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All neuronal circuits are subject to neuromodulation. Modulatory effects on neuronal
processing and resulting behavioral changes are most commonly reported for
higher order cognitive brain functions. Comparatively little is known about how
neuromodulators shape processing in sensory brain areas that provide the signals
for downstream regions to operate on. In this article, we review the current
knowledge about how the monoamine neuromodulators serotonin, dopamine and
noradrenaline influence the representation of sensory stimuli in the mammalian sensory
system. We review the functional organization of the monoaminergic brainstem
neuromodulatory systems in relation to their role for sensory processing and summarize
recent neurophysiological evidence showing that monoamines have diverse effects
on early sensory processing, including changes in gain and in the precision of
neuronal responses to sensory inputs. We also highlight the substantial evidence for
complementarity between these neuromodulatory systems with different patterns of
innervation across brain areas and cortical layers as well as distinct neuromodulatory
actions. Studying the effects of neuromodulators at various target sites is a crucial step
in the development of a mechanistic understanding of neuronal information processing
in the healthy brain and in the generation and maintenance of mental diseases.

Keywords: serotonin, dopamine, noradrenaline, primary sensory cortex, primary visual cortex (V1), primary
auditory cortex, early sensory processing

INTRODUCTION

Even at the earliest stages of sensory processing, the neuronal representation of external stimuli is
modulated by internal brain states (Aston-Jones and Cohen, 2005; Harris and Thiele, 2011). While
the evidence for such modulation is long-standing, the analysis of sensory representations has
typically focused on the feed-forward stimulus-driven component while regarding the modulation
by internal states as noise. However, recent results based on population recordings (Reimer et al.,
2014; Rabinowitz et al., 2015; Schölvinck et al., 2015) that highlight the extent of brain-state
dependent modulation of sensory processing, the discovery of substantial modulation of sensory
activity with locomotion (Niell and Stryker, 2010; Polack et al., 2013), as well as novel tools to
more selectively target modulatory circuit elements genetically have contributed to reviving the
interest in the neuromodulation of sensory processing. Since the role of acetylcholine has received
substantial attention and has been the subject of excellent recent reviews (Sarter et al., 2009;
Harris and Thiele, 2011), we will focus here on the modulation by the monoamines dopamine
(DA), noradrenaline (NA), and serotonin (5HT). For each of these modulatory systems, we will
summarize anatomical data and electrophysiological findings to provide insights into their role in
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the modulation of sensory processing, placing an emphasis on
studies in non-human primates and rodents, and highlighting the
complementarity of these neuromodulatory systems (Figure 1).
We will cover key classical studies and then shift our focus toward
more recent work.

SEROTONERGIC MODULATION OF
SENSORY PROCESSING

Serotonin Sources
Serotonin-synthesizing neurons are located in the brainstem
in a small group of clusters [named B1–B9 after Dahlström
and Fuxe (1964)]. These were first identified in the rat brain
(Dahlström and Fuxe, 1964) but their anatomical localizations
in mouse and primate species, e.g., Jacobowitz and MacLean
(1978), have been found to be largely consistent with that in
the rat. These clusters are typically divided into a caudal and a
rostral group (Hornung, 2010). The caudal group, which consists
of the raphe pallidus (B1), the raphe obscurus (B2), and raphe
magnus (B3) (Lesch and Waider, 2012), projects mainly to the
spinal cord and brain stem. The rostral group includes the dorsal
raphe nucleus (B6, B7) and the median raphe nucleus (B5, B8,
and B9) and projects to the cortex. Within this group, there is
some topographic organization of the serotonergic innervation
(Hornung, 2010) that reflects a rostral (frontal cortex) to caudal
(occipital cortex) gradient (Wilson and Molliver, 1991b). Such
topographical organization suggests that rather than reflecting
a signal that is broadcasted uniformly throughout the brain,
serotonergic projections to different areas are more specific
and may serve different roles. Indeed, retrograde studies in
rats support topographically specific projections, for example
to the prefrontal cortex (PFC) (Chandler et al., 2013). Although

FIGURE 1 | Anatomical and functional complementarity of the monoaminergic
neuromodulators. (A) Schematic illustrating the functional divisions of the
perception-action-reasoning cycle projected onto the lateral surface of a
macaque brain [after (Fuster, 2015)]. (B) The monoaminergic
neuromodulators show pronounced differences in cortical regional [after
Brown et al. (1979)] and laminar innervation patterns.

serotonergic neurons represent only a very small number of the
neurons in the brain [approx. 28,000 in the mouse (Ishimura
et al., 1988) to several 100,000 in humans (Hornung, 2010)], they
give rise to diverging projections to virtually all regions of the
mammalian brain (Hornung, 2010). Here, we will focus on the
serotonergic projections to primary sensory cortical areas and
subcortical structures involved in sensory processing.

Serotonergic Projections to Early
Sensory Areas
Anatomical studies in different rodent and monkey species
have identified substantial serotonergic projections from the
raphe nuclei to early sensory areas including the primary
auditory, visual, and somatosensory areas, the olfactory bulb,
and subcortical structures involved in sensory processing
(Table 1). [Note that while in the auditory system, serotonergic
innervation of the cochlear nucleus is established (Klepper and
Herbert, 1991), serotonergic projections to the retina have been
controversial (Schnyder and Künzle, 1984; Frazão et al., 2008)].

Comparisons of monoaminergic innervation found that the
serotonergic innervation was substantially more pronounced
than that for NA or DA in the macaque primary auditory cortex
(Campbell et al., 1987) and in the macaque primary visual cortex
(Morrison et al., 1982a; Kosofsky et al., 1984; Morrison and
Foote, 1986; Lewis et al., 1987). This pattern mirrors early reports
of regional differences in cortical monoaminergic distribution
(Brown et al., 1979), with a pronounced decrease in DA from
frontal to occipital cortex, a weaker gradient (interrupted by a
peak in the somatosensory cortex) for NA, and a roughly uniform
distribution for serotonin (Figure 1B).

Within primary sensory cortical areas, the distribution of
serotonergic fibers in primates shows a characteristic laminar
profile. In the primary visual cortex, anatomical data for different
primate species agree that the distribution of serotonergic axons
is highest in layer 4 (Kosofsky et al., 1984; Morrison and Foote,
1986). This suggests that the serotonergic modulation in the
primary visual cortex is biased toward targeting the visual input
stage. Serotonergic fibers are also consistently found in cortical
layer 4 in the primary auditory cortex (Campbell et al., 1987) and
somatosensory cortex (Wilson and Molliver, 1991a,b), although
not preferentially.

This contrasts with the monoaminergic innervation of
primary sensory areas by NA and DA (see below) that is typically
sparse if not absent in layer 4 (Figure 1B). (Note that while
a transient dominance of serotonergic input to layer 4 occurs
during the early post-natal development in the rodent primary
visual cortex and barrel cortex (Fujimiya et al., 1986; Dori et al.,
1996), regional and laminar differences are less pronounced in
rodents than in the primate species.)

Consistent serotonergic innervation is also found in
subcortical structures involved in sensory processing such
as the sensory thalamus (Vertes et al., 2010), the superior (Dori
et al., 1998) and inferior (Klepper and Herbert, 1991) colliculi,
and the cochlear nucleus (Klepper and Herbert, 1991). In the
olfactory bulb, serotonergic fibers reach the glomerular layer,
the primary input stage (Takeuchi et al., 1982). Together, the
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TABLE 1 | Anatomical findings for the serotonin system in early sensory areas.

