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The spinal cord is the first central nervous system structure to develop during vertebrate
embryogenesis, underscoring its importance to the organism. Because of its early
formation, accessibility to the developing spinal cord in amniotes is challenging, often
invasive and the experimental approaches amenable to model systems like mammals
are limited. In contrast, amphibians, in general and the African-clawed frog Xenopus
laevis, in particular, offer model systems in which the formation of the spinal cord, the
differentiation of spinal neurons and glia and the establishment of spinal neuron and
neuromuscular synapses can be easily investigated with minimal perturbations to the
whole organism. The significant advances on gene editing and microscopy along with
the recent completion of the Xenopus laevis genome sequencing have reinvigorated the
use of this classic model species to elucidate the mechanisms of spinal cord formation,
development, function and regeneration.
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INTRODUCTION

The use of model organisms has been crucial to the progress toward understanding spinal cord
function. The frog has been a pioneer animal model for the study of spinal cord formation,
spinal cell specification and differentiation, spinal neuron axon guidance, neuromuscular junction
formation and plasticity as well as spinal cord injury and regeneration.

Among amphibians, Xenopus laevis has been an advantageous frog species for the study
of the spinal cord throughout development and in adulthood for several reasons. First, the
Xenopus laevis egg is approximately 1-mm diameter this means that is over 2300 times bigger
than the mouse egg, the most popular vertebrate species. This allows for accessible manipulation
of gene expression and genetic engineering by simple microinjection of constructs into the
egg or fertilized embryo. Second, the eggshell is transparent, enabling the direct visualization
of the first stages of spinal cord morphogenesis through non-invasive imaging approaches.
Third, microinjections at individual blastomeres of the 2- to 32-cell stage embryos result
in mosaic genetic manipulation, which can render internal control or tissue specificity for
the targeted gene misexpression. Fourth, the development of Xenopus laevis spinal cord
occurs much faster than for rodents and the developmental rate can be adjusted by growing
animals at different temperatures. Fifth, the organization of the spinal cord is simpler than
for higher vertebrates with overall fewer spinal cells, fewer types of spinal neurons and fewer
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connections between them. Nevertheless, the main kinds
of spinal cord cells are represented, i.e., sensory neurons,
interneurons, motor neurons and glial cells. Sixth, this species
exhibits remarkable regenerative capacity during development,
including the repair of the injured spinal cord, allowing for
the identification of factors that enable successful spinal cord
regeneration that might be missing in higher vertebrates. In spite
of the unique characteristics of this species, many fundamental
processes at the cellular and molecular level are highly conserved
across vertebrates, making Xenopus laevis a valuable organism to
study the mechanisms of human disease.

The features of Xenopus laevis mentioned above are few of
the reasons why this species have become a successful model
to study the first steps of neural induction and spinal cord
morphogenesis, spinal neuron differentiation, synaptogenesis,
including neuromuscular junction formation and maturation,
as well as synaptic plasticity and regeneration after spinal cord
injury. Here we compile both the pioneering and current studies
that have made significant contributions at both establishing
Xenopus laevis as a powerful model to study all aspects of spinal
cord development and function and advancing the field of spinal
cord research by uncovering the mechanisms underlying its
development, plasticity and repair.

