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Basal ganglia circuit is an important subcortical system of the brain thought to be

responsible for reward-based learning. Striatum, the largest nucleus of the basal ganglia,

serves as an input port that maps cortical information. Microanatomical studies show

that the striatum is a mosaic of specialized input-output structures called striosomes

and regions of the surrounding matrix called the matrisomes. We have developed a

computational model of the striatum using layered self-organizing maps to capture the

center-surround structure seen experimentally and explain its functional significance.

We believe that these structural components could build representations of state and

action spaces in different environments. The striatum model is then integrated with other

components of basal ganglia, making it capable of solving reinforcement learning tasks.

We have proposed a biologically plausible mechanism of action-based learning where

the striosome biases the matrisome activity toward a preferred action. Several studies

indicate that the striatum is critical in solving context dependent problems. We build

on this hypothesis and the proposed model exploits the modularity of the striatum to

efficiently solve such tasks.

Keywords: striatum, basal ganglia, context dependent learning, striosomes andmatrisomes, self organizingmaps,

modular reinforcement learning

INTRODUCTION

In order to understand the role of the striatum within the basal ganglia (BG) circuit, it is essential
to understand the rich and complex microcircuitry of this structure. It is well-known that the
striatum has a modular architecture, containing specialized input-output structures called the
“striosomes” and regions of the surrounding matrix called the “matrisomes” (Graybiel et al., 1991).
The striosomes are known to receive limbic inputs and send their projections to the substantia
nigra pars compacta, a midbrain dopaminergic nucleus, whereas the matrisomes mostly receive
sensorimotor and associative inputs and project to downstream BG nuclei (Graybiel et al., 1994).
The cortico-striatal connectivity seems to show a divergence property, where there is spread
of connections coming from the cortex to the striatum followed by a convergence at the level
of the globus pallidus (GP; Graybiel et al., 1994). There have also been suggestions that the
striatum constructs low dimensional representations of the cortical states via the cortico-striatal
projections (Bar-Gad et al., 2000, 2003). Indirect evidence for this comes from experiments
which indicate hebbian like learning in cortico-striatal projections (Charpier and Deniau, 1997).
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Therefore, the striatum has the cellular and molecular machinery
to possibly construct such reduced representations of cortical
states. These facts about striatal microanatomy lead us to believe
that the striatum could build representations for several state and
action spaces.

Anatomically the striosome-matrisome complex has a center-
surround structure (Graybiel et al., 1991), and the proposed
computational architecture for the striatum is inspired by this
fact. Studies investigating the projection of prefrontal areas to the
striosomes show specificity to certain cortical areas (Eblen and
Graybiel, 1995). These cortical projections to anterior striosomes
are mostly from frontal regions like the orbitofrontal cortex,
anterior insula, and the anterior cingulate cortex (Eblen and
Graybiel, 1995) which could very well represent the task or
state space (Wilson et al., 2014). The matrisome which receives
more sensorimotor information would well represent the action
space (Flaherty and Graybiel, 1994). In classical reinforcement
learning (RL) literature, the expected reward signal in a given
state is called the value function (Sutton and Barto, 1998).
The striosomes are known to have reciprocal projections to
both the ventral tegmental area (VTA) and the substantia nigra
pars compacta (SNc) and thus would receive the prediction
error signal from these midbrain nuclei, which can serve as a
reinforcement signal that aids in the computation of the state
value function (Granger, 2006; Wall et al., 2013). On the other
hand the action representations perhaps evolve at the level of
matrisomes, and get mapped on to action primitives at the
level of GPi (Pasquereau et al., 2007). Thus, using the reward
information from the environment and the representations built
in the striatum, the BG can learn to perform reward based
decision making tasks.

