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INTRODUCTION

Repetitive Transcranial Magnetic Stimulation (rTMS) is increasingly used to treat stroke,
Parkinson’s disease and depression (Fregni et al., 2005; Loo and Mitchell, 2005; Hallet, 2007;
O’Reardon et al., 2007; Ridding and Rothwell, 2007). rTMS uses bursts of magnetic pulses to change
the excitability and connection strengths of cortical neurons. However, the evidence to inform
clinical application is highly inconsistent (Thut and Pascual-Leone, 2010; Hamada et al., 2013) and
substantially based on trial and error. Systematic theory is lacking. Typically, in rTMS research,
measurements of motor-evoked potential (MEP) are made, often in terms of the strength of the
MEP and the length of the cortical silent period that follows. However, the MEP is probably a
poor and certainly an indirect measure of changes in the brain (Nicolo et al., 2015), clouding our
understanding of rTMS mechanisms. In practice, therefore, particular amplitudes and timing of
pulses in an rTMS sequence are selected because they show promise in small subsets of people.
However, even basics such as the sign of any change in the outcome measure (e.g., does the
MEP increase or decrease?) is debated. Many results show a wide spread in responses. It has
become common to talk about “responders” and “non-responders” although evidence for a binary
distinction in these two groups is lacking—in reality there is usually a continuum of response
often including potentiation in some and depression in others (Nettekoven et al., 2015). Moreover,
Héroux et al. (2015) provide evidence that the irreproducibility of results may be due to small
sample sizes, unscientific screening of subjects and data, and selective reporting of results.

In rTMS a regular train of pulses is applied. There is considerable variation in possible
stimulation sequences, leading to many parameters that could potentially affect the results. Pulses
are applied at a particular amplitude (normally recorded as percent motor threshold, (%RMT),
or sometimes percent machine output, themselves imprecise measures), at a given rate (pulses
per second, or hertz, Hz), until a particular number of pulses have been applied. There are three
numerical parameters here. Additionally, one can consider variation in coil shape, orientation
and place of application. Different waveforms for the magnetic pulse are also available. Thus, for
an ostensibly straightforward pulse sequence such as non-bursting rTMS, the parameter space is
considerable. Fitzgerald et al. (2006) carried out a comprehensive review of rTMS effects. They
concluded that low frequency (0.9–5 Hz) stimulation generally results in a decreased MEP, while
high frequency stimulation (5–20 Hz) results in an increasedMEP. Very low frequency stimulation
gave no effect. The “<5 Hz, depression; >5 Hz, potentiation” mantra is now well established in
rTMS literature.

More recently, bursting protocols have become popular. The quadripulse protocol (Tsutsumi
et al., 2014) is one example—four pulses are applied in quick succession, with this pattern repeated
at regular time intervals. Theta-burst stimulation (TBS) is another; bursts of pulses are applied at
theta-band (4–8 Hz) frequency. A continuous theta-burst stimulation (cTBS) protocol adds two
more parameters, the number of pulses in a burst and the burst frequency. Intermittent theta-
burst stimulation (iTBS) protocols require a further two parameters. Here, the bursting protocol
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is applied for a given time (denoted ON time, often 2 s), then
removed for a given time (denoted OFF time, often 8 s) before
being active for another 2 s period, etc. Thus, the parameter space
for describing intermittent bursting pulse sequences becomes
vast. Experiments performed to date do not come close to
spanning it.

DESCRIPTIONS OF PREVIOUS RESULTS

Recently, there has been some focus on developing good
numerical models of the effects of rTMS (Robinson, 2011;
Fung et al., 2013; Wilson et al., 2014). That has been our
primary motivation for revisiting previous rTMS experiments
(particularly cTBS and iTBS) with a view to identifying overall
trends. Which parameters are the most important? What, on
average, are their effects? Various forms of statistical regression,
such as Principal Component Analysis (PCA) should potentially
be of benefit here. However, it quickly became clear that for
bursting sequences (e.g., cTBS and iTBS) there is insufficient
variation in data for such an analysis to be meaningful. Few
protocols have been evaluated in the large parameter space.
Recently, for example, the cTBS and iTBS protocols of Huang
et al. (2005) have come to the fore and are being used to the
substantial exclusion of other possibilities.