FIRST STEP IN THE FORMATION OF THE
SPINAL CORD: NEURAL INDUCTION IN
Xenopus laevis

Neural induction in vertebrates is the process by which a subset
of ectodermal cells commits to the neural phenotype to originate
the brain and spinal cord through interactions of the induced
cells with neighboring cell layers (Spemann and Mangold,
1924). This event occurs very early in embryogenesis between
fertilization and gastrulation, underscoring the importance of
generating the neural tissue early on for the success of a
viable organism. The first molecular signatures involved in this
process were discovered through studies in Xenopus laevis. By
assessing spatiotemporal expression of tissue-specific proteins,
seminal studies showed that non-neural ectodermal cells express
a set of proteins that are missing from neuroectodermal cells
(Akers et al., 1986). Conversely, the expression of specific
neural proteins like neural cell adhesion molecule (N-CAM),
the homeobox transcription factor XiHbox8, are identified a
couple of hours after Xenopus laevis gastrulation (Jacobson
and Rutishauser, 1986; Sharpe et al., 1987), although the
mRNA for N-CAM for instance is already detected during
late gastrulation, after the mesoderm contacts the ectoderm
(Kintner andMelton, 1987), suggesting that expression of neural-
specific proteins is a step that occurs after neural induction
(Jacobson and Rutishauser, 1986). The identification of the
inducing tissues resulted in a model that supports the interaction
between the mesoderm and the dorsal ectoderm (Spemann,
1938; Smith and Slack, 1983; Sharpe et al., 1987). These
interactions are organized by two centers identified in Xenopus
laevis and called the Nieuwkoop center, located in dorsal-
vegetal cells, which expresses Nodal-related endomesodermal

inducers and the blastula Chordin- and Noggin-expressing
center located in dorsal animal cells that contains both
prospective neuroectoderm and Spemann organizer precursor
cells (Kuroda et al., 2004).

The factors secreted by inducing cells that drive the
commitment to the neural phenotype include Noggin (Lamb
et al., 1993), Chordin (Sasai et al., 1995), Follistatin (Hemmati-
Brivanlou et al., 1994), Xnr3 (Hansen et al., 1997), all inhibitors of
the Bone Morphogenetic Protein (BMP) pathway and Fibroblast
Growth Factor (FGF; Kengaku and Okamoto, 1993). The
signaling elicited by these factors in the dorsal ectoderm involves
translocation of Protein Kinase C to the membrane (Otte et al.,
1988, 1991; Otte and Moon, 1992) and recruitment of signaling
molecules like Smad10 (Lesueur and Graff, 1999; LeSueur et al.,
2002) and the phosphorylation of Smad1 in the linker domain
that inhibits its transcriptional activity and nuclear translocation,
serving as an integration of several signaling pathways (Pera et al.,
2003).

The two models that have emerged from these founding
studies have supported a first model of ectodermal cells
becoming neural by default, through inhibiting the BMP
pathway; in the second model FGF instructs the dorsal
ectodermal cells to become neural. More recently, the merging
of these two models was proposed (Marchal et al., 2009).
By antagonizing BMP signaling through the expression of a
dominant negative (DN) cofactor of the BMP pathway, Xenopus
epidermis was converted into neural tissue. However, this
is prevented when FGF4 is knocked down; moreover, BMP
signaling inhibition upregulates FGF4 expression. These findings
led to the unified model for neural induction dependent on
BMP inhibition that in turn activates FGF, which instructs
expression of neural phenotype regulators (Marchal et al.,
2009).

The factors that drive the neural phenotype downstream
neural induction have also been identified by pioneering
research in Xenopus laevis, and then findings extended to
higher vertebrates. Prominent transcription factors are early
downstream drivers of the neural commitment and include Zic3
(Nakata et al., 1997), SoxD (Mizuseki et al., 1998b), Zic-r1
and Sox2 (Mizuseki et al., 1998a), which then directly promote
expression of proneural genes initiating neural and neuronal
differentiation, or they work synergistically with other pathways
to initiate expression of the neural phenotype (Mizuseki et al.,
1998a).

