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The interconnectivity between excitatory and inhibitory neural networks informs

mechanisms by which rhythmic bursts of excitatory activity can be produced in the

brain. One such mechanism, Pyramidal Interneuron Network Gamma (PING), relies

primarily upon reciprocal connectivity between the excitatory and inhibitory networks,

while also including intra-connectivity of inhibitory cells. The causal relationship between

excitatory activity and the subsequent burst of inhibitory activity is of paramount

importance to the mechanism and has been well studied. However, the role of

the intra-connectivity of the inhibitory network, while important for PING, has not

been studied in detail, as most analyses of PING simply assume that inhibitory

intra-connectivity is strong enough to suppress subsequent firing following the initial

inhibitory burst. In this paper we investigate the role that the strength of inhibitory

intra-connectivity plays in determining the dynamics of PING-style networks. We show

that networks with weak inhibitory intra-connectivity exhibit variations in burst dynamics

of both the excitatory and inhibitory cells that are not obtained with strong inhibitory

intra-connectivity. Networks with weak inhibitory intra-connectivity exhibit excitatory

rhythmic bursts with weak excitatory-to-inhibitory synapses for which classical PING

networks would show no rhythmic activity. Additionally, variations in dynamics of

these networks as the excitatory-to-inhibitory synaptic weight increases illustrates the

important role that consistent pattern formation in the inhibitory cells serves in maintaining

organized and periodic excitatory bursts. Finally, motivated by these results and the

known diversity of interneurons, we show that a PING-style network with two inhibitory

subnetworks, one strongly intra-connected and one weakly intra-connected, exhibits

organized and periodic excitatory activity over a larger parameter regime than networks

with a homogeneous inhibitory population. Taken together, these results serve to better

articulate the role of inhibitory intra-connectivity in generating PING-like rhythms, while

also revealing how heterogeneity amongst inhibitory synapses might make such rhythms

more robust to a variety of network parameters.
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INTRODUCTION

The importance of inhibitory interneurons in driving and
modulating rhythmic electrical activity is well established in
a variety of brain regions, including the hippocampus (Traub
et al., 1998; Kopell et al., 2000; Bartos et al., 2007; Aton et al.,
2013) and the cortex (Desimone and Duncan, 1995; Luck et al.,
1997; Reynolds et al., 1999; Fries, 2005; Bosman et al., 2012).
Computational studies have identified mechanisms by which
inhibition is the impetus behind rhythmic and synchronous
dynamics for strictly inhibitory neural networks and for networks
with both excitatory and inhibitory neurons (hereafter referred
to as E-I networks). For strictly inhibitory neural networks,
Interneuron Network Gamma (ING) is perhaps the most well-
known mechanism underlying inhibitory synchrony (White
et al., 1998; Whittington et al., 2000; Kopell et al., 2010;
Wang, 2010), although additional studies have shown that other
mechanisms and forms of rhythmic dynamics may arise due to
changing the intrinsic cellular properties or connectivity density
in these networks (Vreeswijk et al., 1994; Hansel et al., 1995;
Achuthan and Canavier, 2009; Ladenbauer et al., 2012; Rich et al.,
2016; Viriyopase et al., 2016).

In E-I networks, the Pyramidal Interneuron Network
Gamma (PING) mechanism can generate rhythmic dynamics.
Experimental results have implicated interactions between
excitatory and inhibitory neurons in this rhythm generation
(Whittington et al., 1995), leading to computational studies
probing the required properties of these interactions for PING
rhythms (Traub et al., 1997; Ermentrout and Kopell, 1998;
Whittington et al., 2000; Kopell et al., 2010). Summarized, the
PING mechanism states that synchronous, rhythmic dynamics
of both the excitatory and inhibitory cell populations can be
generated if the inhibitory cells spike only in response to
excitatory cell activity, if excitatory cell activity quickly induces
a synchronous inhibitory population burst, and if the inhibitory
burst suppresses all excitatory cells. These requirements ensure
that bursts of inhibitory activity directly follow excitatory cell
activity, and this inhibition then suppresses the excitatory cells
for a sufficient duration so that all excitatory cells are set to
the same point in their firing cycle, so that upon the release of
inhibition their next action potentials occur in close temporal
proximity, resulting in synchronous firing.

This conceptual PINGmechanism has led to research probing

the robustness of the mechanism to various forms of randomness
and heterogeneity that are likely to occur in the brain. Such
studies have investigated the role of sparse and heterogeneous
connectivity in PING rhythm formation (Börgers and Kopell,
2003), the role of the strength of interconnectivity between the
excitatory and inhibitory neurons in eliciting PING rhythms
(Börgers et al., 2012), the effects of noise on these rhythms
(Börgers and Kopell, 2005), changes caused by changing the
properties of the inhibitory neurons from Type I to Type II
(these classifications are defined below) (Borgers and Walker,
2013), and various effects of adaptation currents in the cell
models (Olufsen et al., 2003; Krupa et al., 2014). These
studies focus primarily on the interconnectivity between the
excitatory and inhibitory cell populations, which according to

the PINGmechanism is the paramount impetus behind rhythmic
activity.

Little work has been done, however, to analyze the role
of the intra-connectivity of the inhibitory cell population in
affecting the dynamics of E-I networks. Indeed, as classically
articulated this inhibitory intra-connectivity is not necessary
for PING rhythm generation, but is typically included in the
network structure as motivated by numerous experimental
studies showing that interneurons tend to be highly connected
(Markram et al., 2004; Mody and Pearce, 2004; Tateno and
Robinson, 2007; Karson et al., 2009; Ferguson et al., 2013;
Perrenoud et al., 2013). Thus, most of the computational studies
above assume some level of strong synaptic coupling amongst
the interneurons, which serves to “slow down” and help prevent
disorganized firing of the inhibitory cells that can disrupt
synchronous firing of the excitatory cells (Börgers and Kopell,
2005).

Given the multitude of types of interneurons identified in
brain regions where PING rhythms are thought to occur, such
as the hippocampus (Buhl et al., 1994; Klausberger et al.,
2003) and cortex (Gonchar and Burkhalter, 1997; Gibson et al.,
1999; Beierlein et al., 2000, 2003; Barthó et al., 2004; Somogyi
and Klausberger, 2005; Klausberger and Somogyi, 2008), along
with the known connectivity of many of these interneurons
with excitatory pyramidal cells as modeled in an E-I network
(Whittington and Traub, 2003), a closer analysis of the role
of inhibitory intra-connectivity in PING-driven dynamics will
paint a more complete picture of how such rhythmic activity
might arise in the brain. In this paper, we investigate in
detail the role that the strength of inhibitory intra-connectivity
(I-I connectivity) plays in dictating the burst dynamics of
excitatory cells in E-I networks. While some differences in
bursting dynamics that arise from weakening the inhibitory
intra-connectivity to values well below that typically studied
in the PING literature, such as inhibitory spike doublets, have
been identified previously (Börgers and Kopell, 2005), we find
that these differences can have important effects on the spiking
properties of the excitatory network.

Our results show that, when interneurons have Type I firing
properties (similar to those often exhibited by the ubiquitous
fast-spiking PV+ interneuron, Ferguson et al., 2013), there is a
distinct difference in rhythmic synchronous dynamics when the
strength of I-I connectivity varies from weak to strong. Here,
we define Type I neurons as those that exhibit a steep current-
frequency (IF) curve with an arbitrarily low firing frequency and
a Phase Response Curve (PRC) exhibiting only phase advances
in response to a brief, excitatory current pulses (Brown et al.,
2004; Tateno et al., 2004; Wang, 2010). We focus on networks
with Type I interneurons given the preponderance of PV+
interneurons in the hippocampus and cortex, and also because
a majority of PING literature uses inhibitory neuron models with
these properties.

When the I-I connectivity is strong, our results closely
mirror those of most analyses of PING rhythms. The dynamics
of these networks not only include synchrony amongst the
excitatory cells, but also lead to organized spike timing within the
excitatory bursts, consistent cell participation in each burst, and
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consistent periodicity of the bursts. We classify these dynamics as
having “low variability” to differentiate them from networks that
exhibit synchronous bursting but without this additional spike
organization. When the excitatory to inhibitory connectivity
(E-I connectivity) is very weak, however, networks with this
strong intra-connectivity amongst the inhibitory cells exhibit
asynchonous excitatory cell activity, as predicted by the PING
mechanism.

On the other hand, when I-I connectivity is weak,
E-I networks exhibit alternate dynamics, highlighting the
importance of inhibitory cell patterning in dictating excitatory
cell dynamics. In this case, synchronous excitatory activity is
exhibited at very low values of the E-I connectivity strength,
seemingly in opposition to one of the key requirements of
PING theory. As E-I connectivity strength increases, these
networks tend to exhibit disorganized inhibitory cell firing that
follows inhibitory bursts, which in turn leads to degradation
of excitatory cell synchrony. Namely, excitatory bursts tend
to be disorganized, exhibit variability in the number of cells
participating in each burst, and do not exhibit a consistent
inter-burst interval.