This functional organization and the modularity of the
striatum has been hypothesized to perform context dependent
tasks (Amemori et al., 2011). Mulitple spatio-temporal contexts
could then be mapped to different striatal modules. This leads
to the distribution of context information to different modules,
a facet of modular reinforcement learning (Kalmár et al., 1999).
We then consider the selection of the module appropriate to a
given context to be driven by a responsibility signal, which is a
function of the uncertainty in the environment. Uncertainty in
the environment from previous approaches has been represented
by reward variance (Balasubramani et al., 2015). Since change

FIGURE 1 | (A) A schematic of the striosome-matrisome center surround mapping in the striatum. The red structures represent the striosomes and the surrounding

green structures represent the matrisomes. (B) A Schematic of the layered SOM structure modeling the striosomes and matrisomes. The Strio-SOM (Red) represents

the striosomes and the Matri-SOM (Green) represents the matrisomes; each Strio-SOM neuron has projections to the surrounding Matri-SOM neurons.

in context leads to increased uncertainty, reward variance could
help identify this change.

In the current study, we propose a hierarchical self-organizing
structure to model the striosome-matrisome compartments. Self-
organizing maps (SOMs) have been used to represent high-
dimensional information in 2-D sheets of neurons (Kohonen,
1990). The striosome and the matrisome layers are both
modeled as a double SOM layer, consisting of Strio-SOM
and Matri-SOM respectively, where a single Strio-SOM neuron
has projections to the surrounding Matri-SOM neurons. The
activity of the Matri-SOM is mapped to action primitives
via the direct and indirect pathways of the BG to perform
action selection. The reward information from the environment
is utilized by the Strio-SOM to bias the surrounding Matri-
SOM activity toward a preferred action. This provides a
biologically plausible way of carrying out action based Q-
learning (Sutton and Barto, 1998) and is a novel feature of
our model. This model has been tested on standard grid-world
problems.

The model has been extended to cater to problems with
varying contexts (changing reward locations). Different striatal
modules map different contexts and tonically active neurons
(TANs; Apicella, 2007) aid in module selection This selection is
driven by the risk (reward variance) in the environment which is
used to calculate the responsibility signal (Amemori et al., 2011)
for a particular module. We have tested this model on grid-world
problems with varying reward distributions and the model is able
to solve these problems efficiently.

METHODS

Modeling the Microanatomy of the
Striatum
We have proposed an architecture consisting of two layers of
SOMs as a method for mapping center-surround structures seen
in the striatum (Figure 1A). This architecture is used to model
striosomes and matrisomes which map the state space and action
space, respectively.

The first layer called Strio-SOM models the striosomes and
maps the state space. The second layer activated by the Strio-
SOM is called the Matri-SOM which models the matrisomes and
maps the action space (Figure 1B).
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In order to map the state space, we have a Strio-SOM of size
m1 × n1. If s is a state vector, the weights of the Strio-SOM (WS)
are of dimension m1 × n1 × dim(s), where dim(s) stands for the
dimension of the state vector s. Similarly, to map the action space,
we have a Matri-SOM of sizem2 × n2. If a is an action vector, the
weights of all theMatri-SOMs (WM) are of dimensionm1 × n1 ×
m2 × n2 × dim(a) as each neuron in the Strio-SOM is connected
to a Matri-SOM.

The activity for a neuron n in the Strio-SOM for a state input
s is given in Equation (1).

XS
[n] = exp(

−||WS
[n] − s||2

2

σS
2

) (1)

where [n] represents the spatial location of the neuron n and
σS controls the sharpness of the neuron activity. The complete
activity of the Strio-SOM (XS) is the combination of individual
activity of all the neurons. The neuron with the highest activity
(“winner”) for a state s is denoted by ns

∗.
Similarly, the activity for a neuron n in the Matri-SOM for an

action input a in a state s is given in Equation (2).

XM
[ns∗][n] = exp(

−||WM
[ns∗][n] − a||2

2

σM2
) (2)

where σM controls the sharpness of the neuron activity. The
complete activity of the Matri-SOM corresponding to neuron
ns
∗ (XM

[ns∗]) is the combination of individual activity of all the
neurons in the Matri-SOM corresponding to n∗s . The neuron
with the highest activity (“winner”) for an action a in a state s
is denoted as ns,a

∗
.

The weight of a neuron n in the Strio-SOM for a state input s
is updated according to the following rule (Equation 3)

WS
[n] ←WS

[n] + ηS. exp(
−||[n]− [ns

∗]||2
2

σS
2

).(s−WS
[n]) (3)

The weight of neuron n in the Matri-SOM for an action input a
in a state s is updated according to Equation (4).