More recent studies in this model system have revealed
novel players in the process of neural induction and early
neural specification. Norrin was identified as required for
neuroectoderm specification by recruiting β-catenin and
inhibiting BMP/TGF-β, thus coordinating these two major
signaling pathways (Xu et al., 2012). Efforts have been made to
identify the mechanisms responsible for global shifts in gene
expression when ectodermal cells become restricted to the
neural identity. A study in Xenopus laevis led to the discovery
that the activity of histone methyltransferase is crucial for the
upregulation in the expression of genes controlling neural
induction, likely through the repression of the Oct4-related
Xenopus gene Oct-25 (Nicetto et al., 2013).
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SPINAL CORD FORMATION THROUGH
THE LENS OF Xenopus laevis
NEURULATION

Once the neuroectoderm is induced the emerging neural plate,
which appears as a dorsal thickening of the ectoderm, transits
through dramatic morphogenic events to transform itself into
the neural tube, the precursor of the spinal cord and the brain.
Studies in Xenopus laevis have come once again to illuminate
onto the cellular and molecular mechanisms that mediate neural
tube formation. A combination of biochemical signals and
mechanical forces orchestrate changes in cell shape, including
apical constriction and cell elongation, necessary for the bending
of the neural plate, the elevation of neural folds followed by
the lateromedial migration and cell intercalation that leads
to the mediolateral narrowing and anteroposterior elongation of
the neural tissue, process known as convergent extension (for
recent review see Sokol, 2016).

Apicobasal cell elongation accounts for thickening and
narrowing of the neuroepithelium. In addition, mediolateral
cell intercalation within each layer narrows the neural plate in
the transverse axis while elongating it in the anteroposterior
axis (Keller et al., 1992a,b,c). Neural plate shaping is closely
followed by its bending. Initially, a furrow is formed in the
notoplate as a result of the medial hinge point cell apical
constriction. Then neural plate lateral edges rise forming
incipient neural folds. Subsequent folding includes further neural
fold elevation, convergence and rolling towards the midline.
Continuing apicobasal elongation, cell apical constriction,
crawling of lateral neural plate cells under the epidermis
and continuing mediolateral intercalation are involved in
this phase. During neural plate folding cell intercalation
occurs at a higher rate compared to the shaping phase,
accelerating convergent extension of the neuroepithelium
(Jacobson et al., 1986). Subsequently, neural fold tips come
into contact and fuse at the dorsal midline (Davidson and
Keller, 1999). Finally, radial intercalation between the two
cell layers forms a single-layered neural tube (Edlund et al.,
2013).

As neurulation progresses different populations of cells in
the neuroepithelium, it exhibit diverse types of cell behaviors
(Wallingford, 2005). Apical constriction of superficial neural
plate cells requires a precise spatiotemporal regulation of
cytoskeletal and cell adhesion molecule dynamics. It was
discovered in Xenopus that the actin binding protein Shroom is
necessary for neural tube closure in amphibians and mammals
by inducing apical constriction through enriching the apical
neural plate surface with actin filaments and recruitment of
the small GTPase Rap1 (Haigo et al., 2003). Neural plate
cells exhibit Ca2+ dynamics (Wallingford et al., 2001) which
elicit contraction events in these cells driven by transient
contractile apical pools of actin (Christodoulou and Skourides,
2015).

Apical constriction also requires endocytosis at the apical
neural plate cell membrane (Lee and Harland, 2010). A more
recent study showed that through the activity of the Planar Cell
Polarity pathway, Rab11-positive recycling endosomes localize to

the medial apical cell junctions during neural tube formation;
this polarization is necessary for neural plate folding (Ossipova
et al., 2014). Moreover, a recently published study from our
lab demonstrates that endocytosis of the adherens junction
molecule C-cadherin is disrupted when folate receptor-1 is
downregulated from the apical membranes of superficial neural
plate cells, impairing neural plate cell apical constriction and
neural tube formation (Balashova et al., 2017). The study
provides a mechanism for folate action during neural tube
formation that explains the vulnerability of this process to folate
disturbances and the benefits of folate supplementation in the
prevention of neural tube defects in humans (Blom et al., 2006).
Our study, through the use of Xenopus laevis as a model system,
uncovers specific functions of folate and its receptor beyond
its role as a vitamin and enabler of DNA synthesis, since cell
division is not necessary for neural tube formation in Xenopus
(Harris and Hartenstein, 1991), in spite of the necessity of
folate/folate receptor-1 for appropriate neural plate cell apical
constriction and neural tube closure in this species (Balashova
et al., 2017).