To determine dependence on inhibitory cellular properties,
we additionally examine how changing I-I connectivity affects
networks where the interneurons have Type II firing properties.
Here we define Type II neurons as those that exhibit a more
shallow IF curve with a minimum non-zero firing frequency
and a PRC exhibiting regions of phase delay and advance in
response to brief, excitatory current pulses (Brown et al., 2004;
Wang, 2010). We find that changes to the I-I connectivity
in E-I networks do not significantly alter dynamics of the
overall network when the interneurons are modeled as Type
II. This corresponds with our previous work which shows that,
unlike strictly inhibitory networks with Type I neurons, such
networks containing Type II neurons with and without an M-
type slow potassium current do not show significant changes
in the propensity for synchrony as the connectivity density,
which roughly corresponds with the overall strength of inhibitory
signaling in the network, changes (Rich et al., 2016).

Our analysis indicates that synchronous, rhythmic, PING
activity in E-I networks consisting of Type I interneurons is
sensitive to I-I connectivity strength. Specifically, weak inhibitory
intra-connectivity allows well-ordered synchronous excitatory
activity primarily for low values of the E-I synaptic weight,
while networks with strong inhibitory intra-connectivity exhibit
such activity for high values of the E-I synaptic weight. This
dichotomy motivates the investigation of a network architecture
that preserves the advantages of both types of networks,
effectively expanding the parameter regime at which PING-like
rhythms can be achieved. An E-I network with two inhibitory
subnetworks, one weakly intra-connected and one strongly intra-
connected, achieves this goal, providing a potential mechanism
by which such rhythms can be generated in the brain in a
more robust fashion. Numerous studies provide support for the
existence of this type of network topology in the brain, where
multiple populations of interneurons synapse onto the same
excitatory pyramidal cells while connectivity between inhibitory
interneurons consists almost exclusively of synapses between

similar interneurons (Gibson et al., 1999; Beierlein et al., 2003;
Klausberger et al., 2003; Somogyi and Klausberger, 2005; Wang
et al., 2011).

Taken together, these results serve to expand upon our
understanding of PING-like rhythms in E-I networks by
revealing the important, but often overlooked, role that
inhibitory intra-connectivity and inhibitory cell dynamics play in
governing the overall network dynamics.

METHODS

Neuron Models
We constructed E-I networks consisting of excitatory neurons
with Type I membrane properties and inhibitory neurons with
Type I or Type II membrane properties. The Type I neuron
model, in the Hodgkin-Huxley formalism, mirrors the fast-
spiking properties of PV+ interneurons as well as properties of
Type I cortical pyramidal neurons (Stiefel et al., 2008; Fink et al.,
2011). The equations governing this model are:

dV

dt
= −gNam

3
∞h(V − ENa)− gKd

n4(V − EK)

−gKsz(V − EK)− gL(V − EL)+ Iapp − Isyn (1)

dX

dt
=

X∞(V)− X

τX(V)
forX = h, n, z (2)

m∞(V) =
1

1+ e(−V−30/9.5)
(3)

h∞(V) =
1

1+ e(V+53/7.0)
(4)

n∞(V) =
1

1+ e(−V−30/10)
(5)

z∞(V) =
1

1+ e(−V−39/5)
(6)

τh(V) = 0.37+
2.78

1+ e(V+40.5)/6
(7)

τn(V) = 0.37+
1.85

1+ e(V+27)/15
(8)

τz(V) = 75 (9)

V represents the membrane voltage in [mV], while m, n, h and
z represent the unitless gating variables of the ionic current
conductances. Iapp signifies the external applied current to the
neuron (described below), in [µA/cm2], while Isyn describes the
synaptic current input to the cell from the network (described
below), also with units of [µA/cm2]. ENa,EKs ,EKd

and EL are
the reversal potentials and gNa, gKs , gKd

and gL are the maximum
conductances, with Na symbolizing sodium, K symbolizing
potassium, and L symbolizing the leak current. Kd refers to the
delayed rectifier potassium current, while Ks refers to the slow
M-type potassium current (which is inactive when this model
simulates the Type I neuron used here). In this model the reversal
potentials are ENa = 55 mV, EK = −90 mV, EL = −60 mV,
while themaximum conductances are gNa = 24mS/cm2, gKd

= 3
mS/cm2, gKs = 0 mS/cm2 and gL=0.02 mS/cm2.

While the equations for the Type I neuron were initially
developed to model a cortical pyramidal neuron modulated by
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acetylcholine, the properties of this neuron when gKs = 0 closely
mirror those of fast-spiking Type I interneurons (for instance, the
PV interneurons modeled by Ferguson et. al.).

Networks in which the interneurons were replaced with a
Type II neuron with adaptation used the same model equations
as the Type I case, but with the value of gKs changed to 1.5.
This activates the slow M-type potassium current, which in turn
changes the neuron properties to Type II and imbues the neurons
with properties similar to interneurons like the OLM and SOM
cells (Saraga et al., 2003; Markram et al., 2004; Lawrence et al.,
2006; Cutsuridis et al., 2010; Cutsuridis and Hasselmo, 2012;
Perrenoud et al., 2013).

For comparison purposes, we also study networks with
interneurons that are Type II without the presence of an
adaptation current. These neurons were modeled with the
classic Hodgkin-Huxley equations (Hodgkin and Huxley, 1952;
Ermentrout and Terman, 2010):

dV

dt
= −gNam

3h(V − ENa)− gKn
4(V − EK)− gL(V − EL)

+Iapp − Isyn (10)

dX

dt
= αX(V)(1− X)− βX(V)X, forX = m, h, n (11)

αm(V) = −0.1

(

V + 40

e−(V+40)/10 − 1

)

(12)

βm(V) = 4e−(V+65)/18 (13)

αh(V) = 0.07e−(V+65)/20 (14)

βh(V) =
1.0

e−(V+35)/10 + 1
(15)

αn(V) = −0.01

(

V + 55

e−(V+55)/10 − 1

)

(16)

βn(V) = 1.25e−(V+65)/80 (17)

The variables here signify the same quantities as in the above
equations for Type I neurons. In this model these constants are
set at ENa = 50 mV, EK = −77 mV, EL = −54.4 mV, gNa = 120
mS/cm2, gK = 36 mS/cm2 and gL = 0.3 mS/cm2.

Network Structure
We performed simulations of E-I networks consisting of 1,000
neurons, 800 of which are excitatory and 200 of which are
inhibitory. Excitatory neurons receive an external driving current
(described below) and also receive inhibition from the inhibitory
cells, where each inhibitory cell has a 50% chance to synapse
onto a given excitatory cell. Inhibitory neurons receive an
external current (described below) depending upon their cell
type in order to ensure they do not fire in the absence
of input from the excitatory cells and are near their firing
threshold. Inhibitory neurons are driven by the excitatory cell
population, as each excitatory cell has a 50% chance to synapse
onto a given inhibitory cell. Additionally, inhibitory neurons
receive inhibition from within the inhibitory network, as each
inhibitory neuron has a 30% chance to synapse onto a given,
different inhibitory cell. The choice of this connectivity density is
motivated by evidence for this level of intraconnectivity amongst
interneurons in the hippocampus (Ascoli and Atkeson, 2005;

Viriyopase et al., 2016). Diagramatic representations of these
networks with strong and weak inhibitory intra-connectivity are
shown in Figure 1.

Cell heterogeneity was implemented by varying the external
input current, Iapp, to each excitatory neuron. The input currents
were selected from a uniform distribution centered on the current
(IA) that would impart an average intrinsic cell firing frequency
to an isolated neuron. For excitatory cells, we chose the driving
currents uniformly from the distribution [0.9IA, 1.1IA]. IA was
varied for the excitatory cells in order to study the effects of their
intrinsic frequency.

Type I inhibitory cells were given a small external
hyperpolarizing current to ensure that the neurons would
not fire spontaneously, given that this neuron model exhibits
slow, spontaneous firing with no external current. Heterogeneity
was implemented in this hyperpolarizing (i.e., negative)
current similar to the excitatory cells to impart some degree
of heterogeneity to the inhibitory population: the external
hyperpolarizing current for each interneuron was chosen
uniformly from the distribution [1.05IA, 0.95IA]. Here IA is
chosen to be −0.2 µ/cm2 so that all interneurons will not fire
action potentials without input from the excitatory cells. This
external hyperpolarizing current was not needed when the
inhibitory cells were modeled using either Type II formalism, as
those model neurons will not fire spontaneously.

We modeled synapses using a double exponential profile of
the form:

Isyn(t) = gsyn(V − Esyn)

(

∑

si

e−(t−si)/τd − e−(t−si)/τr

)

(18)

FIGURE 1 | Network diagram of E-I networks. (A) Connectivity in an E-I

network with a weakly connected inhibitory subnetwork. Thin, light red arrow

symbolizes the weak intraconnectivity between inhibitory interneurons. (B)

Connectivity in an E-I network with a strongly connected inhibitory

subnetwork. Thick, dark red arrow symbolizes the strong intraconnectivity

between inhibitory interneurons. In both diagrams, the dark green arrow

symbolizes E-I synapses, while the red arrow indicates I-E synapses.
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where gsyn is the maximum conductance, V is the membrane
voltage of the post-synaptic neuron, Esyn is the reversal potential
of the synaptic current, si are the times of all pre-synaptic spikes
occurring before the current time t in ms, and τd and τr are the
synaptic decay and the synaptic rise time constants, respectively
(in ms). Esyn is set at −75 mV for inhibitory synapses and
0mV for excitatory synapses. τr is set at 0.2 ms for all synapses,
while τd is set at 3.0 ms for excitatory synapses and 5.5 ms for
inhibitory synapses. For I-E synapses, gsyn = 0.003 mS/cm2,
while the synaptic weight for I-I and E-I synapses is varied in the
simulations.

