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Injury to the human central nervous system can lead to devastating consequences

due to its poor ability to self-repair. Neural transplantation aimed at replacing lost

neurons and restore functional circuitry has proven to be a promising therapeutical

avenue. We previously reported in adult rodent animal models with cortical lesions

that grafted fetal cortical neurons could effectively re-establish specific patterns of

projections and synapses. The current study was designed to provide a detailed

characterization of the spatio-temporal in vivo development of fetal cortical transplanted

cells within the lesioned adult motor cortex and their corresponding axonal projections.

We show here that as early as 2 weeks after grafting, cortical neuroblasts transplanted

into damaged adult motor cortex developed appropriate projections to cortical and

subcortical targets. Grafted cells initially exhibited characteristics of immature neurons,

which then differentiated into mature neurons with appropriate cortical phenotypes where

most were glutamatergic and few were GABAergic. All cortical subtypes identified with

the specific markers CTIP2, Cux1, FOXP2, and Tbr1 were generated after grafting as

evidenced with BrdU co-labeling. The set of data provided here is of interest as it sets

biological standards for future studies aimed at replacing fetal cells with embryonic stem

cells as a source of cortical neurons.

Keywords: motor cortex, cortical lesion, embryonic transplantation, maturation, proliferation, GFP

INTRODUCTION

The cerebral cortex is a six-layered structure composed of a large number of neurons classically
divided into two major groups. In rodents, 70–80% of neurons are excitatory glutamatergic
projection neurons and 15–20% are inhibitory GABAergic non-pyramidal interneurons (Hendry
et al., 1987; Beaulieu, 1993). There is a correlation between the laminar position of cortical neurons
and their connectivity (Jones, 1984; Marín and Rubenstein, 2003). As such, layer II/III callosal
neurons project to the contralateral cortex, layer V neurons project to the striatum, midbrain pons,

Abbreviations: CAM-K II, CAM Kinase II alpha; Cux1, cut-like homeobox 1; GFP, green fluorescent protein; GFAP,
glial fibrillary acidic protein; DCX, doublecortin; PSA-NCAM, polysialylated form of the neural cell adhesion molecule;
GABA, γ-aminubutyric acid; NeuN, neuronal nuclei; TBS, Tris-buffered saline; TF, transcription factors; V-GLUT1, vesicular
glutamate transporter 1.
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and spinal cord whereas layer VI neurons project to the thalamus
(Greig et al., 2013). Projection cortical neurons from different
layers express specificmolecular markers (Molyneaux et al., 2007;
Gaspard et al., 2008; Gaspard and Vanderhaeghen, 2011). For
instance, Cux1 (cut-like homeobox 1) is a specific marker of
projection neurons of the superficial layers II/III and IV (Leone
et al., 2008), while Ctip2 is used as a marker of a subset of
subcerebral projection neurons of deep layer V (Arlotta et al.,
2005), Foxp2 is used as a marker of layer VI cortico-thalamic
projection neurons (Ferland et al., 2003) and Tbr1 is used as a
marker of early-born neurons of the preplate and layer 6 (Bulfone
et al., 1998). The complexity of cerebral cortex in terms of cell
diversity and specificity of projection patterns is translated into
difficulties to appropriately repair damaged pathways following
injury or disease.

The cerebral cortex is the target of many neurological
conditions such as trauma, stroke, and neurodegenerative
disorders all associated with cell death and irreversible functional
deficits. In response to cell loss, the capacity of axonal regrowth
and spontaneous regeneration within the central nervous system
(CNS) are limited (for review see Schwab, 2004). Neuronal
transplantation appears as a promising therapeutic strategy to
replace neurons and damaged pathways (Gaillard et al., 2004,
2007). The effectiveness of cortical transplantation depends
on the capacity of grafted cells to develop into appropriate
neurons expressing specific neurotransmitters and transcription
factors and to reconnect damaged pathways. We have previously
shown that transplantation of embryonic cortical neurons in
the adult motor cortex immediately after injury allows the
anatomical reconstruction of injured motor pathways and the
development of efferent projections to appropriate cortical
and subcortical host targets (Gaillard et al., 2007). While the
full repertoire of projections by embryonic cortical grafted
neurons appears to be produced after 6 weeks (Gaillard
et al., 2007), no precise information about the dynamics
of maturation and axonal projections development of the
transplanted neurons is currently available. This information
should provide a much-needed control reference regarding the
appropriate development of cortical neurons derived from stem
cells.