WM
[ns∗][n]

←WM
[ns∗][n]

+ηM . exp(
−||[n]− [ns,a

∗]||2
2

σM
2

).(a−WM
[ns∗][n]

) (4)

Reinforcement Learning in Basal Ganglia
The striatum model developed in the previous section was useful
in developing representations for states and actions. In this
section, we incorporate the striatum model in a BG model and
apply the model to standard reinforcement learning tasks. A
schematic diagram of the model is given in Figure 2.

Let us assume that the animal is in a state s. The activity of the
striosomes gives us the representation of the state in the striatum.
In our model, the activity of the striosomes is given as the activity
of the neurons in the Strio-SOM where the activity of a single
neuron is given by Equation (1). Thus, the activity is of dimension
m1 × n1.

This activity of the Strio-SOM projects to the SNc and
represents the value for the state s in our model (Equation 5).

FIGURE 2 | Schematic Diagram for the basal ganglia model. The arrows

indicate connections and their type. The component sizes are proportional to

their dimensions. The feedback connections from the thalamus project the

information about the action chosen back to the striatum.

These weights from the striatum to SNc (WStr→SNc) are trained
using the signal from SNc which is representative of Temporal
Difference (TD) error (δ) (Equation 6). The TD error is calculated
as δ = r + γV(s′) − V(s) where s′ is the new state after taking
action a (Equation 19), r is the reward obtained and γ is the
discount factor.

V(s) =
∑

∀n

WStr→SNc
[n]X

S
[n] (5)

1WStr→SNc
[n] = ηStr→SNcδXS

[n] (6)

where V(s) represents the value for state s, ηStr→SNc is the
learning rate for WStr→SNc.

The representation for the various actions the agent in
state s can perform is given by the activity of the matrisomes
surrounding the corresponding striosome neuron for the state.
In our model, this is given by the activity of the neurons of the
Matri-SOM corresponding to the neuron with the highest activity
in the Strio-SOM (ns

∗) where the activity of a single neuron in
the Matri-SOM is given in Equation (2). Thus, the activity is of
dimensionm2 × n2. The action input a is given as feedback input
from the thalamus to the striatum (Figure 2).
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The activity of Matri-SOM neurons is further tuned by the
connections between the neurons in the Strio-SOM and the
Matri-SOM (WS→M). These connections are also trained using
TD error as above using the Matri-SOM activity for the action
(a) chosen, as follows:

YM
[ns∗][n] = αXM

[ns∗][n]

+ (1− α)WS→M
[ns∗][n]X

S
[ns∗] (7)

1WS→M
[nS∗][n] = ηS→MδXM

[nS∗][n] (8)

where α controls the contribution of the action and the lateral
connections to the activity of the Matri-SOM and ηStr→SNc is
the learning rate for WS→M. Choosing a low value of α and
low initial weights for WS→M ensures that the activity is driven
by the action representation initially and then driven by the
lateral weights once the WS→M have been trained sufficiently.
The Strio-SOM/Matri-SOM weights (WS→M) are thresholded
and normalized by their sum to ensure stability.

The matrisomes activity is projected to the direct and indirect
pathways by the D1 and D2 neurons of the striatum. In our
model, the Matri-SOM activity is modulated by a value difference
signal (δV ). If the agent goes from state s(1) to s(2), δV is
the difference between the value of the two states, i.e., δV =

V(s(1))−V(s(2)).
This value difference signal modulates the switching between

the direct and indirect pathways and is thought to be
represented by the dopamine signaled by SNc (Chakravarthy and
Balasubramani, 2015). The activity of the D1 and D2 neurons are
given in Equations (9, 10).

YD1
[n] = f (λD1δV )Y

M
[ns∗][n] (9)

YD2
[n] = f (λD2δV )Y

M
[ns∗][n] (10)

where f is a tanh non-linearity and λD1 and λD2 are the gains
of the D1 and D2 neurons respectively. The indirect pathway
consisting of the GPe and STN is modeled as network of coupled
non-linear oscillators. The dynamics of these oscillators is highly
dependent on the input, which constitutes the projections from
the D2-expressing neurons of the striatum. The dynamics of GPe
is given below:

τGPe
dXGPe

[n]

dt
= −XGPe

[n] − ǫGPeWGPe→GPe
[n]Y

GPe
[n]

+ WSTN→GPe
[n]Y

STN
[n] + YD2

[n] (11)

YGPe
[n] = tanh(λGPeXGPe

[n]) (12)

where WGPe→GPe are the lateral weights within the GPe, ǫGPe is
the connection strength,WSTN→GPe are the connections between
STN and GPe, and λGPe is a non-linear scaling parameter.

