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Locomotion involves complex neural activity throughout different cortical and subcortical
networks. The primary motor cortex (M1) receives a variety of projections from different
brain regions and is responsible for executing movements. The primary visual cortex
(V1) receives external visual stimuli and plays an important role in guiding locomotion.
Understanding how exactly the M1 and the V1 are involved in locomotion requires
recording the neural activities in these areas in freely moving animals. Here, we used an
optical fiber-based method for the real-time monitoring of neuronal population activities
in freely moving mice. We combined the bulk loading of a synthetic Ca2+ indicator and
the optical fiber-based Ca2+ recordings of neuronal activities. An optical fiber 200 µm
in diameter can detect the coherent activity of a subpopulation of neurons. In layer 5 of
the M1 and V1, we showed that population Ca2+ transients reliably occurred preceding
the impending locomotion. Interestingly, the M1 Ca2+ transients started ∼100 ms earlier
than that in V1. Furthermore, the population Ca2+ transients were robustly correlated with
head movements. Thus, our work provides a simple but efficient approach for monitoring
the cortical Ca2+ activity of a local cluster of neurons during locomotion in freely moving
animals.
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INTRODUCTION

Population neural activity in cell groups is thought to contribute to a variety of brain functions, such
as sensory information processing (Bullock, 1997; Engel et al., 2001; Griffin et al., 2015), nervous
system development (Grosse et al., 2000; Komuro and Kumada, 2005), learning and memory
(Engel et al., 2001; Pesaran et al., 2002; Steriade and Timofeev, 2003; Landsness et al., 2009; Rolls
et al., 2011), and motor behavior (Churchland et al., 2006, 2010; Shenoy et al., 2013; Erisken et al.,
2014). There is now a general consensus that recording Ca2+ activity is an effective approach for
uncovering the properties and functions of such aggregate neural activity in vivo in both neurons,
where Ca2+ signals allow the inference of spiking activity, and astrocytes, where Ca2+ signals mainly
indicate activation (Mao et al., 2001; Stosiek et al., 2003). The major advancement in measuring
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Ca2+ signals was the invention and the application of two-photon
microscopy in the nervous system (Denk et al., 1990; Yuste
and Denk, 1995). Over many years, particularly with the help
of the continuous development of Ca2+ indicators, two-photon
Ca2+ imaging has become widely used for detecting neural
activities on multiple scales ranging from networks to single
synapses in both anesthetized and behaving animals (Stosiek
et al., 2003; Chen et al., 2011, 2013; Nadella et al., 2016;
Szalay et al., 2016). Another commonly used approach for
in vivo brain Ca2+ imaging is based on the use of charged
coupled detector/complementary metal-oxide-semiconductor-
based cameras, which are particularly useful for recording large-
field Ca2+ dynamics in the superficial cortical layers (Berger et al.,
2007).

Complementary to two-photon imaging and camera-based
large-field imaging, the rapidly developing techniques for
recording population Ca2+ signals in the deep brain tissues of
freely behaving animals include microendoscopic approaches.
These require the implementation of optical fibers, fiber-like
GRIN lenses or miniaturized head-mounted imaging devices
(Grienberger et al., 2012). Along with the current application
of cell type-specific labeling of genetically encoded calcium
indicators (Hires et al., 2008; Mank and Griesbeck, 2008),
these approaches are strongly facilitating our understanding
of the contributions of specific neuronal circuits to animal
behaviors (Jung et al., 2004; Lütcke et al., 2010; Keller et al.,
2012; Ayaz et al., 2013; Ziv et al., 2013; Adelsberger et al.,
2014; Jennings et al., 2015; Flash and Bizzi, 2016; Pakan et al.,
2016). A particularly simple but efficient method for deep tissue
measurements in freely moving animals is the optical fiber-
based Ca2+ recording approach, also termed fiber photometry
(Gunaydin et al., 2014; Guo et al., 2015). This approach has
been frequently applied to population recordings of cell bodies,
axon terminals and dendrites in neurons (Murayama et al.,
2007; Chen et al., 2013; Gunaydin et al., 2014) as well as
astrocyte population activity (Schulz et al., 2012; Paukert et al.,
2014).

