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Competitive interactions are believed to underlie many types of cortical processing,

ranging from memory formation, attention and development of cortical functional

organization (e.g., development of orientation maps in primary visual cortex). In

the latter case, the competitive interactions happen along the cortical surface, with

local populations of neurons reinforcing each other, while competing with those

displaced more distally. This specific configuration of lateral interactions is however

in stark contrast with the known properties of the anatomical substrate, i.e.,

excitatory connections (mediating reinforcement) having longer reach than inhibitory ones

(mediating competition). No satisfactory biologically plausible resolution of this conflict

between anatomical measures, and assumed cortical function has been proposed.

Recently a specific pattern of delays between different types of neurons in cat cortex

has been discovered, where direct mono-synaptic excitation has approximately the

same delay, as the combined delays of the disynaptic inhibitory interactions between

excitatory neurons (i.e., the sum of delays from excitatory to inhibitory and from

inhibitory to excitatory neurons). Here we show that this specific pattern of delays

represents a biologically plausible explanation for how short-range inhibition can support

competitive interactions that underlie the development of orientation maps in primary

visual cortex. We demonstrate this statement analytically under simplifying conditions,

and subsequently show using network simulations that development of orientation maps

is preserved when long-range excitation, direct inhibitory to inhibitory interactions, and

moderate inequality in the delays between excitatory and inhibitory pathways is added.

Keywords: primary visual cortex, ratemodel, cortical functional development, Hebbian learning, cortical horizontal

connectivity, orientation map

1. INTRODUCTION

Competition between populations of neurons has been proposed as one of the canonical
computations of cortical networks, and has been hypothesized to underly a range of brain
functions including working memory (Amit and Brunel, 1995; Durstewitz et al., 2000), orientation
tuning (Ben-Yishai et al., 1995; Somers et al., 1995), and functional map development (von der
Malsburg, 1973; Miikkulainen et al., 2005; Antolík and Bednar, 2011). In developmental models of
functional cortical organization the competition occurs between populations of neurons spatially
offset along the cortical surface, whereby local populations mutually reinforce each other via
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excitatory connections (short-range excitation), while long-range
inhibition facilitates competition between the local populations
and stabilizes the activity in the network. Such so calledMexican-
hat arrangement of recurrent interactions (Figure 1A), however,
is in stark contrast to the know anatomical arrangement of
cortical circuitry: the excitatory neurons (especially in superficial
layers) tend to form long-range arborizations spanning multiple
columns, while the axons of a majority of inhibitory neurons
are confined to an area only several hundreds of micrometers
in diameter (Budd and Kisvárday, 2001; Buzás et al., 2006)
(Figure 1B).

As pointed out by Muir et al. in their recent study
(Muir and Cook, 2014), to solve this apparent conflict,
previous topologically organized models of cortical
competition have either relied on the anatomically
unsupported Mexican-hat profile of lateral interactions
(von der Malsburg, 1973; Miikkulainen et al., 2005), or
relied on other biologically unrealistic properties, such as
selective targeting of inhibitory neurons by long range
excitatory connections (Law, 2009; Rutishauser et al.,
2012) or instantaneous synaptic transmission coupled with
omission of recurrent inhibition (Kang et al., 2003; Grabska-
Barwinska and von der Malsburg, 2008; Levy and Reyes,
2011).

A common hypothesis about how to reconcile Mexican-
hat lateral interactions with anatomical reality is that the
range of the effective inhibitory influence of an excitatory
neuron onto other excitatory neurons (via the disynaptic
pathway from excitatory to inhibitory to excitatory neurons—
the disynaptic inhibition) will correspond to the cumulative
reach of the direct excitatory and the direct inhibitory
connections. The effective inhibitory interactions between
excitatory neurons will thus have longer range than the direct
excitatory connections, supporting the use of Mexican-hat
lateral interactions in population models (i.e., models without
explicit separation of excitatory and inhibitory populations).
Even though very intuitive, this explanation has never been
explicitly demonstrated, and it omits the fact that under the
reasonable null-hypothesis of equal transmission delays for all
connections, the recurrent disynaptic inhibition will lag the
direct recurrent excitation. As it turns out this is crucial, as
recent model analysis by Muir et al. (Muir and Cook, 2014)
shows that, under the assumption of uniform transmission
delays, the presence of competition across the cortical surface
is predicted well by the anatomy of direct excitatory and
inhibitory coupling and that multi-synaptic network effects are
negligible, effectively rejecting the disynaptic explanation behind
Maxican-hat interaction. In conclusion, currently no satisfactory
explanation of how topological functional organization develops
in cortical networks that is consistent with the present anatomical
findings exists.

As we will show in this study, the nature of the transmission
delays between different neural type (excitatory, inhibitory)
combinations holds the key to resolving this long standing open
question. A recent study by Ohana et al. (2012) revealed a
specific pattern of transmission delays between different neural
type combinations. Specifically they found that the excitatory to

FIGURE 1 | Cortical anatomy and effective lateral interactions. (A)

Short-range excitation (red) and long-range inhibition (blue) leads to effective

Mexican-hat lateral interactions (black curve). (B) Anatomical evidence

indicates the opposite organization of lateral connectivity in cortex, whereby

excitatory neurons send long-range connections to other neurons, while

inhibitory neurons only local ones. Furthermore, uniform delays across the

intra-cortical projections is typically assumed. It is not clear how such

anatomical configuration can support the Mexican-hat effective interaction

across cortical surface. (C) Under the assumption of slow

excitatory-to-excitatory and fast excitatory-to-inhibitory and

inhibitory-to-excitatory pathway (and disregarding the inhibitory-to-inhibitory

interactions), the effective lateral inhibitory interactions correspond to the

convolution of the excitatory-to-inhibitory and inhibitory-to-excitatory

connection kernels. Under the assumption that these kernels are Gaussian

(G(σ ) in the figure), the effective inhibitory interactions will be Gaussian with

variance (space-constant) greater then the excitatory-to-excitatory one, thus

forming Mexican-hat lateral interaction profile.

excitatory connections are slow, while the excitatory to inhibitory
connections are fast. In this study we explore the possibility
that this specific transmission delay pattern is the missing
link that can explain how short range inhibition can lead to
effective cortical competition. We employ computational models
to show that the fast excitatory-to-inhibitory-to-excitatory
pathway allows for the disynaptic inhibition to generate the
effective Mexican-hat like lateral interactions (Figure 1C), thus
for the first time explaining competition in topologically
organized cortical networks with no biologically implausible
assumptions.

