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Cortical information processing of the onset, offset, and continuous plateau of an
acoustic stimulus should play an important role in acoustic object perception. To date,
transient activities responding to the onset and offset of a sound have been well
investigated and cortical subfields and topographic representation in these subfields,
such as place code of sound frequency, have been well characterized. However,
whether these cortical subfields with tonotopic representation are inherited in the
sustained activities that follow transient activities and persist during the presentation
of a long-lasting stimulus remains unknown, because sustained activities do not
exhibit distinct, reproducible, and time-locked responses in their amplitude to be
characterized by grand averaging. To address this gap in understanding, we attempted
to decode sound information from densely mapped sustained activities in the rat
auditory cortex using a sparse parameter estimation method called sparse logistic
regression (SLR), and investigated whether and how these activities represent sound
information. A microelectrode array with a grid of 10 × 10 recording sites within an area
of 4.0 mm × 4.0 mm was implanted in the fourth layer of the auditory cortex in rats
under isoflurane anesthesia. Sustained activities in response to long-lasting constant
pure tones were recorded. SLR then was applied to discriminate the sound-induced
band-specific power or phase-locking value from those of spontaneous activities. The
highest decoding performance was achieved in the high-gamma band, indicating that
cortical inhibitory interneurons may contribute to the sparse tonotopic representation
in sustained activities by mediating synchronous activities. The estimated parameter
in the SLR decoding revealed that the informative recording site had a characteristic
frequency close to the test frequency. In addition, decoding of the four test frequencies
demonstrated that the decoding performance of the SLR deteriorated when the test
frequencies were close, supporting the hypothesis that the sustained activities were
organized in a tonotopic manner. Finally, unlike transient activities, sustained activities
were more informative in the belt than in the core region, indicating that higher-order
auditory areas predominate over lower-order areas during sustained activities. Taken
together, our results indicate that the auditory cortex processes sound information
tonotopically and in a hierarchical manner.

Keywords: auditory cortex, auditory evoked potential, sustained activity, phase locking value, microelectrode
array, machine learning, sparse logistic regression
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INTRODUCTION

During the perception of sensory objects, the sensory cortex
integrates two types of information about the target object:
the boundary from the environment and the continuous body
surrounded by that boundary. For instance, a simple acoustic
stimulus consists of an onset, continuous plateau, and offset.
Accumulating evidence indicates that during object perception,
the auditory cortex processes information from all components
of the stimulus (Heil, 1997; Takahashi et al., 2004; Petkov et al.,
2007; Riecke et al., 2009; Vinnik et al., 2012). Under normal
circumstances, neural systems are sensitive to rapid changes in
sensory input; these systems increase the signal-to-noise ratio of
transient activities in response to the onset and offset of sound
stimuli and adapt after hundreds of milliseconds. Therefore
cortical representation (e.g., cortical subfields and topographic
representation in these subfields, such as place code of sound
frequency) have been well characterized from onset activities
(Doron et al., 2002; Rutkowski et al., 2003; Takahashi et al.,
2004; Polley et al., 2007; Noda and Takahashi, 2015). However,
sustained activities that follow transient activities and persist
during the presentation of a continuous stimulus have received
less attention because these activities do not exhibit distinct,
reproducible, and time-locked responses in their amplitude to be
extracted clear neural features by grand averaging across trials.
Therefore, although sustained activities should play an important
role in acoustic object perception, their neural representations
remain unclear.

Previously, it has been reported that the neural synchrony
of unreproducible sustained activities lasting hundreds of
milliseconds to several seconds, usually called steady-state
activities, represents sound information topographically in the
auditory cortex (DeCharms and Merzenich, 1996; Eggermont,
1997). Yet, until recently, few studies have compared the
cortical representation of steady-state and long-lasting sustained
activities with that of transient activities, possibly because the
optimal characteristics of these activities have not been identified
and because it is technically demanding to densely map the neural
synchrony of sustained activities in the auditory cortex. Recently,
a microelectrode array with a 10 × 10 grid of recording sites
enabled dense recording from the rat auditory cortex (Noda and
Takahashi, 2015), allowing us to characterize neural synchrony
(e.g., phase synchrony or PLV) of sustained activities between
any two recording sites. However, an extremely high dimension
of such characteristics makes it difficult to identify informative
pairs of recording sites that represent sound information. In our
recent studies, we attempted to address this problem by using
machine learning (e.g., SLR). As a machine learning algorithm
for classification, SLR can be applied to high-dimensional data,
even when the dimension exceeds the number of samples
(Yamashita et al., 2008). We demonstrated that SLR could classify

Abbreviations: A1, primary auditory cortex; AAF, anterior auditory field; AEP,
auditory evoked potential; AVAF, anterior ventral auditory field; CF, characteristic
frequency; DAF, dorsal auditory field; FRA, frequency responsive area; LFP, local
field potential; MUA, multi-unit activities; PAF, posterior auditory field; PLV,
phase locking value; PSTH, post-stimulus time histograms; SLR, sparse logistic
regression; SRAF, suprarhinal auditory field; VAF, ventral auditory field.

the densely mapped band-specific power and PLV of sustained
activities for each test frequency (Shiramatsu et al., 2013, 2014).
Here, as a next step, we focused on the ‘feature selection’ or
‘sparse parameter estimation’ of SLR and attempted to reveal
the cortical representation of these characteristics in sustained
activities. During supervised learning for classification, SLR
prunes irrelevant dimensions of data by setting their associated
weights to zero and is most effective when input data has sparse
representation, like those in neural activity patterns. Recent
studies demonstrated that selected features in SLR or other
regression framework indicated some possible neural correlates
(Chao et al., 2010; Yahata et al., 2016). Thus, we assumed that
the selected recording sites, or informative recording sites, will
contribute to revealing the cortical representation of sustained
activities.