Sensory area Species Significance Reference

V1 Squirrel monkey V1 receives substantial projections from medial and dorsal raphe nucleus.
Serotonergic fibers preferentially target layer 4 in V1.

Morrison et al., 1982a; Tigges
et al., 1982

V1 Macaca fascicularis
and nemestria

V1 receives substantial projections from the dorsal and medial raphe nuclei. Doty, 1983

V1 Macaca fascicularis Serotonergic fibers most pronounced in the layers 3–4Cα in V1 and overall
denser than NA fibers

Kosofsky et al., 1984; de Lima
et al., 1988

V1 Macaca fuscata Serotonergic varicosities are densest in layer 4Cα, and in contact with stellate
and pyramidal neurons.

Takeuchi and Sano, 1984

V1 Macaca fuscata
and fascicularis

Detailed laminar profile of 5HT receptor expression. 5HT1B and 5HT2A are most
pronounced. Expressed in layers 2–6, most pronounced in layer 4A and 4Cα/β.

Watakabe et al., 2009

V1 Rat Transient increase during development in layer 4; later fairly uniform
serotonergic innervation across layers.

Dori et al., 1996

V1 Rat Serotonergic fibers in all layers but most pronounced in layer 4. Target
pyramidal and interneurons. Among inhibitory interneurons, mostly
somatostatin and NPY+ neurons but VIP+ interneurons are avoided.

Paspalas and Papadopoulos,
2001

LGN Rat Serotonergic projections identified using retrograde labeling; dense
immunolabelling for the serotonin transporter (SERT), a sensitive marker for
serotonergic fibers; most pronounced in the vLGN and IGL of the LGN complex

Villar et al., 1988;
Papadopoulos and Parnavelas,
1990; Vertes et al., 2010

S1 Mouse 5HT3A receptor is expressed on most non-PV, non-SST inhibitory interneurons Rudy et al., 2011

S1 Mouse Innervation across all layers in the adult. Transient increase during postnatal
development (∼PD7). Similar to the rat.

Fujimiya et al., 1986

S1 Macaca fascicularis (Areas 1, 2, 3) 5HT fibers across all layers but least pronounced in the lower
part of layer 3 and layer 4.

DeFelipe and Jones, 1988

S1 Macaca mulatta
and fascicularis

Fairly uniform distribution of serotonergic fibers across layers in S1. Wilson and Molliver, 1991a,b

S1 Rat 5HT fibers are most pronounced superficially, but some controversy; 5HT
concentration measured voltammetrically is highest in superficial layers and
decreases toward deeper layers; Transient increase in layer 4 during
development, later fairly uniform.

Fuxe, 1965; Beaudet and
Descarries, 1976; Lamour
et al., 1983; Dori et al., 1996

Inferior colliculus Dense but complementary 5HT and NA projections in both IC and cochlear
nucleus.

Klepper and Herbert, 1991

A1 Cat 5HT innervation mostly restricted to layers 1–3. DeFelipe et al., 1991

A1 Macaca fascicularis “Uniformly high density” across all layers. Campbell et al., 1987

MGN Rat Homogenous serotonergic innervation. Vertes et al., 2010

SC Rat Serotonergic fibers throughout, but more pronounced in the superficial than in
the deep layers of the SC.

Villar et al., 1988; Dori et al.,
1998

Olfactory bulb Rat Projections from dorsal and median raphe to all layers of olfactory bulb; most
densely in glomerular layer, i.e., the input layer.

McLean and Shipley, 1987

extent of serotonergic innervation at the earliest stages of sensory
processing makes this system well suited to directly modulate the
incoming sensory information.

Serotonergic Synapses and Receptors
The serotonergic projections to the primary sensory areas consist
of small varicose axons that are widely distributed (Hornung,
2010). Only a very small proportion of synaptic specializations,
typically asymmetric, is found (Descarries et al., 2010), suggesting
that serotonin predominantly acts by volume transmission
from varicosities. Note, however, that the degree to which
neuromodulatory systems rely on “wired” transmission, i.e.,
highly localized and typically synaptic, or “volume” transmission,
i.e., more spatially diffuse, is subject to debate (e.g., Rice and
Cragg, 2008; Sarter et al., 2009; Fuxe and Borroto-Escuela, 2016;
Sulzer et al., 2016). In the mammalian brain, seven serotonin
receptor families, most with several subtypes, have been identified
to date and contribute to the functional diversity of serotonin

(Mengod et al., 2010). A detailed overview is outside the scope
of this review, but a few receptors should be highlighted. 5HT1A
is expressed on cortical pyramidal neurons (DeFelipe et al.,
2001). In the macaque primary visual cortex, the most densely
expressed receptors are 5HT1B and 5HT2A (Watakabe et al.,
2009), predominantly in layer 4. 5HT1B is also strongly expressed
in the LGN, but only weakly in other cortical areas including
the auditory and somatosensory cortex (Watakabe et al., 2009).
In the mouse, GABAergic neurons that express the 5HT3A
do not express the calcium binding protein parvalbumin or
somatostatin and may form a third non-overlapping class of
inhibitory interneurons (Rudy et al., 2011).

Serotonergic Modulation of Sensory
Physiology
Given the complexity of the input to serotonergic neurons
(Pollak Dorocic et al., 2014), the wide distribution of serotonergic
projections in the brain and the diversity of serotonin receptors, it
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is unsurprising that serotonin has been implicated in a spectrum
of brain functions. These include the sleep–wake cycle, hormonal
regulation, regulation during development as well as affective,
cognitive, and sensorimotor functions. Serotonergic neurons
show tonic and phasic modes of discharge that are thought to
signal different information. For example, in the mouse transient
responses of putative serotonergic neurons in the dorsal raphe
nucleus reflect a variety of behavioral, sensorimotor, and reward-
linked information (Ranade and Mainen, 2009). Phasic and
tonic response patterns of optogenetically identified serotonergic
neurons in the mouse dorsal raphe have been proposed to reflect
the contextual valence on different time-scales (Cohen et al.,
2015). Serotonergic neurons have also been linked to signaling
patience (Fonseca et al., 2015). But, even for the intensely
studied links to reward signaling a simple computational account
has proved challenging (Ranade et al., 2014; Dayan and Huys,
2015). Although it is unclear whether its modulatory role can be
conceptualized by a simple overarching computational function,
serotonin is thought to modulate sensory processing according to
behavioral–motivational context.

In reviewing studies of serotonergic modulation of early
sensory processing across modalities, consistencies are notable,
which will be our focus here (Table 2). This focus contrasts
with previous perspectives highlighting the diversity of findings
(Hurley et al., 2004). (Note that we restricted this summary
to studies of short-term sensory modulation and did not
consider reports on adaptation or plasticity.) Some variability
in the findings likely results from comparing results across
anesthetized animals using different anesthetics or awake animals
and different experimental approaches.

Despite this variability, most findings are consistent with an
overall serotonin-mediated decrease of the sensory response. In
the auditory system, a decrease of the extracellular response
was observed for the majority of neurons both in the cochlear
nucleus of the rat (Ebert and Ostwald, 1992) and the inferior
colliculus (IC) of bats (Hurley and Pollak, 1999), although
some variability of the effects between cells was observed.
Behaviorally, a reduced startle response to auditory tones was
observed for intraventricular injection of serotonin (Davis et al.,
1980), which is consistent with reduced auditory response (but
could also reflect downstream processing). Similarly, a reduced
mechanosensory response was observed in behaving mice during
optogenetic stimulation of serotonergic raphe neurons (Dugué
et al., 2014), which could reflect downstream processing but
would also be expected for a reduced sensory response in the
somatosensory cortex as previously reported (Waterhouse et al.,
1986).