To demonstrate the proposed implementation of competitive
interactions on a specific feature of the V1 processing, in this
study we focus on models of development of functional cortical
organization. Functional properties of neurons in primary visual
cortex, such orientation, color and frequency preference is
not randomly distributed along the cortical surface but rather
form smooth topological maps (Swindale, 1996; Goodhill, 2007),
whereby nearby neurons prefer similar stimulus features. Such
smooth topological mapping of function on cortical surface is
ubiquitous throughout the cortex (Huth et al., 2016), found
in multiple species, and implicated in a number of functional
properties of V1, and of cortex in general. Here we restrict our
attention to orientation preference, as it is the most well explored
example of competition driven functional cortical organization
development, but these results generalize to development of
other cortical topological properties, as well as potentially other
competition based computations.
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2. MATERIALS AND METHODS

Here we describe the two models and their variants used in
this study and finish with a description of a measure for
assessing the extent to which model orientation maps resemble
their biological counterparts. Since this study heavily leans on
methodology developed in our previous studies, we offer here a
short description and refer readers to the original articles for the
details.

2.1. GCAL Model
In Section 3.1 through Section 3.3 (model 1, 2 and 3; see
Figure 3) we use the GCAL model (Stevens et al., 2013)
which is the most advanced variant of the LISSOM (Laterally
Interconnected Synergetically Self-Organizing Map) algorithm
introduced by Miikkulainen et al. (2005), which itself is based
on earlier Self-Organizing Map models (Kohonen, 1982). Several
mechanistic explanations of how orientation maps can develop
in primary visual cortex have been proposed, but most, including
the LISSOM family of models, involve two key ingredients:
(1) stimulus driven Hebbian learning on the thalamo-cortical
synapses, that ensures the formation of afferent connectivity
pattern inducing Gabor like RFs (and consequently orientation,
frequency and phase preference) to V1 neural units; and (2) a
Mexican-hat-like effective lateral interactions within the cortical
population of neural units, that induce co-activation among
proximate units while competition between more distal units.

To understand how these two mechanisms lead to
development of orientation maps, consider first the initial
state of the model with isotropic afferent connectivity. When
stimulus is presented to the model for the first time, the activity
of the cortical population will after few simulation steps settle
into a pattern that can be best described as random placement
of “blobs,” whereby nearby neurons tend to be either co-active
or silent. At this point, the placement of the local activity centers
(the “blobs”) is essentially random, determined by the interplay
of the competitive influence of the lateral interactions with
whatever source of variability present in the model (e.g., random
noise in the initial connections or content of the stimulus). The
Hebbian learning will ensure, that all neurons within the active
local populations will adjust they afferent weights slightly toward
the stimulus pattern appearing within their RFs. They will thus
in subsequent iterations be slightly more activated by similar
patterns.

This iterative process of stimulus presentation, activity pattern
formation and Hebbian adjustment of the thalamo-cortical
weights will keep repeating. However note, that in the subsequent
iterations, neurons whose afferent weights will be more similar
with the currently presented stimulus falling within their RF
will tend to be more active then those whose RF at that
point differs from the presented stimulus. Importantly even
small differences of the initial activations will be magnified by
the lateral competitive interactions thus overall driving nearby
neurons to over time develop sharp selectivity for similar
stimulus features while more distal neurons will be driven to
develop selectivity to other stimulus features. Which features
will be mapped onto cortical surface will depend on the exact

statistics of the stimuli shown during training. It turns out
that if the stimuli are natural images, or other artificial stimuli
with strong oriented components, smooth representation of
orientation preference across the cortical surface (the orientation
maps) will develop. In this study we will focus on this specific
feature (orientation), as it is the most well studied one, but
it is important to emphasize that given the right stimulation
conditions, multiplexed representation of other features, such as
ocular dominance, disparity, spatial frequency and others can
develop (Miikkulainen et al., 2005).

In the reminder of this section we will describe one specific
implementation of model with overall dynamics following the
broad description outlined in the previous paragraphs. For clarity
and consistency the following model description closely follows
the methodology sections in our previous work (Antolík and
Bednar, 2011; Stevens et al., 2013). The architecture of the 3
GCAL variants presented in this paper is depicted in Figures 2,
3A–C. The models are implemented in the Topographica
simulator, freely available at www.topographica.org. Each of the
GCAL models consists of a set of sheets of model neural units,
corresponding to: (1) the photo-receptors, (2) the combined
effects of the retinal ganglion cells (RGC) and ON and OFF
LGN cells. Furthermore each model has one V1 sheet of units
with direct excitatory and inhibitory interactions (model 1; see
Figure 3), or two V1 sheets, one corresponding to excitatory and
one to inhibitory neurons (model 2 and 3; see Figure 3). The
model sheet is a 2D array of computational elements (called units
or, loosely, neurons), with activation and plasticity equations as
described below and referenced by a coordinate system we will
refer to as sheet coordinates, where the center of the sheet is
designated (0.0,0.0). The number of units simulated in each sheet
is determined by the density of units per unit length in both sheet
dimensions. All cortical sheets have nominal dimensions 1.0 ×
1.0 in sheet coordinates. The sizes of the RGC/LGN (1.5 × 1.5)
and photo-receptor (3.5× 3.5) sheets were chosen to ensure that
each unit in the receiving sheet has a complete set of connections,
thus minimizing edge effects in the RGC/LGN and V1 sheets.
The density of units per 1.0× 1.0 area is 96 × 96 for the photo-
receptor and RGC/LGN ON and OFF sheets, and 96 × 96 for
both cortical sheets.

2.1.1. Simulation Run-Time and Stimuli

As a simplification, GCAL ignores the detailed temporal
properties of the sub-cortical neural responses and of signal
propagation along the various types of connections. Instead, the
model ON/OFF units have a constant, sustained output, and all
connections have a constant delay, independent of the physical
length of that connection. The simulator operates in discrete time
steps. Retinal input changes every 16 time steps (and during this
period is kept constant), and therefore afferent inputs to the V1
sheet(s) are effectively updated every 16 steps. This process is a
discrete simulation of an otherwise continuous series of changes
in membrane potential due to incoming spikes and consequent
generation of spikes. One such training iteration (16 steps) in
the model represents one visual fixation i.e., an iteration consists
of a constant retinal activation, followed by processing at the
ON/OFF and cortical levels.
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FIGURE 2 | General model architecture. (A) The inhibitory cortical population corresponds to a regular lattice of units in cortical space. (B) As in A but for the

excitatory population. (C) Thalamic neurons are modeled as simple difference-of-Gaussian filters followed by a threshold-linear transfer function. (D) The intra-cortical

connectivity between the excitatory and inhibitory populations and their transmission delays. The intra-cortical connectivity is the only aspect of the general

architecture presented here that changes between the different model variants explored in this study and each variant is detailed in Figure 3. (E) The RF centers of the

LGN neurons form a regular latice across the visual space covered by the model. This retinotopic mapping of connection fields between layers of the model is also

maintained in the thalamo-cortical projection (lines between D,E). These thalamo-cortical projections are the only connections in the model that undergo Hebbian

adaptation during simulated visually driven development.