In this study, we investigated whether and how sustained
activities represent sound information by decoding sound
information from densely mapped neural activities in the rat
auditory cortex with sparse parameter estimation (e.g., SLR).
A microelectrode array with a 10× 10 grid of recording sites was
implanted to record transient and sustained activities from the
fourth layer of the auditory cortex of anesthetized rats. SLR was
applied to discriminate sound-induced band-specific power and
PLV from those of spontaneous activities, and we investigated
the CF and cortical subfield of the informative recording sites.
In addition, to examine the tonotopic representation of sustained
activities, we tested whether decoding accuracy decreased when
SLR was used to discriminate close test frequencies.

MATERIALS AND METHODS

This study was carried out in strict accordance with the
“Guiding Principles for the Care and Use of Animals in
the Field of Physiological Science” published by the Japanese
Physiological Society. The experimental protocol was approved
by the Committee on the Ethics of Animal Experiments at the
Research Center for Advanced Science and Technology at the
University of Tokyo (Permit Number: RAC130107). All surgeries
were performed under isoflurane anesthesia, and every effort
was made to minimize suffering. After the experiments, animals
were euthanized with an overdose of pentobarbital sodium
(160 mg/kg, i.p.).

Electrophysiological Experiments
Animal Preparation
Ten Wistar rats (postnatal weeks 9–11, body weight of 270–
310 g) were used in the study. Rats were anesthetized with
isoflurane in conjunction with air (3% for induction and 1–2%
for maintenance), and held in place with a custom-made head-
holding device. Atropine sulfate (0.1 mg/kg) was administered
at the beginning and end of the surgery to reduce the viscosity
of bronchial secretions. A heating blanket was used to maintain
body temperature at approximately 37◦C. A skin incision was
made at the beginning of the surgery under local anesthesia (1%
xylocaine, 0.3–0.5 ml). A needle electrode was subcutaneously
inserted into the right forepaw, and used as a ground. A small
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craniotomy was performed near bregma to embed a 0.5-mm
thick integrated circuit socket as a reference electrode with
an electrical contact to the dura mater. The right temporal
muscle, cranium, and dura overlying the auditory cortex were
surgically removed and the exposed cortical surface was perfused
with saline to prevent desiccation. Cisternal cerebrospinal fluid
drainage was performed to minimize cerebral edema. The right
eardrum (i.e., ipsilateral to the exposed cortex) was ruptured and
filled with wax to ensure unilateral sound inputs from the ear
contralateral to the exposed cortex. Respiratory rate, heart rate,
and hind-paw withdrawal reflexes were monitored throughout
the experiment to maintain an adequate and stable anesthetic
level.

Neural Recordings
A microelectrode array (ICS-96, Blackrock Microsystems, Salt
Lake City, UT, USA) with a 10 × 10 grid of recording sites
within an area of 4 mm × 4 mm simultaneously recorded
LFPs from the fourth layer of the auditory cortex, i.e., 600 µm
in depth (Noda et al., 2013). LFPs were obtained with an
amplification gain of 1,000, digital filter bandpass of 0.3–500 Hz,
and sampling frequency of 1 kHz (Cerebus Data Acquisition
System, Cyberkinetics Inc., Salt Lake City, UT, USA). MUAs
were obtained with an amplification gain of 1,000, digital filter
bandpass of 250–7,500 Hz, and sampling frequency of 30 kHz.
From this signal, multi-unit spikes were detected by threshold-
crossing (set to −5.65 times the root mean square of the signal)
during online processing. Four recording sites at the corners
of the grid were offline, thus 96 recording sites were used for
recording. A function generator (WF1947; NF Corp., Kanagawa,
Japan) was used to generate acoustic stimuli. A speaker (Technics
EAS-10TH800, Matsushita Electric Industrial Co. Ltd., Osaka,
Japan) was positioned 10 cm from the left ear (i.e., contralateral to
the exposed cortex). Test stimuli were calibrated at the pinna with
a 1/4-inch microphone (4939, Brüel & Kjær, Nærum, Denmark)
and spectrum analyzer (CF-5210, Ono Sokki Co., Ltd., Kanagawa,
Japan). The stimulus level is presented in dB SPL (sound pressure
level in decibels with respect to 20 µPa).

First, we recorded transient activities responding to pure tone
bursts. Test stimuli were pure tone bursts (5 ms rise/fall and 20 ms
plateau) with frequencies from 1.6 to 64 kHz (1.6, 2.0, 2.5, 3.2,
4.0, 5.0, 6.4, 8.0, 10, 13, 16, 20, 25, 32, 40, 50, 57, and 64 kHz)
and intensities from 20 to 80 dB SPL in 10-dB increments; 126
different tone bursts were tested in total. Each test tone was
repeated 20 times in a pseudorandom order with an inter-tone
interval of 600 ms. We recorded LFPs as transient activities, and
MUA to characterize the FRA and spike peak latency at each
recording site.

