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Neural responses recorded from auditory cortex exhibit adaptation, a stimulus-specific
decrease that occurs when the same sound is presented repeatedly. Stimulus-
specific adaptation is thought to facilitate perception in noisy environments. Although
adaptation is assumed to arise independently from cortex, this has been difficult to
validate directly in vivo. In this study, we used a neural network model of auditory cortex
with multicompartmental cell modeling to investigate cortical adaptation. We found that
repetitive, non-adapted inputs to layer IV neurons in the model elicited frequency-specific
decreases in simulated single neuron, population-level and local field potential (LFP)
activity, consistent with stimulus-specific cortical adaptation. Simulated recordings of
LFPs, generated solely by excitatory post-synaptic inputs and recorded from layers
II/III in the model, showed similar waveform morphologies and stimulus probability
effects as auditory evoked responses recorded from human cortex. We tested two
proposed mechanisms of cortical adaptation, neural fatigue and neural sharpening, by
varying the strength and type of inter- and intra-layer synaptic connections (excitatory,
inhibitory). Model simulations showed that synaptic depression modeled in excitatory
(AMPA) synapses was sufficient to elicit a reduction in neural firing rate, consistent with
neural fatigue. However, introduction of lateral inhibition from local layer II/III interneurons
resulted in a reduction in the number of responding neurons, but not their firing rates,
consistent with neural sharpening. These modeling results demonstrate that adaptation
can arise from multiple neural mechanisms in auditory cortex.

Keywords: computational modeling, auditory cortex, adaptation, neural network, ECoG, repetition suppression,
auditory evoked responses, local field potentials

INTRODUCTION

Neural responses decrease when a sensory stimulus is presented repeatedly, a form of short-term
neural plasticity known as adaptation or repetition suppression (Li et al., 1993; Desimone,
1996; Grill-Spector et al., 2006). In the auditory system, adaptation that does not generalize
to new or rare sounds is termed stimulus-specific (Ulanovsky et al., 2003) and thought to
improve auditory perception in noisy environments (Von der Behrens et al., 2009; Taaseh
et al., 2011). Although stimulus-specific adaptation occurs at all levels of the auditory system,
including the inferior colliculus (Malmierca et al., 2009), it has been studied mainly in cortex.
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Evidence for adaptation in primary auditory cortex derives from
animal studies that show suppression of single-neuron responses
to repetitive pure tones (Ulanovsky et al., 2003; Von der Behrens
et al., 2009; Farley et al., 2010; Taaseh et al., 2011), but not in
simultaneous recordings from the main thalamic inputs to cortex
(Ulanovsky et al., 2004; Szymanski et al., 2009). Adaptation
has also been observed in human cortical auditory responses
recorded from scalp (Briley and Krumbholz, 2013; Lanting et al.,
2013) and cortex (Eliades et al., 2014). Although the underlying
mechanisms are not fully understood, cortical adaptation is
commonly attributed to neural fatigue resulting in decreased
neuronal firing rates due to neurotransmitter depletion (Briley
and Krumbholz, 2013) or neural sharpening reflecting reduction
in the number of responding neurons (Desimone, 1996; Wiggs
and Martin, 1998; Henson and Rugg, 2003).

Some studies, however, have reported stimulus-specific
adaptation of secondary, or non-lemniscal thalamic inputs to
cortex (Anderson et al., 2009; Antunes et al., 2010; Duque
et al., 2014). This finding raises the possibility that adaptation
is strictly inherited from subcortical sources and does not
occur independently in cortex, potentially accounting for the
insensitivity of some cortical auditory neurons to repetitive
background sounds (noise; Moore et al., 2013; Rabinowitz et al.,
2013; Schneider and Woolley, 2013; Mesgarani et al., 2014).

Determining whether adaptation can arise independently
from cortical sources is important for elucidating the neural
basis of adaptation and for guiding future investigations on the
role of adaptation in real-world listening environments where
repetitive background sounds (noise) are common. Resolving
this issue also has implications for human brain mapping
studies that rely increasingly on adaptation paradigms to identify
cortical sub-regions of functional specialization (for discussion
see Krekelberg et al., 2006; Kar and Krekelberg, 2016). To
date, however, it has been difficult to directly test cortical
adaptation in vivo because cortical input parameters are not
readily amenable to experimental manipulation.