The activation value ψi of unit i in the photo-receptor sheet
(P) is given by the gray-scale value in the chosen image at that
point. In this study we use two-dimensional elongated Gaussian
patterns, whose center coordinates and orientation are sampled
from a uniform distribution that covers the area of the photo-
receptor sheet and the full range of orientations. Every 16 time
steps 2 Gaussian patterns are superimposed to form the visual
input.

2.1.2. The LGN/RGC ON and OFF Sheets

The ON/OFF units are called RGC/LGN units because they
represent the entire pathway between the retinal photo-receptors
and V1, including the retinal ganglion cells, LGN cells, and the
connection pathways. The activation level for a unit at position j

in an RGC/LGN sheet at time t is defined as:

ηj(t) = f

(

Aj(t)

c+ γL
∑

k Ak(t)lkj

)

(1)

where

Aj(t) = γF

∑

i∈Fj

9i(t)ωij (2)

The activation function f is a half-wave rectifying function that
ensures positive activation values, constant γF = 1.5 defines
the overall strength of the afferent connections from the retina,
constant γL = 0.6 defines the strength of the lateral connections
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FIGURE 3 | The four considered intra-cortical connectivity variants. As in Figure 2, in all panels, the top line represents the excitatory and the bottom line the

inhibitory population of neurons. Models (A–C) are using firing rate models of neural units with instantaneous translation of inputs into membrane-potential (see

Section 2.1). (A) Variant 1, assuming only local equally wide excitatory and inhibitory connectivity, and ignoring direct inhibitory to inhibitory interactions. (B) Variant 2,

as in (A) but with added direct inhibitory to inhibitory connections of equal extent as the other excitatory and inhibitory projections. (C) Variant 3, as in (A) but with

added long-range excitatory connections represented based on Buzás et al. (2006) as a second wider Gaussian. (D) The same as (A) but modeled with neural units

that take into account membrane time-constant (see Section 2.2). The transmission delay of the inhibitory to excitatory projections in model 4 was varied in the

experiments presented in Section 3.4 (Figure 7).

within the RGC/LGN sheet, constant c = 0.11 defines the slope
of the gain, 9i is the activation of unit i taken from the set of
photo-receptors from which RGC/LGN unit j receives input (its
connection field Fj),ωij is the connectionweight from unit i in the
retina to unit j in the RGC/LGN, and lkj is the lateral connection
weight from RGC/LGN unit k to RGC/LGN unit j. Weights
from the photo-receptors to units in the ON and OFF channels
are set to fixed strengths with a difference-of-Gaussians kernel
(σcenter = 0.07385, σsurround = 0.2954, in sheet dimensions),
with ON connection fields having a positive center and a negative
surround and vice versa for OFF. The lateral RGC/LGN weights
are 2D Gaussians with kernel size σ = 0.25. The center of
the afferent and lateral connection field of each ON/OFF unit
is mapped to the location in the photo-receptor and LGN sheet
corresponding to the location of that unit in sheet coordinates,
making all these projections retinotopic.

2.1.3. Cortical Model

Units in the cortical sheets each receive three types of projections
represented as matrices of weights: afferent excitatory (p = A),
lateral excitatory (p = E) and lateral inhibitory (p = I). The
contribution Cjp to the activation of unit j in a cortical sheet from
each projection p at time t is given by:

Cjp(t + δt) =
∑

i∈Fjp

9i(t)ωpij (3)

where 9i(t) is the activation of unit i taken from the set of units
in the input sheet of projection p from which unit j receives input
(its connection field Fjp), and ωpij is the connection weight from
unit i in the input sheet of projection p to unit j in the output
sheet of projection p. All connection field weights are initialized
with uniform random noise multiplied by a 2D Gaussian profile,
cut off at the distance specified below. Contributions from each
projection are weighted and summed and passed via a non-
linearity f to calculate the activation of a cortical neuron i at
time t:

9i(t) = f
(

∑

p

γpCip(t)
)

(4)

where γp is a constant determining the sign (negative for
inhibitory) and strength of projection p. The transfer function f
is a half-wave rectifying function that ensures positive activation
values. It has a variable threshold point (θ) dependent on the
average activity of the unit as described in the next subsection,
but in all cases the gain is fixed at unity. The projection strength
scaling factor of the afferent projection γA was set to 1.5 based
on Stevens et al. (2013) while the values of the lateral excitatory
and inhibitory scaling factors, γE and γI respectively, were varied
(see Figure 4) to find a balance between excitation and inhibition,
and between afferent and lateral influences, to provide robust
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FIGURE 4 | Orientation map development with short range inhibition and a fast excitatory-to-inhibitory-to-excitatory loop. (A) Map quality (see Section 2)

at a range of lateral excitatory vs. inhibitory projection strength ratios and afferent vs. lateral projection strength ratios. (B–D) Functional organization in 3 example

parameter configurations indicated by the red marks. From left to right, the orientation map, the lateral interaction kernel (LIK; this is calculated based on Equation 14),

fast-Fourier transform of the orientation map and afferent connection fields from the ON LGN model sheet for 25 example model V1 neurons. (B,C) Two examples of

sub-optimal orientation maps. (D) Model configuration with the highest quality map found in this parameter search. (E) The same model configuration but in this case

it was run with explicit simulation of inhibitory neurons and corresponding connections. (D,E) are nearly identical confirming the correctness of our analysis.

formation of activity bubbles that facilitates the formation of
smooth maps.

Once all 16 settling steps are complete, the settled cortical
activation pattern is deemed to be the response of cortical sheets
to the presented pattern. At this point we use the response of
cortical neurons to update their threshold point (θ) (using the
adaptation process described below) and to update the afferent
weights via Hebbian learning. Cortical activity is then reset to
zero, and a new pattern is presented. Note that both adaptation
and learning could instead be performed at every settling step,
but this would greatly decrease computational efficiency.