Next, we recorded LFPs as sustained activities responding to
long-lasting pure tones (30-s duration including 5 ms rise/fall,
60 dB SPL) with frequencies from 12 to 50 kHz (Table 1). Each
of the pure tones was repeated 7–12 times in a pseudorandom
order and interleaved with a 30-s silent block (Figure 1).

Characterization of the Recording Sites
Data analysis was carried out in MATLAB (Mathworks, Natick,
MA, USA). From the MUA in response to pure tone bursts, we

TABLE 1 | Test frequencies used in the experiments.

Frequencies
#1, kHz

Frequencies
#2, kHz

Frequencies
#3, kHz

Frequencies
#4, kHz

Frequency
range,
octave

Set #1 12 22 32 50 2.1

Set #2 12 15 19.2 24 1

Set #3 14.4 16 18 20 0.47

Set #4 13.5 14.4 15 16 0.25

For each set of frequencies, SLR decoded four test frequencies from sustained
activities. The frequency range is indicated in the rightmost column.

FIGURE 1 | Schematic diagram of long-lasting pure tone stimuli used
in this study. Long-lasting pure tones with a duration of 30 s, including a
5-ms rise/fall, with an intensity of 60 dB SPL and frequencies from 12 to
50 kHz (Table 1). Each of the pure tones was presented in a pseudorandom
order and interleaved with a silent block of 30 s.

characterized the FRA and spike peak latency at each recording
site. To characterize the FRA, the number of tone-evoked spikes
was defined for each test tone by subtracting the mean firing
rate within 1–600-ms post-stimulus latency from that within 5–
55 ms. The number of spikes in response to each tone was then
normalized using the maximum number of MUAs among all test
tones. The FRA then was characterized at each recording site as a
map of normalized spike rates in the frequency-intensity plane of
test tones. A CF was determined to be the frequency at which test
tones evoked the largest response at the threshold or at 20 dB SPL
(i.e., the minimum intensity used in this experiment). In addition,
at each recording site, PSTH were obtained in 1-ms bins from the
MUA in response to 80-dB CF tones, and spike peak latency was
defined as the time when the PSTH exhibited a maximum.

Machine Learning
Three characteristics were extracted from the recorded LFPs:
amplitude of the evoked potential from transient activities
and band-specific power and PLV from the sustained
activities. SLR was applied to decode test frequencies from
these characteristics. First, SLR discriminated sound-induced
activities from spontaneous activities to demonstrate (1) whether
informative recording sites are consistent with the tonotopic
structure as determined from the MUAs, and (2) whether the
core or belt region is more informative in the decoding. Second,
we tested whether decoding accuracy decreases when SLR
discriminates several test frequencies within a narrower test
frequency range (Table 1).

Calculation of the Characteristics of Neural Activity
Characteristics of the transient activities
It is well known that AEPs, in response to sound onset exhibit
tonotopically organized spatial distributions from which machine
learning can discriminate test frequencies (Shiramatsu et al.,
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FIGURE 2 | Transient activities in response to pure tones based on
LEPs. Representative LFP obtained from a pure tone burst with a frequency
of 50 kHz and an intensity of 70 dB SPL. Spontaneous potentials and AEPs
were quantified as the absolute values of the minimum peak in the 50-ms
LFPs preceding and following the onset of each pure tone burst.

2013, 2014). Thus, SLR first discriminated AEPs from the
spontaneous potentials. At each recording site, the amplitude of
the middle-latency AEP, termed P1, was quantified as the absolute
value of the minimum peak of the single-trial LFP within 50 ms
from the onset of the pure tone bursts (13, 20, 32, and 50 kHz
at 50, 60, and 70 dB SPL) at each recording site (Figure 2).
Spontaneous potentials also were quantified as the absolute values
of the minimum peak in the 50-ms LFPs preceding each pure tone
burst (Figure 2). Each frequency-intensity pair was presented

20 times for a total of 60 samples for the AEPs and 60 samples
for the spontaneous potentials for each sound frequency, and
the dimension of each sample was 96 (i.e., the number of the
recording sites).

Characteristics of the sustained activities
It has been reported that isoflurane anesthesia often produces
a pattern of alternating high amplitude bursts and suppressed
activity regardless of the sound presentation (Land et al., 2012;
Figure 3A). This burst activity simultaneously appears in almost
all recording sites of the microelectrode array, and our previous
study demonstrated that SLR could not decode the test frequency
from the characteristics in such burst activity (Shiramatsu et al.,
2014). Thus, we first eliminated bursting LFPs from the analysis
using the following methods. First, the standard deviation (SD) of
each 100-ms LFP was calculated at each time point (Figure 3B).
The threshold to determine burst activities was calculated as the
sum of the average and three times the SD of these SDs in part of
the recorded data. This threshold was calculated for each rat. This
threshold was then used to categorize all recorded LFPs into burst
and non-burst waves (Figure 3). First, the SD of the LFP at each
time point was classified as a burst wave if the SDs at more than
24 recording sites exceeded the threshold. Then, the burst LFPs
with durations shorter than 150 ms were eliminated to reduce the
false positive detection of burst waves.