For early visual processing, predominantly decreased
responses were observed for the iontophoretic application of
serotonin in the cat lateral geniculate nucleus (LGN) (Phillis
et al., 1967) and rat V1 (Waterhouse et al., 1990). In the
anesthetized macaque, when attempting to dissect the role of
the two most strongly expressed receptors in V1, 5HT1B and
5HT2A, using receptor specific ligands, a diverse pattern and
bi-directional modulation were observed for both (Watakabe
et al., 2009). However, these effects were not compared to
spontaneous variability of the responses resulting from the

anesthesia or the iontophoretic application itself. For example,
slow fluctuations in the neuronal responses have been shown
to contribute to stimulus-independent co-variability (“noise
correlations”) between neurons (Ecker et al., 2014). When
instead iontophoretically applying the endogenous ligand
serotonin in awake macaques and comparing the effects against
those of pH matched saline application, a recent study found
an overall decrease of the sensory responses with serotonin
(Seillier et al., 2017). While there was some variability across
cells, consistent with the results of Watakabe et al. (2009),
the inhibitory effect of serotonin was the dominant pattern
across the sizeable neuronal population. This decrease was
predominantly explained by a multiplicative change (gain
change) of the neuronal tuning curves. Behaviorally, a recent
study that systemically administered a serotonin-reuptake
inhibitor to enhance the effect of serotonin while macaques
performed a color discrimination task observed slowed reaction
times as well as deteriorated perceptual performance (Costa et al.,
2016), as expected for such reduced visual responses. Conversely,
a gain reduction of the spontaneous response (Lottem et al.,
2016), consistent with an increased signal-to-noise ratio (SNR),
or a gain reduction of the tuning curves (Petzold et al., 2009) for
serotonin was observed in the mouse olfactory bulb.

Taken together, a surprisingly consistent pattern of the
serotonergic modulation of early sensory processing across
modalities emerges. The decreased sensory response by
serotonin – effectively lowering the salience of the sensory
input – may reflect a sensory signature of how serotonin shapes
behavior in downstream circuits, such as its proposed role
as a behavioral inhibitor (Soubrie, 1986), to promote waiting
(Miyazaki et al., 2014; Ranade et al., 2014; Fonseca et al., 2015) or
persistence (Lottem et al., 2018).

NORADRENERGIC MODULATION OF
SENSORY PROCESSING

Noradrenergic Sources
In rodents (Dahlström and Fuxe, 1964) and primates (Jacobowitz
and MacLean, 1978), neurons that produce NA are located in
the brainstem in clusters named A1–A7 after (Dahlström and
Fuxe, 1964). Of these, the locus coeruleus (LC, A6) projects to
most areas in the brain (Loughlin et al., 1986), except for to
the basal ganglia [reviewed in Berridge and Waterhouse (2003)],
and is the sole source of the noradrenergic innervation of the
cerebral cortex (Jones et al., 1977; Moore and Bloom, 1979).
Immunohistochemical evidence indicates that within the LC
the vast majority of neurons are noradrenergic (Grzanna and
Molliver, 1980). Similar to the serotonergic and dopaminergic
systems, the absolute number of noradrenergic neurons in the
LC is small [estimated between approx. 1500 per hemisphere in
rodents and approx. 15,000 per hemisphere in humans, reviewed
in Sara and Bouret (2012)], but the projections of these neurons
are divergent and wide-spread throughout the brain. Despite
these wide-spread projections recent findings indicate a modular
organization of the LC in rats (Uematsu et al., 2017) and
substantial anatomical specificity of the connections, for example
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TABLE 2 | Findings related to sensory modulation by serotonin.

Sensory area Species and anesthesia,
if applicable

Significance Reference

Cochlear nucleus Urethane anesthetized rat Mostly suppressive effect of iontophoretically applied 5HT on
extracellular responses

Ebert and Ostwald,
1992

Inferior colliculus Lightly anesthetized
(ketamine/xylazine) Bat

Multiplicative decrease of response with iontophoretic 5HT application;
weak increase in latency

Hurley and Pollak,
1999, 2005

Putative auditory
contribution

Behaving rat Startle response to auditory white noise is reduced by intraventricular
5HT application

Davis et al., 1980

V1 Anesthetized
(isoflurane/droperidol/fentanyl)
macaque

Variable bidirectional modulation of extracellular responses with
application of 5HT1B and 5HT2A receptor selective agents

Watakabe et al.,
2009

V1 Anesthetized
(fentanyl/thiopental/succinylcholine
chloride) macaque

Intracortical injection of 5HT1A agonist decreases extracellularly
recorded responses

Rauch et al., 2008

V1 Behaving macaque Gain decrease of extracellular responses with iontophoretic 5HT
application. Modest increase in response latency. No systematic effect
on response variability, co-variability, or selectivity

Seillier et al., 2017

V1 Halothane anesthetized rat Variable findings for iontophoretic 5HT application but mainly a
decreased response across the population

Waterhouse et al.,
1990

dLGN Halothane/nitrous oxide
anesthetized cat

Decrease of the extracellular responses for iontophoretic 5HT
application

Phillis et al., 1967

S1 Halothane anesthetized rat Suppression of response to tactile stimuli (forepaw touch), consistent
with response gain decrease with iontophoretic 5HT application

Waterhouse et al.,
1986

Behaving mouse Decreased mechanosensory response of mice during optogenetic
activation of serotonergic raphe neurons

Dugué et al., 2014

Behaving macaque Blocking serotonin re-uptake slowed reaction times and worsened
perceptual performance in a visual (color) discrimination task

Costa et al., 2016

Olfactory bulb Ketamine/xylazine
anesthetized mouse

Gain decrease for application of 5HT agonists, reversed for application
of 5HT antagonist.

Petzold et al., 2009

Olfactory bulb Urethane anesthetized
mouse

Optogenetic activation of serotonergic neurons in the dorsal raphe lead
to a gain decrease of spontaneous but not stimulus-driven extracellular
response in the OB resulting in an increase in SNR

Lottem et al., 2016

to the prefrontal versus the motor cortex (Chandler et al., 2014),
or different modules projecting to the amygdala compared to
the medial PFC (mPFC) (Uematsu et al., 2017). It therefore
seems likely that at least some degree of modularity is also
characteristic of projections to sensory areas. In the following, we
will again focus on the projections to the primary sensory areas
and subcortical structures involved in early sensory processing.

Noradrenergic Projections to Early
Sensory Areas
The LC sends divergent projections to the cortex and subcortical
structures. Within the LC, these projections are roughly
topographically organized [reviewed in Berridge and Waterhouse
(2003)]. In the rat, cortex-projecting neurons are more
prominent in the caudal portion of the LC and show some
ventral (frontal cortex) to dorsal (occipital cortex) organization
(Waterhouse et al., 1983). Despite the rough topography, a
recent study combining retrograde labeling and optogenetic
stimulation in the mouse found that the LC projections to
primary sensory cortices are not modality-specific (Kim et al.,
2016) (contrasting with these authors’ findings for the cholinergic
system). Nonetheless, projections from LC show clear regional
differences (Table 3). Early studies in rats (Kehr et al., 1976) and

macaques (Brown et al., 1979) observed an overall frontal (higher
concentration) to occipital (lower concentration) gradient of NA
throughout cortex, with the exception of somatosensory cortex
where the concentration was highest (Brown et al., 1979). This
gradient was weaker than that for DA and differed markedly from
the absence of a gradient for serotonin (reviewed above and see
Figure 1).