Locomotion is a basic behavior of animals that involves neural
activity in many cortical and subcortical networks (Rathelot
and Strick, 2009; Levine et al., 2014; Flash and Bizzi, 2016).
Among these, the motor and visual cortices have received
much attention. The motor cortex has long been shown to
play a key role in the planning and execution of voluntary
movements (Wise, 1985; Marigold and Drew, 2011; Shenoy
et al., 2013). The visual cortex is extensively connected to
the motor areas and plays an important role in guiding
locomotion (Marigold, 2008). In addition, the firing activity
of visual cortex neurons can be altered by locomotion (Niell
and Stryker, 2010; Keller et al., 2012; Ayaz et al., 2013).
Here, we used the optical fiber-based Ca2+ recording approach
to monitor population Ca2+ signals from layer 5 of primary
motor and visual cortices (M1 and V1) during locomotion
in freely behaving mice. We reliably observed Ca2+ signals
preceding locomotion in both regions. Interestingly, M1 signals
occurred earlier than the V1 signals. Finally, we found that
these population Ca2+ signals were highly correlated with head
movements.

MATERIALS AND METHODS

Animals
Adult male C57/BL6J mice aged 3–4 months were used for the
experiments. The mice were housed in groups, except those mice
with implanted optical fibers. The animals had free access to food
and water and lived under a 12-h light/day cycle (lights on at
7:00 am). All experimental procedures were performed according
to institutional animal welfare guidelines and were approved by
the Third Military Medical University Animal Care and Use
Committee.

Optical Fiber Setup
A custom-built fiber setup was used for the neuronal Ca2+

signal measurements (model ‘‘FiberOptoMeter v1.0,’’ Suzhou
Institute of Biomedical Engineering and Technology; Figure 1A).
The Ca2+ indicator Oregon green 488 BAPTA-1 (OGB-1) was
excited at 488 nm by a solid-state laser. The light intensity
was approximately 0.22 mW/mm2 at the tip of the fiber.
The fluorescence emission was detected with an avalanche
photodiode (Si APD, S2382, Hamamatsu Photonics K.K., Japan).
The specialized optic setup was designed to accommodate
the simultaneous recording of Ca2+ signals. The laser light
on/off control and the data acquisition were managed using
self-customized software on the LabVIEW platform (National
Instruments, Austin, TX, USA).

Fluorescent Ca2+ Indicator Staining
The animals were anesthetized with 1.5% isoflurane in pure O2
and then placed in a stereotactic head frame on a heating pad,
where the animals were anesthetized with isoflurane until the
surgery ended. The eyes were protected by ophthalmic ointment
to prevent drying. A small craniotomy (0.5× 0.5 mm) was made
above the cortical area after removing the hair and skin. The
coordinates of the craniotomy were as follows: for the M1 (from
bregma): AP 0 mm, ML 1 mm (relative to midline); for the V1:
AP 3 mm, ML 2.5 mm. A glass micropipette with a tip diameter
of approximately 10 µm was placed directly above the skull
and filled with OGB-1AM solution. Approximately 80–100 nl
of solution was injected into the tissue at a depth of 600 µm
(from the cortical surface). Following each injection, the pipette
was kept in place for an additional 5 min before being slowly
withdrawn.

Optical Fiber Recordings in Anesthetized
Mice
Approximately 30 min after dye application, a 200-µm-diameter
optical fiber with a numerical aperture of 0.48 (Doric Lenses,
Quebec City, QC, Canada) was inserted into the stained region
with a micromanipulator. The fiber was glued into a short
cannula (ID 0.51 mm, OD 0.82 mm) to maintain stability. To
provide maximal fluorescence intensity, the fiber was advanced
typically up to 550 µm below the cortical surface. At the
beginning, the anesthesia level was adjusted to 2%. After
the animals had adapted for 20 min and their respiration
rates remained stable, the recording experiments began. After
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FIGURE 1 | Population cortical Ca2+ transients in anesthetized mice. (A) Scheme of the optical fiber recording setup. (B) Left panel, schematic showing the
tip of the optical fiber (diameter: 200 µm) implanted in layer 5 of the primary motor cortex (M1) stained with OGB-1AM. Right panel, post hoc fluorescence image of a
coronal brain slice stained with OGB-1AM in layer 5 of the M1. (C) Examples showing the population Ca2+ transients in the M1 at different levels of anesthesia. The
concentrations of isoflurane are indicated above each trace.

continuous recording for approximately 10 min, anesthesia was
adjusted to a lower level. We then recorded again for another
10 min as described above. Recordings were obtained from each
mouse under 2–3 anesthesia levels.