After classifying burst and non-burst waves, we examined
five different time-window lengths for analysis. In this study, we
defined sustained activities as neural activities 1–29 s from the
sound onset (sound-induced activity) or from the sound offset
(spontaneous activity) to eliminate the effect of onset and offset
activities. First, we extracted 100 or 60 time periods of 1,000 ms
shifted by 1,000 ms from each sound-induced and spontaneous
sustained activity. From these time periods, we obtained time

FIGURE 3 | Long-lasting sustained activities. (A) Representative raw traces of long-lasting, sustained LFPs in response to a pure tone with a frequency of
50 kHz. (B) The standard deviation (SD) of a 100-ms LFP, where burst activities were included. Time periods, during which the SD exceeds a threshold in more than
24 recording sites and with durations of 150 ms or longer, were classified as burst LFPs (red line) while others were classified as non-burst LFPs (black line). The time
window length used in the analyses was chosen from five tested durations.
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windows with five different lengths [200, 400, 600, 800, and
1,000 ms (Shiramatsu et al., 2013)] from the beginning of each
time period (Figure 3B).

From the LFPs within these time windows, we extracted band-
specific power and PLV in five bands (theta, 4–8 Hz; alpha, 8–
14 Hz; beta, 14–30 Hz; low-gamma, 30–40 Hz; and high-gamma,
60–80 Hz). Band-specific power was calculated as the root mean
square of the bandpass-filtered LFPs within the time windows at
each recording site. Within each time window, PLVs between all
4,560 pairs of 96 recording sites were calculated according to the
following equation (Doesburg et al., 2008):

PLV(j,k) =
1
T
×

∣∣∣∣∣∑
t=T

ei{θj(t)−θk(t)}

∣∣∣∣∣
where j and k indicate the recording site number, theta indicates
the instantaneous angle at each time obtained by the Hilbert
transform of the filtered LFP, T indicates the time included in
the time window, and i is the imaginary unit. PLV is a real
value between 0 and 1. When band-passed LFPs at two recording
sites were perfectly synchronized or their phase difference was
constant during a time window, PLV was 1; and when they
were completely desynchronized or their phase difference was
completely random, PLV was 0.

Decoding of Test Frequencies
Sparse logistic regression (Yamashita et al., 2008; Ryali et al.,
2010) was applied to decode the test frequency from the three
characteristics of neural activities, as indicated above in section

“Machine Learning.” For this decoding procedure, SLR toolbox
ver1.2.1 alpha was used as a toolbox for MATLAB.

Discrimination of sound-induced activities from spontaneous
activities
Sparse logistic regression was applied to discriminate sound-
induced activities from spontaneous activities and extract
informative recording sites (Figure 4). To discriminate transient
activities from spontaneous activities, the feature vector of
AEP (96 dimensions, 60 samples) or spontaneous potential
(96 dimensions, 60 samples) was labeled as ‘sound-induced’
or ‘spontaneous’ activity, and divided into six subgroups. As
shown in Figure 4B, the discrimination consisted of two steps:
supervised learning with five labeled subgroups and the testing
process with the remaining subgroup. In both steps, SLR had
weight vectors as many as the tested label (in this case, two),
SLR first summed the multiplication of the input data and
weight vectors at the recording site for each label, and softmax
function calculated ‘label probability’ for each label [Figure 4A,
for details, see (Yamashita et al., 2008)]. SLR then determined the
label with the maximum label probability as the output label or
discrimination result. In supervised learning, SLR renewed the
weight vector according to the comparison between input and
output label (Figure 4A, dotted line). In this feedback process,
SLR set the weight at non-informative recording site to zero,
thus after supervised learning with 100 samples (50 for each
label), most of the elements of the weight vector were zero
(Figure 4B). In the testing process after supervised learning,
SLR again discriminates 20 samples (10 for each label), and we

FIGURE 4 | Discrimination by SLR during supervised learning and the subsequent testing process. (A) From one input, SLR calculated and compared
label probability (indicated by deep gray arrows). SLR had weight vectors equal to the tested label (in this figure, two labels) and the input value at each recording site
was multiplied with the weight at the same recording site. From the summation of this multiplication of the input data and weight vectors, the softmax function
calculated the ‘label probability (p)’ for each label. SLR then determined the label with the maximum label probability as the output label or discrimination result. In
supervised learning, SLR renewed the weight vector (indicated by the dotted arrows) according to the comparison between the input and output label (indicated by
light gray arrows). (B) The discrimination consisted of two steps: supervised learning and the testing process. After supervised learning, SLR again discriminates new
samples and we obtained the accuracy rate of the discrimination and weight vector for each label.
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obtained accuracy rate of the discrimination as the percentage of
the successfully discriminated samples (Figure 4B). This process
was repeated six times for each test frequency and rat. Then, we
calculated the mean accuracy rate among the six cross-validations
and four test frequencies in each rat, and compared it with
the chance level, e.g., 50%, to evaluate the performance of the
discrimination.

To discriminate sustained activities from preceding
spontaneous activities [Figure 1 (i)], the feature vector of
band-specific power (96 dimension, 100 samples) or PLV (4560
dimension, 100 samples) was labeled as ‘sound-induced’ or
‘spontaneous’ activity, and divided into 10 subgroups. A 10-fold
cross-validation was applied [e.g., supervised learning with 180
samples (90 samples for each label) and test process with 20
samples (10 for each label)] for each test frequency, frequency
band of the filter, time window length, and rat. The mean
accuracy rate among the ten cross-validations and four test
frequencies was calculated in each frequency band, time window
length and rat, and compared with the chance level.

