 1985). In addition, in vivo recordings
show that ChCs fire more robustly than other types of cortical
neurons when overall cortical excitation increases (Zhu et al.,
2004). Therefore, ChCs may be specifically recruited by epileptic
activity to decrease excessive excitation (Paz and Huguenard,
2015). This has led to the hypothesis that ChCs play a critical role
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in regulating the balance between excitation and inhibition (Zhu
et al., 2004). Dysregulation of the excitation-inhibition balance
is thought to underlie epilepsy, along with other brain disorders
including schizophrenia (Fritschy, 2008; Yizhar et al., 2011; Lewis
et al., 2012). Future studies will need to determine the role of
ChC dysfunctions in altering the excitation-inhibition balance
and whether ChC dysfunctions underlie other brain disorders
that implicate disruptions of the excitation-inhibition balance,
such as autism (Rubenstein and Merzenich, 2003). Nevertheless,
these results suggest that ChCs are at least predominately
inhibitory.

FUTURE DIRECTIONS

A significant impediment that prevents elucidating the
link between ChC dysfunctions and brain disorders is the
uncertainties in the role of ChCs in the cortical microcircuit,
including whether ChCs are inhibitory or excitatory. Ideally,
the ability to specifically target ChCs with the identification
of specific markers will greatly aid in resolving the role of
ChCs in brain functions. One such undertaking is the creation

of the Nkx2.1CreERT2 mouse line that can label a portion
of interneurons, the majority of which are ChCs (Taniguchi
et al., 2013). With the ability to track ChCs from their genesis
to postnatal development and incorporation into cortical
circuits, understanding the link between dysfunctions in ChC
connectivity and brain disorders may be facilitated (Anderson
and Coulter, 2013; Taniguchi et al., 2013). Because of the
diversity of ChCs and the possibility of subgroups of ChCs with
distinct connectivity patterns and functional roles, innovating
techniques will be needed in uncovering ChC circuitry. One
such technique is the use of simultaneous multiple patch-clamp
recording (Wang et al., 2015; Wyskiel et al., 2016), which can not
only greatly elucidate ChC connectivity, but can answer some
of the lingering questions about its postsynaptic effects. Further
advances in our understanding of ChCs will hopefully provide
answers in the near future.
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