In the case of repetitive, but not bursting protocols, there is
more variation, particularly in earlier studies. This has allowed us
to tackle an analysis with regression and PCA.We have identified
92 publications looking at rTMS protocols (from 1994 to 2006)
containing results of 164 different experiments. However, in
many of these cases data were not systematically reported and key
information was missing. From these publications we produced
a subset of 35 publications containing data from 79 different
experiments in which we could unambiguously identify the
frequency of the rTMS, the number of pulses applied in the
protocol, the intensity of the applied pulse (in terms of %RMT)
and the overall effect on the MEP. These experiments covered
1064 different subjects (although some of these subjects are
likely to be the same person). The number of subjects in these
experiments ranged from four to 45, with a median of ten.
Nineteen publications reported on “one-off” experiments with
a single protocol, as opposed to multiple protocols used on the
same set of subjects. Various clinical populations were covered,
including Parkinson’s disease, epilepsy, major depression and
focal hand dystonia, in addition to healthy populations. We have
not looked at the effect of population on results.

A few publications recorded the effect on the MEP in
a quantitative manner; most did not. Rather, it has been
usually recorded qualitatively as “increase,” “decrease,” “no
change,” or, unhelpfully, “variable.” Again, there is a problem of
interpretation here. What is it about the MEP that “increases”?
Is it the amplitude of the MEP, the time-scale over which it
occurs, or the integrated area of the MEP? Many publications are
vague on this point. We have taken a pragmatic approach and
simply left the effect on the MEP, for the purposes of analysis,
as being “increase,” “decrease” or “no change.” We assigned each
of these results the numeric values of 1, 0, and −1, respectively.

Those protocols which recorded “variable” results, were assigned
0, although the results of analyses do not change much when
these experiments are excluded.

We thus constructed a four-dimensional dataset recording
frequency of rTMS (f ), number of pulses applied (N), amplitude
of each pulse (A), and (tri-valued) effect on the MEP, M . We
then carried out two analyses. First, we used linear regression
to find the overall effect of f , N, and A on M. Secondly, we
used PCA to determine which variable combinations were most
important for influencingM and their overall effect. To eliminate
some bias, we weighted each experiment by the number of
participants.

The regression analysis showed that it was only the pulse
frequency f that had any overall effect on the size of theMEP. For
frequency, the analysis is shown in Figure 1A. Here, the result
is plotted against the applied frequency. The area of the circles
is proportional to the number of subjects in each experiment.
The solid line shows the results of linear regression (with each
experiment weighted by the number of participants); the dashed
line shows regression where the more questionable “one-off”
experiments have been excluded. We acknowledge that linear
regression is dubious since we have made the results tri-valued
only and there is no a priori reason for believing a linear
relationship should apply.

Results of PCA are summarized in Figure 1B. From a four-
dimensional data-set we obtain four principal components. The
components, in order, explain 42, 31, 16, and 11% of the variation
in the data. We plot the data points in terms of the first two
principal components, and show the direction of the f , N, A and
M axes on the figure.

It is clear that frequency is the major driver of the change in
the MEP. Figure 1A shows the effect is for low frequencies to
reduce the MEP, and high frequencies to increase it, in line with
the much-assumed f < 5 Hz, depression; f > 5 Hz, potentiation.
However, the relationship is weak, with results widespread. This
is supported by Figure 1B, which indicates that the M axis lies
in a similar direction to the f axis, meaning that an increase in
f leads in general to an increase in the end result M. Results
show little link between N and A and the end result. On the PCA
plot of Figure 1B, the N and A axes lie roughly perpendicular to
the end result. Linear regression (not shown) gives no apparent
trend.