Optical Fiber Recordings in Freely Moving
Mice
After obtaining recordings from mice under anesthesia, the
cannula and skull were fixed together using dental cement. After
20 min of solidification, the mice were moved back to their
original house. Following recovering for approximately 2 h, the
mice were placed into a white rectangular box (29 × 17 cm) in
which they could move freely. A camera was placed just above
the box and recorded the movements of the mice. Neuronal
Ca2+ signals and locomotion were recorded simultaneously while
the animals were freely moving. Every mouse was continuously
recorded from approximately 40 min to 1 h. The Ca2+ transients
were sampled at 2000 Hz with customized acquisition software

based on the LabVIEW platform (National Instruments, Austin,
TX, USA). The videos were recorded at 30 Hz at a spatial
resolution of 1280 × 720 pixels (Aigo AHD-X9, China). This
frame rate may lead to a maximal system error of 33 ms
when we calculated the response latency. All the Ca2+ transients
and behavior videos were synchronized offline using event
marks.

Histology and Fluorescence Imaging
To document the OGB-1 staining and confirm the relative
position of the optical fiber, all recorded mice were perfused
transcardially with 4% paraformaldehyde in phosphate-buffered
saline (PBS) after the experiments. Brain samples were
dehydrated with 15% sucrose in PBS for 24 h. Then, the
brain samples were sectioned into 30-µm-thick slices, and
4′,6-diamidino-2-phenylindole was used to stain nuclei. Images
were acquired using a fluorescence microscope and a 4×
objective with a numerical aperture of 0.13.
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Data Analysis and Statistics
Ca2+ transients were acquired at a sampling rate of 2000 Hz after
being converting into electrical signals through the Si APD. The
data were low-pass filtered with a Savitzky-Golay finite-impulse
response smoothing filter with 50 side points and a polynomial
order of 3. Then, ∆F/F = (f − f baseline)/f baseline, relative
fluorescence changes, were calculated as Ca2+ transients, where
the f baseline was the baseline level of fluorescence determined
during the current recording period of the test. Ca2+ transients
were automatically detected with a template-matching algorithm,
taking into account the properties of rise and decay times of the
Ca2+ signals. A Ca2+ transient was accepted as a signal when its
amplitude was greater than three times the standard deviation of
the noise band.

The mouse movement was calculated by the change in video
clip image relative to its body size. Image frames from the video
clip were converted into binary format to get the mouse shape
according to its image intensities. A logical ‘‘OR’’ operation
was performed between two consecutive frames to get the pixel
size of absolute change of the mice. The ratio of such image
change relative to the mouse body size, which was calculated
beforehand, was defined as the mouse movement. This scoring
procedure cannot differentiate the head movement from the
general movement. Therefore, the head movements in the last
figure were identified by eyes.

Statistical analysis was conducted in MATLAB (The
MathWorks, Inc., Natick, MA, USA). For all statistical tests,
significance was measured against an alpha of 0.05. The level of
p< 0.05 was considered significant.

RESULTS

Population Cortical Ca2+ Transients in
Anesthetized Mice
We applied the optical fiber-based approach to record population
Ca2+ activity in cortical neurons stained with the synthetic
Ca2+ indicator OGB-1AM. We used a previously described fiber
recording device (Adelsberger et al., 2005; Grienberger et al.,
2012) that allows the excitation of OGB-1AM and the collection
of emitted light (Figure 1A). We used the multicell bolus loading
procedure to stain neurons located in layer 5 with OGB-1AM
(Stosiek et al., 2003).

