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INTRODUCTION

Astrocytes are important partners to neurons due to their involvement in homeostatic functions
(Olsen et al., 2015; Verkhratsky et al., 2015), synaptic transmission (Perea and Araque, 2007; Di
Castro et al., 2011; Panatier et al., 2011), synaptic plasticity (Perea and Araque, 2007; Min and
Nevian, 2012; Valtcheva and Venance, 2016), and cognitive functions (Han et al., 2012; López-
Hidalgo et al., 2012; Lee et al., 2014; Lima et al., 2014; Matos et al., 2015). These essential functions
involve activation of calcium signaling pathways within the cytosol of the astrocyte, which can
be activated intrinsically (Nett et al., 2002; Srinivasan et al., 2015; Rungta et al., 2016), or in
response to neuronal activity (Di Castro et al., 2011; Haustein et al., 2014). Defining the quantitative
relationship between neuronal activity and astrocyte calcium signaling has proven difficult. Early
results in cultured astroglial cells demonstrated that neuronal activity can trigger calcium events
which exhibit a number of distinct properties, including oscillations and traveling waves (Cornell-
Bell et al., 1990; Parpura et al., 1994; Dani and Smith, 1995), which propagate throughout gap-
junction coupled networks of cells, leading to the notion that astrocytes function as a syncytium
(Finkbeiner, 1992; Giaume and Venance, 1998). Subsequent studies of astrocytes in situ, primarily
in acute hippocampal slices, painted a different picture of astrocyte calcium activity; many small
events were localized to individual branches, global cell-wide events were rare, and intercellular
waves were very sporadic (Nett et al., 2002; Fiacco and McCarthy, 2004; Shigetomi et al., 2013a;
Haustein et al., 2014). It was soon recognized that variations in tissue preparation, stimulation
protocol, and other experimental factors might play a role in these differences. An important
realization was that astrocytes readily adapt to surrounding conditions, and that even subtle
experimental changes in physiological conditions can have profound effects on astrocyte calcium
signaling (Takano et al., 2014; Mola et al., 2016).

It was hoped that some of these issues might be resolved by measuring astrocyte calcium
activity in vivo during physiological activation of neuronal circuits, which was made possible with
advances in both indicator labeling and imaging technologies (Denk et al., 1990; Stosiek et al.,
2003; Nimmerjahn et al., 2004; Helmchen and Denk, 2005; Shigetomi et al., 2013b). Most in vivo
studies of astrocytes have attempted to activate astrocyte calcium pathways by driving neuronal
activity with sensory stimulation. Sensory-evoked calcium responses in astrocytes have been shown
in the spinal cord (Sekiguchi et al., 2016), olfactory bulb (Petzold et al., 2008; Otsu et al., 2015),
somatosensory cortex (Winship et al., 2007; Schulz et al., 2012; Ghosh et al., 2013; Zhang et al.,
2016), barrel cortex (Wang et al., 2006), and visual cortex (Schummers et al., 2008).

However, studies with seemingly similar experimental design have led to different conclusions.
While early studies reported robust astrocyte calcium activity in response to sensory stimulation
(Wang et al., 2006; Schummers et al., 2008), recent studies have shown weak, sporadic, or

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
https://doi.org/10.3389/fncir.2017.00016
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2017.00016&domain=pdf&date_stamp=2017-03-22
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive
https://creativecommons.org/licenses/by/4.0/
mailto:james.schummers@mpfi.org
https://doi.org/10.3389/fncir.2017.00016
http://journal.frontiersin.org/article/10.3389/fncir.2017.00016/abstract
http://loop.frontiersin.org/people/411225/overview
http://loop.frontiersin.org/people/413681/overview
http://loop.frontiersin.org/people/893/overview


López-Hidalgo et al. Astrocyte Sensory Responses

non-existent responses to sensory stimulation in both visual
(Bonder and McCarthy, 2014; Paukert et al., 2014; Asada et al.,
2015) and somatosensory (Ding et al., 2013; Nizar et al., 2013)
cortex. Interestingly, several of these studies noted stronger
responses to neuromodulators than to sensory stimulation (Chen
et al., 2012; Ding et al., 2013; Paukert et al., 2014). Taken
together with the recent demonstration that mGluRs—initially
thought to be responsible for neuronal-driven responses—may
not be expressed in adult astrocytes (Sun et al., 2013), confusion
has emerged as to whether astrocytes respond robustly to local
synaptic activity in vivo.