Decoding of test frequencies in several frequency ranges
We tested whether sustained activities could be decoded within
a narrow test frequency range, which was expected to impair the

decoding performance. The feature vector of the 1,000-ms high-
gamma power or PLV (60 samples for each label and condition)
was labeled as one of the four test frequencies [Table 1 and
Figure 1 (ii)]. A sixfold cross validation [e.g., supervised learning
with 200 samples (50 samples for each label) and test process
with 40 samples (10 for each label)] was used for each set of test
frequencies, frequency band, time window length, and rat. The
accuracy rate across the label and cross-validation in each animal
and frequency range was compared.

RESULTS

Discrimination of Sound-Induced
Activities from Spontaneous Activities
Accuracy Rate of SLR for the Discrimination
To demonstrate whether the three characteristic, i.e., the
amplitude of the evoked potential from transient activities,
the band-specific power and the PLV from sustained activities
(see Materials and Methods), represent sound information, we
examined the accuracy rate in the testing process of SLR.
Figure 5A shows the representative spatial patterns of the
potentials in spontaneous activity and the AEPs in transient

FIGURE 5 | Sparse logistic regression decoding from transient activities and the band-specific power of sustained activities. (A) Representative spatial
patterns of transient potentials in spontaneous activity (leftmost) and in response to varied test frequencies: 13, 20, 32, and 50 kHz. (B) Representative spatial
patterns of high-gamma power for 1,000 ms in spontaneous activity (leftmost) and in response to varied test frequencies: 12, 22, 32, and 50 kHz. (C,D) Decoding
accuracy (C) in transient activities and (D) in band-specific power. For band-specific power, both the bands and the time window length were varied. Asterisks
indicate that decoding performance was better than the chance level, i.e., 50%: ∗∗∗p < 0.001 (Wilcoxon signed-rank test), ∗p < 0.05 (Wilcoxon signed-rank test).
Spont., spontaneous activity.
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activities. Spontaneous activity did not exhibit large potentials.
In contrast, AEPs exhibited several distinct activation foci,
depending on the test frequency. Because there are clear
differences between auditory-evoked and spontaneous potentials,
the accuracy rate was high at 95.3%, which is significantly better
than the chance level [Figure 5C, n = 8 (rats), p < 0.001
(Wilcoxon signed-rank test)].

Both sound-induced sustained activity and spontaneous
activity exhibited high band-specific power at some recording
sites that makes these activities more difficult to discriminate
based on band-specific power (Figure 5B). Nonetheless,
discrimination accuracy increased with the length of the time
window and the highest accuracy (68.3%) was achieved in the
high-gamma band for a time window of 1,000 ms [Figure 5D,
n= 8 (rats), p < 0.05 (Wilcoxon signed-rank test)].

Finally, PLV patterns have extremely high dimensionality, e.g.,
4,560 dimensions in our case, and representative patterns indicate
that it is difficult to extract distinct patterns or informative
pairs of recording sites that represent the existence of a test
tone (Figure 6A). Surprisingly, the SLR was able to discriminate
between sound-induced and spontaneous activities from PLV
patterns with the highest accuracy (71.3%) achieved in the high-
gamma band for the time window of 1,000 ms [Figure 6B, n = 8
(rats), p < 0.05 (Wilcoxon signed-rank test)].

Characteristic Frequency and Subregions of the
Informative Recording Sites
Characterization of the auditory cortex based on
characteristic frequency and spike peak latency
We characterized the FRA and spike-peak latency at each
recording site (Figures 7A–C), and from the maps of the

FRA and spike-peak latency (Figures 7D,E), we classified each
recorded site into one of three functional regions: core, belt,
and non-auditory region (Doron et al., 2002; Rutkowski et al.,
2003; Polley et al., 2007; Takahashi et al., 2011; Noda and
Takahashi, 2015). First, the recording sites that had no clear CF
were categorized in the non-auditory region. Then, the borders
between the core and belt regions were determined from the
tonotopic gradient and the spike-peak latency. The core region
consists of the A1 and the AAF, each of which exhibits a
posterior-to-anterior or lateral-to-dorsal tonotopic gradient and
short peak latency (Figure 7D). The belt region consists of five
subfields: the ventral/suprarhinal auditory fields (VAF/SRAF),
PAF, DAF, and AVAF. The VAF/SRAF was characterized by
three features: location ventral to A1 and posterior to AAF,
tonotopic gradient along the posteroventral-to-anterodorsal axis,
and longer latencies than the core region (Figure 7E). The PAF,
DAF, and AVAF were determined by two features: the relative
location to the core region (PAF, dorsal to A1; DAF, dorsal to
the CF-reversal point in the core region; AVAF, ventral to AAF)
and the discontinuation of the CF from the core region (PAF,
relatively high CF; DAF, relatively low CF; AVAF, high CF).
The recording sites in these putative two or five subfields were
categorized in the core and belt regions, respectively.

Characteristic frequency and subregions of the informative
recording sites
During the supervised learning phase, SLR selected informative
recording sites and removed irrelevant recording sites from
the discriminator by updating their weights (Figure 4B; for
representative activity at the informative and non-informative
sites, please see Supplementary Figures S1 and S2). We were

FIGURE 6 | Sparse logistic regression decoding from the PLVs of sustained activities. (A) Representative spatial pattern of high-gamma PLV for 1,000 ms in
spontaneous activity (leftmost) and in response to varied test frequencies: 12, 22, 32, and 50 kHz. (B) Decoding accuracy. Bands and the duration of the time
window served as parameters. Asterisks indicate that the decoding performance was better than the chance level, i.e., 50%: ∗p < 0.05 (Wilcoxon signed-rank test).
Spont., spontaneous activity.