The STN layer in the model exhibits correlated activity
suppressed for high striatal input, and uncorrelated oscillatory
activity for low striatal inputs (Chakravarthy and Balasubramani,
2015). The uncorrelated oscillations of the STN are a key source

of exploration for the agent. The dynamics of STN is given below:

τ STN
dXSTN

[n]

dt
= −XSTN

[n] + ǫSTNWSTN→STN
[n]Y

STN
[n]

− WGPe→STN
[n]Y

GPe
[n] (13)

YSTN
[n] = tanh(λSTNXSTN

[n]) (14)

whereWSTN→STN are the lateral weights within the STN, ǫSTN is
the connection strength,WGPe→STN are the connections between
Gpe and STN and λSTN is a non-linear scaling parameter.

The D1 neurons of the striatum and the STN neurons project
to the GPi leading to the convergence of the direct and indirect
pathways in GPi. In the model, the number of GPi neurons
equals number of actions [=dim(a)]. The weights WD1→GPi and
WSTN→GPi map the corresponding activities of D1 striatum and
STN onto the GPi. The Matri-SOM activity (YD1) corresponding
to the chosen action (a) (which comes via feedback) is used to
train the two sets of weights, WD1→GPi and WSTN→GPi using
Hebb’s rule. The output of GPi neurons are computed according
to Equation (15), and the update for the weights WD1→GPi and
WSTN→GPi are done according to Equations (16, 17).

YGPi
[n′] = WD1→GPi

[n′][n]Y
D1

[n]

− WSTN→GPi
[n′][n]Y

STN
[n] (15)

1WD1→GPi
[n][n′] = ηD1→GPiYD1

[n]X
GPi

[n′] (16)

1WSTN→GPi
[n][n′] = ηSTN→GPiYSTN

[n]X
GPi

[n′] (17)

The neurons in the GPi project to the thalamus. In our model,
action selection takes place in the thalamus, following the
integrator-race model (Bogacz, 2007) with thalamic neurons
having self-exciting and mutually inhibiting interactions. The
thalamic neuron that first crosses a threshold value (Ythresh)
determines the action. The thalamic neurons have low initial
random activity which converge to a high activity for the chosen
action and low values for the others. The dynamics of thalamic
neurons is given as:

ẎThal
[n] =

∑

n′∈Thal

WThal
[n][n′]Y

Thal
[n′] + YGPi

[n] (18)

a = {[n] : YThal
[n] > Ythresh} (19)

This action (a) chosen is carried out and the reward (r) is
obtained. The action chosen is also projected back to the striatum
to obtain the activity. Both the action and the reward are used for
updates in Equations (6, 8, 16).

Reinforcement Learning in Environments
with Multiple Contexts
Standard reinforcement learning techniques are suited for
problems where the environment is stationary. However, in some
tasks the environment suddenly changes and the agent has to
adopt a policy suitable for the new environment. In such a
case, the agent identifies the context either using a cue which
is representative of the context or using its experience in the
preceding trials. One of the techniques to solve problems of the
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second category is the modular RL framework. In this method,
the agent allocates separate modules to separate contexts. Each of
the modules has its own copy of the environment in a particular
context, represented by an environment feature signal (ρ). This
copy is used to generate a responsibility signal, denoted by λ,
which indicates how close the current context is to the one
represented by the module. Thus, by identifying the module
with the highest responsibility signal we can follow the policy
developed in that module to solve the problem in an efficient
manner.

Using the Striatal Modularity to Solve
Modular Reinforcement Learning Tasks
The striatum model developed above forms the basic module
capable of solving simple RL tasks. Multiple such modules in the
striatum could then be exploited to tackle multi-context tasks
using modular RL framework. A schematic of this extended
model is given in Figure 3.