The process of convergent extension occurs through
cell elongation and intercalation and is also dependent
on Ca2+ dynamics (Wallingford et al., 2001). In addition,
the non-canonical Wnt signaling pathway dependent on
Disheveled is necessary for convergent extension (Wallingford
and Harland, 2001). Other signaling pathway that has been
identified as necessary in regulating microtubule dynamics
for Xenopus neural fold elevation and cell intercalation is
the Repulsive Guidance Molecule-Neogenin interaction (Kee
et al., 2008). Microtubule polymerization is also the target
of the Zn2+ transporter ZIP12 that when knocked down
impairs Xenopus neural tube formation and neurite extension
in developing spinal neurons (Chowanadisai et al., 2013;
Figure 1).

SPINAL NEURON DIFFERENTIATION AND
SPINAL CORD MATURATION

The development of spinal cord function relies on the
assignment of specific identities to spinal neurons and glia
followed by the establishment of synaptic connections. Our
current understanding of the functional differentiation of
spinal neurons has nourished from studies in Xenopus
laevis. Pioneering studies by Spitzer and Baccaglini (1976)
investigated the development of electrical excitability
in developing spinal neurons both in vivo and in vitro.
They found that shortly after neural tube closure Ca2+-
dependent action potentials are elicited in immature sensory
spinal neurons in vivo (Spitzer and Baccaglini, 1976).
As maturation progresses, the action potential depends
on both, Na+ and Ca2+, and gradually, the Na+-driven
component of the action potential becomes more predominant,
until the Ca2+-dependent component disappears, after
3 days postfertilization (Spitzer and Baccaglini, 1976). The
shift from the Ca2+-dependent to Na+-mediated action
potential in developing spinal neurons depends on ion
channel expression (O’Dowd, 1983; O’Dowd et al., 1988).
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FIGURE 1 | Examples of approaches and applications for the study of spinal cord development, function and regeneration in Xenopus laevis. The use of Xenopus
laevis as a model system spans from the first steps of neural induction and spinal cord formation to the mechanisms of spinal cord regeneration. GCaMP,
genetically-encoded Ca2+ sensor; Lifeact, F-actin biosensor; Membrane-FP, Fluorescent protein tethered to the plasma membrane; DN, dominant negative;
CA, constitutively active. Drawings of embryos and tadpoles were adapted from Xenbase.org and published previously by Nieuwkoop and Faber (1994);
Copyright © 1994, Garland Publishing Inc.

In particular the upregulation of the delayed-rectifying
K+ current is crucial to the switch (Ribera and Spitzer,
1989; Burger and Ribera, 1996; Gurantz et al., 1996; Ribera,
1996).

The discovery of the Ca2+-dependent action potential in
developing neurons opened up a prominent and influential
research field focused on the role and the mechanisms
of Ca2+-mediated electrical activity during nervous system
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development. In Xenopus laevis immature spinal neurons, the
mechanisms underlying the spontaneous Ca2+ spikes involve
the activation of T-type Ca2+ channels (Gu and Spitzer,
1993) through a spontaneous initial depolarization which
appear to be facilitated by neurotransmitter signaling (Root
et al., 2008). This activity is important for the differentiation
and maturation of spinal neurons (Gu and Spitzer, 1995).
In particular, neurotransmitter phenotype specification is
dependent on the level of Ca2+ spike activity, with higher
frequencies driving the expression of inhibitory neurotransmitter
phenotypes and lower frequencies driving expression of
excitatory neurotransmitter phenotypes (Borodinsky et al.,
2004; Marek et al., 2010). The changes in neurotransmitter
phenotype are accompanied by changes in neurotransmitter
receptor in target cells including the skeletal muscle in
tadpole’s neuromuscular junctions (Borodinsky and Spitzer,
2007; Figure 1).