In this study, we aimed to characterize the spatio-temporal
maturation of the different cell populations constituting the graft
and their axonal outgrowth. For this, we performed lesions of
the adult mouse motor cortex followed by cell transplantation
of embryonic motor cortical tissues and undertook a time-
course analysis 2, 4, 7, 14, and 30 days following transplantation.
We performed BrdU labeling experiments in combination
with the labeling of specific cortical layer identity markers
to determine the temporal and phenotypical outcome of
grafted cells. The progressive axonal outgrowth of grafted
neurons up to 30 days post-transplantation was also examined.
We provide reference information on the gradual neuronal
differentiation and maturation of grafted neurons through the
characterization of expression of markers of immature neurons,
glutamatergic, and GABAergic phenotypes and layers specific
molecular markers of cortical and sub-cerebral projection
neurons.

MATERIALS AND METHODS

Animals
Housing of animals and all animal experimental procedures were
carried out in accordance with the guidelines of the French
Agriculture and Forestry Ministry (decree 87849) and of the
European Communities Council Directive (86/609/EEC) and the
procedures were approved by COMETHEA Poitou-Charentes.
All efforts were made to reduce the number of animals used and
suffering.

Transplantation
Adult (4–6 months) C57BL/6 mice (n = 34, R Janvier) were
anesthetized with avertin (250mg per kg of body weight) and
the motor cortex was aspirated from ∼0.5 to 2.5 mm rostral
to the Bregma and from 0.5 to 2.5 mm lateral to the midline
with the corpus callosum left intact according to the protocol
routinely used in our laboratory (Roger and Ebrahimi-Gaillard,
1994; Gaillard et al., 1998, 2007). Motor cortical tissue was
harvested from embryonic day 14 transgenic mice embryos
overexpressing the enhanced green fluorescent protein (GFP)
under the control of a chicken beta-actin promotor (C57BL/6-
TgN(beta-act-EGFP) Osb strain (Okabe et al., 1997). Motor
cortical tissue was deposited immediately into the host lesion
cavity (Gaillard et al., 2007).

BrdU Injections
To assess cellular proliferation in the graft, transplanted
mice were given a single intraperitoneal injection of bromo-
deoxyuridine (BrdU, Sigma, 50 mg/kg, 0.1 M NaOH, NaCl 0.9%)
2 (n =3) or 4 (n = 3) days after transplantation. Animals were
sacrificed 4 h after BrdU injection.

Tissue Preparation
Two, 4, 7, 14, and 30 days after transplantation, animals
received a lethal dose of avertin and were transcardially perfused
with 150 ml of saline (0.9%), followed by 250 ml ice-cold
paraformaldehyde (PFA, 4%) in 0.1 M phosphate buffer (PB, pH
7.4). Brains were removed and post-fixed for a further 4 h in 4%
PFA. Brains were cut into a 40µm coronal section in 6 series with
a vibrating microtome (Microm HM650V, Thermo Scientific)
and stored at −20◦C in a cryoprotective solution (20% glucose,
40% ethylene glycol, 0.025% sodium azide, 0.05 M phosphate
buffer, pH 7.4).