Within the primary sensory cortex, the noradrenergic
innervation shows some laminar specialization, particularly in
primates. In the primate somatosensory cortex, noradrenergic
fibers are fairly uniform and dense throughout layers (Morrison
et al., 1982b; Lewis et al., 1987). The innervation of the primary
auditory cortex (Campbell et al., 1987) and primary visual
cortex (Kosofsky et al., 1984; Morrison and Foote, 1986), in
contrast, is sparser overall, and a “striking absence” (Foote and
Morrison, 1987) of layer 4 innervation, particularly in V1, has
been observed. Combined with the near absent innervation of the
LGN (Morrison and Foote, 1986), which provides the dominant
feed-forward visual input to V1, this suggests that – in contrast
to the serotonergic system – noradrenergic modulation does not
target the visual input stage. Interestingly, such complementarity
between the serotonergic and noradrenergic innervation of the
sensory input stage is also present in the rat olfactory bulb. While
“virtually no label” was observed in the glomerular layer (the
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TABLE 3 | Anatomical findings for the NA system in early sensory areas.

Structure Species Significance Reference

V1 Squirrel monkey Noradrenergic projections preferentially to layers 5 and 6 of V1 Morrison et al., 1982a;
Lewis et al., 1987

V1 Macaca fascicularis NA innervation much sparser than for 5HT, and least dense in layer 4C Kosofsky et al., 1984

V1 Cynomolgus monkey NA fibers less pronounced than 5HT. Weak in layers 1 and 2, and
absent in layer 4Cβ

Kosofsky et al., 1984

V1 Rat Decreasing fronto-occipital gradient of NA Kehr et al., 1976

LGN Squirrel monkeys and
macaca fascicularis

Almost no noradrenergic innervation in the LGN Morrison and Foote, 1986

LGN Rat NA fibers preferentially in the dLGN compared to vLGN and IGL
(compared to 5HT fibers preferentially in the vLGN and IGL)

Papadopoulos and
Parnavelas, 1990

S1 Squirrel monkey Labeling in all layers Morrison et al., 1982b;
Lewis et al., 1987

S1 Rhesus monkeys NA concentration highest in somatosensory cortex, lowest in V1 Brown et al., 1979

A1 Macaca fascicularis Sparse innervation (substantially less dense than 5HT or Ach), lowest
density in layer 4

Campbell et al., 1987

Olfactory bulb Rat Virtually no labeling fibers in the glomerular layer (first input stage) but
fibers preferentially in the internal plexiform, granule cell, and external
plexiform layers

McLean et al., 1989

IC, CN Rat LC heavily innervates both structures Klepper and Herbert, 1991

site of the first synapse of the olfactory input) using anterograde
tracer injections in the LC (McLean et al., 1989), this layer showed
the densest serotonergic innervation (McLean and Shipley, 1987)
(see above). Instead, pronounced noradrenergic innervation in
the rat olfactory bulb was observed for the consecutive processing
stages, the internal plexiform, granule, and external plexiform
layers (McLean et al., 1989).

Noradrenergic Synapses and Receptors
Similar to the other monoaminergic systems, noradrenergic
neurons in the LC show both tonic and phasic modes of activation
[reviewed in Berridge and Waterhouse (2003)]. Their axons have
characteristic NA-containing varicosities that can form synapses
(e.g., Papadopoulos et al., 1989) and likely have non-synaptic
release sites (Callado and Stamford, 2000). Three adrenergic
receptor families are expressed in the brain (alpha 1, alpha 2,
and beta 1–3), which have characteristic pre- and postsynaptic
sites and laminar expression patterns across cortex (Berridge and
Waterhouse, 2003). Noradrenaline has the highest affinity for the
α2 receptors, intermediate for α1 receptors, and lowest affinity
for the β adrenergic receptors [reviewed in Ramos and Arnsten
(2007)]. In the primate PFC, these differences in affinity have been
implicated in differentially modulating cognitive processes as a
function of the level of noradrenergic tone (Ramos and Arnsten,
2007). They are likely also an important factor in the substantial
diversity in modulation of sensory processing observed for NA
(see below).

Noradrenergic Modulation of Sensory
Physiology
The brain’s noradrenergic system has long been linked to arousal
(e.g., O’Hanlon, 1965; reviewed in, e.g., Berridge and Waterhouse,
2003; Sara and Bouret, 2012) and to adapting network activity for
optimal, flexible behavior (Aston-Jones and Cohen, 2005; Bouret

and Sara, 2005). Consistent with such a general function, NA
has been shown to modulate sensory processing in complex ways
(Table 4).

Earlier findings have been reviewed in detail (Berridge
and Waterhouse, 2003). In brief, activating the LC or local
application of NA has been found to result in a variety of effects,
including inhibitory and/or facilitating modulation, selective
gating, changes to a neuron’s receptive field, and changes to its
SNR. For example, iontophoretic application of NA was found
to predominantly decrease responses in the dLGN, dorsal, and
ventral thalamus of cats (Phillis et al., 1967; Phillis and Teběcis,
1967), in A1 of squirrel monkeys (Foote et al., 1975) and of rats
(Manunta and Edeline, 1997), and in rat S1 (Armstrong-James
and Fox, 1983; Bassant et al., 1990). Conversely, a predominantly
facilitating effect was observed for iontophoretic application
of NA or LC stimulation in the rat dLGN (Rogawski and
Aghajanian, 1980; Kayama et al., 1982) or V1 (Waterhouse et al.,
1990), and for phasic LC stimulation in rat S1 (Waterhouse
and Woodward, 1980; Waterhouse et al., 1980, 1998) or rat
piriform cortex (Bouret and Sara, 2002). In cat V1 Sato and
colleagues (Sato et al., 1989), observed a substantial layer-
dependence of the response modulation with LC stimulation. It
was predominantly inhibitory in layers 2–4, mostly α receptor
mediated facilitation in layer 5 and approximately balanced
in both directions in layer 6. These laminar differences likely
reflect different receptor expression profiles across layers. The
results suggest that some of the variability between studies
may also reflect laminar differences between studies within the
targeted structures in addition to, e.g., dose-dependent effects.
Mirroring this variability, noradrenergic effects on the neuronal
SNR differed between studies. While some reported an enhanced
SNR (e.g., Foote et al., 1975; Waterhouse and Woodward, 1980;
Kasamatsu and Heggelund, 1982) and others (Sato et al., 1989;
Manunta and Edeline, 1997) reported no net effect on SNR
across the population. In line with the notion of optimizing the
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TABLE 4 | Findings related to sensory modulation by NA.

