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Deep brain stimulation (DBS) could become a palliative treatment for patients with
drug-resistant epilepsy for which surgery cannot be proposed. The objective of this
study was to perform microstimulation to measure the effects of DBS in epilepsy
locally at the level of a few neurons, with microelectrode recordings, for the first time
in patients with epilepsy. Microelectrode recordings were performed before, during
and after microstimulation in nine patients with refractory epilepsy. Neuronal spikes
were successfully extracted from multi-unit recordings with clustering in six out of
seven patients during hippocampal and in one out of two patients during cortical
dysplasia microstimulation (1 Hz, charge-balanced biphasic waveform, 60 µs/ph, 25
µA). The firing rates increased in four out of the six periods of microstimulation that
could be analyzed. The firing rates were found higher than before microstimulation
in all eight periods with increases reaching significance in six out of eight periods.
Low-frequency microstimulation was hence sufficient to induce neuronal excitation
lasting beyond the stimulation period. No inhibition was observed. This report presents
the first evidence that microstimulation performed in epileptic patients produced locally
neuronal excitation. Hence neuronal excitation is shown here as the local mechanism
of action of DBS. This local excitation is in agreement with epileptogenic effects of
low-frequency hippocampal macrostimulation.
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INTRODUCTION

Surgery is indicated for drug resistant epilepsy when the epileptogenic zone can be localized and
when surgical removal is not related to unacceptable neurological or neuropsychological risks
(Duncan, 2011). Alternatively, deep brain stimulation (DBS) is one of the palliative treatments
for drug-resistant epilepsy in patients in which resective surgery cannot be proposed (Klinger and
Mittal, 2016). The efficacy of DBS in reducing seizures, although encouraging, is variable and can
be associated with side effects; determinants of its effectiveness have not been identified yet.

The development of DBS in epilepsy needs markers of its effects. Clinically, changes in seizure
rates provide those. At the level of cerebral networks, intracerebral electroencephalograms do
provide markers of DBS; in particular, these markers are provided through epileptic discharges
(Goldberg and Coulter, 2013). Microelectrode recordings provide markers of the effects of DBS at
the level of a few neurons (Alarcón et al., 2012). To better understand the effects of DBS at the
level of a few neurons only, microstimulation was here applied with simultaneous microelectrode
recordings.
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Microstimulation was also motivated by the observation
that DBS in patients with mesial temporal lobe epilepsy
without hippocampal abnormalities can be successful with low
amplitudes of stimulation, e.g., 0.5 V and 0.4 ms pulse duration
(Boëx et al., 2011). This observation suggests that the efficacy
of DBS can rely on the excitation of a small population of
neurons provided that the stimulation location is optimal,
contributing to the avoidance of side effects, such as visual
or verbal memory decline that can occur with high amplitude
hippocampal stimulation (Boëx et al., 2011; Miatton et al., 2011).

The term ‘‘microstimulation’’, i.e., the application of small
currents through microelectrodes, was introduced in 1968 with
microelectrode stimulation performed to study pyramidal cell
excitation in cats (Stoney et al., 1968). It has been since
applied either for behavioral or for electrophysiological studies in
animals (for a review see Bak et al., 1990; Histed et al., 2013). In
humans microstimulation has been applied to visual cortex and
it has been applied in the domain of DBS to study its mechanisms
of action in the domain of movement disorders (Liu et al., 2012).
In particular, a clear frequency-dependency of the firing rate has
been shown during microstimulation of the globus pallidus in
patients with dystonia; the average firing rate decreases as the
frequency increases and is silenced at frequencies above 50 Hz
(Liu et al., 2012). This result has been explained by short-term
synaptic plasticity involving mainly GABAergic synapses; they
could also be a consequence of the high charge injection levels
that were applied leading to possible depolarization block.

Microstimulation in patients with epilepsy could bridge
the existing gap between observations made in vitro with
animal models and observations made in humans with
macrostimulation.

Microstimulation was here applied with simultaneous
microelectrode recordings to study locally the effects of DBS
at the level of a few neurons only. Here, microstimulation was
applied within safe charge injection limits to assess whether it is
sufficient to modulate the neuronal activity of epileptic zones.
Effects of in vivo microstimulation on the hippocampus and
cortical dysplasia in refractory epilepsy patients are reported
here for the first time.