Approximately 10 min after dye injection, we implanted an
optical fiber with a diameter of 200 µm above the stained
cortical area (Figure 1B). Similar to the previous work (Stroh
et al., 2013), we detected slow oscillation-associated population
Ca2+ transients under isoflurane anesthesia. Figure 1C shows
examples of Ca2+ transients recorded in the M1 at different
isoflurane levels (ranging from 0.8% to 2%). The quantitative
analysis indicated that the population Ca2+ activity was strongly
dependent on the level of anesthesia. In M1, the frequency
increased from 0.04 ± 0.01 Hz to 0.45 ± 0.03 Hz with a
decrease in the isoflurane concentration (Figure 2A). However,
the amplitude (∆F/F) was reduced from 5.21 ± 0.11 ∆F/F to
1.6 ± 0.08 ∆F/F when the isoflurane level was reduced from 2%
to 0.8% (Figures 2B,C). In contrast, the rise time of the Ca2+

transients remained stable and was not affected by changes in
the anesthesia level (Figure 2D; p = 0.32, n = 7 mice, Kruskal-
Wallis test). In addition, the recordings of population activity in
V1 revealed that no difference was found between M1 and V1 in
frequency, amplitude and rise time of the Ca2+ transients at the
same anesthesia level (Figures 2A,C,D; p > 0.05 for all the three
parameters, n = 7 mice for V1).

Population Ca2+ Transients in the M1 of
Freely Moving Mice
To investigate the correlation between the population Ca2+

transients and the body movements, we recorded Ca2+ activities
in layer 5 neurons of the M1 in freely behaving mice in
a white, opaque, rectangular chamber (Figure 3A). Mouse
behavior was recorded with a camera that was placed above the
recording chamber. The recordings were performed at least 2 h
after anesthesia was ended. Figure 3B shows a representative
recording of Ca2+ transients obtained from one mouse in both
freely moving (upper) and resting (quiescent, but not sleeping;
lower) states. In this example, when the mouse was moving
freely, Ca2+ transients were observed with a high frequency,
while almost no transients were observed in the resting
states. On average, both the frequency (Figure 3C; moving:
0.32± 0.04 Hz vs. resting: 0.08± 0.01 Hz; p< 0.001, n = 8 mice,
Wilcoxon signed-rank test) and amplitude (Figure 3D; moving:
1.51%± 0.06% ∆F/F vs. resting: 0.24%± 0.02% ∆F/F; p< 0.001,
n = 8 mice, Wilcoxon signed-rank test) of the Ca2+ transients in
the moving states were significantly higher than those in resting
states. As a control, these signals were not seen in the mice
whose layer 5 neurons expressed green fluorescent protein (GFP;
Figures 3E,F).

Next, we analyzed the correlation between body movement
and the Ca2+ transients. We found that body movement
(Figure 4A, upper) was always associated with Ca2+ transients
in layer 5 neurons of the M1 (Figure 4A, lower). A closer
analysis indicates that the Ca2+ transients preceded the onset of
movement and were maintained throughout the entire process
of each movement (see two examples in Figure 4B and the
superimposition of 16 trials in Figure 4C). Across all the
recordings (8 mice), the latency of the Ca2+ transients to the onset
of movement fit a Gaussian distribution, and the median value
was approximately−136 ms (Figure 4D).

Population Ca2+ Transients in the
V1 Precede the Onset of Body Movement
It is well known that animals generally need to receive visual
stimuli to guide and orient themselves during locomotion
(Marigold, 2008). Recent studies have also reported that the
activities of neurons in the visual cortex can be regulated by
locomotion (Niell and Stryker, 2010; Keller et al., 2012; Ayaz
et al., 2013). Thus, we wondered whether there were movement-
related Ca2+ signals in the V1 of mouse during movement.
Using the same approach, we recorded Ca2+ activities in layer
5 in the V1 in freely moving and resting states (Figure 5A). As
expected, we found reliable movement-related population Ca2+