Sensory area Species and anesthesia
(if applicable)

Significance Reference

dLGN Chloral hydrate/urethane
anesthetized rat

NA or LC activation facilitates responses in dLGN; the facilitation
of LGN response to LC stimulation is blocked by α1 but not β

receptor antagonists

Rogawski and Aghajanian, 1980;
Kayama et al., 1982

dLGN, dorsal, and ventral
thalamus

Halothane anesthetized cat Predominantly depression of responses by iontophoretic
application of NA

Phillis et al., 1967; Phillis and
Teběcis, 1967

V1 Nitrous oxide anesthetized
cat

Bi-directional modulation. Enhanced SNR for modulated neurons Kasamatsu and Heggelund, 1982

V1 Halothane
anesthetized/nitrous oxide
cat

LC stimulation results in both facilitation and inhibition of
extracellular responses in V1, which vary by layer. Results from
α1, α2, and β antagonists suggest that α receptors facilitate the
responses while β receptor activation results in bi-directional
modulation. No change in SNR

Sato et al., 1989

V1 Thiopental anesthetized cat Iontophoretic NA application results in variable modulation of the
responses and affects receptive field properties

McLean and Waterhouse, 1994

V1 Awake mouse NA was found necessary for tonic depolarization with locomotion
of layer 2/3 excitatory neurons

Polack et al., 2013

V1 Urethane anesthetized rat LC activity precedes increases in cortical excitability Safaai et al., 2015

V1 Halothane anesthetized rat Iontophoretic application of NA enhances visual responses Waterhouse et al., 1990

A1 Awake squirrel monkey Iontophoretic NA application decreases evoked and spontaneous
extracellular activity consistent with an increased SNR

Foote et al., 1975

A1 Urethane-anesthetized rat Iontophoretic NA application induces bi-directional modulation,
with the dominant effect a response decrease, α1-receptor
mediated. No net change in SNR across the population

Manunta and Edeline, 1997

CN Awake bat Enhances “temporal contrast,” i.e., the temporal precision of the
response

Kössl and Vater, 1989

S1 and ventral
posteriomedial thalamus

Awake rat Tonic vs. phasic activation differentially modulates responses in
the somatosensory processing hierarchy

Devilbiss and Waterhouse, 2011

S1 Isoflurane anesthetized rat Intracellular recordings in vivo: NA blockage reduces up-states in
neurons

Constantinople and Bruno, 2011

S1 Urethane anesthetized and
awake rat

Iontophoretic NA application suppresses spontaneous and
glutamate evoked activity

Armstrong-James and Fox, 1983;
Bassant et al., 1990

S1 Halothane anesthetized rat Variable effects on rates and SNR for iontophoretic NA
application; phasic LC stimulation predominantly enhances
responses. NA depletion abolishes this modulation

Waterhouse and Woodward,
1980; Waterhouse et al., 1980,
1998

Piriform cortex Urethane anesthetized rat Mainly enhancement of odor responses in piriform cortex with LC
stimulation

Bouret and Sara, 2002

Olfactory bulb Urethane anesthetized rat Infusion of NA and stimulation of the LC decreases responses at
low and high levels but not intermediate levels of stimulation/NA

Manella et al., 2017

neuronal gain for behavior (Aston-Jones and Cohen, 2005), this
variability may reflect the noradrenergic role in different states of
a dynamical system.

Indeed, simultaneous recordings in the LC and barrel cortex
of anesthetized rats combined with dynamical systems modeling
showed that activity in the LC was highly predictive of dynamic
changes in cortical excitability (Safaai et al., 2015). Moreover,
phasic responses in the LC or urethane anesthetized rats were
elicited by aversive somatosensory stimuli and modulated the
stimulus-induced gamma oscillations in the mPFC, suggesting a
corresponding modulation of somatosensory processing (Neves
et al., 2018). In awake mice, visual responses have been found to
be substantially enhanced during phases when the animals were
running compared to no locomotion (Niell and Stryker, 2010).
Intriguingly, intracellular recordings showed that this effect was
accompanied by a depolarization of the membrane potential in
layer 2/3 neurons, which in turn was blocked by noradrenergic

antagonists (Polack et al., 2013). Indeed, both noradrenergic
and cholinergic mechanisms were linked to this locomotion-
dependent modulation, with partially complementary functions
(Polack et al., 2013; Reimer et al., 2016). These findings align
with the notion of a noradrenergic role in adapting sensory
circuits for optimal behavior (Aston-Jones and Cohen, 2005).
Additionally, they highlight the importance of interactions
between neuromodulatory systems that go beyond the scope of
this review.

DOPAMINERGIC MODULATION OF
SENSORY PROCESSING

Dopamine Sources
Dopamine synthesizing neurons represent a comparatively small
population of neurons in the mammalian brain (Bentivoglio
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and Morelli, 2005). The majority of DA neurons are found
in three cell groups in the ventral midbrain (mesencephalon)
(Dahlström and Fuxe, 1964). Based on cytoarchitectonic features,
most dopaminergic cells reside in the substantia nigra (SN) pars
compacta (SNc, A9), the ventral tegmental area (VTA, A10)
medial to the SN and in the retrorubral area (RRA; A8), which
lies caudal and dorsal to the SN. Other, smaller dopaminergic cell
groups are present in the periaqueductal gray matter (PAG; A11)
and in the hypothalamus (A12–A15), the lateral parabrachial
nucleus, the olfactory bulb (A16), and in the retina (A17)
(Sánchez-González et al., 2005).

The most frequently used marker for identifying
dopaminergic neurons is tyrosine hydroxylase (TH), the
rate-limiting enzyme of DA synthesis. For TH-immunopositive
neurons, the A8 group comprises approx. 5% of cells, while A9
and A10 account for the remaining 95% with a slight dominance
of A9 over A10 (Bentivoglio and Morelli, 2005). The DA system
undergoes considerable expansion from rodents to primates
(Berger et al., 1991). By immunostaining for TH, the number
of mesencephalic DA neurons has been estimated at approx.
20,000–30,000 in total in mice (Nelson et al., 1996), 45,000 in
rats (German and Manaye, 1993), 110,000–220,000 in the SN
in rhesus monkeys (Emborg et al., 1998), and between 230,000
and 430,000 in the human SN (Chu et al., 2002). Thus, a large
dopaminergic A9 group is a distinctive feature of the primate
brain.

Tyrosine hydroxylase labeling to identify dopaminergic
neurons has been called into question because of a lack of
specificity (Lammel et al., 2015). Staining for the dopamine
transporter (DAT), which removes DA from the extracellular
space and is largely responsible for the termination of
dopaminergic neurotransmission, is more specific and is not
detected, e.g., in noradrenergic cells (Ciliax et al., 1995). However,
DAT is not expressed in all DA neurons. For example, it cannot
be used to label the diencephalic (hypothalamic) cell groups
(Sánchez-González et al., 2005). The subgroup of VTA DA
neurons that project to the PFC also contains very little DAT
(Lammel et al., 2008). Distinct expression profiles of TH and
DAT can therefore be exploited to trace independent populations
among dopaminergic neurons.

There is mounting evidence that DA is also released from
terminals of LC neurons as a co-transmitter of NA (Devoto
et al., 2001, 2003, 2005). These important findings underscore
the potential caveats of using cellular protein markers instead of
the transmitter receptor or the transmitter itself to investigate
monoaminergic neurotransmission. Considerable complexity
within the monoaminergic system is therefore likely to shape
sensory and higher-order cognitive processing (Takeuchi et al.,
2016).