Simulations of strictly inhibitory networks utilize the network
connectivity described in our previous work (Rich et al., 2016),
where 1,000 inhibitory neurons are randomly connected with a
30% connectivity density. Cell heterogeneity is implemented in
these simulations by varying the external driving current to the
inhibitory neurons in a method analagous to that used for the
excitatory neurons in the E-I networks described above. Synapses
are also modeled identically to those described above.

Noise
To investigate effects on our results of noisy perturbations
to the network, we ran simulations where Poisson trains of
brief excitatory stimuli were given to the excitatory neurons in
addition to their tonic driving currents and synaptic currents.
At each time step, there is a probability p = 10−3 that a
given excitatory cell receives an excitatory “kick.” These kicks are
modeled with a temporal profile similar to the excitatory synaptic
currents in the network and are thus of the form:

Inoisei (t) = gnoise

(

e−(t−si)/τd − e−(t−si)/τr
)

(19)

where si is the time of the ith kick to the cell, τd and τr are
the same as for excitatory synaptic currents, and gnoise is the
amplitude of each kick. The times of the 10 most recent kicks are
stored and contribute to the drive to the cell, such that:

Inoisetotal (t) = gnoise





∑

(k−9)≤i≤k

e−(t−si)/τd − e−(t−si)/τr



 (20)

where k is the total number of kicks to the given cell at time t.
This term is added to the overall current balance equation of the
given cell, such that:

dV

dt
= Iionic + Iapp − Isyn + Inoisetotal (21)

where Iionic denotes all terms besides Iapp and Isyn found in
Equations 1 and 10.

While the frequency of the noise was kept constant (i.e., p was
the same for all simulations with noise), we varied gnoise in these
simulations, as seen in Figure 8.

Measures
We used several measures to quantify the dynamics of network
activity. Foremost among them is the Synchrony Measure, an
adaptation of a measure created by Golomb and Rinzel (1993,

1994) that quantifies the degree of spiking coincidence in the
network. Briefly, the measure involves convolving a gaussian
function with the time of each action potential for every cell to
generate functions Vi(t). The population averaged voltage V(t) is

then defined as V(t) =
1

N

N
∑

i=1

Vi(t), where N is the number of

cells in the network. We further define the overall variance of the
population averaged voltage σ and the variance of an individual
neuron’s voltage σi as:

σ =< V(t)2 > − < V(t) >2 (22)

and

σi =< Vi(t)
2 > − < Vi(t) >2 (23)

where < · > indicates time averaging over the interval for which
themeasure is taken. The SynchronyMeasure S is then defined as:

S =
σ

1

N

∑N
i=1 σi

(24)

The value S = 0 indicates completely asynchronous firing, while
S = 1 corresponds to fully synchronous network activity.

The Synchrony Measure does not detect organization, or
lack thereof, within each synchronous burst of network activity,
or take into account the periodicity of the bursting dynamics.
As such, we utilized three additional measures to quantify the
organization and periodicity of excitatory bursting dynamics in
our E-I networks.

Each of these three additional measures relied upon detecting
instances of bursting activity within the excitatory network
and identifying which neurons participated in the burst. To
do this, the spike times of all the excitatory neurons in the
network are convolved with a gaussian function to form a time
trace of cumulative network activity. This trace is subsequently
thresholded to determine the on and off times for every burst
(bj and ej, respectively). For each burst j we construct a binary
vector that quantifies which neurons spiked during the burst, vj.
If neuron i spiked during burst j, meaning it fires at a time tj such
that bj ≤ tj ≤ ej, we set vj(i) = 1, otherwise vj(i) = 0.

To analyze the organization of excitatory neurons within each
network burst, we calculate the Variance of Neuron Order (O) in
each simulation. For each burst of excitatory network activity in
the last second of a given simulation (we term k the number of
these bursts), the spike time of each firing neuron is detected and
temporally ordered. We assign a value Oi,j for each neuron i in
each burst j that conveys information on the ordering of the firing
of neuron i within burst j. The firing order is normalized by the
number of unique firing times in each excitatory burst and scaled
between 1 and 100 such that the neurons that fire first have a value
of 1 and the neurons that fire last (or not at all in a given burst)
are given a value of 100. To calculate O, we take the standard
deviation of the values Oi,j for 1 ≤ j ≤ k for each excitatory
neuron i, and then average these 800 values to yieldO. Low values
of O indicate that neurons retain a predictable temporal ordering
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in each burst of activity; typically neurons with stronger external
driving currents fire early and those with weaker driving currents
fire later (where this variability in driving current is due to the
implemented heterogeneity). High values of O indicate that the
ordering of neuron firing within bursts is variable and thus the
bursts do not retain significant ordering.

To analyze the consistency of cell participation in bursts,
which we consider a measure of burst strength, we calculate
the Variance of Active Cells (A) in each simulation. For each
burst of excitatory network activity in the last second of a
given simulation, the proportion of excitatory cells active in the
burst is calculated, and A is defined as the standard deviation
of these values. Low values of A indicate that each burst of
excitatory network activity contains a similar proportion of the
overall number of excitatory cells in the network, which in turn
means that the strength of the excitatory signal sent to the
inhibitory cell population is similar for each burst. High values
of A indicate the number of active excitatory neurons varies
from burst to burst; in turn, this causes significant variation in
the strength of the excitatory signal sent to the inhibitory cell
population.

Finally, to analyze the consistency of the periodic nature of
excitatory network bursting activity, we calculate the Variance of
Inter-burst Interval (I). The inter-burst interval between bursts
of excitatory network activity is found for each burst occurring
within the last second of a given simulation, and the coefficient of
variation is calculated for these inter-burst intervals, giving the
measure I. We note that we use the coefficient of variation in
this measure because the standard deviation values vary with the
average firing frequency of the bursts. Low values of I indicate
that the network is periodic with very little variation in the
timing between bursts of network activity. High values of I
indicate that bursts of excitatory cell activity exhibit significant
variability in their timing, which in turnmeans that the excitatory
signal sent to the inhibitory cell population is not strictly
periodic.

These three measures are combined together into one
measure, dubbed the Variability Measure (V), to quantify the
degree to which the excitatory network displays well-organized,
periodic bursts typical of classic PING rhythmic activity. The
measure is calculated thusly:

V =
√

(

Ō2 + Ā2 + Ī2
)

(25)

where the bar indicates normalized values of each of themeasures
O, A, and I between 0 and 1.

Each measure is normalized by dividing by a maximal value
that is slightly above the highest values of the measure typically
achieved in networks exhibiting clear bursting activity amongst
excitatory cells. When S < 0.2, which indicates that the network
is asynchronous to the point that bursts of network activity do not
occur, we artificially set the value of each normalized measure to
1. This ensures that the normalized values of each measure are 1
only in cases without clear bursting patterns. Via this algorithm,

the normalized values of each measure are calculated as:

for X = O,A, I: X̄ =







X

Xm
if S ≥ 0.2

1 if S < 0.2
(26)

The Variability Measure thus takes the Euclidean Distance of
these three measures when their values are scaled between 0 and
1, with 0 indicating minimal variability in the given metric and
1 indicating abnormally high variability or a lack of network
bursts. The value V = 0 indicates a network in which there
is no variability in the order of neurons within each burst, no
variability of the number of neurons firing in each burst, and
no variability in the inter-burst intervals. V will approach its
maximum value of

√
3 in networks when high variability is

detected by each of the three measures, and V will achieve its
maximum value only if this variability is abnormally high in each
measure or if no bursting activity is achieved by the network.

We also calculated the difference between the total excitatory
and total inhibitory synaptic signaling (E-I Difference) in the
inhibitory network. We calculate it as a mean difference between
the total excitatory synaptic current and total inhibitory synaptic
current received by the inhibitory cell population. As with our
other measures, we analyze the final second of our simulations
using the E-I Difference. We note that we utilized this measure
instead of a ratio of excitatory and inhibitory synaptic current, as
is common in E/I Balance measures, because such a ratio would
tend toward infinity in networks with little or no inhibitory cell
activity, which exist in our parameter space.

Simulations
The code implementing these simulations was written in the C
programming language and run on the University of Michigan’s
Flux cluster, a Linux-based high-performance computing cluster.

All simulations were run for 1,500 ms from random initial
conditions for voltage and gating variables for each neuron.
Possible initial conditions for V ranged between −62 and
−22mv, while the possible initial conditions for each gating
variable ranged between 0.2 and 0.8.

Model equations were integrated using a fourth order Runge-
Kutta technique. Spikes do not trigger synaptic current until
100ms into the simulation to allow initial transients to decay.

Example raster plots shown throughout this paper are plotted
such that the excitatory cells with the highest external driving
current are given the lowest Neuron Index, and thus are plotted
toward the bottom of the y-axis, while neurons with lowest
external driving current are given the highest Neuron Index, and
thus are plotted toward the top of the y-axis. This ordering of
the excitatory cells was chosen to clearly illustrate the temporal
organization of cells within a burst and does not reflect their
location in the network.