transients in layer 5 of the V1 (Figure 5B). Similar to the results
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FIGURE 2 | Properties of the population cortical Ca2+ transients in anesthetized mice. (A) Frequency of the population Ca2+ transients at different anesthesia
levels in M1 and primary visual cortex (V1) (n = 7 and 7 mice, respectively; Wilcoxon rank-sum test, 2% vs. 1.5%, ∗∗p = 0.006; 1.5% vs. 1.2%, ∗∗p = 0.006; 1.2% vs.
1%, ∗∗p = 0.001; 1% vs. 0.8%, ∗p = 0.03; 0.8% (M1) vs. 0.8% (V1), p = 0.51). (B) Example of a Ca2+ transient for amplitude and rise time analysis. (C) Amplitude of
the population Ca2+ transients at different anesthesia levels in M1 and V1 (n = 7 and 7 mice, respectively; Wilcoxon rank-sum test, 2% vs. 1.5%, ∗∗∗p < 0.001; 1.5%
vs. 1.2%, ∗∗∗p < 0.001; 1.2% vs. 1%, ∗∗∗p < 0.001; 1% vs. 0.8%, ∗∗∗p < 0.001; 0.8% (M1) vs. 0.8% (V1), p = 0.88). (D) Rise time of the population Ca2+ transients
at different anesthesia levels in M1 and V1 (n = 7 and 7 mice, respectively; Kruskal-Wallis test, χ2 = 5.86, p = 0.32). Values are the mean ± SEM.

observed in the M1, the onset of the Ca2+ transients slightly
preceded the onset of impending movements and then persisted
throughout the entire duration of the subsequent movement (see
one example in Figure 5C and the superimposition of 14 trials
in Figure 5D). Interestingly, the latency of the Ca2+ transients to
the onset of movement was approximately −50 ms, which was
later than the movement-related population Ca2+ transients in
the M1 (Figures 5E,F; M1: 149.7± 10.3 ms vs. V1: 50.0± 4.7 ms,
n = 8 and 7 mice, respectively; Wilcoxon rank-sum test). In
addition, when we compared the amplitude of the population
Ca2+ transients in the M1 and V1, there was no significant
difference (Figure 5H; p = 0.085, n = 8 and 7 mice, respectively;
Wilcoxon rank-sum test). Furthermore, we found that, compared
to that under light conditions, in the dark both the amplitude
and the correlation of movements and Ca2+ signals significantly
decreased (Figures 5B,G,H).

Population Ca2+ Transients of the M1 and
V1 were Highly Correlated with Head
Movement during Locomotion
To accurately generate goal-directed movements, one must
acquire essential information about position and orientation.
Visual and non-visual sources of information together contribute

crucially to orientation. During the process of generating
body movements, head movement is a critical factor in the
perception of orientation (Frissen et al., 2011; Yoder and
Taube, 2014). As a self-motion cue, head movement can be
used accurately to update the perceived orientation (Sun et al.,
2004a,b; Siegle et al., 2009). Thus, we hypothesized that head
movement may be closely associated with neuronal activity
in both M1 and V1. Figures 6A,B display two examples of
population Ca2+ transients related to head movements, which
were obtained in layer 5 neurons of the M1 (Figure 6A)
and V1 (Figure 6B), respectively. Here, we analyzed three
kinds of head movements: raising, rotation and withdrawal.
The correlated Ca2+ events were detected in a time window
of 500 ms before the onset of movement. When the signal
peak was higher above three times of standard deviation of the
baseline, it was defined as a movement-correlated Ca2+event. We
observed that the occurrence of each kind of head movement
was always associated with population Ca2+ transients in both the
M1 and V1. Across all recordings, the population Ca2+ transients
were 100% correlated with head movements (Figures 6C,E).
Next, we determined whether there were differences among
the Ca2+ transient amplitudes of these three head movements.
We found no significant differences in the M1 (Figure 6D;
raising: 1.65 ± 0.07% ∆F/F, rotation: 1.65 ± 0.08% ∆F/F,
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FIGURE 3 | Population Ca2+ transients of the M1 in freely moving and resting (quiescent but not sleeping) states. (A) Left panel, scheme of the recording
setup where Ca2+ transients and behavior were recorded simultaneously. Right panel, the actual recording condition. (B) Ca2+ transients of the M1 in freely moving
and resting (but not sleeping) states. (C) Comparison of population Ca2+ transient frequencies in the M1 in freely moving and resting states in the first min after the
mice were placed in the box (n = 8 mice; Wilcoxon signed-rank test, ∗∗∗p < 0.001). (D) Comparison of population Ca2+ transient amplitudes in the M1 in freely
moving and resting states (n = 8 mice; Wilcoxon signed-rank test, ∗∗∗p < 0.001). (E) Example showing body movements (red) and simultaneously-recorded
fluorescence (purple) from a green fluorescent protein (GFP) transgenic mouse during freely moving state. (F) Distribution of the amplitudes of OGB-1 and GFP
fluorescence. Both fit Gaussian distributions and the mean values were 0.3% ∆F/F and 1.5% ∆F/F, respectively. Values are the mean ± SEM.
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FIGURE 4 | Population Ca2+ transients in the M1 precede the onset of body movement. (A) Example showing the body movements (red) and the related
Ca2+ transients (purple) from a freely moving mouse. (B) Higher magnification of the dashed line box from panel (A). (C) Top panel, 16 trials from eight different mice
and their average (purple) showing the relationship between movement onset and Ca2+ transients. Bottom panel, color-coded intensity of Ca2+ transients from
different trials. (D) Distribution of onset latencies between body movements and Ca2+ transients.