Dopamine Projections
A variety of different techniques has been used to investigate
dopaminergic innervation of target structures, including direct
(e.g., photometric or autoradiographic) neurotransmitter
measurements (Brown et al., 1979; Descarries et al., 1987),
immunostaining for TH in comparison to staining for DA-β
hydroxylase (Lewis et al., 1987) and DAT (Sánchez-González

et al., 2005), DA receptor autoradiography (Lidow et al., 1991),
and DA receptor mRNA assays (Weiner et al., 1991; Hurd et al.,
2001; Santana et al., 2009). It is important to keep in mind that
these methods differ not just with regard to their sensitivity
and specificity, but that they also target distinct stages of DA
production and neurotransmission. This is a likely source of
variability and even discrepancy in the literature. Ultimately,
functional evidence is required that local DA modulates neuronal
processing in target areas. Physiological studies are therefore
the gold-standard for demonstrating effective dopaminergic
innervation (see below).

The DA system projects extensively to many subcortical and
cortical structures of the brain, albeit with a clear concentration.
Lewis et al. (1987) noted, summarizing their work on the
cortical distribution of dopaminergic afferents in the non-human
primate, that “dopaminergic fibers preferentially innervate motor
over sensory regions, sensory association over primary sensory
regions, and auditory association over visual association regions.”

The dopaminergic projections from the midbrain are
typically subdivided into the mesostriatal pathway and the
mesocorticolimbic pathway. The striatum is the major target
of mesencephalic DA neurons (Bentivoglio and Morelli, 2005).
Ipsilateral projections to the dorsal striatum mainly arise from
the SNc (nigrostriatal pathway). Limbic efferents including
projections to the ventral striatum (nucleus accumbens) emanate
largely from the VTA.

The mesocortical pathways target in particular the motor
cortex, the prefrontal, the anterior cingulate, and the rhinal
cortices in rodents (Descarries et al., 1987) and in the non-
human primate (Berger et al., 1988; Lidow et al., 1991). Similar
to the number of dopaminergic midbrain neurons, however,
the density of cortical DA terminals varies considerably from
species to species, reaching a maximum in primates (Berger et al.,
1991). Unlike NA and, especially, serotonin, cortical levels of
DA in the macaque brain exhibit a prominent gradient with a
strong decrease along the fronto-occipital axis and only minimal
amounts detectable in visual cortex (Brown et al., 1979; see
Figure 1B).

Mesocortical projections originate from all major cell groups
in the ventral mesencephalon, with a looser organization
compared to the mesostriatal system. A clear topographical
relationship, however, has been described for the most densely
innervated frontal lobe. Dopaminergic projections to the
dorsolateral PFC in the macaque brain arise from the dorsal
and lateral regions of three midbrain cell groups A8, A9, and
A10, whereas the ventromedial regions of the PFC receive
projections from the medial parabrachial pigmented nucleus and
the midline nuclei of the VTA (Williams and Goldman-Rakic,
1998). A similar medial–lateral arrangement has been found in
rats (Loughlin and Fallon, 1984). Here, most of the dopaminergic
innervation of the medial frontal cortex comes from VTA
neurons that project to the deep layers 5 and 6 of the mPFC and in
particular to the orbitofrontal cortex (Chandler et al., 2013), with
substantially fewer cells from the SNc innervating predominately
the superficial mPFC layers (Berger et al., 1991). SNc DA neurons
preferentially target the lateral frontal cortex, e.g., the premotor
areas (Loughlin and Fallon, 1984; Muller et al., 2014).
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Overall, VTA dopaminergic neurons show little
collateralization to extensive terminal fields, somewhat in
contrast to SNc cells (Loughlin and Fallon, 1984; Chandler
et al., 2013). This suggests that, in light of the topographical
arrangement described above, discrete, anatomically
circumscribed dopaminergic subsystems exist that could
modulate selected target regions.

Dopamine Synapses and Receptors
Dopamine-containing varicosities can form multiple synaptic
contacts along the course of an axonal fiber. In frontal
cortex, these terminals establish conventional, symmetric
synapses with postsynaptic dendritic shafts and spines,
preferentially on pyramidal neurons (Berger et al., 1991).
At the ultrastructural level, dopaminergic afferents form
synaptic triads with postsynaptic spines that receive a second,
presumably glutamatergic input (Goldman-Rakic et al., 1989).
This configuration would allow DA to modulate ongoing
neuronal transmission both pre- and postsynaptically.

Dopamine receptors are expressed by pyramidal neurons and
GABAergic interneurons alike, indicating that DA modulates
excitatory and inhibitory synaptic transmission (Santana et al.,
2009). Dopamine receptors are categorized into two major
families: the D1 family comprising the D1 and D5 receptors, and
the D2 family comprising the D2, D3, and D4 receptors. Both
D1 and D2 families of receptors are G protein-coupled receptors,
which initiate intracellular signaling cascades rather than directly
inducing postsynaptic currents (Missale et al., 1998; Bentivoglio
and Morelli, 2005). D1 and D2 receptors are largely expressed
in different cell populations (Vincent et al., 1993). In most rat
brain structures except for the VTA and some midbrain cell
groups, D1 receptors outnumber D2 receptors (Boyson et al.,
1986; Weiner et al., 1991). In the human brain, D1 receptor
mRNA clearly dominates over D2 receptor mRNA in the cortical
mantle, whereas D2 receptor mRNA is more abundant in the
hippocampal formation, brainstem, and in subcortical structures
such as the thalamus (Hurd et al., 2001). Of note, a high
proportion of DA (D1) receptors are found at extrasynaptic sites,
suggesting that DA might also exert its effects via diffusion in the
neuropil (volume transmission) (Smiley et al., 1994).

Cortical DA receptors show a laminar-specific distribution
profile. D1 receptors are expressed in all cortical layers in the
primate frontal brain (Lidow et al., 1991; Huntley et al., 1992),
often with a bilaminar infra-supragranular pattern with a relative
paucity in layer 4 (Lewis et al., 1987) and a predilection for deeper
layers. D2 receptors, in contrast, are typically confined to cortical
layer 5 (Weiner et al., 1991; Lidow et al., 1998).

Dopaminergic Innervation of Sensory
Brain Structures
Compared to the densely innervated frontal cortex, the sensory
cortices receive very sparse dopaminergic afferents (Table 5). In
both rat and primate studies, the primary visual cortex shows
the lowest DA fiber density of all investigated cortical structures
(Descarries et al., 1987; Lidow et al., 1991). TH immunoreactivity
in primate primary visual cortex V1 is restricted to layer 1, and

few fibers reach layer 6 as well in V2 (Lewis et al., 1987; Berger
et al., 1988). The same layers are targeted by dopaminergic fibers
in the rat primary visual cortex (Phillipson et al., 1987).

A slight increase in fiber density is seen in primary auditory
cortex. In the gerbil, D1 receptors are found in infragranular
layers mainly associated with pyramidal neurons (Schicknick
et al., 2008). TH positive fibers loosely innervate auditory cortex
layers 1 and 6 in primates (Lewis et al., 1987). In primary
somatosensory cortex, labeled fibers are also found in layer 5.
A further increase in dopaminergic innervation is then observed
in the association cortices of the temporal, parietal, and frontal
lobe, where the aforementioned bilaminar profile emerges (Lewis
et al., 1987).

Dopaminergic fibers have also been reported to innervate
subcortical structures that are involved in processing sensory
stimuli. Dopamine axons reach the LGN of the thalamus (LGN,
visual nucleus) (Papadopoulos and Parnavelas, 1990). Here, D1
and D2 receptors are found in excitatory relay neurons and in
inhibitory local interneurons (Albrecht et al., 1996; Zhao et al.,
2002; Munsch et al., 2005). D2 receptors are also present in
the thalamic medial geniculate nucleus (MGN, auditory nucleus)
(Hurd et al., 2001; Chun et al., 2014) and in the ventrobasal
complex (VB, somatosensory nucleus) (Govindaiah et al., 2010b).