We believe that context selection happens at the level of
the striatum and the context modulated activity is projected to
the downstream nuclei of the BG for further processing. Thus,
for clarity, we have expanded the intra-nuclear activity of the
striatum in the model schematic (Figure 3). Supposing there are
Kmodules denoted byM1, M2..., MK. We now define the weights
and activities in the previous sections for eachmodule and denote
{Mi} with each term associated with module Mi. Thus, for a
module m, the following variables undergo a change in notation:
XS → XS ,{m} (Equation 1), XM → XM ,{m} (Equation 2), WS

→ WS ,{m} (Equation 3), WM → WM ,{m} (Equation 4), V(s)→
V{m}(s) (Equation 5), WStr→SNc → WStr→SNc ,{m} (Equation 6),
XM→ XM ,{m} (Equation 7),WS→M→WS→M ,{m} (Equation 8).

We propose that in addition to the value of the state s, the
activity of the Strio-SOM also projects to the SNc to represent
the environment feature signal (ρ{m}). The weights of these
projections are denoted as WStr→SNc

ρ
,{m} and are trained using

the signal from SNc which is representative of context prediction
error (δ∗). The corresponding equations are given in Equations
(20, 21). The context prediction error is calculated as δ∗ = r −
ρ{m}(s)

ρ{m}(s) =
∑

∀n

Wρ
Str→SNc,{m}

[n]X
S,{m}

[n] (20)

1Wρ
Str→SNc,{m}

[n] = ηρ
Str→SNcδ∗XS,{m}

[n] (21)

We believe that the selection of the appropriate module for the
context is guided by the striatal interneurons. In our model,
the activity of the interneurons represents the responsibility
signal for each module, denoted by λ{m} for module m. In a
given state s, the inter-neurons compete among themselves and
the one with the highest λ chooses the module responsible for
deciding the action in that state. Let the winning module in the
state s be denoted by m∗. This module guides the projection to
the direct and indirect pathway (Equations 9, 10) as given in

FIGURE 3 | Schematic of the extended model to handle modular RL tasks showing the case with two striatal modules. The state representations of the two modules

are used to calculate their respective responsibilities which are then used by the striatal interneurons to choose the appropriate module.
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Equations (22, 23).

YD1
[n] = f (λD1δV )Y

M,{m∗}
[ns∗][n] (22)

YD2
[n] = f (λD2δV )Y

M,{m∗}
[ns∗][n] (23)

Following this stage, the equations governing the signal flow are
same as that in the previous section. The weight updates in the
striatum are however done only to the modulem∗.

The dynamics of the responsibility signal is given in Equation
(24)

λ̇ = −λ− αλ(δ
∗)2 (24)

where αλ controls the influence of context prediction error on the
responsibility signal and δ∗ is the context prediction error.

RESULTS

Modeling the Microanatomy of the
Striatum
We use a grid-world problem as a preliminary benchmark to test
our model. The grid is of size 10× 10 and the agent can take one
of the four actions—up, down, right and left in a state. A reward

is placed at one of the corners of the maze. The goal of the task
is to make the model (agent) learn to reach this goal. We use the
terms model and agent interchangeably in these sections since we
use the model as a reinforcement learning agent in the various
tasks. We used a 10 × 10 Strio-SOM to represent the state space
and a 3 × 3 Matri-SOM, associated with each of the Strio-SOM
neurons, for representing the action space.

In order to develop these representations, we make the
agents explore various states and choose random actions in
those states. Following this, we look at the neuron with the
highest activity in the Strio-SOM for a particular state and
the neurons with the highest activity for each action in the
corresponding Matri-SOM for that state (Figures 4A,B). Upon
looking at the combined Matri-SOM activity for all the actions,
we observed predominantly two different configurations of the
center-surround mapping (Figures 4C,D).