We learned from studies on the patterning of ventral and
dorsal spinal neuron identities in Xenopus laevis, the dependence
of this process on the notochord; notochordless embryos exhibit
fewer number of motor neurons and higher number of sensory
neurons, and commissural interneuron axons cross the midline
in a disorganized manner overall resulting in perturbed left-right
alternation of the locomotive behavior (Clarke et al., 1991).
Moreover, studies in our lab have demonstrated that the
Ca2+-mediated electrical activity interacts with other essential
developmental signaling pathways like Sonic hedgehog (Shh)
and BMPs to orchestrate the differentiation of spinal neurons
(Belgacem and Borodinsky, 2011, 2015; Swapna and Borodinsky,
2012; Borodinsky et al., 2015). Shh enhances activity of spinal
neurons (Belgacem and Borodinsky, 2011) while BMP inhibits it
(Swapna and Borodinsky, 2012). These studies identified novel
non-canonical signaling pathways for morphogenetic protein
action in the spinal cord. Furthermore, we discovered that Ca2+

spike activity is the mechanism by which Shh canonical signaling
switches off during the early stages of spinal cord development
(Belgacem and Borodinsky, 2015), phenomenon that is apparent
in frogs and mice (Lee et al., 1997; Balaskas et al., 2012).

This model system has also been crucial in the identification
of the mechanisms governing axon guidance of developing
spinal neurons. Studies from the Poo laboratory first used
Xenopus spinal neurons grown in culture to identify the
signalingmechanisms underlying chemoattraction and repulsion
of extending growth cones. They found that localized changes
in levels of cyclic nucleotides transduce the signal of guidance
cues like Netrin to change the direction of the growing axon
(Lohof et al., 1992; Zheng et al., 1994; Ming et al., 1997, 1999,
2001; Song et al., 1997, 1998; Xiang et al., 2002). Further studies
demonstrated that these mechanisms occur in vivo and the
signaling is also dependent on localized Ca2+ dynamics in growth
cones and filopodia (Gomez et al., 2001; Ming et al., 2001; Robles
et al., 2003; Henley et al., 2004; Shim et al., 2005; Wang and Poo,
2005; Robles and Gomez, 2006).

In addition to the extension and direction of axon growth,
Xenopus laevis spinal neurons have been used to determine
the mechanisms underlying neuronal polarity through the
establishement of dendrites vs. axons. Xenopus commissural

spinal interneurons exposed to semaphorin 3A revert the identity
of axons to dendrites by activating Cav2.3 channels through the
cGMP-mediated activation of PKG (Nishiyama et al., 2011).

ADVANCES IN THE UNDERSTANDING OF
SPINAL CORD FUNCTION THROUGH
RESEARCH IN Xenopus

The spinal cord is in charge of sensorimotor functions in
vertebrates. The elucidation of the mechanisms involved in the
establishment of the sensorimotor function during development
and the identification of the circuitry responsible for eliciting
a specific sensorimotor response have been common foci of
research. Xenopus offers an excellent system to study these
aspects of spinal cord development and function. In particular,
two important fronts of research have benefited greatly from the
studies done in Xenopus; one is the research on the mechanisms
of neuromuscular junction plasticity during development, and
the other is the identification of the circuitries in the spinal cord
that elicit the simple sensorimotor reflexes and themore complex
locomotor behaviors (Figure 1).