Frontiers in Neural Circuits | www.frontiersin.org 7 August 2016 | Volume 10 | Article 59

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


fncir-10-00059 August 8, 2016 Time: 11:43 # 8

Shiramatsu et al. Sustained Activity in Auditory Cortex

FIGURE 7 | Characterization of the auditory cortex based on the CF and spike peak latency. (A) Representative raster plot. The black dots indicate MUAs.
(B) PSTH of the raster plots in (A). The arrow indicates the peak latency. (C) FRA at each recording sites. The arrow indicates the CF (20 kHz) at this recording site.
(D) Tonotopic map and (E) latency map in the auditory cortex. Color map of the CF and spike peak latency at each recording site is shown. From these maps, we
classified each recorded site into three functional regions: core, belt, and non-auditory region. The recording sites that had no clear CF were categorized in the
non-auditory region. The borders between the core and belt regions were determined from the tonotopic gradient and spike peak latency.

interested in determining (1) whether the informative recording
sites reflect tonotopic organization in the auditory cortex, and
(2) whether the core or belt region is more informative in the
discrimination. To address these questions, we examined the
remaining features, i.e., recording sites with non-zero weights
after decoding, in the most successful 20 discriminations of
each test frequency. For sustained activities, we only investigated
the remaining features in the discrimination from high-gamma
band-power and PLV in the 1,000-ms time window length,
where the highest decoding performance was achieved. The
results in other frequency bands were shown in Supplementary
Figures S3–S5.

For transient activity, 2.3 ± 0.96 (mean ± SD) recording
sites remained, and Figure 8A shows the CFs at these recording
sites. The histograms of the CFs show that most of these
remaining sites, i.e., 90.8%, had CFs, which gradually increased
with the test frequency (Figure 8B). The CFs at the peaks of
these histograms almost corresponded to the test frequencies
(Figure 8C), indicating the consistency of the frequency
representation of the AEP and the tonotopic organization in the
auditory cortex.

The same tendency was observed in the sustained activities
(Figure 9). For high-gamma band-power, 15 ± 5.9 recording
sites remained, and for PLV, 12.5 ± 4.3 pairs of recording
sites (i.e., 25 ± 8.6 recording sites) remained (Figures 9A,C).
Compared to transient activities, these sites were more likely
to belong to the non-auditory region (i.e., 22.6 and 24.3%
for band-power and PLV, respectively, compared to 9.2%
for AEPs). However, the remaining sound-responsive sites

had CFs that were close to the decoded test frequency
(Figures 9B,D–F), indicating that the frequency representation
of the band-power and PLV also corresponds to the tonotopic
organization.

The remaining sites also revealed that the frequency
representation of transient and sustained activities depend on the
specific auditory region. Figures 10A–C shows the representative
maps of the remaining recording sites. More recording sites
in the belt area remained for the sustained activities than for
the transient activities. To quantify regional dominance, i.e.,
numerical advantage, the contribution rate was calculated in
each region by computing the proportion of remaining sites in
each area and normalizing with respect to the summation of
the proportions in the core, belt, and non-auditory regions. For
example, in Figure 10B, the proportions of the remaining sites in
the core, belt, and non-auditory regions were 4/44, 7/37, and 0/15,
and the contribution rates were 0.32, 0.68, and 0, respectively.
Therefore, random selection of the informative recording sites
will result in contribution rate at 0.33. Consequently, for transient
activity, the contribution rate of the core region and the non-
auditory region were, respectively, higher and lower than the
chance level, i.e., 0.33 [Figure 10D, n = 20 (trials), p < 0.05
(Mann–Whitney U test with Bonferroni correction for three
comparisons)], suggesting that transient activity depends on the
core region. In contrast, the contribution rate for sustained
activities was higher in the belt region than the chance level
(Figure 10D), indicating belt-region dominance for sustained
activity. Taken together, the remaining recording sites revealed
that both transient and sustained activities represent the test
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FIGURE 8 | Cortical representation of transient activities based on characteristic frequencies. (A) Each color shows the CF at the remaining recording sites
with non-zero weights in the most successful 20 discrimination trials of each test frequency, i.e., 13, 20, 32, and 50 kHz. (B) The histograms of the CF shown in (A)
with respect to the 18 frequencies ranging from 1.6 to 64 kHz. (C) The CFs at the peak of the histograms with respect to the test frequencies.
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FIGURE 9 | Cortical representation of sustained activities based on characteristic frequencies. (A) Each color shows the CF at the remaining recording
sites with non-zero weights in the most successful 20 discrimination trials of each test frequency from the high-gamma power. (B) The histograms of the CF shown
in (A) with respect to the 18 frequencies ranging from 1.6 to 64 kHz. (C) Each color shows the CF at recording sites of the remaining features in the most successful
20 discrimination trials of each test frequency from the high-gamma PLVs. (D) The histograms of the CF shown in (C). (E,F) The CFs at the peak of the histograms
with respect to the test frequencies.

frequency according to the tonotopic organization of the auditory
cortex, but depend on different cortical regions.