All plots illustrating the various measures used to quantify
network dynamics display the average of these scores over five
independent simulations, where the measures are calculated
over the last second of the simulation. The lone exception
are the results shown in Figure 10 for networks with Type II
interneurons, for which only three repetitions were performed
given the uniformity of the results.
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RESULTS

Previous results from our study of strictly inhibitory neural
networks (Rich et al., 2016), combined with previous work in
the field (White et al., 1998; Whittington et al., 2000; Kopell
et al., 2010; Wang, 2010) show that synchronous bursting
occurs in distinct parameter regimes for strongly connected and
weakly connected networks of Type I neurons (see Figure 2).
From random initial conditions, only networks with very
weak inhibitory synaptic weight exhibit synchronous activity
when average intrinsic cell firing frequency is low. As average
intrinsic cell firing frequency increases, such networks exhibit
asynchrony or weaker synchrony. In contrast, networks with
stronger inhibitory synaptic weight synchronize only when
average intrinsic cell firing frequency is high.

These results motivate the current study in which we describe
how changing the I-I connectivity strength in an E-I network is
the impetus behind changing pattern formation in the inhibitory
network, which in turn affects the dynamics of the excitatory
network. The PING dynamics that have been analyzed in the
literature typically are analogous to those seen in Figures 3D,F,H,
where the inhibitory network is strongly intra-connected and
exhibits one instance of activity per oscillatory cycle. However,
by weakening the I-I connectivity, different types of dynamics
can arise amongst the inhibitory cells that affect the profile

FIGURE 2 | Randomly connected strictly inhibitory networks of Type I neurons

with strong and weak inhibitory connectivity synchronize in divergent

parameter regimes. Synchrony measure computed from dynamics of strictly

inhibitory networks consisting of Type I neurons as synaptic weight (x-axis) and

average intrinsic cell firing frequency (y-axis) are varied. Only networks with

very weak inhibitory synaptic weight exhibit synchronous activity when average

intrinsic cell firing frequency is low. Networks with stronger inhibitory synapses

only synchronize when average intrinsic cell firing frequency is higher. Inhibitory

synaptic weights stronger than those shown here simply continue the pattern

of synchronous behavior shown for networks with an inhibitory synaptic weight

above 0.0041 mS/cm2.

of excitatory network bursts, as seen by the examples in
Figures 3C,E,G. We focus on the effects that multiple firings of
inhibitory cells and the consistency and organization of these
bursts have on the temporal organization of firing in excitatory
cell bursts.

E-I Networks with Strong and Weak I-I
Synaptic Strength
We analyze E-I networks with two I-I connectivity strengths in
detail: an E-I network with strong intra-connectivity amongst the
inhibitory subnetwork (entitled “Strong Networks” for brevity)
and an E-I network with weak intra-connectivity amongst the
inhibitory subnetwork (entitled “Weak Networks” for brevity).
Strong Networks have an I-I synaptic weight of 0.025 mS/cm2,
which was chosen in order to be analogous to the strong
inhibitory synaptic weights used in our study of strictly inhibitory
networks (Rich et al., 2016) (where scaling from 1,000 inhibitory
neurons in the strictly inhibitory networks to 200 inhibitory
neurons in the E-I networks is taken into account). Weak
Networks have an I-I synaptic weight of 0.0015 mS/cm2.

For both Strong and Weak Networks we vary the average
intrinsic excitatory cell firing frequencies and E-I synaptic
weights. The I-E synaptic weight as well as connectivity densities
(I-I, E-I, and I-E) are kept constant in all simulations.

To summarize network dynamics, we show the Variability
Measure for Strong Networks in the left panel of Figures 4A, 5A
and for Weak Networks in the left panel of Figures 4B, 5B. For
moderate values of the E-I synaptic weight, both Strong and
Weak networks show synchronous rhythmic bursting with low
Variability Measure reflecting periodic, well-organized excitatory
cell bursts. For low E-I synaptic weight and high E-I synaptic
weight there is a significant difference that requires further
investigation. The right panels of Figures 4A,B investigate
networks with low E-I synaptic weight in more detail by showing
the Synchrony Measure as well as the three measures that are
used in the formation of the VariabilityMeasure individually. The
same is done for networks with high E-I synaptic weight in the
right panels of Figures 5A,B.

Our results indicate that Strong Networks do not display any
form of excitatory bursting activity in most networks with our
lowest E-I synaptic weights. This is illustrated by the Synchrony
Measure in the right panel of Figure 4B. A raster plot showing an
example of this asynchronous activity is shown in Figure 3B. In
contrast, Weak Networks achieve excitatory bursting for many
networks with our lowest E-I synaptic weights as shown by the
Synchrony Measure in the right panel of Figure 4A. The raster
plot in Figure 3A shows a network with identical parameters
to that shown in Figure 3B with only the I-I synaptic weight
weakened which exhibits clear bursting activity. Additionally,
there is a consistent ordering of the excitatory cells in each burst,
along with periodic firing and the same level of participation
of excitatory cells in each burst, leading to low values of the
Variability Measure.

When E-I synaptic weight is strengthened, strong inhibitory
intra-connectivity plays a significant role in controlling network
dynamics. For a large majority of the networks with high E-I
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FIGURE 3 | Example raster plots illustrate the differences between dynamics in networks with weakly connected and strongly connected inhibitory subnetworks.

(A–H) Example raster plots with the excitatory cells (green dots) in these raster plots organized such that cells with the highest external drive are given the lowest

Neuron Indices with the rest of the neurons organized such that decreasing external drive corresponds with increased Neuron Index. Panel letter corresponds with

overlaid labels in Figures 4, 5 indicating the parameters of the given network. (A,C,E,G) are from networks with weakly connected inhibitory subnetworks, while

(B,D,F,H) are from networks with strongly connected inhibitory networks. (A,B) are raster plots from a network with an E-I synaptic weight of 0.0004 mS/cm2 and an

average intrinsic excitatory cell firing frequency of 98.8 Hz. (C,D) Are raster plots from a network with an E-I synaptic weight of 0.00235 mS/cm2 and an average

intrinsic excitatory cell firing frequency of 39.6 Hz. (E,F) are raster plots from a network with an E-I synaptic weight of 0.00235 mS/cm2 and an average intrinsic

excitatory cell firing frequency of 80 Hz. (G,H) are raster plots from a network with an E-I synaptic weight of 0.00235 mS/cm2 and an average intrinsic excitatory cell

firing frequency of 126 Hz.

synaptic weight (highlighted in Figure 5B), Strong Networks
show well-organized synchronous bursting with very low
VariabilityMeasures, with behavior typified by the example raster

plots shown in Figures 3F,H. In contrast, a majority of Weak
Networks show a significantly increased Variability Measure in
the regime of high E-I synaptic weight, despite still exhibiting
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FIGURE 4 | E-I networks with weakly connected inhibitory subnetworks are able to achieve synchrony for low values of the E-I synaptic weight, while E-I networks

with strongly connected inhibitory subnetworks are unable to achieve any sort of excitatory bursting activity for many of these networks. (A,B) Variability Measure (left

panel) calculated over the entire parameter range studied, with the parameter regime of particular interest outlined in red. For this parameter regime of interest, we

show the Synchrony Measure along with the three measures that are used to calculate the Variability Measure (Variance of Neuron Order, Variance of Active Cells, and

Variance of Inter-burst Intervals) in the red box making up the right panel. White entries in the heatmaps indicate that the excitatory network did not achieve sufficient

synchrony for the given measure to be accurately calculated for that network. Overlaid letters indicate parameter values of example raster plots in Figure 3. Results

for E-I networks with weakly connected inhibitory subnetworks are shown in (A), while results for E-I networks with strongly connected inhibitory subnetworks are

shown in (B). In the parameter regime of interest, networks with weakly connected inhibitory subnetworks achieve synchrony of the excitatory subnetwork for many

network parameters for which networks with strongly connected inhibitory subnetworks are completely asynchronous.

synchronous excitatory activity. As shown in the right panel of
Figure 5A, these networks show noticeable increases in each of
the measures making up the Variability Measure. High values
of the Variance of Neuron Order indicates that the timing
of individual excitatory neuron activity within each burst is
not consistent (shown by the “wider” excitatory bursts without
a clear slope and outlier firings in the raster plots displayed
in Figures 3C,G); high values of the Variance of Active Cells
indicates that the number of excitatory cells in each excitatory
burst fluctuates significantly from burst to burst (again illustrated

by Figures 3C,G); increased values of the Variance of Inter-
burst Interval indicates that excitatory burst firing is not strictly
periodic (best illustrated by Figure 3G). All three of these issues,
reflected by an increase in the Variability Measure, imply that
for high E-I coupling, Weak Networks lose the organization,
consistency and strict periodicity of excitatory bursts that have
classically typified PING rhythmicity.