In this study, we tested the hypothesis that adaptation can
arise independently from cortical sources by using a simple
but realistic multi-layer neural network model of auditory
cortex that allowed us to systematically control cortical input
parameters and circuitry. When repetitive, non-adapted inputs
were introduced to multicompartmental layer IV neurons in the
model, we observed frequency-specific decreases in simulated
single neuron, population-level and local field potential (LFP)
activity, consistent with stimulus-specific adaptation. Results
were verified by comparison with auditory evoked responses
recorded from human cortex under the same experimental
conditions. When intra- and inter-layer synaptic connectivity
was varied across simulations, we found that synaptic depression
modeled in excitatory (AMPA) synapses was sufficient to
elicit a reduction in neural firing rates, consistent with neural
fatigue. However, introduction of lateral inhibition from local
interneurons in layers II/III resulted in a decrease in the overall
number of responding neurons but not in their firing rates,
consistent with neural sharpening. These results suggest there are
multiple, state-dependent mechanisms of adaptation in auditory
cortex.

MATERIALS AND METHODS

Neural Network Model
The network model was designed to represent a continuous
3.6 mm2 multilayer patch of primary auditory cortex and
was implemented in the GEneral NEural SImulation System
(GENESIS 2.41; Bower and Beeman, 1998; Bower et al., 2003).
The model has three overlapping layers (arrays) comprising a
total of 8,064 simulated neurons: a granular layer IV array,
a supragranular layer array representing layers II and III,
and an auxiliary layer array at the bottom of the model to
simulate auditory afferent inputs from thalamus (Figure 1A).
The granular layer array was derived from an earlier single-layer
model developed to study cortical waves in primary auditory
cortex (Beeman, 2013; Beeman et al., 2017) and expanded to
a population of 2,304 excitatory (pyramidal) neurons arranged
as a 48 × 48 array with 576 interneurons (24 × 24).
The overlapping supragranular array has the same neuronal
population composition and configuration. The auxiliary layer
array contains 2,304 neurons (48 × 48) representing excitatory
thalamocortical afferent inputs to the granular layer. Simulation
scripts for the Beeman (2013) single-layer model are available on
Model DB accession number 15,067.

The model represents the frequency-specific (tonotopic)
organization of auditory cortex, mapping a range of frequencies
to the x-coordinates (rows) of each array. Frequencies are
mapped from low to high (fmin − fmax) forming contiguous
rows, with each row comprising 48 simulated neurons. We use
a linear mapping of frequencies to rows as an approximation
of the frequency map in a patch of auditory cortex covering a
limited frequency range. For the model simulations, the range
of frequencies mapped was 800–1,432 Hz (16.63 Hz/row) and
included the two tone frequencies (1,000 Hz, 1,200 Hz) used
in the experimental recordings. To represent the iso-frequency
bands characteristic of primary auditory cortex (Merzenich and
Brugge, 1973; Merzenich et al., 1975), the x-coordinate frequency
values were held constant across the corresponding y and z
coordinates of all three overlapping network arrays (Figure 1A).
Because network boundary conditions are not constrained in
the model, the five most peripheral rows on each side of the
arrays were not mapped to avoid boundary effects. Auxiliary
layer neurons were synaptically coupled by their array position
to deliver inputs to the immediately overlying network array
row to simulate the main pathway of frequency-specific afferent
input to auditory cortex that projects from the ventral division
of the medial geniculate body of the thalamus. The extent
and strength of these connections decay exponentially with the
distance for each adjacent row with maximal values in the
overlapping row. A single-frequency tone input is simulated
in the model as the activation of all neurons positioned in
the corresponding (frequency-matched) row of the overlapping
auxiliary and granular network arrays. The subsequent spread
of the initial activation to adjacent rows of the granular and
supragranular arrays is implemented by existing modulatory and
feedforward cortical synaptic projections.