While these first-order thalamic nuclei mainly relay sensory
input to the cortex, the second-order thalamic nuclei are part of
cortico–thalamo–cortical loops and could support higher brain
functions operating on sensory information (Sherman, 2016).
The second-order thalamus is more strongly innervated by DA
neurons than its first-order counterpart, reaching the levels
of highest cortical density in some nuclei (Sánchez-González
et al., 2005). Thalamic DA fibers are much denser in primates
than in rodents (García-Cabezas et al., 2009). Dopaminergic
afferents in the thalamus stem from multiple sources including
the hypothalamus, ventral mesencephalon, the PAG, and the
lateral parabrachial nucleus, possibly hinting at the existence
of a distinct “thalamic dopaminergic system” (Groenewegen,
1988; Sánchez-González et al., 2005). Interestingly, the densest
dopaminergic projections to the thalamus are found in those
second-order nuclei that are linked to frontal and limbic cortex,
e.g., the mediodorsal (MD) nucleus and the midline nuclei
(García-Cabezas et al., 2007). In fact, these DA projections share
many anatomical features with the strong meso-prefrontal DA
system (Melchitzky et al., 2006). These findings suggest that DA
could modulate higher-order frontal lobe functions both at the
cortical level and by controlling its associated thalamic nuclei
(Varela, 2014). Finally, it has been noted that VTA axon terminals
and terminals from thalamic MD neurons converge in mPFC
layer 5, forming a synaptic triad as described above (Kuroda et al.,
1996). Thus, dopaminergic modulation of thalamic function
might also have extra-thalamic components.

The main auditory midbrain nucleus, the IC, is targeted
by TH-immunoreactive nerve terminals arising from the
subparafascicular thalamic nucleus (Tong et al., 2005; Nevue
et al., 2015), and the IC has been shown to express D2 receptors
(Weiner et al., 1991). Dopaminergic afferents to the superior
colliculus, a crucial midbrain structure for oculomotor and visual
processing, are sparser in comparison (Weiner et al., 1991).
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TABLE 5 | Anatomical findings for the DA system in early sensory areas.

Structure Species Significance Reference

V1 Rhesus monkey and rat Lowest density of dopaminergic innervation across cortical mantle Brown et al., 1979; Descarries
et al., 1987; Lidow et al., 1991

V1 Cynomolgus monkey TH immunoreactive fibers restricted to layer 1 Berger et al., 1988

V1 Rat Dopaminergic innervation in infragranular layers and weaker in layer 1 Phillipson et al., 1987

A1 Gerbil D1 receptors in infragranular layers Schicknick et al., 2008

A1 Cynomolgus and squirrel
monkey

TH immunoreactive fibers in layers 1 and 6 Lewis et al., 1987

S1 Cynomolgus and squirrel
monkey

TH immunoreactive fibers in supra- and infragranular layers Lewis et al., 1987

LGN Rat Dopaminergic innervation of all LGN subdivisions Papadopoulos and Parnavelas,
1990

LGN and MGN Human Moderate levels of D2 receptor mRNA Hurd et al., 2001

Inferior colliculus Rat and mouse Innervation by TH immunoreactive fibers Tong et al., 2005; Nevue et al.,
2015

Inferior colliculus Rat D2 receptors present at moderate levels Weiner et al., 1991

Superior colliculus Rat D2 receptors present at low levels Weiner et al., 1991

TABLE 6 | Findings related to sensory modulation by DA.

Structure Species and anesthesia (if
applicable)

Significance Reference

V1 Remifentanil anesthetized
rhesus monkey

Systemic administration of L-DOPA increases supragranular oscillatory
activity encoding visual information, but failure to induce changes in
neuronal activity by local DA application

Zaldivar et al., 2018, 2014

dLGN Urethane anesthetized rat and
ketamine or halothane
anesthetized cat

D1 receptors inhibit and D2 receptors excite extracellularly recorded
relay neurons

Phillis et al., 1967; Albrecht
et al., 1996; Zhao et al., 2002

dLGN Rat and mouse (brain slices) D1 receptors depolarize and D2 receptors inhibit intracellularly recorded
neurons

Govindaiah and Cox, 2005;
Munsch et al., 2005

A1 Awake gerbil D1 receptors modulate auditory discrimination learning Schicknick et al., 2012; Happel
et al., 2014

MGN Mouse (brain slices) D2 receptors modulate synaptic transmission at thalamocortical
afferents in A1

Chun et al., 2014

Inferior colliculus Awake mouse Dopamine inhibits neuronal activity Gittelman et al., 2013

S1 Awake rat Dopamine inhibits neuronal activity Bassant et al., 1990

Ventrobasal thalamus Rat (brain slices) Dopamine increases excitability of intracellularly recorded neurons Govindaiah et al., 2010a

Dopaminergic Modulation of Sensory
Physiology
Dopamine neuron activity is classically described as being time
locked to the presentation of rewarding stimuli. Phasic firing
of action potentials by DA neurons especially in the medial
mesencephalon communicates a reward prediction error that
scales with the difference between predicted and actual reward
(Schultz, 2007). These neurophysiological findings form the
basis for the large number of studies that have investigated
DA’s role in motivation, appetence, and reward-related learning
(“motivational salience”). More recent experiments have revealed
the existence of functionally distinct subgroups of DA neurons
in particular in the lateral midbrain that are activated both
by rewarding and aversive events (Matsumoto and Hikosaka,
2009; Matsumoto et al., 2013). This suggests that these neurons
are responsive to a more general group of sensory stimuli
that are behaviorally relevant and should trigger an appropriate
coordinated response (“cognitive salience”). The physiological

effects of DA on sensory information processing, however, are
not yet well understood. Given the sparse innervation of sensory
structures, comparatively few studies have addressed the role of
DA in directly modulating sensory inputs (Table 6).

In rat and cat dorsal LGN, in vivo iontophoretic activation
of D1 receptors produced inhibition, whereas engagement
of D2 receptors resulted in excitation of extracellularly
recorded relay neurons (Phillis et al., 1967; Albrecht et al.,
1996; Zhao et al., 2002). Intracellular recordings in rat
and mouse LGN slices, however, found that D1 receptors
lead to an excitatory membrane depolarization in relay
neurons (Govindaiah and Cox, 2005), whereas D2 receptors
on local GABAergic interneurons produced inhibition in
postsynaptic neurons (Munsch et al., 2005), in complete
contrast to the in vivo results. It is currently unclear whether
these diverging findings reflect dose-dependent effects, where
application of small and large drug concentrations often yields
opposite effects (Zhao et al., 2002), or rather result from
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network mechanisms that differ in the in vivo and in vitro
preparation.