2.1.4. Homeostatic Adaptation

The threshold θ of all cortical excitatory units is updated at the
end of each settling phase based on the following equations:

θt+ 1 = θt + ξ (9̃(t)− µ) (5)

where ξ = 0.01 is the time constant of the threshold adaptation,
µ = 0.24 is a constant defining the target average activity, and 9̃
is the recent average activity of the unit:

9̃(t) = (1− χ)9(t)+ χ9̃(t − 1) (6)

where 9(t) is the output of the unit at time t and χ = 0.991
is a time constant controlling the decay of the influence of the
past activities. The effect of this scaling mechanism is to bring the

average activity of each cortical unit closer to the specified target.
If the activity in a V1 unit moves away from the target during
training, the threshold for activation is thus automatically raised
or lowered to bring it closer to the target. Note that an alternative
rule with only a single smoothing parameter (rather than ξ and
χ) could be formulated, but the rule as presented here makes it
simple for the modeler to set a desired target activity.

2.1.5. Hebbian Adaptation

The initial connection field weights are isotropic 2D Gaussians
for the lateral excitatory projection and uniformly random
within a Gaussian envelope for afferent and lateral inhibitory
projections. Specifically, a neuron located at (i, j) will have the
following weights in projection p:

ωijp =
1

Zp
u exp(−

x2 + y2

2σ 2
p

) (7)

where (x, y) is the sheet-coordinate location of the presynaptic
neuron, u = 1 for the lateral excitatory projection (p=E), and
u is a scalar value drawn from a uniform random distribution
for the afferent and lateral inhibitory projections (p = A, I),
σp determines the width of the Gaussian in sheet coordinates

(σA = 0.27, σE = 0.035, σI = 0.035
√
2), and Zp is a constant

normalizing term that ensures that the total of all weights ωijp

to neuron j in projection p is 1.0. Weights for each projection
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FIGURE 5 | Orientation map development with short range inhibition, a fast excitatory-to-inhibitory-to-excitatory loop and inhibitory to inhibitory

connections. (A) Map quality (see Section 2) at a range of inhibitory to inhibitory vs. inhibitory to excitatory projection strength ratios and excitatory to inhibitory

connection strengths. (B–D) Functional organization in 3 example parameter configurations indicated by the red marks. From left to right, the orientation map, the

lateral interaction kernel (LIK; this is calculated based on Equation 14), fast-Fourier transform of the orientation map and afferent connection fields from the ON LGN

model sheet for 25 example model V1 neurons.

are only defined within a specific maximum circular radius rp

(rA = 0.27, rE = 0.15, rI = 0.15
√
2).

In the model, as images are presented to the photo-receptors,
the cortical afferent connection weights ωi,j,A from the ON/OFF
sheets are adjusted once per iteration (after cortical settling
is completed) using a simple Hebbian learning rule. This
rule results in connections that reflect correlations between
the presynaptic ON/OFF unit activities and the postsynaptic
cortical response. Hebbian connection weight adjustment at
each iteration is dependent on the presynaptic activity, the
postsynaptic response, and the Hebbian learning rate:

ωijA(t) =
ωij(t − 1)+ βp9j(t)9i(t)

∑

p∈{ON,OFF}
∑

k

(

ωkj,p(t − 1)+ βp9j(t)9k(t)
) (8)

where βp is the Hebbian learning rate for the connection fields
in the two afferent projections from RGC/LGN p ∈ {ON,OFF}.
i.e., the afferent weights from RGC/LGN are normalized jointly.
Learning rate parameters are specified as a fixed value ιp = 0.2
for each projection, and then the unit-specific values used in
the equation above are calculated as βp = ιp

υp
, where υp is the

number of connections per connection field in projection p. The
base parameters described here correspond to the first model
variant (Figure 4). Any modifications of these base parameters
in the other two GCAL model variants 2 and 3 (Figures 5,
6) examined in Sections 3.2 and 3.3 are then reported in the
respective sections.

2.2. Rate Model with Membrane Time
Constant
The architecture of this model (model variant 4; Figures 2, 3D)
is identical to the GCAL models (model variants 1 through 3;
Figures 3A–C) with the exception of the Equations (3) and (4),

which were replaced with an equation taking into account the
membrane time constant:

τz
δ9i

δt
= −9i +

∑

p

γp

∑

j∈Fip

f (9j(t − νp))ωpji (9)

where τz (z ∈ {E, I}) is the membrane time constant of excitatory
and inhibitory neurons (τE = 2 ms, τI = 0.5 ms), and νp is
the transmission delay for projection p (νEE = 1.4 ms, νEI =
0.5 ms,νIE was varied, see Section 3.4). As a consequence the
evolution of the network dynamics has to be simulated at higher
resolution. We chose the update step to be 0.1 ms, and we
let the activity in the model settle for 150 ms, thus resulting
in 1,500 settling steps as opposed to the 16 of the GCAL
model. The sub-cortical parametrization of the model is identical
to the model variants 1–3 (Figures 3A–C), but because the
addition of membrane time constants substantially changes the
cortical dynamics the cortical parameters had to be re-adjusted.
Specifically the strength of the thalamo-cortical connections was
set to γA = 0.5, the strength of the lateral excitatory-to-excitatory
connections was set to γEE = 3.5, the strength of the lateral
excitatory-to-inhibitory connections was set to γEI = 1.0, and the
strength of the lateral inhibitory-to-excitatory connections was
set to γIE = 2.94.

2.3. Orientation Map Analysis
Model orientation maps are calculated based on the vector
average method (Miikkulainen et al., 2005). We first determine
the preferred frequency of neurons across the map. Due to the
simplified stereotypical stimulus used in this study (elongated
Gaussian inputs) the spatial frequency preference of all neurons
lies in a very narrow band, and we thus use the mean preferred
spatial frequency across all cortical neurons as the value for the
spatial frequency parameter across all subsequent analysis. Next,
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sinusoidal grating inputs that cover the full range of remaining
parameter values (combinations of all orientations and phases)
are presented, and for each orientation, the peak response of the
neuron is recorded. The orientation preference is calculated by
constructing a vector for each orientation θ (between 0 and 180◦),
with the peak response as the length and θ as its orientation.
These vectors are summed and the preferred orientation is
calculated as half of the orientation of the summed vector. The
selectivity is given by the magnitude of the summed vector.