Here, we attempt to reconcile the seemingly contradictory
results in the literature and to synthesize an understanding of
astrocyte calcium signaling that incorporates observations in
different experimental preparations.We summarize fundamental
differences in the neuronal circuit and astrocyte organization,
sensory-evoked neuronal dynamics as well as technical issues
involved in these studies that play important roles in the different
patterns of astrocyte responses. We argue that apparently
different results can be reconciled by considering these factors.
Altogether, we propose a synthesis of the existing literature
that astrocytes integrate signals from a variety of sources,
including local synaptic activity and neuromodulators, but only
generate calcium responses subject to a relatively high threshold.
It remains unknown whether this threshold applies equally
to somatic and subcellular responses in more distal portions
of astrocyte processes, though in vitro responses to electrical
stimulation suggest a similar threshold in both compartments
(Haustein et al., 2014). Since most in vivo studies have focused
on somatic or global responses, we will focus mostly on these,
but we note that subcellular responses are a topic of ongoing
investigation and may provide additional insight into neuron-
astrocyte communication.

VISUAL SYSTEM IN FERRETS AND
RODENTS: NEURONAL CIRCUITS

The most disparate results have come in studies of visual
cortical astrocytes. One difference between the contradictory
studies is the use of different species. While visually-evoked
calcium responses in ferret visual cortex astrocytes are robust
and highly tuned to visual stimuli (Schummers et al., 2008), in
mice, visual responses in astrocytes are generally reported to be
weak, unreliable, or sparse (Bonder andMcCarthy, 2014; Paukert
et al., 2014; Asada et al., 2015; though see Chen et al., 2012).
An understanding of the differences between the functional
organization of rodent and ferret visual cortex may shed light on
this apparent conflict.

Given that astrocyte calcium responses are driven by synaptic
activity, it is important to consider the spatio-temporal patterns
of neuronal activity that a visual stimulus, such as a grating,
would be expected to evoke in each species. In primates
and carnivores including ferrets, primary visual cortex (V1) is
organized in vertical columns according to preferred orientation
(Figure 1A, left; Hubel and Wiesel, 1962; Grinvald et al., 1986;
Chapman et al., 1996). Rodents do not have this organization;

preferred orientation is spatially random, in a so-called salt-and-
pepper arrangement (Figure 1A, right; Dräger, 1975; Mangini
and Pearlman, 1980; Ohki et al., 2005; Ohki and Reid, 2007;
Kondo et al., 2016; Ringach et al., 2016).

Owing to the columnar organization of orientation preference
in ferret, we would expect the majority of neurons within the
territory of an astrocyte to respond together to a grating of
the preferred orientation (Figure 1B, left). In contrast, based on
the typical half-width of mouse tuning curves (∼25◦; Niell and
Stryker, 2008), a simulation of the responses in a salt-and-pepper
cortex to a particular orientation (Figure 1B, right), would drive
responses in only a small fraction of the neurons in the territory
of a mouse astrocyte (∼27% of neurons would have a strong
response, defined as >50% of max response; Figure 1C, right).
Furthermore, firing rates evoked by a grating stimulus are nearly
three times higher in ferret (∼19Hz; M Popović and SD Van
Hooser, personal communication) than in mouse visual cortex
(∼7 Hz; Niell and Stryker, 2008; Durand et al., 2016). Thus,
during the presentation of an oriented grating, an astrocyte in
ferret visual cortex would receive input frommore neurons (four-
fold) which fire more action potentials (three-fold), which means
12 times more synaptic activity than an astrocyte in mouse visual
cortex (See Figure 1C). Considering that astrocyte responses are
thought to derive from transmitter spillover (Patrushev et al.,
2013), it is likely that this would result in a considerable difference
in the amount of transmitter available to astrocyte receptors or
transporters. The combined difference in synapse number and
firing rate is likely to have a dramatic effect on determining
whether the integrated activity reaches threshold to activate
astrocyte calcium signaling.