Immunohistochemistry
Immunostainings were performed as previously described
(Gaillard et al., 2007, 2009). Free-floating sections were rinsed in
0.05 M Tris-buffered saline (TBS, pH 7.6) and incubated in TBS
solution containing 0.3% Triton X-100 and 5% donkey serum at
room temperature (RT) for 90 min to block nonspecific binding
sites. Primary antibodies, diluted in blocking solution, were
applied overnight at 4◦C. Primary antibodies and dilution factors
were as follows: rabbit anti-glial fibrillary acidic protein (GFAP,
1:500, Dako) a marker of astrocytes (Sofroniew and Vinters,
2010); guinea pig anti-doublecortin (DCX, 1:100, Abcam), a
microtubule-associated protein localized in somata and processes
of migrating and differentiating neurons (Brown et al., 2003);
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FIGURE 1 | Graft and graft-derived axonal projections at different time points following transplantation. (A–T) Confocal images of GFP (green), PSA-NCAM

(red), GFAP (blue) labeling from day 2 (D2) to day 30 (D30) after transplantation. (A–P) Grafts were composed of immature neural cell types as revealed by

immunochemistry for GFP and PSA-NCAM. (Q–S) Grafted cells no longer expressed PSA-NCAM at day 30. (A,D,E,H,I,L,M,P,Q,T) Immunohistochemistry for the glial

marker (GFAP) showed that the grafts also contained differentiated astrocytes. Note that not many GFAP expressing astrocytes were present at the host-graft

interface. Scale bar: 130 µm.
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mouse anti-polysialylated-neural cell adhesion molecule (PSA-
NCAM, 1:1000, AbCys) expressed by neuronal progenitors and
by differentiating neurons (Bonfanti, 2006); mouse anti-NeuN
(1:500, Millipore), a marker of mature neurons (Mullen et al.,
1992); mouse or rabbit anti-GFP (1:1000, Molecular Probes);
rabbit anti-CUX1 (1:800, Santa Cruz), a marker of superficial
cortical layers (Leone et al., 2008); rabbit or rat anti-CTIP2
(rabbit, 1:500, rat, 1:300, Abcam), a marker of deep cortical
layers V neurons (Arlotta et al., 2005); rabbit anti-FOXP2
(1:500, Abcam), a marker of deep cortical layer VI neurons
(Ferland et al., 2003); Chicken anti-Tbr1 (1:500, Millipore), a
transcription factor gene of the T box family that is highly
expressed in early-born neurons of the preplate and layer 6
(Bulfone et al., 1998); rabbit anti-γ-aminubutyric acid (GABA,
1:1000, Sigma) and rabbit anti-vesicular glutamate transporter 1
(V-GLUT1) (1:2000, Synaptic System) marquers of GABAergic
and glutamatergic neurons, respectively (Molyneaux et al., 2007);
mouse anti-CAM Kinase II alpha (CAM-K II,1:300, Invitrogen),
a proteinstrongly expressed in large pyramidal neurons in
layer V of rodent cortex (Ochiishi et al., 1994) and rat anti-
bromo-deoxyuridine (BrdU,1:200, Serotec) which incorporates
into the DNA of dividing cells during the S-phase of the cell
cycle (Nowakowski et al., 1989). Following primary antibody
incubation, sections were washed three times in TBS for 15 min
each and then incubated for 1 h at RT with the appropriate
secondary antibodies. Secondary antibodies generated in donkey
and conjugated either with Alexa Fluor R© (1:500; Invitrogen)
or Dylight R© (1:500; Jackson Immunoresearch) were used. In
order to limit non-specific labeling, which can arise from
secondary antibody detection, a zenon kit (Invitrogen) was
used to directly reveal neuronal nuclei (NeuN) using a primary
antibody conjugated with an Alexa Fluor 555 fluorophore.
Finally, the sections were rinsed 3 times in TBS and cover
slipped with a 10% solution of polyvinyl alcohol containing
2.5% 1,4-diazabicyclo-2,2,2-octane (PVA/DABCO, both from
Sigma).