2.4. Orientation Map Quality Measure
In order to assess whether the proposed model develops
orientation maps that match the structure of those found in
real animals we need to utilize an automatic metric that tells
how close the maps are to animal data. To this end we will
utilize a map-quality metric that we have recently developed
(Stevens et al., 2013) based on the empirical observation that
pinwheel count in biological orientationmaps scales linearly with
hypercolumn size across many different species (Kaschube et al.,
2010). Specifically the pinwheel density per hypercolumn area
(32) converges to π , when averaged across a sufficiently large
cortical surface. For a detailed description of the procedure for
calculating this metric we refer the reader to our previous work
(Stevens et al., 2013), but briefly, its calculation involves three
steps. First, the locations of the pinwheels in the orientation map
are determined as the intersections of the zero contours of the
real and imaginary components in the polar representation of the
maps, thus yielding the total pinwheel count in the map. Second
the hypercolumn size is determined as the peak in the isotropic
ring-like Fourier transform of the orientation maps. Third, using
these two numbers we can derive the pinwheel density, but to
transform it to a useful metric between unity (high-quality map)
and zero (low quality map) we pass it through a normalized
Gamma distribution. We have shown that this metric reliably
distinguishes low and high quality maps (Stevens et al., 2013) and
is a valid measure for assessing how well the model orientation
maps match animal data.

3. RESULTS

In this article we will proceed through multiple gradually more
complex models of orientation development, addressing several
of the major issues with modeling this phenomenon, eventually
demonstrating that the experimentally identified fast inhibitory
loop is a satisfactory explanation for how short-range inhibition
can support the development of cortical functional organization.
We will use two different computational abstractions to explore
the questions at hand. In the first part of the study we will
use a computational model that is derived from the LISSOM
family of models (Miikkulainen et al., 2005). This choice
has three advantages. It allows for a very straightforward
explanation of why a fast inhibitory loop enables short-range
inhibition to induce competition. It makes our explanation
directly comparable to the extensive set of published LISSOM
family models, and thus demonstrates that the solution proposed
here generalizes to a range of other functional properties. And
finally the LISSOM abstraction enables very fast simulations, thus
allowing us to perform a parameter search analysis that would

otherwise be computationally prohibitive. However, as we will
explain further in Section 3.4, some simplifications made by the
LISSOM abstraction, specifically the instantaneous translation of
the neuronal input into its activity, will leave certain questions
unanswered. These will be addressed in Section 3.4 using more
detailed rate model framework.

3.1. A Fast Excitatory to Inhibitory to
Excitatory Loop Enables Competition in
Networks With Short-Range Inhibitory
Connections
Ohana et al. (2012) have shown that transmission delays
between different types of cortical neurons are not uniform,
specifically they found that on average the transmission delays
between excitatory neurons are ∼1.4ms, from excitatory to
inhibitory neurons are∼0.5ms, and from inhibitory to excitatory
neurons are ∼0.98ms. The sample size for connections between
inhibitory cells in the study was not large enough to be
quantitatively reliable. The key observation here is that the
combined di-synaptic delay from excitatory to inhibitory and
inhibitory to excitatory cells is approximately as long as the
mono-synaptic delay of the excitatory to excitatory connections.
Drawing from this, the core insight of this study is that under
such a pattern of delays the effective inhibitory interactions are
well approximated by the convolution of the excitatory and
inhibitory connection kernels, as we will show below. This gives
the effective inhibition longer range, consequently fulfilling the
essential requirement for cortical competition to occur. For
didactic purposes, and to simplify analytical treatment, let us
first explore one specific set of conditions under which the above
statement holds exactly, we will explore the situation when these
conditions are relaxed in subsequent sections:

1. The sum of the excitatory to inhibitory and inhibitory to
excitatory delays is exactly the same as the excitatory to
excitatory delay.

2. There is no inhibitory to inhibitory interaction.
3. The synaptic inputs into the excitatory and inhibitory neurons

are instantaneously translated into their rate response via a
positive rectified transfer function.

4. The connection kernels of all neurons are Gaussian kernels
with spatial constant σe for excitatory neurons and σi for
inhibitory neurons.

5. We will assume only local connectivity (disregarding
long-range excitatory connections), and assume that both
excitatory and inhibitory neurons have the same extent, thus
σe = σi.

These conditions lead to the following set of equations governing
the cortico-cortical interaction.

Re(x, t) =
[

∑

y

Nσe (‖y− x‖)Re(y, t − θEE)

−Nσi (‖y− x‖)Ri(y, t − θIE)+ Iaff (x, t)
]+

Ri(x, t) =
[

∑

y

Nσe (‖y− x‖)Re(y, t − θEI)
]+

(10)
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where Rp(x, t) is the response of a neuron of type p located at
position x at time t, Iaff (x, t) is the afferent input to a neuron at
position x at time t, Nσ is a normal distribution of variance σ ,
corresponding to the lateral connection kernel, and θab is a delay
on connections from neural type a to neural type b. When we
expand for Ri we obtain:

Re(x, t) =
[

∑

y

Nσe (‖y− x‖)Re(y, t − θEE)−
∑

y

Nσi

(‖y− x‖)[
∑

z

Nσe (‖z − y‖)Re(z, t − θEI − θIE)]+

+ Iaff (x, t)
]+

(11)

Because θEI + θIE = θEE (assumption 1) and because
the inhibitory neurons receive only excitatory connections
(assumption 2) we can further simplify the above as:

Re(x, t) =
[

∑

y

Nσe (‖y− x‖)Re(y, t − θEE)

−
∑

z

∑

y

Nσi (‖y− x‖)Nσe (‖z − y‖)Re(z, t − θEE)

+ Iaff (x, t)
]+

(12)

and thus due to the symmetry of the normal distribution:

Re(x, t) =
[

∑

y

Nσe (‖y− x‖)Re(y, t − θEE)

−
∑

z

Nσi ∗ Nσe (‖z − x‖)Re(z, t − θEE)

+ Iaff (x, t)
]+

(13)

Because convolution of two Normal distributions of variance σi

and σe is a normal distribution with variance
√

σ 2
i + σ 2

e and

because σi = σe we can simplify to:

Re(x, t) =
[

∑

y

Nσe (‖y− x‖)Re(y, t − θEE)

−
∑

z

N√
2σe

(‖z − x‖)Re(z, t − θEE)

+ Iaff (x, t)
]+

(14)

This shows that under these specific assumptions the effective
inhibitory interactions between excitatory neurons are