The cause of the changes in excitatory bursting dynamics
in our Weak Networks is the disorganization of inhibitory cell
firing. As illustrated by the example raster plots in Figures 3C,G,
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FIGURE 5 | E-I networks with weakly connected inhibitory subnetworks exhibit excitatory bursting with high variability for high values of the E-I synaptic weight

despite exhibiting synchrony in this parameter regime; in contrast, E-I networks with strongly connected inhibitory subnetworks exhibit mostly low variability firing in

this parameter regime. (A,B) Variability Measure (left panel) calculated over the entire parameter range studied, with the parameter regime of particular interest outlined

in green. For this parameter regime of interest, we show the Synchrony Measure along with the three measures that are used to calculate the Variability Measure

(Variance of Neuron Order, Variance of Active Cells, and Variance of Inter-burst Intervals) in the green box making up the right panel. White entries in the heatmaps

indicate that the excitatory network did not achieve sufficient synchrony for the given measure to be accurately calculated for that network. Overlaid letters indicate

parameter values of example raster plots in Figure 3. Results for E-I networks with weakly connected inhibitory subnetworks are shown in (A), while results for E-I

networks with strongly connected inhibitory subnetworks are shown in (B). In the parameter regime of interest, networks with strongly connected inhibitory

subnetworks almost exclusively exhibit bursting patterns with low variability, while networks with weakly connected inhibitory subnetworks show a much higher

Variability Measure due to the higher values of the Variance of Neuron Order, Variance of Active Cells, and Variance of Inter-burst Intervals for most networks in this

parameter regime.

the combination of weak I-I and strong E-I synaptic strength
leads to multiple instances of inhibitory cell activity in response
to a burst of excitatory cell activity. Due to the randomness
in network connectivity and cell heterogeneity, these multiple
bursts are not consistent across different instances of inhibitory
activity; in extreme cases, inhibitory bursts may not exhibit
clear synchrony. The specific form of the inhibitory network
activity changes throughout the simulation, altering in turn

the modulation of the excitatory network’s activity. Thus, while
these dynamics might not disrupt the formation of synchronous
excitatory bursts, they do disrupt the organization, consistency
and periodicity of these bursts.

However, there is a parameter regime within the highlighted
high E-I synaptic strength region for which Weak Networks
retain a low Variability Measure. Such networks, an example of
which is shown by the raster in Figure 3E, still exhibit multiple
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bursts of inhibitory activity in response to excitatory activity,
but do so in a consistent and organized fashion in response
to each instance of excitatory activity. The existence of such
networks shows that it is the disorganization of inhibitory cell
firing, and not necessarily the existence of multiple inhibitory
network bursts, that causes significant changes to the properties
of excitatory bursts.

An additional parameter regime of interest is networks with a
low average intrinsic cell firing frequency but a high E-I synaptic
weight. Here, Strong Networks exhibit a significantly increased
Variability Measure similarly to Weak Networks, albeit driven by
a different mechanism. While the increased variability in Weak
Networks in this regime can be attributed to overactivity and
disorganization amongst the inhibitory cells (as illustrated by
the raster in Figure 3C), the increased variability in this regime
for Strong Networks is caused primarily by the dynamics of the
excitatory cells.

A combination of two factors leads to these dynamics in
Strong Networks, typified by the behavior shown by the raster
plot in Figure 3D. First, for networks with the slowest average
intrinsic excitatory cell firing frequencies, following an inhibitory
burst, the excitatory cells are slow to fire leading to a longer
interval between inhibitory bursts. This allows the burst of
excitatory activity to occur over a longer period of time (see
example in Figure 3D). Thus, the possibility of more variability
in the excitatory bursts arises. In contrast, for networks with
faster firing excitatory cells, the excitatory cells fire shortly after
the inhibition decays, causing the next inhibitory burst to occur
quickly as well. This, in turn, creates a very small time window
in which excitatory activity can occur and thus less possibility for
significant variability in firing times.

Second, with high E-I synaptic weight, even strongly intra-
connected inhibitory networks can receive sufficient excitatory
signal to burst without a majority of the excitatory cells firing.
Excitatory cells that fire before the burst of inhibition are
suppressed following the burst of inhibition, while cells that have
not fired are typically past the threshold for action potential firing
at the time of the burst of inhibition, and thus their firing pattern
is not significantly affected by the inhibition. Thus, cells that fire
prior to the burst of inhibition on one cycle will fire later, if at all,
on the following cycle. This causes disorganization in the neuron
order from cycle to cycle, as the driving current to the excitatory
cells is now not the only factor determining when in a burst they
fire, since each neuron is not receiving similar inhibitory delay as
is typical in PING rhythmicity.

These two factors cooperatively lead to the disorganization of
the excitatory bursts as reported by the Variability Measure. This
is shown in the raster in Figure 3D by the lack of a clear slope in
the excitatory burst, as well as the bursts occurring over a longer
timespan. Additionally, the number of cells participating in each
burst varies significantly by the same reasoning.

In summary, in most cases high values of the E-I synaptic
weight require stronger inhibitory intra-connectivity in order
to preserve consistent inhibitory response to excitatory activity
in an E-I network, which in turn preserves well-ordered and
consistent bursting of the excitatory population. However,
our investigation into these networks also reveals that Weak

Networks may exhibit well-organized and consistent excitatory
bursting when the inhibitory network exhibits multiple bursts, as
long as such bursts are themselves well-organized. Additionally,
Strong Networks exhibit increased variability for high E-I
synaptic weight when intrinsic excitatory cell firing has lower
average frequency.

A further explanation as to the differences underlying the
Strong and Weak Networks lies in the synaptic E-I Difference
in the inhibitory subnetwork. As shown in Figure 6, there is a
stark difference between the E-I Difference for Weak Networks
(Figure 6A) and Strong Networks (Figure 6B). In particular,
the E-I Difference for Strong Networks is always negative,
meaning that the inhibitory intra-connectivity dominates the
excitatory drive to the inhibitory cells, and shows minimal
change in response to altering network parameters. In contrast,
the E-I Difference for Weak Networks increases as the E-I
synaptic weight increases and is always positive, meaning that
the excitatory drive dominates the inhibitory intra-connectivity
within the inhibitory subnetwork.

This dichotomy provides a more quantitative explanation
for the dynamical differences exhibited by these networks. The
dominance of inhibitory intra-connectivity over the excitatory
synaptic drive in Strong Networks ensures that following a burst
of inhibitory activity, the inhibitory synaptic drive dominates the
excitatory synaptic drive and ensures that inhibitory cells are
silent following the burst. This explains the tendency for Strong
Networks to only exhibit the 1:1 bursting ratio that is a hallmark
of classic PING theory, as well as the minimal differences in
network dynamics seen as the E-I synaptic weight increases.
However, in Weak Networks, increasing E-I synaptic weight
cannot be counteracted by the weaker inhibitory synapses as
illustrated by the increasing and positive E-I Difference, which
allows for multiple bursts of inhibitory activity that are often
disorganized and in turn lead to an increase in the Variability
Measure.

Additionally, analyzing the E-I Difference cements the
importance of the I-I connectivity in dictating overall network
dynamics. Figure 6C illustrates the E-I Difference for a Weak
Network where the hyperpolarizing current to the inhibitory
cells is increased from −0.2 to −3.0 µA/cm2. In this network
paradigm, the inhibitory cells are “less excitable” than those
in the Weak Networks due to the external current, but the
synaptic E-I Difference in the inhibitory subnetwork retains
similarity to that seen in the Weak Network, namely retaining
positive values that increase with increasing E-I synaptic weight.
Importantly, the E-I Difference remains entirely distinct from
that of Strong Networks, which can be considered to have “less
excitable” inhibitory cells given the stronger I-I connectivity.
This result indicates that the net excitability of the inhibitory
cells and the strength of inhibitory intra-connectivity are distinct
features that have differing effects on network dynamics. Indeed,
multiple and sometimes disorganized inhibitory bursts are seen
in Weak Networks with this additional hyperpolarizing current,
as shown by the example raster plots in Figures 6G,H, while
Strong Networks never show inhibitory double bursts. This again
shows that making the cells less excitable through an external
hyperpolarizing current does not have the same effect as doing
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FIGURE 6 | Dynamical differences between networks with weakly connected and strongly connected inhibitory subnetworks are reflected in differences in E-I

Difference and Inhibitory Synchrony Measure, even with changes to the external hyperpolarizing current. (A–C) Synaptic E-I Difference for Weak Networks (A), Strong

Networks (B), and Weak Networks where the external hyperpolarizing current is increased from −0.2 to −3.0 µA/cm2 (C). (D–F) Inhibitory Synchrony Measure for the

same three network types. White entries in the heatmaps indicate that the measure could not be calculated due to insufficient inhibitory activity, and overlaid

alphanumeric codes indicate position of example raster plots seen in Figure 3 (for comparison to those shown here) and in this figure. (G,H) Example raster plots for

Weak Networks with Extra Hyperpolarizing Current; both examples are for a network with an average intrinsic excitatory cell firing frequency of 126 Hz, with (G) an

example from a network with an E-I synaptic weight of 0.00235 mS/cm2 while (H) is an example from a network with an E-I synaptic weight of 0.00190 mS/cm2.