Taking advantage of the ease of in vivo time-lapse imaging
in developing tadpoles, the Cline lab fluorescently labeled
spinal motor neuron axons and nicotinic receptor clusters
in muscle cells through electroporation, and demonstrated
that axon branches and synaptogenesis are concurrent and
dynamic (Javaherian andCline, 2005). They further identified the
Candidate Plasticity Gene 15 as necessary for axon arborization
and promotion of synaptogenesis at the neuromuscular junction
(Javaherian and Cline, 2005). The rules of pre and postsynaptic
interactions that govern plasticity events such as synaptic
depression and potentiation were first tested in Xenopus laevis
neuron-muscle connections, a simple prototype of developing
vertebrate neuromuscular junction. A transient increase in
intracellular Ca2+ concentration in the connected muscle
cell triggers a decrease in neurotransmitter release from the
presynaptic motor neuron. This depression is persistent and
dependent on the connection with the affected muscle cell and
not on a secreted extracellular factor (Cash et al., 1996). In
contrast, a burst of action potentials in the presynaptic motor
neuron leads to a sustained potentiation of synaptic activity of
the neuromuscular junction due to increase in probability of
neurotransmitter release (Wan and Poo, 1999). Neurotrophins
were identified in Xenopus neuromuscular junction studies as
effective mediators of synaptic potentiation. In particular Brain-
Derived Neurotrophic Factor (BDNF) was found to potentiate
synaptic efficacy, through cAMP signaling (Boulanger and Poo,
1999a), when paired with a presynaptic depolarization of the
motor neuron within a specific timing (Boulanger and Poo,
1999b). A more recent study has further the understanding
of BDNF action on activity-dependent neuromuscular junction
remodeling by demonstrating that stimulating motor neurons
induces the maturation of BDNF in the presynapse. While
immature BDNF promotes retraction of the less active synaptic
terminal, mature BDNF leads to stabilization of the active
terminal (Je et al., 2012).
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With regard to the understanding of the circuitry underlying
locomotor behavior in vertebrates, seminal work from Roberts
et al. (1981) took advantage of the simplicity of the neuroanatomy
and behavior of swimming larvae to answer fundamental
questions on the connectivity and organization of the underlying
neuronal networks. They discovered that the rhythmicity of
the swimming behavior resides in the spinal cord and is
inherent to each side of the cord (Roberts et al., 1981).
They also found that the commissural inhibitory spinal
interneurons are necessary for the strict alternation between
left and right motor neuron activity (Roberts et al., 1981).
Other studies have been equally insightful at revealing the
circuitry underlying the sensorimotor response upon touch
and the mechanisms responsible for the relationship between
the locomotor central pattern generator and motor neuron
activity (Sillar and Roberts, 1988; Li et al., 2003; Buhl et al.,
2015).

The neurophysiological substrate for the acquisition of
progressive refinement in the locomotor system has been
investigated by Sillar and Roberts (1988). They found that
changes in motor neuron firing properties and patterns of
innervation of the axial musculature in Xenopus laevis larvae
change during the first day after hatching so that different
pools of motor neurons progressively innervate a more restricted
region of muscle fibers (Zhang et al., 2011). The motor neuron
firing probability transitions from a single action potential per
swim cycle right after hatching to different firing probabilities
1 day after hatching, when diverse types of swimming behavior
are elicited (Zhang et al., 2011).

SPINAL CORD REGENERATION

All the aspects of spinal cord development and function
discussed above highlight the usefulness of Xenopus as a model
system because the processes occurring in the frog are conserved
across vertebrates including mammals, with the advantage of
being a simpler system, more amenable to in vivo and in vitro
approaches, live-imaging and physiology studies. Thus, this
model system enables the identification of the molecular and
cellular mechanisms underlying the conserved and fundamental
processes. Other features of Xenopus make this animal model
unique among other systems. This uniqueness can also be
advantageous; for instance, from investigating the mechanisms
that make this system different than other vertebrates we can
better understand the potential limitations that other species
including humans face. Before metamorphosis, the regenerative
capacity of frogs, and Xenopus in particular, is remarkable. Even
the adult frog is able to regenerate certain axons like the optic
nerve but not the spinal axons, due to some non-permissive
factors generated by the spinal cord oligodendrocytes and
myelin (Lang et al., 1995). Outstandingly, when the tadpole’s
tail is amputated, all the tissues including skin, notochord,
muscle and spinal cord regenerate (Figure 1). Every tissue
regenerates from a dedicated pool of stem cells that are activated
upon amputation (Gargioli and Slack, 2004). Interestingly,
the Xenopus tadpole tail exhibits this regenerative capacity
throughout development with the exception of a so-called