√
2

longer than the excitatory ones and thus follow the Mexican-
hat like profile required for the lateral cortical competition
underlying functional map development. Even though this
essential condition of cortical competition is fulfilled in this
model configuration, important constraints on the extent of

the effective lateral interactions (relative to lateral excitation)
remain. It is thus still unclear whether development of high-
quality orientation maps as observed experimentally is supported
under these conditions. Conveniently, the lateral interaction
in the LISSOM family of models is governed by the same
equations as 10. In the following we will use the GCAL model
(Stevens et al., 2013), the latest and most robust addition to the
LISSOM family of models to demonstrate that the above specific
configuration of effective lateral excitation and inhibition permits
the development of high-quality orientation maps. GCAL is the
only model of stimulus dependent functional development which
achieves emergence of biologically realistic orientation maps in
terms of pinwheel density, a signature that is a useful objective
measure of orientation map quality. We will utilize this map
quality measure to reliably detect model configurations which
permit the successful emergence of orientationmaps. To facilitate
a comparison we will use exactly the same model configuration
as in Stevens et al. (2013) (see Section 2), except for three
modifications necessitated by the analysis above (see Figure 3A):

1. We will change the spread of lateral inhibition to be
√
2 longer

than lateral excitatory spread, such that the resulting lateral
interactions conform with Equation (14).

2. The change in point 1 will result in a change in the balance
of overall excitation and inhibition in the model which is
critical for successful functional development in the model.
We will thus modify the strength of the lateral inhibition to
compensate for changes due to modification 1.

3. Analogously to 2, the changes in 1 change the overall balance
between feed-forward and lateral contributions to model
a cortical neuron’s activity, which we will compensate by
changing the overall strength of the lateral interactions.

In order to find a working combination of parameters in points
2 and 3, and also to show that the model is robust to a certain
level of changes in these two parameters, we have performed a
parameter search across these two parameters and evaluated the
quality of the orientation map (see Section 2) for each parameter
combination. As Figure 4 shows, under a range of values of both
parameters the model develops high-quality orientation maps
indistinguishable from their experimental counterparts, thus
concluding our first step toward showing that a fast excitatory-
to-inhibitory-to-excitatory loop can explain how short-range
inhibition can induce cortical competition and consequently the
development of topological organization of functional properties.

Furthermore, note that the GCAL model used in Figure 4

only explicitly models excitatory neurons and assumes both
direct excitatory and inhibitory interactions between them, thus
corresponding to Equation (14). Even though above we have
shown that Equation (14) is equivalent to Equation (10) to
verify the correctness of our analysis we have run a single
simulation of the GCAL model corresponding to the parameter
combination with the highest map quality found in Figure 4, but
with an explicitly simulated inhibitory population (Figure 4E). In
this model we thus do not model direct inhibitory interactions
between excitatory neurons, but instead add excitatory to
inhibitory and inhibitory to excitatory connections of the same
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extent as those of the excitatory to excitatory pathway (see the
assumption #5). As we have shown above this model should be
mathematically equivalent to the simulation shown in Figure 4D.
Note, however, that the GCAL simulations represent a discrete
approximation in both time and space of Equations (10, 14)
and we thus expect small numerical discrepancies. Indeed,
orientation maps shown in Figure 4E are nearly identical to
those in the Figure 4D, with only barely perceptible numerical
differences, confirming the validity of our approach.

3.2. Inhibitory to Inhibitory Connections
Are Consistent with Development of
Functional Organization
In the previous section we have shown that under a set
of specific assumptions that facilitate analytical treatment,
short-range inhibition can induce effective Mexican-hat like
interaction and thus support the development of orientation
maps. However, not all assumptions we made were in line with
experimental evidence. In this section we will show, now only
numerically, that one of these assumptions is not necessary,
specifically that the addition of inhibitory to inhibitory
connections does not prevent emergence of orientation
maps.

To this end, we will use the exact GCAL model configuration
that we have found in the previous section to possess the highest
quality orientation map (see Figure 4). We will use the GCAL
configuration in which we will explicitly model the inhibitory
neurons (see Figure 3B, and Equation 10) and consequently
also explicitly the excitatory to inhibitory and inhibitory to
excitatory connections. Furthermore, we will add inhibitory
to inhibitory connections to the model with the same extent
as that of inhibitory to excitatory connections (σi = σe in
Equation 10).

By explicitly modeling the inhibitory neurons in this model
we have replaced a single parameter governing the strength of
inhibitory lateral interactions in the model from the previous
section with three new parameters that set: (1) the strength
of excitatory to inhibitory, (2) inhibitory to excitatory, and
(3) inhibitory to inhibitory connections (all other parameters
remained the same as the in the best parameterization found in
the previous section). Note that in principle, there is redundancy
in these parameters as the overall strength of the projections
from inhibitory neurons onto both excitatory and inhibitory
populations is scaled by the excitatory to inhibitory projection
strength. Therefore in Figure 5 we have systematically varied
the strength of the added inhibitory to inhibitory projection
expressed relatively to the strength of the inhibitory to inhibitory
connections (which was set to 1), while also varying the strength
of the excitatory to inhibitory projection. We have investigated
the quality of the orientation maps that developed under these
different levels of inhibitory to inhibitory interactions. As can be
seen, high quality maps can develop under the full range of the
inhibitory to inhibitory interaction strengths, depending on the
overall excitatory to inhibitory drive. This shows that inclusion
of direct inhibitory to inhibitory interactions does not invalidate
the results of Section 3.1 (Figure 4).

3.3. Long-Range Excitation
In model variants 1 and 2 (Figures 4, 5) we have only
assumed local connectivity by setting both excitatory and
inhibitory interactions to have the same spatial extent. However
experimental evidence shows that excitatory cells send longer
connections compared to inhibitory cells (Budd and Kisvárday,
2001; Buzás et al., 2006). In this section we will explore what
happens if we add long-range excitatory connectivity into model
variant 1. Buzás et al. (2006) have shown that the lateral
connectivity in layer 2/3 can be best described as superimposition
of two gabor connectivity likelihoods, one short-range but not
orientation specific and one long-range and orientation specific.
Here we will assume such dual structure, leading us to add
a second excitatory to excitatory and excitatory to inhibitory
projection into model variant 1, but with a space constant that
is 3 times larger (see Figure 3C), in line with Buzás et al. (2006)
quantitative findings.