Weak Networks, both with and without additional hyperpolarizing current, show a dominance of excitatory synaptic activity reflected in positive E-I Difference values

that increase as the E-I synaptic weight increases, while Strong Networks show a dominance of the inhibitory synaptic activity reflected in largely uniform negative

values of the E-I Difference. Moreover, Weak Networks with Extra Hyperpolarizing Current retain distinct behaviors from Strong Networks as illustrated by the Inhibitory

Synchrony Measure and example raster plots.
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so by increasing the I-I synaptic weight. The differences in
dynamics of the inhibitory cells between these networks and
Strong Networks are confirmed by comparing the Synchrony
Measure computed for the inhibitory subnetwork, shown for
all three types of networks discussed above in Figures 6D–F.
Thus, regardless of the hyperpolarizing current to the inhibitory
cells, the weak I-I synaptic weight is not sufficient to balance
increasing excitatory signal, preventing them from achieving the
very synchronous bursts exhibited in Strong Networks for all
values of the E-I synaptic weight.

To study the robustness of these behaviors, we varied the I-I
synaptic weights between the values used in theWeak and Strong
Networks. The results are illustrated in Figure 7, in whichwe vary
the I-I synaptic strength along the y-axis and the E-I synaptic
strength along the x-axis while keeping the average intrinsic
cell firing frequency fixed. We show examples for slow firing
excitatory cells in Figures 7A,C,E,F and for fast firing excitatory
cells in Figures 7B,D,F,G.

As the I-I connectivity is varied, there are two distinct
dynamical regimes, one with dynamics analogous to the Strong
Network (blue bracketed values) and one with dynamics
analogous to the Weak Network (pink bracketed values), with
an abrupt transition between the two. This result justifies our
study of the Strong Network and Weak Network as their
activity is representative of dynamics for a range of I-I synaptic
weights in our E-I network topology. For the values of the I-
I synaptic weight in the weak regime, the Variability Measure
(Figures 7A,B) increases non-monotonically as E-I synaptic
weight increases as discussed for the Weak Network. These
regimes of high and low Variability Measure shift as the I-I
synaptic weight increases since the E-I synaptic weight for which
a given behavior is achieved likewise increases; for example, when
the I-I synaptic weight is increased, a correspondingly higher E-I
synaptic weight, which provides a stronger drive to the inhibitory
cells, is required to achieve the “parameter balance” necessary
for these networks to achieve a low Variability Measure despite
a high E-I synaptic weight. Additionally, these networks display a
non-zero Synchrony Measure (Figures 7C,D) for lower values of
the E-I synaptic weight. In contrast, the values of the I-I synaptic
weight in the strong regime display a consistently low Variability
Measure (with the exception of high E-I synaptic weight for
the slower firing network, the unique situation discussed in
detail above) but completely asynchronous activity (shown by the
Synchrony Measure) for low values of the E-I synaptic weight.

The presence of two distinct dynamical regimes is also
apparent from analyzing the average excitatory burst frequency
(Figures 7E,F) and the ratio of inhibitory bursts to excitatory
bursts (Figures 7G,H) in these networks, properties that reveal
the network dynamics in more detail. Networks with inhibitory
intra-connectivity in the strong regime show a monotonic
increase in their average excitatory burst frequency as the E-I
synaptic weight increases, while networks with inhibitory intra-
connectivity in the weak regime show an overall decrease in their
average excitatory burst frequency as the E-I synaptic weight
increases, with some instances of increasing burst frequency
that correspond with networks that exhibit low variability.
Additionally, networks in the strong regime exclusively exhibit a

1:1 ratio between inhibitory and excitatory bursts, while networks
in the weak regime can exhibit two or even three inhibitory bursts
for each excitatory burst. Through these measures we see that
activity closely matching classic PING rhythms is seen over the
majority of the values of the E-I synaptic weight for the range of
I-I synaptic weights that yield behavior analogous to the Strong
Network studied above, while unique dynamics are seen over the
range of I-I synaptic weights that yield behavior analogous to the
Weak Network studied above.

These results reveal the robustness of the dichotomous
dynamics displayed by excitatory cells in the Strong Network
and Weak Network studied above. Indeed, it appears that slight
heterogeneities in the I-I synaptic strength should not lead to
major changes in network dynamics in an E-I network, while
larger heterogeneities (where I-I synaptic weights include those
inducing both weak and strong behavior) may lead to antithetical
dynamics. This motivates our construction of E-I networks with
heterogeneous inhibitory populations, described below.

E-I Networks with Noisy Excitatory Cells
To confirm the robustness of our results to more realistic
biological conditions, we simulated analogous networks while
adding Poisson trains of excitatory synaptic input to the
excitatory neurons. These simulations were performed with a
range of noise amplitudes: the lowest amplitude noise slightly
accelerates the next firing of the perturbed neuron, while the
highest amplitude noise causes the perturbed neuron to fire
with a probability of nearly 1 in a 5 ms window following the
perturbation.

The results of these simulations for an illustrative choice of the
average intrinsic excitatory cell firing frequency, for both Strong
Networks and Weak Networks, are illustrated in Figure 8. For
both types of networks, the network dynamics are quantified via
the Variability Measure (Figures 8A,B) and Synchrony Measure
(Figures 8C,D). Overall, we observe that slight increases in the
Variability Measure are seen as the noise amplitude increases, but
this increase is largely uniform across all values of the E-I synaptic
weight, preserving the relative pattern of well-organized and
less organized excitatory bursting dynamics. These patterns only
break down in the presence of large amplitude noise, in which
many simulations lose synchronous excitatory activity, shown
by the maximal Variability Measure values and near-minimal
Synchrony Measure values.

In particular, Weak Networks (Figures 8A,C) still exhibit
pockets of lower Variability Measure amidst the simulations with
higher E-I synaptic strength that tend to exhibit higher Variability
Measure. In contrast, Strong Networks (Figures 8B,D) retain
their more consistent pattern of exhibiting low Variability
Measure in nearly every case where excitatory synchrony is
achieved. In both scenarios, the Variability Measure increases
in a largely consistent manner as the amplitude of the noise
increases, with exceptions for the scenarios when excitatory
network synchrony is completely lost.

These results taken together illustrate that the introduction
of noise does not significantly alter the previously identified
dynamical regimes of the Strong and Weak Networks, as
each retains their unique properties that differentiate network
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FIGURE 7 | Varying the I-I synaptic weight reveals that E-I networks display two distinct dynamical patterns directly analagous to those seen in our networks with

weakly connected or strongly connected inhibitory subnetworks. (A–H) Heatmaps varying the E-I synaptic weight on the x-axis and I-I synaptic weight on the y-axis

for networks with an average intrinsic excitatory cell firing frequency of 39.6 Hz (A,C,E,G) and 126 Hz (B,D,F,H). Four measures are shown: the Variability Measure

(A,B), the Synchrony Measure for Excitatory Neurons (C,D), the Average Excitatory Burst Frequency in Hz (E,F) and the ratio of the Average Inhibitory Burst

Frequency over the Average Excitatory Burst Frequency (G,H). White boxes in the heatmaps indicate that the excitatory network did not achieve sufficient synchrony

for the given measure to be accurately calculated for that network. Values of I-I connectivity strength that exhibit behavior corresponding with that seen in our network

with a weakly connected inhibitory subnetwork are highlighted by the pink bracket, while values that exhibit behavior corresponding with that seen in our network with

a strongly connected inhibitory subnetwork are highlighted by the blue bracket.
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FIGURE 8 | Differences in dynamical patterns between Weak and Strong Networks are preserved in the presence of noisy drive to the excitatory cells. (A–D)

Variability Measure (A,B) and Synchrony Measure (C,D) shown for Weak Networks (A,C) and Strong Networks (B,D) with an average intrinsic excitatory cell firing

frequency of 98.8 Hz in the presence of noise with varying amplitudes (y-axis). E-I synaptic weight is varied along the x-axis. Distinct differences in the dynamics

articulated by the Variability Measure and Synchrony Measure are still seen between Weak and Strong Networks, with the major similarity being that both networks

similarly devolve into asynchronous excitatory cell firing with high-amplitude noise.

dynamics dependent upon the strength of inhibitory intra-
connectivity.

E-I Networks with Heterogeneity in I-I
Synaptic Strength
To construct a network that incorporates properties of networks
with weak I-I connectivity and networks with strong I-I
connectivity, we created networks with heterogeneous inhibitory
synaptic strengths (which for brevity we will refer to as
Strong/Weak Networks, Figure 9B).

The Strong/Weak Network contains 800 excitatory cells and
200 inhibitory cells as before, but the inhibitory cells are divided
into two subnetworks of 100 cells each. One of the subnetworks
has a strong I-I synaptic strength of 0.05 mS/cm2, while the
other has a weak I-I synaptic strength of 0.003 mS/cm2. The
values of the I-I synaptic strength are scaled from the values
used in the Strong Networks and Weak Networks for a network
of 100 as opposed to 200 cells. Each of these subnetworks
has 30% intra-connectivity density, just as for the inhibitory
subnetworks in our previously studied E-I networks, but these
inhibitory neurons only synapse onto other inhibitory neurons
within their subnetwork. Interneurons have the same likelihood
of receiving synaptic input from an excitatory cell or sending

synaptic output to an excitatory cell as in our networks studied
above.