One might then ask: if astrocyte calcium responses depend on
such strong concerted activation, would they ever be activated in
mouse visual cortex? In other words, are the types of responses
observed in ferret cortex the exception, rather than the rule?
We would argue that these differences are a consequence of
the experimental approach to studying visual cortex, which does
not take into account important differences in the functional
organization of the visual systems between the species. In
particular, several lines of evidence suggest that V1 might not
serve the same function in the visual hierarchy in rodents as in
carnivores. In cats, ferrets and primates, visual information from
the eye is processed in the retinal ganglion cells and most of
the projections are sent to the lateral geniculate nucleus (LGN)
which in turn drives neurons in V1 (Reid and Alonso, 1995;
Hirsch et al., 1998; Alonso et al., 2001). In rodents, only 50% of
retinal ganglion cells reach the visual cortex through the LGN
(Martin, 1986; Gauvain and Murphy, 2015; Ellis et al., 2016).
Instead, the majority of these projections (∼70–90%) reach the
superior colliculus (Linden and Perry, 1983a,b; Hofbauer and
Dräger, 1985; Ellis et al., 2016), where in fact, orientation maps
have been observed (Ahmadlou and Heimel, 2015; Feinberg and
Meister, 2015; Inayat et al., 2015). This suggests the possibility
that substantial processing in rodents occurs in subcortical
structures and that V1 could serve as a higher-order visual
area. Consistent with this, the activity of V1 neurons in rodents
reflects multimodal processing of visual and locomotor signals
(Niell and Stryker, 2010; Keller et al., 2012; Ayaz et al., 2013;
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FIGURE 1 | Schematic representation of neuronal response patterns in mouse and ferret visual cortex. (A) The orientation preference map for a cube of

cortex in both species. Each neuron is represented by a circle, and its preferred orientation in indicated by the pseudocolor scalebar. Due to the salt-and-pepper

organization in the mouse, the astrocyte is in contact with neurons with multiple preferred orientations. In contrast, the astrocyte in ferret visual cortex is surrounded by

neurons with similar preferred orientations. (B) Response patterns to stimulation with an oriented grating stimulus. The model assumes equivalent or no

neuromodulatory input. The example astrocyte in mouse cortex only contacts a single active neuron (white circle), whereas the astrocyte in ferret cortex contacts four

active neurons. (C) Schematic depiction of an astrocyte from ferret (left) and mouse (right) visual cortex and four neurons located within its territory (top left side of

each panel). The corresponding tuning curves for each neuronal response are depicted below. Tuning curves of neurons that would produce a strong (>50%)

response to a 45◦ stimulus are drawn in white. Simulated spike trains corresponding to the four neurons and calcium response patterns of the astrocyte are depicted

in response to the stimulus (right side of each panel). n.b. this simplified representation is not intended to imply that astrocytes respond directly to the activity of

neuronal somata. The ratios of synaptic activity between the mouse and ferret would be expected to be similar.

Saleem et al., 2013). Locomotion increases activity of neurons
in V1 and also corresponds to different brain states, including
different electroencephalogram (EEG) states (Ayaz et al., 2013;
Saleem et al., 2013) and neuromodulator tone (Niell and Stryker,
2010). Either of these could affect astrocyte responsiveness. If
we consider astrocytes as integrators of neuronal activity, then
these results could explain why mouse V1 astrocytes are not
responsive to visual stimulation alone in stationary resting or
sedated conditions.