For BrdU staining, before incubation with the primary
antibody, sections were pre-treated with 2N HCl, 0.5% Triton
X-100 in PBS for 30 min at 37◦C followed by incubation with
Borax (pH 8.6) for 30 min at RT and blocking with 3% bovine
serum albumin (Sigma), 0.3% Triton X-100 in PBS 0.1 M,
pH 7.4. Sections were covered with DePeX (VWR) mounting
media.

Imaging
Immunofluorescence sections were examined using an Axio
Imager.M2 (Carl Zeiss). Areas of interest were further analyzed
and imaged with a confocal laser-scanning microscope FV1000
(Olympus, France). For double or triple-stained sections,
sequential multiple channel fluorescence scanning was used to
prevent cross-talk between channels.

Determination of Graft Size
Graft volumes (V) were estimated at various times after
transplantation (2, 4, 7, 14, and 30 days) by outlining graft
areas on every sixth coronal section using fluorescent microscopy
at low power magnification and an image analysis system

TABLE 1 | Relative density of GFP+ fibers in cortical and subcortical brain

regions receiving projections normally from the motor cortex.

Labeled structures Days after transplantation

Day 2 Day 4 Day 7 Day 14 Day 30

CORTICAL PROJECTIONS

Motor cortices * * **** ****/** ****/*

Somatosensory cortices * * *** ****/** ****/*

Cingulate cortex * ****/* ****/*

Retrosplenial cortices ** **

Orbital and Insular cortices * **/* **/*

Prelimbic and infralimbic cortices ****/* ****/*

Auditory cortex ** ***

TELENCEPHALIC AND DIENCEPHALIC PROJECTIONS

Corpus collasum * */* ****/** ****/**

Caudate putamen * ****/** ****/*

Internal capsule * *

Ventral lateral nucleus * *

Reticular thalamic nucleus * *

Cerebral peduncle * *

CORTICOSPINAL PROJECTIONS

Spinal cord *

The number of asterisks indicates the fiber density within a given structure. *, 1–50 fibers;

**, 50–100, ***, 100–500 fibers; ****, 500-1000 fibers. */, ipsilateral to the transplant; /*,

contralateral to the transplant.

(Mercator, Explora Nova, La Rochelle, France). Graft volumes
(V) were calculated according to the formula for two truncated
cones (V = A1 + 2A2 + 2A3 +. . .An)/2 × h) with h as
the distance between two measured areas considering a section
thickness of 40 µm.

Fibers and Cell Counting
For each animal and in each area, using a high-magnification
objective (X40), fibers density was quantified in 1 out of the 6
series of sections at various times after transplantation (2, 4,
7, 14, and 30 days). For this individual fibers were counted up
to 1000 fibers in each area. At 30 days post-transplantation,
the percentage of transplanted neurons expressing cortical
transcription factors (TF) or neurotransmitters was determined
through quantification within the GFP+ graft area in every six
sections of the overlap between TF/NeuN, GABA/NeuN/,
or glutamate/NeuN, respectively (>1000 NeuN + cells
counted/animal; n= 5).

RESULTS

Morphological Characteristics of the Graft
and Projections
GFP immunoreactivity was used to characterize graft and graft-
derived axonal projections. At 2 days post-grafting, transplants
appeared as a thin layer of GFP+ cells covering partially the base
and/or the lateral walls of the cortical cavity (Figures 1A,B). The
transplants were mainly located in the motor cortical areas I-II
and the medial primary somatosensory cortical areas. The size
of the grafts varied between 0.01 and 0.14 mm3 with an average
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FIGURE 2 | Graft development at early stages. Confocal images of GFP/doublecortin (DCX) labeling from 2 to 7 days (D2 to D7) after transplantation. (A–I) Many

of the GFP (green) grafted cells with neuroblast morphology expressed DCX (red). Scale bars: 130 µm.

volume of 0.07 ± 0.02 mm3. Three grafts out of a total of 5
showed short distance GFP+ projections in the adjacent motor
and somatosensory cortices (Table 1).