The Synchrony and Variability Measures for the excitatory

neurons in Strong/Weak Networks are shown in Figure 9A. For
ease of comparison the difference between these measures in the

Weak and Strong Networks (Figures 4, 5) and the Strong/Weak
Networks are shown in Figures 9C,D. As Figure 9C illustrates,
compared to the Strong Networks, Strong/Weak Networks
achieve a higher Synchrony Measure and lower Variability
Measure for low values of the E-I synaptic weight. A
raster plot exhibiting such a network is shown in Figure 9E,
where despite sparse, asynchronous activity of the strongly
connected interneurons, the weakly connected interneurons
exhibit synchronous bursting that provides the necessary
inhibition to the excitatory cells to promote synchronous
bursting. In contrast, Strong Networks in this parameter regime
are typified by the behavior shown by the raster in Figure 3B,
which is completely asynchronous. Additionally, Strong/Weak
networks exhibit higher values of the Synchrony Measure
and lower values of the Variability Measure in the regime of
high E-I synaptic weight and low average intrinsic cell firing
frequency for which Strong Networks show less organized
bursting.
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FIGURE 9 | Constructing an E-I network that contains both strongly connected and weakly connected inhibitory subnetworks decreases burst variability in networks

with strictly weakly connected inhibitory subnetworks while also expanding the parameter regime in which any synchrony is achieved in comparison to networks with

strictly strongly connected inhibitory subnetworks. (A) Synchrony Measure (left) and Variability Measure (right) for a network with both strongly connected and weakly

connected inhibitory subnetworks (hereafter referred to as Strong/Weak networks). (B) Diagram representing the connectivity for our Strong/Weak network. The

thicker and darker red curve connecting the inhibitory cells to themselves for the population on the left illustrates the strong interconnectivity of those interneurons,

while the thinner and lighter red curve connecting the inhibitory cells to themselves for the population on the right illustrates the weak interconnectivity of those

interneurons. (C,D) Difference between the Synchrony and Variability Measure of a strictly weakly connected inhibitory subnetwork (C) and strictly strongly connected

inhibitory subnetwork (D) with our Strong/Weak network with networks show the parameter regimes in which the Strong/Weak Networks show a higher Synchrony

Measure and lower Variability Measure compared to networks with only one strength of inhibitory interconnectivity. (E,F) Example raster plots from Strong/Weak

Networks. (E) is a network with an intrinsic cell firing frequency 53.4 Hz and an E-I synaptic weight of 0.0003 mS/cm2, and is from a parameter regime similar to the

network shown in Figure 5B. (F) is a network with an intrinsic cell firing frequency 53.4 Hz and an E-I synaptic weight of 0.00225 mS/cm2, and is from a parameter

regime similar to the network shown in Figure 5C.

Furthermore, as illustrated in Figure 9D, compared to Weak
Networks, Strong/Weak Networks show a significant decrease in
the Variability Measure for high values of the E-I synaptic weight,
as well as in a thin parameter regime with moderate E-I synaptic
weight for which Weak Networks showed increased variability
in excitatory bursting. Figure 9F displays an example raster

plot of a Strong/Weak network with high E-I synaptic weight
where the organization and consistency of excitatory bursting
is largely maintained thanks to consistent synchronous bursting
from the strongly connected inhibitory neurons, which in turn
helps to maintain a more consistent firing pattern amongst the
weakly connected inhibitory neurons by gating excitatory cell
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activity. This can be compared to the Weak Network illustrated
in Figure 3C which displays distinctly unorganized and variable
bursting patterns.

Indeed, Strong/Weak Networks achieve the proverbial “best
of both worlds,” exhibiting synchrony for very low values of
the E-I synaptic weight like Weak Networks while preserving
the organization and consistency of excitatory bursting for high
values of the E-I synaptic weight like Strong Networks. This new
type of E-I network with heterogeneity amongst the inhibitory
interneurons thusly generates well-organized and consistent
excitatory bursting over a wider parameter range than a network
with homogeneous inhibitory intraconnectivity, regardless of the
strength of that intraconnectivity. We will discuss the biological
motivations for creating such a network and the implications of
this mechanism in more detail in the Discussion below.

E-I Networks with Type II Interneurons
Our previous work revealed that intrinsic cellular properties,
typified by the Type I and Type II neuron classifications, play
a pivotal role in determining network dynamics in strictly
inhibitory neural networks (Rich et al., 2016). The importance
of interneuron cell type in those networks begs the question of
whether E-I networks with different inhibitory cell types will
exhibit different responses to a change in the I-I synaptic weight.

To probe this topic, we study E-I networks with the same
topology as those studied above while replacing our Type I
interneuron with either a model neuron exhibiting Type II
properties without spike frequency adaptation (hereafter simply
referred to as Type II neurons) or Type II properties with spike
frequency adaptation (hereafter simply referred to as Type II
neurons with adaptation).

We observed that networks with either Type II interneuron
do not exhibit significant changes in dynamics as the I-I synaptic
weight changes. For slow firing networks there is essentially no
change in the excitatory bursting properties as the I-I synaptic
weight changes, as displayed in Figures 10A,C; indeed, even
though networks with Type II neurons show a significantly
increased Variability Measure for high values of the E-I synaptic
weight, this increase is not dependent upon the I-I synaptic
weight.

Faster firing networks with Type II neurons, shown in
Figures 10B,D, also exhibit minimal change in network
dynamics as a result of changing I-I synaptic weight. For the
faster firing networks with Type II neurons with adaptation
shown in Figure 10B, networks with high values of the I-I
synaptic weight exhibit a regime with a moderate value of the
Variability Measure whereas networks with weaker values of the
I-I synaptic weight are less likely to do so; however, all networks,

FIGURE 10 | E-I networks with Type II interneurons, both with and without an adaptation current, do not show significant change in dynamics as a function of I-I

synaptic strength, unlike E-I networks with Type I interneurons. (A–D) Heatmaps showing the Variability Measure for networks with varying E-I synaptic strength on the

x-axis and varying I-I synaptic strength on the y-axis. The average intrinsic cell firing frequency of the networks are set at 39.6 Hz in (A,C) and 126 Hz in (B,D). Results

with inhibitory neurons modeled as a Type II neuron with adaptation are shown in (A-B), while results with inhibitory neurons modeled as a Type II neuron without

adaptation are shown in (C,D). Neither networks with Type II with adaptation or Type II interneurons show the significant changes in dynamics as a function of the I-I

synaptic weight that typified networks with Type I interneurons.
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regardless of I-I synaptic strength, with moderate to high E-I
synaptic weight still show similar bursting properties, unlike in
our Type I networks.

These results imply that classic PING rhythmic bursting,
which typically yield low values of the Variability Measure,
are more robust to changes in I-I synaptic weight when the
interneurons are Type II (with or without adaptation) then when
the interneurons are Type I. This provides further evidence for
the important role that cell type plays in networks with inhibitory
neurons. Furthermore, these results also match the intuition we
gained from varying the connectivity density in strictly inhibitory
networks with these types of neurons, as unlike networks of
Type I neurons, networks of Type II neurons showed little if any
change in dynamics as the synaptic strength changed (Rich et al.,
2016).

DISCUSSION

Our work here has shown that the strength of intra-connectivity
amongst inhibitory neurons in a E-I network plays a pivotal
role in controlling rhythmic PING-like dynamics. Changes to
this connectivity can cause the inhibitory network to display
dynamics beyond the single burst per oscillatory cycle typically
seen in PING rhythms. By analyzing networks that do not satisfy
this largely artificial constraint, we reveal that changing dynamics
amongst the inhibitory cells are the impetus behind patterns
formed in the excitatory cells that diverge from the classic PING
predictions. Changes in the dynamics of the excitatory network
are of paramount importance in biological networks where the
excitatory pyramidal cells serve to output the signal generated by
an E-I network to other brain regions.

Such networks with strong I-I connectivity display behavior
largely explained by the conceptual PING model. For example,
the inability for these networks to exhibit any excitatory
synchrony for low E-I synaptic weights follows directly from the
classical PING theory (Kopell et al., 2010). In this case, the strong
intra-connectivity between inhibitory cells, combined with a
weak excitatory drive to the inhibitory cells due to the weak E-
I synaptic weight, prevents enough net drive from accumulating
in the inhibitory cells to elicit a synchronous burst. This parallels
the behavior seen in strictly inhibitory networks with strong
inhibitory connectivity, in which networks with a low average
intrinsic cell firing frequency, analogous to the excitatory drive to
the inhibitory cells seen here, exhibit complete asynchrony. This
behavior is explained in greater detail in our previous work, as
the synaptic weight values analyzed in those strictly inhibitory
networks are in an analogous range to the strong inhibitory
intra-connectivity in our Strong Network here (Rich et al., 2016).

Furthermore, in Strong Networks with increased E-I synaptic
weight, which results in a stronger drive to the inhibitory cells,
the strong inhibitory intraconnectivity ensures only a single
inhibitory burst occurs in response to excitatory cell activity. This
provides for nearly identical levels of inhibition to each excitatory
cell, which leads to classic PING activity (Kopell et al., 2010).