In Figure 6 we will examine what strength of the long-range
excitatory connections, relative to the short-range excitatory ones
(y axis in Figure 6A), leads to development of a high-quality
orientation map. Adding the long-range excitation changes the
spatial configurations over which excitatory interactions win
over inhibitory ones, as well as the overall magnitude of the
resulting net local excitation. Consequently, the proportion
between the magnitude of the net local excitation due to the
lateral interactions and the excitation due to afferent inputs is
changed, which is a crucial parameter for map development.
To compensate for these changes, we also systematically explore
the ratio of the overall magnitudes of the lateral and afferent
interactions (x axis of Figure 6). To make the parameter search
computationally feasible, we perform the parameter search only
in the region of parameters that allow for sufficiently strong long-
range excitatory projections. As can be seen in Figures 6D,E,
under appropriately strong lateral interactions, substantial long-
range excitatory connections still permit the development of
high quality orientation maps, demonstrating that the proposed
model is consistent with the experimentally identified long-range
excitatory connectivity.

3.4. Non-equal Effective Excitatory And
Inhibitory Delays
In all model variants examined so far we have made the
key assumption that the delay on the excitatory to excitatory
connections is exactly equal to the sum of excitatory to
inhibitory and inhibitory to excitatory delays. This assumption is
approximately supported by the experimental evidence (Ohana
et al., 2012), but we cannot assume it holds exactly in a
real biological substrate. However, we hypothesize, that the
small discrepancies between the delay of the mono-synaptic
excitatory connections and the cumulative delay of the bi-
synaptic inhibitory interactions can be absorbed into the
membrane time-constant of the neurons. In this section we will
verify this hypothesis by extending the modeling framework used
thus far with a finite membrane time-constant (see Section 2)
and proceed to determine the magnitude of the discrepancy in
the delays between the excitatory and inhibitory interactions that
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FIGURE 6 | Orientation map development with short range inhibition, a fast excitatory-to-inhibitory-to-excitatory loop and long-range excitation. (A)

Map quality (see Section 2) at a range of short vs. long range excitatory connection strength ratios (y-axis) and a range of afferent vs. lateral connection strength ratios

(x-axis). (B–E) Functional organization in 4 example parameter configurations indicated by the red marks. From left to right, the orientation map, fast-Fourier transform

of the orientation map and afferent connection fields from the ON LGN model sheet for 25 example model V1 neurons.

can be managed by the model without impairing the resulting
orientation map quality.

We use a model parameterization similar to those determined
for model variant 1 (Section 3.1; Figure 3A). For simplicity and
computational efficiency we omit the inhibitory to inhibitory
and long-range excitatory connections that have already been
investigated with model variants 2 and 3. The membrane time-
constant of excitatory neurons was set to 2 ms while those of
inhibitory neurons to 0.5 ms. These faster inhibitory dynamics
are necessary to prevent oscillations in the system (Kang et al.,
2003). We set the excitatory to excitatory delay to 1.4 ms and
excitatory to inhibitory delay to 0.5 ms based on Ohana et al.
(2012). In order to understand how closely the cumulative bi-
synaptic inhibition delay has tomatch that of the direct excitatory
to excitatory delay, we will vary the delay on the inhibitory to
excitatory projection (note that we could achieve the same by
varying the excitatory to inhibitory delays, and this choice was
arbitrary).

Figure 7 shows the resulting orientation maps and associated
map quality measures of models with a range of differences
between the delays of monosynaptic excitatory and bi-synaptic
inhibitory interactions, that are in the figure expressed as the
sum of the excitatory to inhibitory and inhibitory to excitatory
delays minus the excitatory to excitatory delay (i.e., the figure
shows how much slower the inhibitory disynaptic interactions
were in comparison with the monosynaptic excitatory ones). As
can be seen when the differences between the excitatory delay
(1.4 ms) and cumulative inhibitory delay is small (<0.8 ms)
high quality orientation maps develop in the model, confirming

that sufficiently large discrepancy between the direct excitatory
and bi-synaptic inhibitory delays can be accommodated in the
model. However, as expected, as the difference between the
delays increases the ability of the model to learn a topologically
organized representation of orientation preference diminishes.
Crucially, if the delays across all the projections were equal
(Figure 7), as is typically assumed, the model fails to develop
orientation maps in line with the analysis by Muir and Cook
(2014), thus confirming that the specific delay pattern between
neural types identified by Ohana et al. (2012) is key to achieving
competitive dynamics in topologically organized neural models.

4. DISCUSSION

In this study we have shown how recent findings on dependence
of neural transmission delays on the type of pre- and post-
synaptic neurons (Ohana et al., 2012) can resolve a long-
standing question on how short-range inhibition can support
cortical competition and consequently the development of
functional cortical topological organization. Under simplifying
assumptions, we have analytically shown how disynaptic
inhibition that is as fast as mono-synaptic excitation can extend
the effective range of inhibitory interactions, in contrast to the
recent analytical results showing that in the case of equal synaptic
delays on all connections the disynaptic inhibition has negligible
effects (Muir and Cook, 2014). We have also shown that these
findings are applicable to the problem of functional development
in primary visual cortex. We have then proceeded to show using
computational methods that the proposed models are robust to
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FIGURE 7 | Orientation map development in a rate model with a synaptic time constant. (A) Map quality (see Section 2) at a range of cumulative inhibitory

delays expressed as the difference from the direct excitatory to excitatory delays. (B–F) Functional organization in 5 parameter configurations indicated by the red

marks. The orientation map (top), and afferent connection fields from the ON LGN model sheet for 81 example model V1 neurons (bottom). (B–D) Three examples of

configurations where good quality orientation maps develop. (E) If the cumulative inhibitory delay is longer by more than approximately 0.8 ms in comparison to the

direct excitatory delay the map quality starts to drop. (F) In the configuration corresponding to the case where delays on all connections are equal (i.e., the cumulative

delays of the inhibitory interactions is twice as long as on the direct excitatory ones) orientation maps fail to develop. The lateral interaction kernel is indicated on the

left, but note that it is valid only for the first parametrization, corresponding to equal delays on the mono-synaptic excitation and dy-synaptic inhibition pathway.

the addition of other well established features of cortical anatomy,
commonly ignored by similar studies, including the long-range
excitatory connections and mutual inhibition among inhibitory
neurons. Finally, we have shown that the proposed mechanisms
are robust to the variations of the exact delay ratio between
the mono-synaptic excitation and di-synaptic inhibition. Overall,
this study represents an important advance in our understanding
of how orientation map development can be supported by the
cortical neural substrate.