At 4 days post grafting, transplants were 2.9 times larger
than those at 2 days post-grafting (average volume ± SEM: 0.2
± 0.06 mm3; Figures 1E,F). Three out of five transplants filled
the lower third of the cortical cavity, whereas the remaining
two grafts appeared only as thin layers of GFP+ cells lying
at the base or the lateral wall of the cavity. Compared to
2 days post-grafting, the number of GFP+ fibers located in
the adjacent motor and somatosensory cortices was slightly
increased (Table 1) and GFP+ fibers were found in these
cortical areas in four out of five transplants. In fact, GFP+
fibers were found in the ipsilateral corpus callosum (CC)

proceeding toward the midline in 2 cases whereas, few GFP+
fibers already reached the dorsal part of the caudate putamen
(CPu) in one case. One transplant was very small in size
(0.03 mm3) without any GFP+ fibers identified outside the
transplant.

At 7 days post grafting, transplants were 1.6 times larger than
those at 4 days post-grafting (average volume ± SEM: 0.33 ±

0.06 mm3; Figures 1I,J) and most of the transplants filled the
whole cortical cavity. In addition, the density of GFP+ fibers
was considerably increased in the motor and somatosensory
cortices (Table 1). In four out of five cases, the number of fibers
running into the CC was increased compared to day 4 post-
transplantation. In two cases, GFP+ fibers crossed the midline
and reached the contralateral CC. In three cases, increasing
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FIGURE 3 | Development and maturation of axons of grafted GFP neurons from day 2 (D2) to day 30 (D30) post-transplantation. (A–C, G–I)

Immunohistochemistry for GFP (green) and DCX (red) shows that many GFP+ fibers co-express DCX. (D–F, J–O) Immunohistochemistry for GFP (green) and

PSA-NCAM (red) shows GFP axons co-expressing PSA-NCAM. GFP+ fibers co-expressing DCX or PSA-NCAM leave the graft and extend through the cortex and

(Continued)
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FIGURE 3 | Continued

the corpus callosum ipsilateral to the transplant. Note that co-expression of DCX or PSA-NCAM by axons of grafted neurons decreased in relation with the

post-transplantation time, indicative of the maturation of GFP axons. cc, corpus callosum; Cpu, caudate putamen; Cx, cortex; Scale bars: A–C, 55 µm; D–O, 80 µm.

numbers of GFP+ fibers were identified in the dorsal CPu, and
in one case rare fast developing fibers were also found in the
ventrolateral part of the CPu.

At 14 days post grafting (Figures 1M,N), the graft size further
increased by approximately two-fold (0.63 ± 0.08 mm3) in
comparison to 7 days. Transplants filled the whole cortical
cavity and the density of GFP fibers innervating the host
was significantly increased (Table 1). Graft-derived GFP+ fibers
were found in most of the brain areas normally innervated
by the motor cortex, except distant areas such as the spinal
cord. In seven out of eight cases, the number of fibers
running into the contralateral CC was increased compared
to day 7 post-transplantation. The number of GFP+ fibers
was increased in the dorsal CPu in all cases (n = 8) and
fibers also innervated the contralateral CPu in five animals.
GFP+ fibers were also found in the ipsilateral and contralateral
subventricular zone, in the internal capsule in the ventrolateral
thalamic nucleus, in the cerebral peduncle and in the olfactory
bulbs.

At 30 days post grafting (Figures 1Q,R), the graft size
increased by ∼1.6 times (1 ± 0.22 mm3) in comparison to
14 days. All cases (n = 5) showed far-reaching graft-derived
GFP+ axonal growth, following specific paths (corpus callosum,
internal and external capsule, cerebral peduncles) and reaching
the specific cortical and subcortical targets that are normally
innervated by neurons of motor cortex (Table 1).

Development and Maturation of the Graft
We next focused on the temporal maturation of the
grafted cells. For this, we labeled neuronal progenitors and
differentiating neurons using antibodies directed against
DCX and PSA-NCAM as well as mature neurons and
astrocytes using antibodies directed against NeuN and GFAP,
respectively.