Decoding of Test Frequencies in Several
Frequency Ranges
Machine learning from transient activities fails to discriminate
neighboring test frequencies because sparse recording cannot
generate distinct patterns from close test frequencies. We found

that the frequency representation of sustained activities also was
disorganized when the test frequencies were too close. As the
range of the four test frequencies narrowed, decoding accuracies
significantly decreased for both band-power and PLV [Figure 11,
n= 8 (rats), p < 0.05 (Wilcoxon signed-rank test)]. These results
suggest that the distance of the test frequencies strongly affects
difference in the spatial patterns of the sustained activities. Thus,
the frequency representation of sustained activities is based on
the tonotopic organization of the auditory cortex.
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FIGURE 10 | Predominance of the cortical region in the decoding. (A–C) Representative spatial distribution of the remaining recording sites in the decoding
from (A) the transient activity, (B) high-gamma power, and (C) high-gamma PLV. Gray and black squares indicate the remaining recording sites. In these
representative results, there was no remaining site in the non-auditory region. (D) Contribution rate for each activity. Asterisks indicate that contribution rate was
better than the chance level, i.e., 0.33: ∗p < 0.05 (Mann–Whitney U test with Bonferroni correction for three comparisons).

FIGURE 11 | Decoding of test frequencies in several frequency ranges.
(A,B) Decoding accuracy in (A) high-gamma power and (B) PLV with respect
to the range of the four test frequencies (shown in Table 1). Asterisks indicate
statistical significance: ∗p < 0.05 (Wilcoxon signed-rank test).

DISCUSSION

In this study, we investigated whether and how sustained
activities represent sound information by decoding test
frequencies from densely mapped neural activities in the rat
auditory cortex using SLR. SLR successfully discriminated

spontaneous and sound-induced activities from band-specific
power and PLV in sustained activities and AEPs in transient
activities. SLR performed particularly well on high-gamma band
data (Figures 5 and 6). In addition, informative recording sites
selected by the SLR algorithm revealed that both transient and
sustained activities represent sound information in a tonotopic
manner (Figures 8 and 9). Yet, transient and sustained activities
receive their main contributions from different cortical fields
(Figure 10). Finally, discrimination of close test frequencies
from sustained activities resulted in a lower decoding accuracy,
indicating that the place code of sound frequency is conserved
in sustained activities (Figure 11). Taken together, our decoding-
based analysis provides compelling evidence that long-lasting
sustained activities also represent sound information in a
tonotopic and field-specific manner.

Methodological Considerations
In the present study, SLR was able to decode sound information
from densely recorded transient and sustained activities,
including data with dimensionality (e.g., 96 or 4,560 dimensions)
that sometimes exceeded the number of samples (120–240).
To decode high-dimensional data with sparse representation,
SLR utilizes automatic relevance determination which provides
an effective method for pruning irrelevant features. Previous
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studies have demonstrated that SLR maintains adequate decoding
performance for simulations in which the input dimensions were
20 times the number of samples, and that SLR could classify
functional magnetic resonance imaging (fMRI) data when its
input dimension was 20 to 100 times that of the number of
samples (Miyawaki et al., 2008; Yamashita et al., 2008). In the
present study, SLR exhibited sufficient performance for input
dimensions that were 0.5–23 times the number of samples,
which is consistent with previous studies and suggests the sparse
representation of these neural activities.

Informative recording sites selected by SLR demonstrated
the tonotopic and field-specific representation of transient and
sustained activities. However, there are two issues to address
regarding the relevant recording sites in the non-auditory
region and the slight discrepancy observed between the CF
and test frequency at relevant recording sites. For transient
activities, SLR selected 2.3 relevant recording sites on average,
90% of which had CF. For sustained activities, SLR selected
13 relevant recording sites from band-specific power and 15
relevant recording sites from PLV; a quarter of these belonged
to the non-auditory region, which may be due to methodological
issues in machine learning and recording. In a previous
simulation, approximately 45% of the features selected by SLR
were irrelevant, which suggests that the selected features in the
non-auditory region in our current study also are irrelevant
(Yamashita et al., 2008). The selection of features from the
non-auditory region may also be due to the large spatial decay
of LFP. The spatial resolution of the microelectrode array,
i.e., 400 µm, was as large as the spatial decay of LFPs, i.e.,
500 µm (Gray et al., 1995; Frien and Eckhorn, 2000; Noreña
and Eggermont, 2002). Therefore, recording sites in the non-
auditory region may record weak AEPs that are actually elicited
from the neuronal population surrounding the neighboring
recording sites and SLR may select such weak AEPs as relevant
features.

The spatial resolution of our recordings and the spatial decay
of LFP may also explain the slight discrepancy observed between
the CF and test frequency at relevant recording sites. For example,
rat A1 has an approximately 3,600-µm anterior-to-posterior
tonotopic axis, covering six octaves, i.e., 1–64 kHz. Therefore,
the CF difference between neighboring recording sites is 0.7
octaves, which is comparable to the discrepancy between the test
frequency and the CF at the relevant recording sites determined
from the transient AEP (0.6 octaves, 13 kHz vs. 20 kHz) and from
the PLV (0.6 octaves, 12 kHz vs. 8 kHz). Such limitations of the
recording technique should be taken into account when decoding
test frequencies from neural activity patterns.

It should be noted that it is difficult to interpret weights
or informative recording sites derived from machine learning,
especially in the reconstruction of true signal component pattern,
e.g., spatial, spectral or temporal pattern, from ‘raw’ weights,
because decoding processes sometimes set non-zero weight at
non-informative site to cancel out noise (Haufe et al., 2014).
To cope with such difficulties, we pooled the informative sites
irrespective of their weights and investigated most often-selected
CF and subregion, demonstrating tonotopic and field-specific
representation. Previous fMRI study also pooled informative

functional connection and investigated their characteristics, i.e.,
hemispheric distribution, to discuss possible neural correlates
(Yahata et al., 2016). Taken together, there is a possibility of
investigating neural representation from remaining features,
although the limitation of the machine learning should be
carefully considered.