If indeed species differences in neuronal circuit organization
account for observed species differences in visual cortical
astrocyte responses, can we learn anything from other sensory

systems, in which rodents have a spatially organized stimulus
representation? In the olfactory bulb, rodents have a clear
organization over the different layers of the bulb and odors are
mapped onto different glomeruli (Stewart et al., 1979; Greer et al.,
1982; Lancet et al., 1982). Thus, presentation of an odor elicits
concerted responses from local populations of neurons (Uchida
et al., 2000, 2014) and calcium elevations in astrocytes also in
vivo (Petzold et al., 2008; Otsu et al., 2015). In the somatosensory
cortex, there is a precise topographic representation of the body
surface, including the whisker field, which is often referred to
as barrel cortex (Woolsey and Van der Loos, 1970). In the
rodent somatosensory cortex, responses of astrocytes to sensory
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stimulation have been readily observed in vivo (Wang et al., 2006;
Takata et al., 2011; Lind et al., 2013; Stobart et al., 2016) but
see (Ding et al., 2013; Nizar et al., 2013). These comparisons
lend support to the notion that the difference between astrocyte
responses to visual stimuli in ferrets and mice is not necessarily
species dependent but rather is determined by the organization
of the neuronal circuitry in which it is embedded.

VISUAL SYSTEM IN FERRETS AND
RODENTS: ASTROCYTE ORGANIZATION

It remains possible that some observed differences are also a
reflection of astrocyte specializations. Astrocyte diversity across
brain regions and species is well-documented, and it is commonly
thought that astrocyte spatial distribution and morphology are
well-suited to accomplish their circuit-specific functions (De
Saint Jan and Westbrook, 2005; Houades et al., 2008; Roux et al.,
2011). Rodent cortical astrocytes are small cells with processes
that tile gray matter of the brain (Bushong et al., 2002; Ogata and
Kosaka, 2002). Each astrocyte covers ∼75,000µm3 of the gray
matter in the hippocampus (Ogata and Kosaka, 2002; Bushong
et al., 2002) and 66,000µm3 in visual cortex (López-Hidalgo
et al., 2016). Here, astrocytes establish exclusive territories so
their processes overlap with their neighbors by <5% (López-
Hidalgo et al., 2016).

Astrocytes from ferret visual cortex are considerably different
from their counterparts in rodents. In ferrets, astrocytes are twice
as big (∼120,000 vs. 66,000µm3), less spherical and have a wide
variety of shapes (López-Hidalgo et al., 2016). Their processes
extend up to 30µm away from the soma and they overlap with
the processes of 6–8 neighboring astrocytes and each astrocyte
shares almost 50% of its territory with the processes of its
neighbors (López-Hidalgo et al., 2016). Although, the functional
consequence of exclusive territories is unclear, a larger astrocyte
would interact with a larger number of synchronously activated
neurons. Assuming astrocytes are integrators of neuronal activity
with a threshold amount of activity needed to elicit calcium
responses, then more neuronal activity within its territory would
facilitate reaching threshold.

TECHNICAL CONSIDERATIONS

Despite the arguments laid out above, there remain
inconsistencies in the literature that are difficult to attribute solely
to these factors. It is worth considering what other factors might
give rise to different experimental outcomes. Astrocytes play
an important role in physiological homeostasis of the nervous
system and are extremely sensitive to a host of environmental
factors including physical insult, pH, temperature, extracellular
ionic composition, and many others (Schipke et al., 2008;
Verkhratsky et al., 2015; Mola et al., 2016). As a result, numerous
subtle experimental factors can have important effects on the
functional state of astrocytes, and lead to dramatically different
results under seemingly similar experimental conditions.

Nearly all in vivo calcium imaging experiments of astrocytes
involve making a craniotomy (and sometimes a durotomy),

which necessarily risks insult or alteration of the physiological
conditions at the brain surface. In the mouse, the preparation
of the cranial window is particularly delicate. Due to the
small distance between the skull and the brain, heating during
drilling of the skull and brain compression during indentation
of the thinned skull are a common source of variability from
preparation to preparation. The material that contacts the brain
surface can also have unintended impact on the extracellular
milieu, with unanticipated consequences. In our experience,
filling the craniotomy with agar dissolved in normal saline results
in little to no astrocyte activity, whereas ACSF with proper ionic
composition, pH and osmolarity leads to better results. An inert
silicone plug, which is impenetrable by CSF, leads tomore reliable
astrocyte activity still (JS unpublished observations).