MATERIALS AND METHODS

Patients
Seven patients suffering from intractable epilepsy participated
in the study. Intracranial invasive monitoring was indicated

and offered because of the presence of conflicting scalp EEG
data (except in patient H3 who directly underwent resective
neurosurgery). Patients underwent stereotactic depth electrode
implantation which positions were based on clinical findings,
previous scalp EEG and imaging studies.

Five patients with temporal lobe abnormalities and
two patients with cortical dysplasia participated. Neuronal
activity could be identified in four patients with hippocampal
microstimulation and in one patient with cortical dysplasia
located in the anterior cingulum (Table 1). In the case of
patient H3, microstimulation was performed under general
anesthesia (Target-controlled infusion, TCI, Base Primea,
Fresenius-Vial, Brezins, F; 3.2 µg.ml−1 propofol; Schnider
et al., 1988, 1999; 0.3 ng.ml−1 sufentanil; Gepts et al.,
1995).

This work was conducted according to the ethical guidelines
of the Declaration of Helsinki and was approved by the Ethical
Committee of the University Hospitals of Geneva (CER 05-218,
14-076). Individually signed consent forms from patients were
collected.

Microelectrode Recordings and
Stimulation
Microelectrodes, made each of eight microwires, were
located at the tip of the macroelectrodes (WB09R-SP00×,
Ad-Tech Instruments, Racine, WI, USA); macroelectrodes
were all implanted stereotactically (each macroelectrode
with eight macrocontacts, BF09R-SP05X). These platinum
microelectrodes present an impedance of 1 MOhm, with a
diameter of 40 µm.

Multi-Unit Activity was acquired using a 20 kHz sampling
frequency recording system (Inomed Medizintechnik GmbH,
Teningen, Germany; [150–3000Hz]). Noise threshold was fixed
for comparison across all three conditions, i.e., before, during
and after stimulation. Spike detection and clustering was realized
with an algorithm introduced byQuiroga et al. (2004) and used in
previous studies (Viskontas et al., 2009). The author RT visually
inspected the clustering results.

The microstimulation was biphasic charge balanced pulses,
cathodic first, 60 µs/phase, sent at a frequency of 1 Hz
for a maximum of 2 min (NimEclipse System, Medtronic,
Columbia Heights, MN, USA). The stimulation was monopolar,
using one surface skin electrode as the return electrode
(Neuroline ground, Ambu, Ballerup, Danemark). The voltage
was adapted for a current target of 25 µA. Hence, the

TABLE 1 | Features of patients.

Age range at surgery Age at onset of seizure (years) Type of seizures Cerebral abnormality

H1 [30–35] 9 Complex partial Right hippocampal sclerosis
H2 [40–45] 17 Complex partial Left hippocampal sclerosis
H3 [30–35] 20 Complex, secondarily generalized Left hippocampal and parahippocampal dysplasia
H4 [50–55] 25 Complex, secondarily generalized Right amygdala dysplasia
H5 [56–60] 2 Simple, secondarily generalized Right extended mesial sclerosis
H6 [56–60] 25 Dyscognitive partial Right hippocampal sclerosis
H7 [45–50] 2 Complex, secondarily generalized Right hippocampal sclerosis
D1 [56–60] 7 Complex partial Left anterior cingulate dysplasia
D2 [56–60] 7 Complex partial Right frontal dysplasia
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TABLE 2 | Spike frequency changes with microstimulation.