Neural Mechanisms Underlying Transient
and Sustained Activities
Sparse logistic regression successfully discriminated transient
AEPs from the spontaneous activities and revealed their
tonotopic representation (Figures 5 and 8). LFPs recorded from
the auditory cortex reflect excitatory and inhibitory synaptic
inputs to cortical neurons around the recording sites, and the
fourth layer of the auditory cortex receives excitatory inputs
mainly from the auditory thalamus. Onset of an acoustic stimulus
elicits synchronous activities in the cochlear hair cells and
auditory nerve, which provides transient activity with a high
signal-to-noise ratio and a place code of sound frequency. These
synchronized onset activities are effectively and tonotopically
transmitted through the ascending pathways to the auditory
cortex. Therefore, cortical transient activities, or AEPs, are
robust enough for machine learning to discriminate such sound-
induced activities from spontaneous activities with weak and
unstable fluctuations. Moreover, machine learning can easily
select relevant features from clear tonotopic patterns of AEPs,
as recording sites are located in the activation foci of the spatial
pattern of AEPs.

This study also demonstrated that sound-induced sustained
activities represent sound information in a tonotopic manner
(Figures 5, 6, 9, and 11), indicating that the auditory cortex
continues to receive ascending neural activities from the auditory
periphery even after neural activities seem to adapt to long-
lasting sounds. After tens of milliseconds from the sound onset,
the auditory nerves sustain steady-state firing activity, although
these firing rates are reduced by approximately half (Smith
and Zwislocki, 1975; Smith, 1979; Smith and Brachman, 1980;
Westerman and Smith, 1984). Such steady-state firings are also
tonotopically forwarded to the auditory cortex, and this constant
synaptic input may affect band-specific power in cortical LFPs.
Moreover, PLV also may reflect steady-state ascending inputs.
In the auditory thalamus, some neurons tonotopically project
to both A1 and AAF (Lee et al., 2004; Lee and Winer, 2005).
Although neurons with branched axons to these subfields are
scarce and it has not been demonstrated whether there are any
thalamic neurons projecting to both the core and belt regions,
such common ascending inputs from the thalamus could mediate
distinct phase synchrony between distant neural populations,
especially in sustained activities after adaptation as well as the
firing synchrony investigated in previous studies (DeCharms and
Merzenich, 1996; Eggermont, 1997).

For both band-specific power and PLV, the highest decoding
performance was achieved in the high-gamma band (Figures 5
and 6), which mainly reflects activities of the cortical inhibitory
interneurons (Jefferys et al., 1996; Hasenstaub et al., 2005; Bartos
et al., 2007). Previous studies indicated that cortical inhibition
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plays an important role in both sparse coding (Hromádka et al.,
2008; Wu et al., 2008; Wolfe et al., 2010) and synchronous
activities in the cortical network (Jefferys et al., 1996; Singer,
1996; White et al., 1998; Hasenstaub et al., 2005). Moreover,
there is some evidence that cortical oscillatory activity in the
gamma band reflects auditory perception (Crone et al., 2001;
Weisz et al., 2007), and mediates feature binding in visual
perception (Kreiter and Singer, 1996). Therefore, our results
indicate that cortical inhibitory interneurons contribute to the
sparse tonotopic representation of sound frequency in sustained
cortical activity and to the synchronous activities that may
mediate auditory perception.

Finally, our results demonstrated that the sound
representation of transient and sustained activities depend on
the core and belt regions, respectively (Figure 10), indicating
that higher-order auditory areas predominate over lower-
order areas in sustained activities and vice versa in transient
activities. For transient activities, strong feedforward processing
from the ventral division of the auditory thalamus to the
core region dominates the clear cortical representation of
sound frequency and intensity (Takahashi et al., 2005; Lee and
Winer, 2008), which was also decodable in the previous study
(Funamizu et al., 2011). However, supplemental information
in sound can be represented in sustained activities in the belt
region through the feedforward projection from the dorsal
and medial division of the auditory thalamus (Roger and
Arnault, 1989; Arnault and Roger, 1990; Malmierca, 2003;
Lee and Winer, 2008), which are involved in higher order
function, e.g., attention and emotional learning. In addition,
it is possible that sustained activities in the belt region reflects
its reciprocal projections that spread widely throughout the
brain, including in the basal ganglia, amygdala, and prefrontal
cortex (Reale and Imig, 1983; Roger and Arnault, 1989; Arnault
and Roger, 1990; LeDoux et al., 1991; Mascagni et al., 1993;
Romanski and LeDoux, 1993; Romanski et al., 1999a,b; Sah
et al., 2003; Winer, 2006). Recent studies also support that

the secondary auditory cortex contributes to sound-associated
memory retrieval (Sacco and Sacchetti, 2010) and that sound-
associated emotion affects sustained activities (Shiramatsu
et al., 2014). Taken together, our results indicate that the
auditory cortex processes sound information tonotopically
and in an hierarchical manner; transient activities mainly
represent basic sound information, i.e., frequency and intensity,
whereas sustained activities represent supplemental information,
including sound-associated emotion and memory in addition to
sound frequency.
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