Using neuron reconstruction data of the recorded neurons,
Ohana et al. (2012) identified the placement of the different
pre-post synaptic combinations on the dendrites of the target
cell as the likely origin of this transmission delay heterogeneity.
They found that the excitatory-to-inhibitory synapses were
closer to the soma of the post-synaptic neuron than the
excitatory-to-excitatory and inhibitory-to-excitatory synapses.
An axonal origin for the transmission delay heterogeneity
is unlikely, as Ohana et al. (2012) found that all the pre-
post combinations were, on average, equally distant from the
pre-synaptic cell body. They further supported the dendritic
origin of the observed delay inhomogeneities by showing in
a computational model that the observed delay magnitudes
can be explained by these anatomical findings. Overall this
indicates a mechanism for the generation of the differences
in inter-neuron transmission delays that is likely to generalize
beyond the primary visual cortex. We thus suggest that the
results presented in this study generalize to the development
of other functional features and other cortical competition

based mechanisms whose origin is outside of primary visual
cortex.

In this study we have focused on the development of the
global organization of the thalamo-cortical and cortico-cortical
connectivity and as a consequence the global organization of
V1’s most salient functional property—orientation tuning. How
do, however, the individual model cortical units correspond to
individual biological V1 neurons, e.g., do they have matching
tuning properties? The detailed systematic investigation of this
question is outside the scope of this study; however, to offer
at least a basic view of how the explored models behave at
single-cell level, we show in Figure 8 representative orientation
tuning curves for all model parametrizations for which we have
shown a detailed view of their properties (i.e., we have presented
their orientation map etc.). Figure 8 shows that orientation
tuning of individual neurons varies between the models
and parametrizations, but all the models with good quality
orientationmaps also have reasonably realistic orientation tuning
of single units. Several of these model parametrizations achieve
sharp realistic contrast invariance of the orientation tuning
width. At the same time, Figure 8 shows that the relationship
between the orientation maps and afferent connectivity patterns
and the orientation tuning is not straightforward. For example
some parametrizations with inferior maps achieve sharper tuning
(e.g., Figure 8, A2) in comparison with model parametrizations
exhibiting high-quality orientation maps (e.g., Figure 8, A3).
Ultimately, further, more rigorous, quantification and systematic
investigation of the single cell tuning properties and their
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FIGURE 8 | Orientation tuning curves of individual V1 model units in models detailed in Figures 4–6. Each row of the figure shows orientation tuning curves

measured at 4 different contrasts of 5 model units, one in the center of the modeled cortical area and 4 positioned in the middle between the center and one of the 4

corners of the modeled cortical area. Each row corresponds to one of the model parameterizations that were detailed (i.e., their orientation map etc. was shown) in

Figures 3–5: tuning curves marked with (A) correspond to models from Figure 4, (B) from Figure 5, and (C) from Figure 6. The order of the rows corresponding to

a given Figures 4–6 (i.e., marked with A,B,C) is the same as the order in which the model parametrization in the given figure were presented (i.e., orientation tuning

curves measured in the model parametrization presented in the 2nd row of Figure 5 will be displayed in the row marked as (B2) in this figure).
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dependence on the model parametrization will be necessary to
fully understand these relationships.

The most related past explanation of how cortical competition
can arise under short range inhibition is that of Kang et al.
(2003), who have shown that under the assumption of a faster
inhibitory time constant (as opposed to excitatory), the effective
excitatory and inhibitory interactions will follow the Mexican hat
profile and thus support competition along the cortical surface.
Indeed, in our final model variant 4 that explicitly considers
membrane time-constant presented in Section 3.4, we assume
that inhibitory neurons have faster membrane time constants
than excitatory ones, as otherwise we observe oscillatory behavior
in line with the analytical findings of Kang et al. (2003). Crucially,
Kang et al. (2003) assumed instantaneous neural transmission,
and when this biologically implausible assumption is rectified
by addition of transmission delays that are uniform across the
connections between the different pre- and post-synaptic neural
types, we find that the competitive dynamics in the neural model
break (Figure 7F) in line with the analytical and computational
results of Muir and Cook (2014). However, when we replace
the transmission delays with the neural-type specific pattern
uncovered byOhana et al. (2012) the competitive dynamics in the
model are rescued and we observe development of high quality
orientation maps (Section 3.4), in line with the analytical results
under simplified conditions (Section 3.1).

The analytical results in this study were obtained only under
simplifying assumptions, specifically instantaneous translation of
inputs to membrane potential, equal extent of excitatory and
inhibitory connections and a lack of inhibitory-to-inhibitory
interactions. Even though we have shown computationally
that these assumptions are not necessary for achieving the
cortical competition and the consequential orientation map
development sought in this study, further analytical work
then can circumvent these simplifications would undoubtedly
provide deeper understanding of the dynamics of the studied
neural system and its dependence on the various parameters.
This sentiment underlies the parameter explorations presented
here, which show that even though the model is robust to
changes in the considered parameters, the existence or not of
dynamics supporting development of orientation maps can form
a complex pattern within the explored parameter spaces. This is
particularly the case for the model variant with inhibitory-to-
inhibitory interactions, in which (unlike in the other variants)
the inhibitory population gains it’s own dynamics. Furthermore,
the relative computational complexity of the studied models
and the extensive set of parameters involved preclude systematic

search across the full parameter space, and we have only explored
parameters that we empirically found to have the biggest impact.
Finally, one simplifying assumption that we have not treated in
this study is the lack of direct thalamic input onto inhibitory
cells. Since inhibitory cells in cortical layer 4 do receive thalamic
input (Binzegger et al., 2004) the inclusion of external input in
the inhibitory population needs to be considered in the future.

In this paper we have decided to investigate cortical
competitive mechanisms through the prism of orientation map
development. The advantage of this approach is that it allows us
not only to show that some form of competition is possible, but
also that it is of the form that actually supports implementation
of specific cortical computations. Given that we show that our
model implements effective Mexican hat lateral interactions
(Section 3.1) and these have in the past been shown to be
sufficient to explain cortical organization of other functional
features (i.e., retinotopy, ocular dominance, spatial frequency and
color) it is very likely that our results will generalize to these
other dimensions of sensory input as well. Cortical competition
of other forms has been proposed to underly a broad variety of
other cortical operations, including associative memory, noise
suppression, decision making, saliency detection and other
forms of attentional computations. Even though additional work
will be required to determine if the mechanisms proposed
here can generalize to these other neural computations, this
study offers a promising framework for anatomically plausible
mechanistic explanations of these important aspects of brain
function.
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