Reinforcement Learning in a Single
Context Gridworld Task
The goal was placed at the top right of the grid as seen in
Figure 5A. The agent received a reward of +20 when it reached
the goal and 0 for all the other steps. At the beginning of an
episode, the agent started at random and the episode ended when

FIGURE 4 | (A) Activity of the Strio-SOM and the corresponding Matri-SOM neurons for different actions in a state. The center map shows only the activity of the

Strio-SOM in the absence of any action and the other four maps in the corners show the activity of the Strio-SOM and the four possible Matri-SOM neurons that best

respond to the particular action. (B) Same as (A) for another state. (C) Combined activity for all the action pairs in (A). Shows one configuration of the center-surround

mapping. (D) Combined activity for all the action pairs in (B). Shows another configuration of the center-surround mapping.
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FIGURE 5 | (A) Schematic of the grid-world used in the task. A goal is located at the top right corner of the grid (B) State value map estimated by the agent at

different spatial locations. We can see that the state value peaks at the goal location. (C) Plot of the Number of Steps taken by the agent in each episode averaged

across 50 independent sessions. We see that the number of steps reduces as the agent learns across episodes.

the agent reached the goal or when it reached the upper limit
on number of steps allowed in the episode. The agent carried on
the task for 150 episodes. This procedure was carried out for 50
independent sessions and the mean number of steps to reach the
goal in a particular episode was plotted in Figure 5C. The heat
map of the state value function (Equation 5) estimated by the
agent at different spatial locations is given in Figure 5B and peaks
at the goal location. This combined with the fact that number of
steps reduces as the episodes progress indicate that the agent is
able to learn the single context task. The various parameter values
for this task are given in Table 1.

Reinforcement Learning in a Multi-Context
Grid-World Problem
In the multi context grid-world tasks, the agent had to reach
the goal like the previous section but the goal location changed
after a certain number of episodes. The goal was present either
at the top right corner or at the bottom left corner as shown in
Figure 6A. The goal was switched to the other location after 150
episodes. The task was carried out in 50 independent sessions
with each session containing 900 episodes. The parameters used
have the same values as given in Table 1. Figure 6B shows the
value function (Equation 5) heat map and Figure 6C shows the
environment feature signal (Equation 20) heat map estimated by

the agent for the two contexts. We can observe that the agent is
able to learn these values for both the contexts. Figure 6D shows
the context chosen by the agent in different episodes and we
can observe that the agent is able to switch context in sync with
the switch in reward distribution. These results illustrate that the
agent is able to successfully identify the context it is presently in,
and complete the corresponding grid-world task.

The average number of steps required by the agent to reach
the goal for each episode across 50 sessions is given in Figure 7B.
The same plot for an agent with only a single module is given in
Figure 7A. We can clearly see that the learning is more efficient
for multi module agent as compared to the single module case. In
order to quantify this improvement, we use two values tomeasure
the agent’s performance after a context switch. These are the peak
number of steps to reach the goal after a context switch and the
number of episodes for the number of steps needed to go below a
certain threshold. We calculate these two values for each context
switch in a session. These values are averaged across sessions
and presented in Figures 7C,D, respectively. In both cases, we
see that the multi module agent is better than the single module
agent for solving the task. We use these measures to compare
the model against experimental data in Brunswik (1939). Since
we only have the average performance across sessions available
in the reference, we calculate the corresponding values from our
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TABLE 1 | Parameter values for single context and multi context tasks.

Parameter Value

Strio-SOM Dimension (m1 × n1) 10 × 10

σS 0.01

ηS 0.4

γ 0.97

α 0.1

λD1 1

τGPe 3

ǫGPe −0.01

λGPe 3

ηD1→GPi 0.01

Ythresh 1

αλ 0.8

Matri-SOM Dimension (m2 × n2) 3 × 3

σM 0.1

ηM 0.4

ηStr→SNc 0.1

ηS→M 0.1

λD2 −1

τSTN 1

ǫSTN 0.01

λSTN 3

ηSTN→GPi 0.01

ηStr→SNc
ρ 0.1

model and present these for the single module, multi module
and the experimental case in Figures 7E,F, respectively. We can
observe that multi module results have a similar trend to the
experimental results as compared to the single module model,
thus demonstrating that the BG could be using the modular
architecture of the striatum to solve context switching tasks.

DISCUSSION

We have proposed a network model of BG incorporating a
computational framework to capture the microanatomy of the
striatum. Our model shares features with existing models of BG
designed to solve reinforcement learning (RL) tasks. In addition
to solving RL tasks, our model exploits the modularity of the
striatum to solve tasks with varying reward distributions in
multiple contexts.