However, networks with weak I-I connectivity display
divergent dynamics that have not been thoroughly analyzed

by existing PING literature. These networks exhibit synchrony
amongst the excitatory cells for very weak values of the E-I
connectivity, contrary to the conceptual PING model (Traub
et al., 1997; Ermentrout and Kopell, 1998; Whittington et al.,
2000; Kopell et al., 2010). When the I-I synaptic weight is
weak, less inhibition accumulates as a result of inhibitory intra-
connectivity; this means that less excitatory drive is required
to elicit a synchronous burst of inhibitory cell activity, which
in turn leads to an excitatory burst. Here again the parallels to
strictly inhibitory networks with weak inhibitory connectivity
are apparent, as such networks were able to synchronize for
low average intrinsic cell firing frequencies for which strongly
connected networks were asynchronous.

Additionally, as the E-I connectivity strength increases, Weak
Networks exhibit inhibitory cell dynamics beyond the single
synchronous burst typically seen in PING networks. These
dynamics can include multiple inhibitory bursts, as well as
asynchronous inhibitory firing. Furthermore, the inhibitory
patterning may differ in response to each excitatory burst. While
such networks can still exhibit synchronous activity amongst the
excitatory cells, the inconsistency of the inhibitory cell activity
combined with the heterogeneous connectivity between neuron
populations will cause a loss of well-organized and consistent
bursting in the excitatory cell population, a feature which is
reflected in the Variability Measure but not the Synchrony
Measure.

With high E-I connectivity strength, Weak Networks do
exhibit excitatory bursts with low Variability Measure in some
cases. In these instances multiple inhibitory bursts occur, but
the profile of these bursts is consistent and well-organized
in response to each excitatory burst. The behavior of E-
I networks with multiple inhibitory bursts, in particular the
differences in excitatory network dynamics seen in response to
disorganized vs. well-organized patterns of multiple inhibitory
bursts, is not investigated in detail by the conceptual PING
model.

The dichotomy between networks we deem “strongly” intra-
connected and “weakly” intra-connected is in fact a robust
feature when the I-I connectivity is varied. Indeed, by varying the
strength of inhibitory intra-connectivity two distinct regimes of
activity are revealed: networks exhibiting “strong behavior” show
a lowVariabilityMeasure for a vast majority of networks in which
any form of excitatory synchrony is achieved, while networks
exhibiting “weak behavior” show synchronous excitatory activity
at significantly lower values of the E-I connectivity strength
but also exhibit increased variability in the excitatory bursting
patterns as the E-I connectivity strength increases. Our analysis
of networks with various values of the I-I connectivity also
reveals that these two types of dynamics correspond with
features in other important network properties. While networks
exhibiting strong behavior show a monotonic increase in their
average excitatory burst frequency as the E-I connectivity
strength increases, networks exhibiting weak behavior show an
overall decrease in this frequency, albeit with some upticks
in frequency corresponding to networks where well-organized
bursting is recovered thanks to consistent patterning in the
inhibitory population. Additionally, in the parameter regime
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studied here networks exhibiting strong behavior will only
exhibit a 1:1 ratio between inhibitory and excitatory bursts, while
networks exhibiting weak behavior can achieve 2:1 and 3:1 burst
ratios.

Perhaps most interestingly, our results highlight that the
patterning of inhibitory activity, as influenced heavily by the I-
I connectivity strength, controls the consistency of excitatory
burst rhythmicity. When the inhibitory bursting pattern is
consistent following each excitatory burst, be that pattern a
single burst of activity as is classic in PING activity or multiple
inhibitory bursts as we saw occur in networks with weak I-
I connectivity, well-organized and consistent excitatory cell
bursting is common and rhythmicity is periodic. However,
when the inhibitory bursting pattern varies in response to
each excitatory burst, different magnitudes and profiles of
inhibitory current are generated. When the inhibitory input to
the excitatory neurons varies from burst to burst, this disrupts
the ability for these cells to exhibit consistent organization,
leading to increased rhythm variability. Indeed, the importance
of I-I connectivity in controlling inhibitory dynamics plays a
crucial role in preserving consistent excitatory bursting and
rhythmicity, revealing both the role of the I-I connectivity
and inhibitory patterning to be of more importance in E-I
network dynamics than previous studies of PING-like dynamics
indicate.

We note that some of the behaviors of E-I networks focused
on in this work, including multiple bursts of the inhibitory
network, have been identified in previous PING literature
without a thorough analysis (Börgers and Kopell, 2005). This
research shows that when E-I networks display patterns of
inhibitory behavior slightly beyond the classic restrictions of
PING, such as the requirement that the inhibitory network only
be active once per oscillatory cycle, the effect on the dynamics
of the excitatory network can be more salient than previously
suggested.

Furthermore, the same work by Börgers and Kopell identifies
a broad “suppression boundary” between a regime of strict PING
rhythms and a regime of asynchrony of the inhibitory cells
that is affected by the strength of the I-I connectivity (Börgers
and Kopell, 2005). Thus, it stands to reason that networks that
exhibit patterns of multiple inhibitory bursts that are messy or
inconsistent, such as the examples shown in Figures 3C,G, may
exist in the region of bistability between strict PING rhythms and
complete asynchrony of the inhibitory cells identified by Börgers
and Kopell; by this interpretation, one can contextualize our
work as expounding upon the dynamics of E-I networks in this
regime where E-I network behavior is neither strictly rhythmic
nor strictly asynchronous.

Finally, we note that all E-I networks studied here tend to
exhibit more asynchrony and higher variability for networks with
a stronger external drive to the excitatory cells. A clear example
of this at work is seen in the differences between the example
raster plots in Figures 3E,G. This result fits the predictions of
more analytical work done by Börgers et al. (2010).

We chose to focus our research on networks containing
Type I interneurons given the evidence that fast-spiking, PV+
interneurons, which often display Type I properties (Ferguson

et al., 2013), make up a majority of the interneuron population
in various brain regions (Muller et al., 2006; Povysheva et al.,
2008). Additionally, a majority of the computational studies
analyzing PING rhythms utilize Type I interneurons. However,
given the important role intrinsic cellular properties play
in determining inhibitory dynamics (Rich et al., 2016), we
simulated E-I networks with interneurons modeled as Type
II neurons with and without an M-type adaptation current
to see if cell type plays a similarly important role in E-
I networks. Strictly inhibitory networks of such neurons did
not exhibit significant changes in dynamics in response to
changing the inhibitory intraconnectivity, unlike such networks
containing Type I interneurons; as expected, neither did E-
I networks with Type II interneurons. This result indicates
that PING-style networks with Type II interneurons exhibit
more consistent activity in response to changes in the I-I
connectivity.

The dichotomy between the dynamics of E-I networks with
weakly intra-connected Type I interneurons and strongly intra-
connected Type I interneurons motivated the creation of a
E-I network utilizing heterogeneity in the I-I connectivity.
Various studies have shown that heterogeneities can be used
in neural networks to improve the network’s ability to exhibit
features such as rate coding (Mejias and Longtin, 2012),
gain control (Mejias and Longtin, 2014), synchrony (Kriener,
2012), and robust oscillations (Xie et al., 2011). While many
of these studies look at E-I networks similar to the ones
analyzed here, the heterogeneities studied are not in the I-I
connectivity.

The Strong/Weak Network created in this study implements
heterogeneity in the I-I coupling by creating two inhibitory
subnetworks, one that is strongly intraconnected and one that
is weakly intraconnected. Given the vast diversity in cellular
properties amongst interneurons (Buhl et al., 1994; Gonchar
and Burkhalter, 1997; Gibson et al., 1999; Beierlein et al.,
2000, 2003; Klausberger et al., 2003; Barthó et al., 2004;
Somogyi and Klausberger, 2005; Klausberger and Somogyi,
2008), heterogeneity in the strength of inhibitory intra-
connectivity amongst a population of interneurons is likely.
Furthermore, numerous studies have shown that interneurons
tend to intra-connect preferentially to those exhibiting similar
properties (Gibson et al., 1999; Beierlein et al., 2003; Klausberger
et al., 2003; Somogyi and Klausberger, 2005; Wang et al.,
2011), in a sense forming the “subnetworks” we model
in the Strong/Weak Network. In addition, many of these
same studies show evidence for these different types of
interneurons connecting with the same excitatory pyramidal
cells, forming a network similar to that modeled here.
Thus, there is biological motivation for creating a network
not only with heterogeneity amongst the interneuron intra-
connectivity, but also with inhibitory subnetworks without
interconnectivity that synapse onto the same excitatory cell
population.

Indeed, the heterogenous network structure broadens the
parameter regime in which well-organized and consistent
excitatory bursting patterns are achieved. While Strong
Networks did not achieve any sort of synchronous dynamics

Frontiers in Neural Circuits | www.frontiersin.org 19 December 2017 | Volume 11 | Article 104

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Rich et al. Role of Inhibitory Intra-connectivity in E-I Networks

amongst excitatory cells for low values of the E-I connectivity,
Strong/Weak Networks do. Additionally, while Weak Networks
exhibited excitatory bursting without well-organized or
consistent excitatory bursting for high values of the E-I
synaptic weight, Strong/Weak Networks decrease the Variability
Measure in this parameter regime significantly. Thus, our
Strong/Weak Networks provide a potential mechanism by
which PING rhythms might be generated more robustly for a
variety of external drives to the excitatory cells and E-I synaptic
weights.
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