At 2 days post-grafting, transplants appeared as densely
packed GFP+ cell bodies. Many of the cells with neuroblast
morphology in the transplant expressed both doublecortin
(Figures 2A–C) and PSA-NCAM (Figures 1A,C). In all cases, a
strong DCX expression was found in cell bodies and processes
of the majority of the cells composing the transplants. In four
out of five cases, PSA-NCAM expression appeared as a punctate
membrane staining, mainly localized on the cell somata of
most of the GFP+ cells. In all cases, sparse GFAP cells were
found intermixed with neuroblasts within the whole transplants
(Figures 1A,D). At this stage, the grafted cells were consistently
negative for the mature neuronal marker NeuN. The first, but
rare, GFP+ fibers growing out of the transplant co-expressed
DCX (Figures 3A–C) but not PSA-NCAM.

At 4 days post-grafting, all transplants (n = 5) showed a large
proportion of grafted cells expressing both DCX (Figures 2D–F)
and PSA-NCAM (Figures 1E–G). Many grafted cells expressed

FIGURE 4 | Maturation of the transplanted neurons. (A–F) Confocal

images of GFP (green) and NeuN (red) from 7 to 30 days after transplantation

showing an increase of the density of mature neurons within the graft in

function of the time post-transplantation. Scale bar, 150 µm.

GFAP whereas sparse host GFAP+ cells were found at the graft-
host border (Figures 1E,H). At this time-point, many of the
transplanted GFP neuronal axons highly expressed DCX and
PSA-NCAMon their full-length processes (Figures 3D–F). None
of the grafted GFP+ cells expressed the mature phenotype NeuN.

At 7 days post-grafting, grafted cells still strongly expressed
both DCX (Figures 2G–I) and PSA-NCAM (Figures 1I,K).
Mature neurons expressing NeuN were observed in two cases
(Figures 4A,B). At this stage, the density of GFP+ fibers was
considerably increased in the host adjacent cortex and many
of those expressed both DCX (Figures 3G–I) and PSA-NCAM
(Figures 3J–L). The level of GFAP expressing astrocytes in the
graft was still sustained (Figures 1I,L) and astroglia appeared
aligned at the periphery of the graft or within the septa separating
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FIGURE 5 | Expression of cortical layer-specific transcription factors within the graft from D2 to D30 (A–R). (A–J) Immunohistochemistry for GFP (green)

and the transcription factors Ctip2 (red) and Cux1 (blue) within the graft and host cortex from D2 to D30. (G,H) The superficial and deep cortical layers of the host

cortex are labeled by Cux1 (blue, layers II-IV) and Ctip2 (red, layers V-VI). (G–J). The grafts were organized in clusters in which Ctip2 and Cux1 expression tend to be

mutually exclusive. (K–T) Immunohistochemistry for GFP (green) and the transcription factors Foxp2 (red) and Tbr1 (blue) within the graft and host cortex from D2 to

D30. (K–T) Tbr1+ and Foxp2+ cells were uniformly distributed through the grafts and the majority of the labeled cells co-expressed both markers corresponding to

deep layer neurons (Tbr1, Foxp2). T, transplant; H, Host. Dashed lines indicate transplant-host border. Scale bar: 150 µm.

PSA-NCAM highly stained lobules. Glial scar formation was
never present at the host/transplant border (Figures 1I,L), 7 days
after grafting.

At 14 days post-transplantation, the expression of DCX
and PSA-NCAM was strongly decreased in transplants
(Figures 1M,O). The vast majority of the grafted cells highly
expressed NeuN (Figures 4C,D) and many grafted cells
expressed GFAP (Figure 1P).

At 30 days post-transplantation, the grafts were almost
exclusively populated byNeuN+mature neurons (Figures 4E,F).
At this time point, immature GFP+ neurons co-expressing DCX
and PSA-NCAM were not detected in the transplants, indicating
the full maturation of transplanted neurons 30 days after grafting
(Figures 1Q–T, 3M–O).