Striosome-Matrisome Dynamics with Their
Dopaminergic Projections
Our model is based on the assumption that striosomes map
state information and matrisomes map action information.
Earlier results suggest that the striosomes receive input from
the orbitofrontal cortex (Eblen and Graybiel, 1995) known for
coding reward related states (Wilson et al., 2014). Matrisomes
receive connections from primary motor and somatosensory
cortices and could have action representations (Flaherty and
Graybiel, 1994), thereby supporting the assumptions of our
model. Anatomical studies show that striosome medium spiny

neurons (MSNs) project directly to SNc (Fujiyama et al., 2011;
Lanciego et al., 2012; Smith et al., 2016). We believe that these
projections could code for the state value of the agent as seen
from the Strio-SOM to SNc connections in our model.

We propose that the striosome neurons influence the behavior
of the surrounding matrisome neurons. Earlier results show that
fast spiking interneurons (FSIs) and persistent and low-threshold
spike (PLTS) interneurons are anatomically suitable candidates
for this role since they branch across the patch and matrix
(Gittis and Kreitzer, 2012). We believe that the dopaminergic
projections to these interneurons (Bracci et al., 2002) could
allow the striosome to bias the surrounding matrisome activity
toward a preferred action. This is done by the thalamic feedback
which drives the matrisome activity to the action chosen which
is then reinforced by the prediction error signaled by the SNc.
To our knowledge, this modulation (Equation 8) is a unique
feature to ourmodel and gives a biologically plausiblemechanism
to perform Q-learning. This is also supported by experiments
which indicate that the striatum contributes to action selection
by biasing its output toward the most desirable action (Samejima
et al., 2005; Hikosaka et al., 2006).

Mapping Representations to Action
Primitives
Striatal MSN recordings show that they encode action
representations and are modulated by the expected reward
for the actions (Isomura et al., 2013). Our model agrees with this
as both the Matri-SOM D1 and D2 neurons represent the action
space and are correspondingly modulated by the TD error which
is representative of the expected reward. Experiments also show
activity in the MSNs corresponding to the outcome of the chosen
action (Kim et al., 2009). We believe again that this could be the
signal required to bias the activity of the striatal MSN as seen in
the model (Equation 8).

GPi forms the output nucleus of the BG and receives
projections from Striatal MSNs through the direct and indirect
pathways. Lesion studies show that GPi controls movement by
inhibitory projections to the thalamus and lesioning GPi impairs
motor responses (Baunez and Gubellini, 2010). Experiments also
show that in the executive part of the task, the GPi activity is
strongly related to the action performed (Pasquereau et al., 2007).

We propose that the connections from striatal D1 MSNs and
STN to the GPi map the projections from action representations
to action primitives. We believe that this mapping provides a
flexible method to switch different action primitives for the same
representations and vice versa, providing a plausible mechanism
of adaptation in learning. Experiments show evidence of
transformation of action information seen as higher degree of
correlation in GPi activity as it passes from striatum to the GPi
(Garenne et al., 2011).

Contextual Learning and Striatal
Modularity
Contextual Learning refers to the ability of the agent to adapt
and learn in different contexts. Some earlier operant conditioning
experiments in such tasks have an explicit indication of contexts
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FIGURE 6 | (A) Schematic of the gridworld used in the task. A goal is switched between the top left and bottom right corner every 150 episodes. (B) State value map

estimated by the agent at different spatial locations across different contexts. We can see that the state value peaks at the goal location corresponding to the context.

(C) Environment Feature Signal maps estimated by the agent at different spatial locations across different contexts. We can see that the state value peaks at the goal

location corresponding to the context. (D) Modules chosen by the agent at different episodes. We can see that the module chosen switched with change in context

indicating that the agent is able to identify the context it is currently present in.

(different room or color for each context) using which the agent
can choose its actions (Bouton and King, 1983; Bouton and
Peck, 1989). In such tasks, the agent shows renewal upon context
switching indicating a mechanism for context identification.
Experimental results indicate that the BG encodes the context as
well as the choices in those contexts (Garenne et al., 2011).