Before microstim. During microstim. After microstim. Location of microstimulation and recordings
Spike rate (SD) Spike rate (SD) Spike rate (SD)

H1
Cluster A 0.32 (0.54) 0.77 (1.00) 0.85 (1.04) Right anterior head of the hippocampus (cornu

Ammonis)
Cluster B 0.17 (0.40) 0.20 (0.50) 0.62 (0.69)

H2 1.49 (2.16) 1.49 (1.50) 2.61 (2.92) Right anterior hippocampus (subiculum; dentate
gyrus)

H3 0.01 (0.11) 0.21 (0.43) 0.18 (0.42) Left anterior head of hippocampus

H4 First microstim 0.79 (1.03) 1.68 (2.49) 1.41 (1.88) Right medial hippocampus (subiculum)

Second microstim 0.91 (1.10) 1.01 (1.60) 2.27 (2.28)

H6 Cluster A 1.70 (0.20) NA 3.52 (0.43) Right anterior hippocampus

Cluster B 1.73 (0.21) NA 2.60 (0.31)
H7 1.22 (0.14) NA 1.71 (2.01) Right anterior hippocampus

D1
Cluster A 0.47 (0.80) 0.92 (1.37) 1.71 (1.74) Left anterior cingulate cortex, superior frontal gyrus

(medial surface)
Cluster B 0.00 (0.0) 5.70 (3.31) 1.12 (2.38)

Dark gray cells indicate significant increases in spike frequencies for every cluster compared to before microstimulation with a level of significance of p < 0.005; light gray
cells indicate significant increases in spike frequencies compared to before microstimulation with level a significance of p < 0.05. Only one cluster was found, for patients
H2, H3, H4 and H7.

charge density did not exceed the accepted threshold of
150 µC/cm2/phase for platinum material, considering that

microelectrodes were 40 µm in diameter (Merrill et al.,
2005).

FIGURE 1 | Analyses of hippocampal microstimulation (patient H1, 1 Hz). Top: raw microelectrode recordings (before, during and after stimulation; [150–3000Hz]).
Middle: spike waveforms obtained with clustering of microelectrode recordings (number of spikes, duration of the recordings, frequencies of spike
occurrences—Freq). Bottom: interspike interval histograms (ordinate number of times that the delay between two consecutive spikes is within the category given in
abscissa, with categories of 1 ms. Note that all spikes were not found with delay between two consecutive spikes lower than 200 ms.
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FIGURE 2 | Hippocampal microstimulation (patient H1, 1 Hz). Effects of microstimulation on spike frequencies illustrated with histograms of spike occurrences
during the whole recording (ordinate: number of spikes per second, before, during and after microstimulation; time indicated in abscissa).

Microelectrode Localization
A preoperative MRI was performed with a Siemens Trio 3.0T
scanner using a 32-channel brain coil. The technical protocol
was T2 FSE coronal (TR/TE 7520/114 ms, in-plane resolution
0.5 × 0.4 mm, slice thickness 3 mm), 3D T1 mp2rage (T/RTE
5000/2.89, in-plane resolution 1 × 1 mm, slice thickness 1 mm),
DTI (TR/TE 8000/84, in-plane resolution 2 × 2 mm, slice
thickness 2 mm, 30 diffusion directions), and 3D FLAIR (TR/TE
5000/419, in-plane resolution 0.9 × 0.9 mm, slice thickness
0.9 mm).

Postoperative CT was performed with a Siemens Somatom
Definition Flash (Siemens, Erlangen, Germany). Slice thickness
was 1.25 mm.

Preoperative high-resolution 3D sequences obtained at 3T
and postoperative CT series were fused using commercially
available software (Integrated Registration, AWVolume Share 5,
GE Healthcare). Maximum intensity projections (MIP), multi-
planar reformatting (MPR) and volume rendering (VR) were
performed for better localization of the electrodes. Fused images
illustrated location of microelectrode arrays (not performed for
patient H3, H6 and H7 Supplementary Figure S1, Table 2).

Statistics
Analyses were performed using SigmaStat 3.11 (Systat Software
Inc., Richmond, CA, USA). The differences in firing rates,
described by the number of spikes per second, for every different
condition before, during and after stimulation, were assessed
by a Mann-Whitney Rank Sum Test, their distributions being
not normal. Every different period, i.e., before, during and
after, lasted at least for 1 min; specifically, at least 60 data
points were collected per period. In addition group comparisons
were performed with non parametric Friedman test comparing
periods of exactly 60 s, as exact sample sizes are required for
this statistic test. The first 60 s of the stimulation periods were

compared to the latest 60 s of the pre-stimulation periods. The
first 60 s of the post stimulation periods were compared to the
latest 60 s of the stimulation periods.