Another important factor is that under typical conditions, the
brain temperature under a craniotomy in a mouse falls to∼29◦C
(Schipke et al., 2008; Takata and Hirase, 2008; Kalmbach and
Waters, 2012). This affects many biological processes to which
astrocytes are likely to be sensitive. In particular, the frequency
band of local potentials and the UP and DOWN state transitions
were shown to depend on cortical temperature (Kalmbach
and Waters, 2012). The authors’ experience is that without
actively maintaining the brain temperature near physiological
temperature (Runyan et al., 2010), visually-evoked responses are
often difficult to detect in neurons as well.

It is difficult to assess or predict the effects of these various
factors on astrocyte physiology or calcium activity. Due to their
sensitivity to so many factors, it is important to recognize that
astrocyte activity is likely to be influenced to a much larger extent
than neuronal activity. Because of the apparent high threshold
for activating calcium signaling pathways, even small changes
in neuronal activity levels may have a large impact on astrocyte
activity.

CONCLUSION

Here, we have reviewed differences in the neuronal circuit and
astrocyte organization in rodents vs. ferret visual cortex as well
as methodological aspects that can explain the controversies in
the literature regarding visual-evoked responses in astrocytes.
We argue that one fundamental difference derives from the
columnar vs. salt-and-pepper organization. In particular, visual
stimulation with an oriented grating will elicit small, short-
duration responses from a small proportion of synapses within
the territory of an astrocyte in rodents, whereas the same stimulus
will elicit robust, prolonged responses from a large fraction of
the synapses within the territory of an astrocyte in ferret visual
cortex.

We have emphasized these species differences in the visual
cortex in part to clarify some discrepancies in the literature, but
also as a starting point for understanding the general principles
that govern the transfer of neuronal activity patterns to astrocyte
calcium signaling events. Numerous lines of evidence suggest
that the total amount of integrated local synaptic activity is
necessary to exceed the threshold enabling calcium responses.
This possibility is supported by the observation that astrocyte
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responses have been more reliably observed in rodents in areas
with a spatially clustered sensory map, such as barrel cortex
and olfactory bulb. A number of factors likely combine to set
this threshold. Some of these may be considered physiologically
relevant, such as neuromodulatory tone (Paukert et al., 2014),
which can lower the threshold for synaptic activation either
globally during alertness or arousal cues, or perhaps locally
during learning or attentional states related to specific cortical
areas. Other factors should likely be considered artifactual, owing
to surgical or anesthesia conditions that put the cortex too far
from the normal physiological state for the usual activation
pathways to be activated.

Another important consideration is the spatial scale
and localization of astrocyte calcium signals. Some in vitro
experiments have indicated that small scale responses in
the branches of astrocyte are responsive to low levels of
neural activity (Di Castro et al., 2011; Panatier et al., 2011),
whereas others have shown a similar sensitivity in branches
and somata (Haustein et al., 2014). Thus, it remains an
open question whether astrocyte processes have a lower
threshold for sensory-evoked responses. Different methods
for imaging calcium in astrocytes offer different resolutions
for detecting subcellular calcium events in astrocytes.
Many in vivo studies have used labeling with organic dyes
that only afford limited resolution for calcium events that
are not somatic. Few studies have systematically studied
subcellular calcium sensory responses in vivo (Asada et al.,

2015; Stobart et al., 2016). It is possible that oriented stimuli
would elicit highly localized responses in mouse cortical
astrocytes, which might have been more difficult to detect
(though see; Bonder and McCarthy, 2014; Asada et al.,
2015).

In conclusion, we have highlighted here several aspects
which could explain the differences between astrocyte calcium
responses to visual stimuli measured in ferret and rodent visual
cortex by us and others. We suggest that these differences reveal
an important aspect of astrocyte signaling. Astrocytes require a
minimum amount of neuronal activity to respond to sensory
stimuli in vivo. This reinforces the idea that astrocytes are
perhaps not involved in the millisecond level of perception, as
neurons are, but rather have a role in plasticity or synchrony
of neuronal activity, although this has yet to be shown in
vivo.
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