A recent study (Amemori et al., 2011) hypothesized that
the modular architecture of the striatum makes it a suitable
candidate for solving multi-context RL problems. We build
on this by providing a computational neural model for the
same. We describe the plausible correlates for computing the
necessary variables for solving multi-context problems using a
modular setting. The context prediction signal is very similar
to a state value and we propose that neurons in the SNc code
for this signal as well (Tobler et al., 2005). In our model this
is represented by the projections from Strio-SOM to the SNc.
There is also a need for a reward prediction variance signal
or a risk signal. Dopamine in the midbrain is proposed to
also represent the risk component in the environment (Schultz,
2010). In addition, it has been proposed that serotonin activity
in the striatum correlates to risk or reward variance, just as
dopamine codes for reward prediction error (Balasubramani
et al., 2015).

We propose that the module selection and switching in
different contexts could be carried out by TANs. TANs exert

a strong influence on striatal information processing and
lesioning inputs to TANs impair learning after a change in
reward distribution (Ragozzino et al., 2002). In our model,
the TANs compete with each other and select the module
appropriate for the task. Experiments support this hypothesis
by showing that TANs can compete with each other using
inhibitory connections similar to the model (Sullivan et al.,
2008) and can cause widespread inhibition of MSNs by
activating a GABAergic subpopulation (English et al., 2012).
Another plausible method for context switching by TANs is
by producing acetylcholine (ACh) which can inhibit targeted
MSNs. Dynamic changes in ACh output in the medial striatum
(Ragozzino and Choi, 2004) during reversal learning supports
this claim.

Behavioral Observations
Several behavioral processes were also observed from the results
of the experiments on the model. We saw in Figure 6B that
the agent increases its down and right actions when the goal
is placed at the bottom right corner. The agent thus exhibits
acquisition (Graham and Gagné, 1940) since it strengthens
certain actions over the others based on the reinforcement
given. We saw in Figure 6D, that once the context has changed,
the agent stops choosing the initial preferred response. This
demonstrated extinction (Graham and Gagné, 1940) since the
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FIGURE 7 | (A) Plot of Number of Steps taken by the single module agent in each episode averaged across 50 independent sessions. We see that the agent needs to

relearn after each context switch (B) Plot of Number of Steps taken by the multi module agent in each episode averaged across 50 independent sessions. We see

that the agent efficiently switches modules after each context switch (C) Peak number of steps needed to reach the goal after a context switch averaged across 50

sessions. (D) Number of episodes for the number of steps required to reach the goal to go below a certain threshold averaged across 50 sessions (E) Peak value for

the average number of steps needed to reach the goal after a context switch. The experimental values have been adapted from Brunswik (1939) (D) Number of

episodes for the average number of steps required to reach the goal to go below a certain threshold. The experimental values have been adapted from Brunswik

(1939).

behavior associated with a certain task gets elimininated when
the reinforcement associated is removed. The experiments also
indicate that the agent is able to show stimulus generalization
and stimulus discrimination as the agent is able to distinguish
between two different contexts which are two distinct stimuli
(Till and Priluck, 2000). Also the value function peaks where
the goal is given, therefore goals which are near each other will
have similar value profiles. From Figure 7B, we saw that after
two changes when the initial context reappears, the agent is able
to bring back the policy learnt almost immediately exhibiting
spontaneous recovery (Graham and Gagné, 1940) referring to the
reappearance and faster relearning of a previously extinguished
response.

LIMITATIONS AND FUTURE WORK

In a variable environment, there are two types of uncertainty—
expected uncertainty/Risk which refers to the uncertainty even
after full learning and unexpected uncertainty which is related
to a sudden change in the environment. While the latter is
tested in our model with the help of context switches, the

rewards are certain and this makes the learning and module
switching easier. However, the next step would be to look
at harder problems where the rewards are also stochastic.
In this case, the ability to detect change in context no
longer remains trivial and would be an interesting problem to
study.

The experimental validation in such tasks becomes very
challenging due to the high number of states and trials required.
While the grid world is a natural problem for testing RL
frameworks, the number of trials continuously for a real animal
is limited. Our model requires around 900 trials despite the
various simplifying assumptions which is very taxing for the
animal. Thus, there is a need to look at simpler tasks where we
can test the model and the animal on various intricacies of the
problem.
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