RESULTS

Microstimulation performedwithin the hippocampus andwithin
a cortical dysplasia of the anterior cingulum induced increases in
spike frequencies during microstimulation, reaching significant
levels in four out of the six stimulation periods that could be
analyzed; Table 2). These increases lasted beyond the stimulation
per se for all stimulation periods, reaching significant levels in
six out of eight stimulation periods (Mann-Whitney Rank Sum
Test, Table 2). No decrease in spike frequencies was observed.
Group comparison performed for all five patients for who
stimulation periods could be analyzed, indicated again significant
increases in spike frequencies with microstimulation (χ2 = 38.61,
p < 0.001; Friedman test). Group comparison between spike
frequencies obtained right before stimulation and right after
stimulation, performed for all seven patients, indicated again
significant increases in spike frequencies with microstimulation
lasting after stimulation (χ2 = 165.8, p < 0.001; Friedman
test).

Raw recordings and clustering of spikes recorded before,
during and after microstimulation periods are presented in
Figures 1, 3, respectively, for the first two patients H1 and
D1 as examples. The changes in firing rates are illustrated in
Figures 2, 4 for the same patients.

The first lines of Figures 1, 3 are the raw signals of
microelectrodes recorded before stimulation, the second lines
are the signals recorded during stimulation, and the third lines
are the signals recorded after the microstimulation periods.
Spike clusterings indicated two different types of cells in
both of these examples. The number of their occurrences
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FIGURE 3 | Analyses of microstimulation within a cortical dysplagia (patient D1, 1 Hz). Top: raw microelectrode recordings before, during and after microstimulation;
[150–3000Hz]). Middle: spike waveforms obtained with clustering of microelectrode recordings (with number of spikes, duration of the recordings, frequencies of
spike occurrences—Freq—and their standard deviations). Bottom: interspike interval histograms (ordinate number of times that the delay between two consecutive
spikes is within the category given in abscissa, with categories of 1 ms).

and frequencies are indicated for the three different periods,
i.e., before, during and after microstimulation. Note the increases
of their occurrences during and after microstimulation; in
particular, one new cell appeared with cortical microstimulation
(Figures 2, 4).

Note that no seizures occurred for 12 h following the
microstimulation of all the patients of the group, suggesting
microstimulation did not favor seizures.

DISCUSSION

Low-frequency microstimulation of hippocampus or of cortical
dysplasia was demonstrated as sufficient to increase spike
frequencies, exciting locally the neuronal activity involved in
medically intractable epilepsy. As demonstrated in rats and mice,
microstimulation predominantly activates axons and causes a
sparse pattern of activation in a small volume around the
microelectrode tip (Histed et al., 2007).

Hippocampus Stimulation
The excitation induced by hippocampal low-frequency
microstimulation, head or subiculum, supports the epileptogenic
effect of low-frequency macrostimulation at this anatomical
target (Boëx et al., 2007). Specifically, low-frequency
macrostimulation (5 Hz) of the hippocampus resulted in an
increase of interictal epileptiform discharges that can potentially
generate seizures. In agreement with this literature, the present
study suggests that the epileptogenic effect of low-frequency
hippocampal macrostimulation observed in patients with
epilepsy could be related to excitation at the neuronal level. A
possible explanation could be a glutamaergic release induced
by stimulation in agreement with principal hippocampal cell
types (Cavus et al., 2016). Because of the low proportion of
hippocampal GABAergic cells, these cells need to be specifically
targeted to produce inhibition of the hippocampus as performed
with optogenetic studies of the hippocampus (Krook-Magnuson
et al., 2013).
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FIGURE 4 | Microstimulation within a cortical dysplasia (patient D1, 1 Hz). Effects of microstimulation on spike frequencies illustrated with histograms of spike
occurrences during the whole recording (ordinate: number of spikes per second, before, during and after microstimulation; time indicated in abscissa).