Cellular Composition of the Graft
The adult cerebral cortex consists of six layers. Neurons from
different layers are produced at different developmental time
points. Earliest generated cortical neurons populate deep cortical
layers whereas late born neurons generate the upper layers.
Our results show that the grafted cells express the layer-specific
cortical markers Ctip2 (Figures 5A–J), Foxp2 (Figures 5K–T),
and CUX1 (Figures 5A–J) from the 2nd to the 30th-day post-
transplantation. Despite the absence of laminar organization
within the transplant, neurons expressing either Ctip2, Foxp2, or
CUX1 were organized into distinct clusters within the transplant
(Figures 5G–J), suggesting some level of organization. In some
transplants, the expression of the transcription factors in the graft
was in continuity with that of the host cortex. Indeed, Cux1+
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cells within the graft were mostly located in the superficial part of
the graft whereas CTIP2+ cells preferentially populated the deep
part of the graft (Figures 5G,H).

We next performed BrdU nuclear labeling experiments in
the grafted mice to determine the date of birth of neurons with
deep and superficial layers identity. At 2 days post grafting, a
similar proportion of BrdU+ cells co-expressed CTIP2 (38.7
± 2.3) or Foxp2 (37.1 ± 6.9) and a smaller population co-
expressed Cux1 (28.3 ± 6) (Figure 6). At 4 days after grafting,
the percentage of BrdU+ cells co-expressing CTIP2 increased
compared to day 2 (55.3± 8.5), while the fraction of post-mitotic
cells co-expressing Foxp2 remained unchanged (35.9 ± 1).
Interestingly, the proportion of BrdU+ cells co-expressing the
upper layer marker Cux1 tends to increase from day 2 to 4
post-grafting (44.7 ± 8.4; Figure 6), which is reminiscent of the
delayed emergence of upper cortical layers during developmental
corticogenesis. Together, this indicates a preserved diversity
and differentiation potential of cortical progenitors following
transplantation in the adult cortex.

Finally, the presence of both GABAergic interneurons and
glutamatergic neurons within the grafts was evaluated by
immunodetection of the neurotransmitter GABA and V-GLUT1,
respectively. In addition, we analyze the cortical expression of
CAM-kinase II alpha protein expressed in glutamatergic neurons
and not in GABAergic neurons (Pinaudeau-Nasarre et al., 2002;
Zou et al., 2002). This analysis was performed at the latest
time-point (day 30 post-transplantation) to allow maturation of
the grafted neurons. Results showed that the vast majority of
grafted cells in the transplant were glutamatergic (Figures 7A–C)
whereas only a few of them were GABAergic (Figures 7G–I). In
addition to expressing mature neuronal markers, many grafted
cells also expressed CAM-Kinase II alpha, characteristic of
cortical projection neurons (Figures 7D–F). The quantification
of the number of mature neuronal marker NeuN co-expressing
V-GLUT-1 or GABA within the graft showed that 70% of the
mature neurons in the transplant were glutamatergic whereas
only 5% of NeuN+ neurons were GABAergic. The proportion
of glutamatergic neurons within the graft matches the normal
percentage of these neurons within the adult cortex.

DISCUSSION

In the past few years, the survival capacity of embryonic neurons
transplanted in different regions of the adult brain has been
demonstrated, and many studies have reported their repair
potential at the neuroanatomical and functional levels (Lindvall
et al., 1990; Plumet et al., 1993; Ebrahimi-Gaillard et al., 1995;
Gaillard et al., 2007, 2009; Santos-Torres et al., 2009; Thompson
et al., 2009; Jiménez-Díaz et al., 2011; Lu et al., 2012; Klein et al.,
2013).

Here, we performed a time-course analysis, from 2 to 30
days following transplantation, in order to gain insight into
the developmental course and maturation of cortical embryonic
neurons after grafting into the damaged adult motor cortex.