refractory period when the tail heals without regeneration. This
further uniqueness enables the study within the same model
system of the factors that are permissive of the regenerative
process. The Slack laboratory took advantage of this aspect of
Xenopus laevis and discovered that BMP and Notch signaling
(downstream of BMP) are necessary for tail regeneration and
sufficient for overriding the refractory period (Beck et al.,
2003). BMP signaling appears to be required for appropriate
neural cell proliferation to replenish the spinal cord (Beck
et al., 2006). It has also been shown that a restricted rate
of apoptosis is required during the first 24 h post injury for
successful regeneration during the permissive stages and that
a more extensive apoptosis may interfere with appropriate
regeneration during the refractory stages (Tseng et al., 2007).
The extent of apoptosis appears to be controlled by the
activity of the V-ATPase H+ pump that is upregulated in the
regenerating tissue and repolarizes the membrane potential of
regenerating cells after an initial depolarization is triggered
by the injury (Adams et al., 2007). In agreement with these
studies we found that cells from the regenerating tail exhibit
spontaneous Ca2+ transients during the first 24 h post
amputation. Suppressing this activity impairs tail regeneration,
apparently by impairing activation of stem cells for replenishing
the spinal cord and muscle (Tu and Borodinsky, 2014). In
recent studies gene expression profiles during tail regeneration
were collected from Xenopus laevis (Lee-Liu et al., 2014) and
tropicalis (Love et al., 2011) amputated tadpoles at different
periods post injury and in regenerative and non-regenerative
stages. From these excellent resources, insightful studies have
emerged demonstrating that injury increases production of
reactive oxygen species that are upstream Wnt/β-catenin and
the upregulation of FGF20 expression, which contribute to the
signaling mechanisms necessary for tail regeneration (Love et al.,
2013).

CONCLUDING REMARKS

Xenopus is a classic model for embryology and physiology
research and has been perfectly suited for studies on the
formation, development, maturation and repair of the spinal
cord. The recent completion of the sequencing of the
Xenopus laevis genome (Session et al., 2016), and Xenopus
tropicalis genome since 2010 (Hellsten et al., 2010), allows
for the use of both in genetic studies; along with the
remarkable advances in systems biology, including genomics,
metabolomics and proteomics, the opportunities for discovery
that this model system offers are reinvigorated (Lombard-
Banek et al., 2017; Tandon et al., 2017). Additionally the
accessibility of novel approaches for gene editing like TALENs
(transcription activator-like effector nucleases) and CRISPR-Cas
(clustered regularly interspaced short palindromic repeats-
CRISPR associated nucleases) expand the use of Xenopus as
a genetically tractable model for loss and gain of function
studies (Tandon et al., 2017). Salient questions remain in
every aspect of spinal cord research that was covered in
this review and other aspects that were not included. The
signaling mechanisms affecting the formation of the spinal
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cord and responsible for birth defects like spina bifida demand
further investigation (Wallingford et al., 2013). The deeper
understanding of the mechanisms governing the switch from
neural stem cell to neuron is important for both the prevention
of spinal cord malformations during development and the
promotion of the recovery and regeneration in patients with
spinal cord injury. Finally, studies on the assembly and plasticity
of circuitry underlying spinal cord function can benefit from
the advances in microscopy and optogenetics to dissect out
the precise interactions among different types of neurons. The
prediction is that Xenopus will continue to offer an advantageous
platform for hypothesis-driven research that will contribute to
the understanding of spinal cord development, function and
disease.
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