In primate primary visual cortex (V1), oscillatory activity
(local field potentials) containing information about animated
visual stimuli (movie clips) was enhanced in particular in
supragranular layers following systemic administration of the
DA precursor L-DOPA (Zaldivar et al., 2018). However, focal
application of DA failed to induce changes in neuronal
activity (Zaldivar et al., 2014), possibly reflecting the very
sparse dopaminergic innervation of the occipital pole. In
accordance with the notion that dopaminergic effects on visual
processing are not mediated by early primary visual regions
but possibly by higher-order brain areas, visually induced
neuronal responses were directly modulated by DA in the
monkey lateral PFC (Jacob et al., 2013). Here, iontophoretically
applied DA affected two distinct neuronal populations involved
in encoding behaviorally relevant visual stimuli. In putative
interneurons, DA inhibited activity in form of a subtractive
shift in response levels with unchanged SNR. In putative
pyramidal neurons, DA increased excitability in form of a
multiplication in gain and enhanced SNR through a reduction
of response variability across trials (Jacob et al., 2013). By
increasing the coding strength of sensory signals, DA could
play a crucial role in how sensory information is represented,
memorized, and interpreted in PFC (Ott et al., 2014; Jacob et al.,
2016).

Acting on cognitive brain centers, DA might influence
visual cortical processing (Arsenault et al., 2013) by long-
range interactions originating, e.g., in frontal cortex. Support
for this hypothesis comes from exploring DA’s modulatory
influence on PFC-guided allocation of visual attention in the
macaque monkey (Noudoost and Moore, 2011). D1R were
blocked by local antagonist injections into sites of the frontal
eye fields (FEFs) that represented the same region of visual
space (the “response field”) as simultaneously recorded neurons
in visual cortex area V4. Prefrontal D1R antagonism caused
the animals to saccade more frequently toward FEF response
field targets, meaning this part of the visual field had grasped
their attention. The response properties of V4 neurons were
changed in a way that is consistent with a multiplicative increase
in gain: first, there was an enhancement in the magnitude of
responses to visual stimulation; second, the visual responses
became more selective to stimulus orientation; third, the visual
responses became less variable across trials (Noudoost and
Moore, 2011). Thus, prefrontal top-down control over visual
cortical neurons during visual attention is under the influence of
D1 receptors.

In the auditory system, both inhibitory and – less frequently –
excitatory responses in IC neurons were observed after local
iontophoretic application of DA in awake mice (Gittelman
et al., 2013). The importance of subcortical DA for auditory
information processing was underscored by showing that
overexpressed MGN D2 receptors in a schizophrenia mouse
model reduce the efficiency of synaptic transmission of excitatory
thalamocortical afferents in auditory cortex (Chun et al.,
2014). These changes were accompanied by behavioral deficits
in auditory perception (acoustic startle response). Because

thalamocortical afferents in visual or somatosensory cortex were
not affected, studying this mouse model might help to provide
a neuronal mechanism that links dopaminergic dysfunction
to the generation of auditory hallucinations in schizophrenia
(Chun et al., 2014). Auditory processing is modulated by
cortical DA receptors as well. Systemic administration of
D1 receptor antagonists or local injections directly into
auditory cortex of gerbils impaired discrimination learning
of acoustic stimuli, while D1 receptor agonists improved the
animals’ performance (Schicknick et al., 2012; Happel et al.,
2014).

Finally, the representation of somatosensory information is
also strengthened by DA: in vivo depletion of DA in mouse
striatum worsened the laterality coding of whisker deflections
in medium spiny neurons, i.e., the projection neurons of this
structure, indicating that tactile acuity requires dopaminergic
input (Ketzef et al., 2017). Intracellular recordings in rat VB
thalamic slices showed that DA increases neuronal excitability in
two different ways: activation of D1 receptors leads to membrane
depolarization, whereas D2 receptors facilitate action potential
discharge (Govindaiah et al., 2010b). In contrast, in rat S1,
iontophoretic DA application produced inhibitory effects on
neuronal firing (Bassant et al., 1990).

Putting It All Together: Monoaminergic
Neuromodulation of Sensory Processing
The discussed studies provide compelling evidence that the
representation and processing of sensory information is
heavily regulated by the brain’s monoamine transmitters.
Despite their widespread cortical and subcortical targeting,
the monoaminergic systems are by no means blurry,
brain-wide modulators of neuronal activity. They send
regionally and laminar-specific projections, which may
allow them to control both feed-forward and feed-back
influences (Cumming and Nienborg, 2016) on sensory
signaling by distinct mechanisms. These regional and laminar
differences are particularly pronounced in the macaque brain
(Figure 1).

The indolamine serotonin has prominent projections to
the primary sensory areas and innervates all cortical layers
including the thalamo-cortical input layer 4. Serotonin is well
suited to regulate the sensory input stages by acting in these
primary sensory areas and in the first-order thalamic relay
nuclei. Despite some degree of variability between studies on
the serotonergic modulation of sensory processing, the emerging
pattern is that it dampens neuronal responses and reduces
gain. The reduction in gain may reduce the salience of a
sensory stimulus (Seillier et al., 2017). Alternatively, if it only
affects the spontaneous but not the stimulus-driven response
(Lottem et al., 2016), it may increase a neuron’s SNR and hence
effectively increase stimulus salience. Probing the serotonergic
modulation of sensory processing during perceptually driven
behavior may resolve this seeming discrepancy. In general,
however, the experimental data show that serotonin directly
modulates sensory processing as early as the feed-forward
sensory input stage.
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In contrast to serotonin the catecholamine DA has a
pronounced fronto-occipital gradient (Figure 1), is less abundant
in sensory cortices, particularly sparse in the primary visual
cortex, and only weakly active in granular layers. This suggests
that dopaminergic effects on sensory processing are not mediated
primarily by local modulation of early sensory input stages
(e.g., Zaldivar et al., 2014) but instead by modulating long-
range recurrent cortico-cortical and cortico-bulbar interactions
originating in the strongly innervated supragranular and
infragranular layers, respectively, e.g., of the frontal lobe cognitive
control centers (Lewis et al., 1987; Noudoost and Moore, 2011;
Jacob et al., 2013). Its modulatory effects stem from a variable and
complex combination of inhibition and excitation in the targeted
circuits. The net result is likely an increase in SNR, which is
based both on additive operations, e.g., predominant suppression
of responses to non-preferred stimuli (“sculpting inhibition”)
(Vijayraghavan et al., 2007), and on multiplicative operations,
e.g., increase in gain and response reliability (reduction of trial-
to-trial variability) (Noudoost and Moore, 2011; Jacob et al.,
2013). Thus, the role of DA could primarily be to adapt the read-
out of sensory circuits to best serve task demands and behavioral
goals.

The catecholamine NA, conversely, may play a role in
between these two extremes. It has a less pronounced fronto-
occipital gradient than DA and, like serotonin, substantial
projections to the primary sensory cortices, including the primary
visual cortex. But in contrast to serotonin, the innervation
of the granular layers is relatively sparse (Figure 1). The
modulatory effects of NA on sensory processing are diverse.
This variability may reflect adaptable modulation depending on
the behavioral state of the animal, in line with the notion of
optimizing the neuronal gain for behavior (Aston-Jones and
Cohen, 2005).

Taken together, the current literature argues for a prominent
complementarity in sensory neuromodulation by monoamines.
This complementarity is prominent anatomically (Figure 1B),
resulting in both direct bottom-up and indirect top-down control
over sensory signaling by the indolamine serotonin and the
catecholamines NA and DA, respectively (Papadopoulos and
Parnavelas, 1991). One of the main challenges will now be to
dissect the individual contributions of the anatomically and
functionally separable monoamine subsystems in shaping how
sensory information is represented, processed, and evaluated
by the brain’s sensory, cognitive, and motivational networks
(Figure 1A). We believe that key to such insights will be the
combination of increased specificity and precision when targeting
these neuromodulatory systems with well characterized behavior
(Krakauer et al., 2017).
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