withdrawal; 1.55 ± 0.07% ∆F/F; p = 0.066, n = 8 mice, Kruskal-
Wallis test) or the V1 (Figure 6F; raising: 1.59 ± 0.08% ∆F/F,
rotation: 1.63 ± 0.08% ∆F/F, withdrawal: 1.68 ± 0.13% ∆F/F;

p = 0.181, n = 7 mice, Kruskal-Wallis test). In contrast, almost no
Ca2+ transients were observed during resting (quiescent) states
(Figures 6D,F).
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FIGURE 5 | Population Ca2+ transients in the V1 precede the onset of body movement. (A) Left panel, schematic showing the optical fiber tip implanted
above the layer 5 of the V1 stained with OGB-1. Right panel, post hoc fluorescence image of a coronal brain slice labeled with OGB-1 in layer 5 (green) of the V1. A
blue bar indicates the position of an optical fiber. (B) Example showing the body movements (red) and the related Ca2+ transients (purple) in the V1 under both light
(left) and dark (right) conditions. (C) Higher magnification of a dashed line box from (B). (D) Sixteen single trials and their average (purple) showing the relationship
between movement onset and Ca2+ transients in the V1. (E) Distribution of onset latency from 48 trials in eight mice. (F) Comparison of onset latencies of population
Ca2+ transients in the M1 and V1 (n = 8 and 7 mice, respectively; Wilcoxon rank-sum test, ∗∗∗p < 0.001). (G) Comparison of the movement-correlated Ca2+ events
between light and dark conditions in V1 (n = 7 and 6 mice, respectively; Wilcoxon rank-sum test, ∗∗p < 0.01). (H) Comparison of population Ca2+ transient
amplitude in M1, V1 (light) and V1 (dark) (n = 8 and 7 mice, respectively; Wilcoxon rank-sum test, M1 vs. V1 (light), p = 0.0854; n = 7 and 6 mice, respectively;
Wilcoxon rank-sum test, V1 (light) vs. V1 (dark), ∗∗∗p < 0.001). Values are the mean ± SEM.
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FIGURE 6 | Population Ca2+ transients in the M1 and V1 were highly correlated with head movements in freely moving mice. (A,B) Examples showing
the trial-by-trial correlation between head movements and population Ca2+ transients in the M1 (A) and V1 (B) in two different mice. Circles and gray lines indicate
the position (head) and trajectory of the mouse, respectively; the large rectangular box indicates the recording chamber. (C,E) Ca2+ transients correlated with three
different head movements: head raising, rotation and withdrawal in the M1 (C) and V1 (E). (D,F) Comparison of population Ca2+ transient amplitudes of the three
head movements in the M1 (D) and V1 (F) (M1: n = 8 mice, Kruskal-Wallis test, χ2 = 5.421, p = 0.066; V1: n = 7 mice, Kruskal-Wallis test, χ2 = 3.423, p = 0.181).