We show here that as early as 2 weeks after grafting,
cortical neuroblasts transplanted into damaged adult motor

FIGURE 6 | Quantification of the percentage of BrdU+ cells within the

grafts co-expressing Cux1, Ctip2, or Foxp2 at day 2 and 4

post-grafting.

cortex developed specific projections to most of the cortical
and subcortical targets. Transplanted embryonic cortical
cells exhibited characteristics of immature neurons before
differentiating into mature neurons with appropriate cortical
phenotypes. Indeed, the grafted neurons expressed molecular
markers that characterize neurons of different cortical layers and
most of the mature neurons were glutamatergic while few were
GABAergic.

At early time points, the presence within the graft of GFP+
cells that co-expressed either DCX or PSA-NCAM suggests
ongoing neurogenesis as part of dynamic growth properties of
the grafts. On the contrary, at 30 days post-grafting, the absence
of GFP+ cells co-expressing DCX or PSA-NCAM is indicative of
a complete state of maturation.

GFP+ cells along with cortical layer markers confirmed
the presence of all cortical layers neurons within the grafts.
The presence within the graft of BrdU+ cells co-expressing
markers of cortical projection neuron identity, such as CTIP2,
Cux1, FOXP2, and Tbr1, confirmed that all cortical subtypes
were generated after grafting. Overall, this data indicates the
generation of distinct and correct corticofugal neuron subtypes
originating from the graft following transplantation in adult
lesioned brain. The grafts also contained cells with mature
neuronal and glial features as revealed by labeling with NeuN
andGFAP. Importantly, the examination of neuronal phenotypes
revealed a large population of glutamatergic neurons (70%)
within the grafts as attested by the expression of VGLUT-1 or
CAM-K II alpha. In the majority of cortical regions, alpha CAM-
K II was expressed in the glutamatergic neurons but not in
the GABAergic neurons. However, the density of GABAergic
neurons within the cortical grafts was lower than in the intact
cortex. This can be explained by the fact that the tissue for
cortical transplantation was obtained from E14 embryos, a stage
at which themajority of migrating GABAergic interneurons from
the ventral telencephalon did not yet reach the cortical plate
(Anderson et al., 1997; Marín and Rubenstein, 2003; Wonders
and Anderson, 2006; Gelman et al., 2009). As such, there were
few GABA precursors within the E14 transplant. This is of
importance when one considers that the ratio between excitatory
and inhibitory neurons in the cortex is critical to guarantee
normal functioning of cortical circuitries. Indeed, impaired
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FIGURE 7 | Differentiation of grafted cells. Identification of GFP+ cells (green) (A–C) co-expressing markers of glutamatergic neurons (V-GLUT1, red), (D–F)

CAM-kinase II alpha, or (G–I) GABAergic neurons (GABA, red) at 30 days post-transplantation. Arrows show grafted neurons expressing V-GLUT-1, CAM Kinase II, or

GABA. Scale bar: 40 µm.

GABA-mediated neurotransmission has been implicated inmany
neurologic diseases, including epilepsy and intellectual disability
(de Lanerolle et al., 1989; Spreafico et al., 1998). In this line,
mouse GABAergic interneurons grafted into the brain of mice
with temporal lobe epilepsy decreased seizure activity (Sebe and
Baraban, 2011; Hunt et al., 2013; Tyson and Anderson, 2014).

For future development of cell replacement based therapies,
there is a need for an unlimited on-demand source of
transplantable cells that should be standardized and quality-
tested prior to transplantation. Cortical neurons derived from
embryonic stem cells (ESCs) and induced pluripotent stem cells
(iPSCs) both offer great potential for cell therapy given their
greater accessibility and standard use (Gaspard et al., 2008;

Aboody et al., 2011; Espuny-Camacho et al., 2013; Michelsen
et al., 2015). The success of stem cell-based neural repair
strategies for neuronal replacement treatment following cortical
damage will critically depend on the ability to generate not only
specific cortical cell populations but also the maintenance of their
correct ratios within the graft.
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