A REQUEST FOR MORE SYSTEMATIC
DATA

We do not wish to draw too much from the above results,
other than to say that broadly speaking they support the
established rTMS dogma around the effect of repetition rate
on MEP. That in itself is unsurprising given that Fitzgerald
et al. (2006) comprehensively tabulated a large number of
experiments, and there is considerable overlap between our
datasets. Too often, however, the mantra “<5 Hz, depression;
>5 Hz, potentiation” is stated without acknowledging the
extent of the variation in results. Although Héroux et al.
(2015) have exposed some questionable research practices,
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FIGURE 1 | (A) The effect of repetition frequency f on the size of the MEP. The circles denote different experiments; the area of the circles is proportional to the

number of participants in each experiment. The solid line is a result of linear regression; the dashed line is a result of linear regression where “one-off” experiments

have been excluded. (B) A two-dimensional rendering of the rTMS data set using Principal Component Analysis. The first and second components form the x- and

y-axes respectively. The points mark the individual experiments. The f , N, A, and M axes are shown in terms of the first two principal components. Data are taken

from: Pascual-Leone et al., 1994; Jennum et al., 1995; Wassermann et al., 1996; Chen et al., 1997a,b; Berardelli et al., 1998, 1999; Siebner et al., 1999a,b; Maeda

et al., 2000a,b; Muellbacher et al., 2000; Rollnik et al., 2000; Romeo et al., 2000; Siebner et al., 2000; Wu et al., 2000; Fierro et al., 2001; Lorenzano et al., 2002;

Romero et al., 2002; Sommer et al., 2002; Cincotta et al., 2003; Gorsler et al., 2003; Grunhaus et al., 2003; Modugno et al., 2003; Schambra et al., 2003; Fitzgerald

et al., 2004; Peinemann et al., 2004; Stinear and Byblow, 2004; Brighina et al., 2005; Fitzgerald et al., 2005; Murase et al., 2005; Quartarone et al., 2005a,b;

Daskalakis et al., 2006; Inghilleri et al., 2006.

excluding the “one-off” data makes little difference to this
conclusion.

The main focus of our comments is the difficulty we
experienced in performing such analyses, notably our inability
to analyze the cTBS and iTBS literature in a quantitative
manner.

First, we note that the typical output measure of rTMS, the
MEP, is poorly defined. It is clear that different authors mean
different things by this. It is not just a case that electrical
activity of different muscles are measured; rather that there is
no quantitative or even consistent qualitative definition of the
change in the MEP. We are left mostly with vague terminology
“increase,” “decrease,” “no change,” or even “fluctuates.” If we are
to start understanding the results, drivers and mechanisms of
rTMS, we need to start by robustly defining outcomemeasures. A
minority of publications have focused on the length of the cortical
silent period (CSP, the quiet period of the electromyogram
following a MEP) rather than the “size” of the MEP. This is
more easily quantifiable and is a more direct measure of cortical
effects (Ziemann et al., 2015), therefore is possibly a better place
to start. Unlike the MEP, which depends on a network of cortical
and non-cortical excitatory and inhibitory processes, the CSP
originates in the cortex and is mediated by activation of GABAA

and GABAB (Ziemann et al., 2015).
If one persists with measuring the MEP, one needs also to

relate changes in the MEP to changes in the brain. The response
to TMS depends not only on cortical excitability but also to

excitability at a spinal level and the properties of corticospinal-
motoneurone connections. Without suitable models of the
process, it is difficult to relate changes in MEP to changes
in the cortex, and start to untangle the effects of plasticity,
neural excitability and gene expression that all could affect the
results of a TMS (Pell et al., 2011). One is therefore left with
costly and difficult animal experiments (Vahabzadeh-Hagh et al.,
2012).

Next, we must become more rigorous in the planning,
execution, recording and publication of our experiments. Too
often, key details have been left out. This has particularly
been evident in some of the earlier experiments. In compiling
our data set, we had to make assumptions about particular
experiments because data were not unambiguously given. Indeed,
our data set for producing the Figure used only around
half of the literature we looked at, because we could not
reliably identify the data we required. Moreover, our analysis
relies on published data; we cannot analyze unpublished
results.

Finally, we note that in the last 10 years human experiments
have focused on a very limited range of pulse sequences,
such as the cTBS and iTBS of Huang et al. (2005). Most
of the high dimensioned parameter space that bursting rTMS
sequences provide has been largely ignored. A much larger
range of protocols is needed in order to investigate effects
systematically. It is true that the focus on these protocols is a
result of their promise in clinical applications, but in terms of
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science, we are left little the wiser about what rTMS is actually
doing.
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