DISCUSSION

In this study, we applied an optical fiber-based Ca2+ recording
approach to monitor local population Ca2+ activity in layer
5 neurons in the M1 and V1 of freely moving mice. In layer
5 neurons of the M1, we found population Ca2+ transients
frequently occurring in both anesthetized and freely moving
states. However, we observed only a very small number of
signals when mice were still (resting but not sleeping). During
locomotion, we found that Ca2+ transients reliably occurred
approximately 100 ms before the onset of movement and then
persisted throughout the whole process of each movement.
This activity was similar to a previously defined activity in
the monkey motor cortex, referred to as perimovement activity
(Churchland et al., 2006, 2010; Kemere et al., 2008; Zimnik
et al., 2015). Perimovement activity is defined as neuronal activity
occurring approximately 100 ms before, during and just after
the movement and was initially found using electrophysiological
recordings. This neuronal activity was highly correlated with
body movement in our recordings (Figure 6D). Moreover, we

did not observe ‘‘preparatory activity,’’ which occurs much earlier
than perimovement activity, approximately 900 ms before the
onset of movement. Preparatory activity was thought to be
related to motor planning (Churchland et al., 2010; Erisken et al.,
2014; Flash and Bizzi, 2016) and was recently described in the
mouse premotor cortex (anterior lateral motor cortex) but not in
the M1.

Similar to the results in the M1, we found that population
Ca2+ transients preceding impending movement also occurred
in the layer 5 neurons of the V1. Interestingly, such activity in
the V1 started ∼100 ms later than that in M1. Previous studies
have reported this preceding activity in upper layers as well as
in deep layers using electrophysiological recordings in the V1
(Ayaz et al., 2013; Erisken et al., 2014; Vinck et al., 2015). Recent
work has suggested that similar activity can originate from
inhibitory interneurons (Polack et al., 2013; Reimer et al., 2014;
Pakan et al., 2016), especially parvalbumin-positive interneurons
(Polack et al., 2013; Pakan et al., 2016). In addition, this activity is
probably the result of a combination of visual- and motor-related
inputs (Ayaz et al., 2013; Erisken et al., 2014), which may reflect
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the interaction between animal locomotion and its environment.
Therefore, this signal processing in the visual cortex may be
essential for estimating and correcting information relevant for
goal-directed navigation (Keller et al., 2012; Ayaz et al., 2013).
Future work is needed to investigate the specific role of V1 signals
in the generation of locomotion.

Population activity plays an important role in many brain
functions, such as information processing, learning, memory and
behavior. For example, extensive studies have focused on slow
oscillations, i.e., slow population activity at a frequency less than
1 Hz mainly occurring during sleep and anesthesia (Steriade
et al., 1993a,b,c; Brustein et al., 2003). Other types of population
activity, such as theta and gamma waves, have also been described
in different brain regions and thought to be relevant for brain
functions (Seager et al., 2002; Nokia et al., 2008; Carr et al., 2012),
such as attention (Ayaz et al., 2013; Başar et al., 2013; Clayton
et al., 2015). The methods used to study this population activity
were mainly dependent on electrophysiological recordings,
such as local field potential recordings with a high temporal
resolution. Here, we recorded the population activity from a
spatially clustered group of neurons using an optical fiber-based
approach. By locally injecting a small amount of Ca2+ dyes,
we could achieve a recording of activity in a highly restricted
area approximately 300–500 µm in diameter. In many other
studies (Lütcke et al., 2010; Marshall et al., 2016), the use of
genetically encoded Ca2+ or voltage sensors allowed the activity
of cell type-specific neural populations to be recorded during free
behavior. Using this simple but efficient approach, we studied
locomotion-related population signals of neurons in deep layers
of both the M1 and V1. In the near future, the application

of endoscope-based imaging techniques with cellular resolution
(Jung et al., 2004; Flusberg et al., 2005; Ziv et al., 2013) will
provide more detailed information about the properties and
sources of these locomotion-related signals.

In summary, our results illustrate that the optical fiber-
based approach is an efficient method for monitoring cortical
Ca2+ activity in freely behaving animals. Using this method,
we provide insights into body movement-related population
neuronal activity in both the M1 and V1, which could be the
first step toward understanding cortical information processing
during locomotion.
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