If low-frequency hippocampal macrostimulation (5 Hz)
or microstimulation (1 Hz) are both consistent with an
epileptogenic effect in patients, this seems in contradiction with
a decrease in neuronal activity reported with other hippocampal
low-frequency stimulations performed in patients with epilepsy
shown to be efficient in reducing interictal discharges (Alarcón
et al., 2012; during 0.1 Hz, 1 ms, 6–8 mA, monophasic square
pulse). Studies performed in kindled rats, supported inhibition
or depression effects of low frequency direct hippocampal
stimulation (Mohammad-Zadeh et al., 2007; Zhang et al., 2009;
both monophasic square pulses). Nevertheless, within these
studies, the applied stimuli differ markedly from the stimuli
used in the present group of patients. Stimuli applied in
all chronic DBS studies performed in human are all charge-
balanced pulses, such as pseudo-monophasic (e.g., Medtronic
stimulators, Medtronic Inc., Minneapolis, MN, USA; Boston
Scientific stimulators, Boston Scientific, Marlborough,MA, USA;
St. Jude Medical, St. Paul, MN, USA) or biphasic pulses
(e.g., the present study) to avoid lesion in the neural tissue
(Lilly et al., 1955; Mortimer et al., 1970). Indeed, no charge-
balanced stimuli, such as monophasic-square pulses can create
damage to the tissue because of the resulting products of
non-reversible electrochemical reactions as known and applied
in human safe electrical protocols (Merrill et al., 2005). As a
consequence, lesions of the surrounding cells can contribute to
produce inhibition of neuronal activity (Piallat et al., 2009) and
contributed to overestimating the inhibitory effects reported in
animal studies using low-frequency stimulation (Brummer and
Turner, 1977).

While low frequency stimulation of the head of the
hippocampus or of the subiculum does not appear to be
anti-epileptogenic (Boëx et al., 2007), ventral hippocampal
commissure (Kile et al., 2010; Rashid et al., 2011) or fornix
(Koubeissi et al., 2013) stimulation could be anti-epileptogenic.
Local neuronal excitation can have different effects on the
networks to which these neurons are part of. They are

certainly different between hippocampal per se or hippocampal
commissural stimulations.

Cortical Dysplasia Microstimulation
Cortical dysplasia is also a common cause of medically
intractable epilepsy in both children and adults (Goldberg
and Coulter, 2013). In patient D1, microstimulation of the
cortical dysplasia led to a sustained increase of the firing rates.
Hence, microstimulation can also modulate neocortical neuronal
activity. Changes in cortical firing rate have been suggested as a
means of seizure prevention (Truccolo et al., 2011), as supported
by long-term low-frequency macrostimulation that has been
shown to be anti-epileptogenic in patients with cortical epileptic
focus (Matsumoto et al., 2005; Elisevich et al., 2006; Yamamoto
et al., 2006; Hsu et al., 2011). The mechanism underlying the
increase in firing rate with low-frequency stimulation can be
found in an increased cortical excitability resulting from a lack of
inhibitory interneurons. Indeed, experimental models of cortical
dysplasia suggest a decrease of inhibitory interneurons as one of
the main causes of epileptogenesis with an imbalance between
excitatory and inhibitory activity (models obtained by irradiating
rats in utero, Calcagnotto et al., 2005) and an alteration in firing
rates and patterns of these interneurons (Zhou and Roper, 2011).

Studies of cortical microstimulation in monkeys have been
described. High-frequency microstimulation can produce what
has been recently described as ‘‘neural hijiacking’’ where the
electrical stimulation eliminates and replaces the ongoing natural
activity without summation, again demonstrating the possibility
of cortical neural excitation with microstimulation (Griffin et al.,
2011; Cheney et al., 2013).

In conclusion, microstimulation effects on microelectrode
recordings were here studied for the first time in patients with
epilepsy. Low-frequency microstimulation of the hippocampus
or of cortical dysplasia was demonstrated as sufficient to increase
spike frequencies, exciting the neuronal activity of cerebral
areas involved in refractory epilepsy. In agreement with studies
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applying realistic stimuli, local neuronal excitation appears as
the principal local mechanism of action of safe DBS. The effects
of this local neuronal excitation are then dependent principally
of the cerebral networks these neurons are involved and on the
frequency of the stimulation, which were not studied here.
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