1http://www.genesis-sim.org/GENESIS/

Frontiers in Neural Circuits | www.frontiersin.org 2 September 2018 | Volume 12 | Article 72

http://www.genesis-sim.org/GENESIS/
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Kudela et al. Modeling Adaptation in Auditory Cortex

FIGURE 1 | Neural network model of auditory cortex. (A) Schematic of multi-layer neural network model design showing the granular cortical layer IV, supragranular
layers II/III and an auxiliary layer representing thalamic inputs along with relative locations of frequent and infrequent stimulus. Each layer is represented by arrays of
48 × 48 pyramidal neurons (red) and 24 × 24 interneurons (blue) arranged in 3D space. Frequency-specific (tonotopic) organization is represented by a series of
contiguous rows representing specified frequency range (fmin − fmax). (B) Simulated neurons in layers IV (left) and II/III (right) are nine-compartment regular-spiking
pyramidal cells (red) and two-compartment fast-spiking interneuron (basket) cells (blue). Time-constants for AMPA and GABA synapses are shown in boxes.
(C) Representation of intra- and inter-layer chemical (AMPA, GABA) synaptic connectivity. (D) Raster plot showing row-specific simulated neuronal population activity
in response to single, infrequent inputs (rate 2–6 s) to rows 18 (left) and 30 (right).

Model Neurons
Simulated neurons were biophysically realistic
multicompartmental cell models. Cell morphology and
passive parameters were based on the neocortical pyramidal
cell models of Bush and Sejnowski (1993). Regular-spiking
pyramidal neurons in layers II/III and IV were modeled as
nine-compartment cell models (Figure 1B). Fast-spiking
interneurons were modeled as two compartment cells; a single
compartment (soma) model was used to represent neurons
in the auxiliary layer. Parameters for the regular-spiking and
fast-spiking cells were based on prior modeling studies (Traub
et al., 1991; Anderson et al., 2007). The modeled regular-spiking
neuron included a sodium current INa, a delayed rectifier
potassium current IK, a high threshold calcium current ICa, a
Ca-dependent potassium current IK(Ca), and a leakage current
IL. The fast-spiking model neuron had the same set of currents,
except for the calcium ICa and Ca-dependent potassium IK(Ca)
currents. Two types of neuronal activity are simulated in the
model: (1) membrane potentials of individual neurons or their
aggregates within given rows and layers of the network; and
(2) large-scale network activity captured across one entire layer
or all layers of the model.

Synaptic Connections
Synaptic inputs to excitatory and inhibitory neurons are
represented within and between granular and supragranular
layers. Within each layer, excitatory neurons are associated with
AMPA and inhibitory neurons are associated with ionotropic
GABAA chemical synapses (Figure 1C). These connections
represent the horizontal (lateral) components of cortical
connectivity that function as modulatory feedback pathways

targeting apical dendrites of pyramidal neurons positioned in
different input rows within a layer (Figure 1B). In granular or
supragranular layers, a single-frequency tone will first activate
neurons in the corresponding tone-matched row(s) and may
then activate, excite or inhibit neurons in adjacent rows as a result
of activating their corresponding connections. Post-synaptic
currents are described by a double-exponential function with
onset times of to = 1 ms and 5 ms for excitatory and inhibitory
post-synaptic currents respectively (EPSP, IPSP); decay times
were td = 3 ms for EPSP and td = 12 ms for IPSP. Synaptic
conductance parameter gsyn varied from 1 nS to 30 nS for
excitatory synapses and from 1 nS to 5 nS for inhibitory
synapses. Connection probabilities (p) decrease exponentially
with radial distance r measured between pre- and postsynaptic
neurons within a layer as: p (r) = p0e−(r/s)2 where s = 4 is
the scale factor expressed in units of separation between two
excitatory cells within a layer. The probability p0 varies from
0.15 (excitatory-to-excitatory connections) to 0.5 (inhibitory-to-
inhibitory connections), as previously described (Levy and Reyes,
2011, 2012; Yuan et al., 2011).

Synaptic connectivity between modeled layers represents the
vertical component of cortical connectivity that is intrinsic
to cortical minicolumns and serves to simulate afferent
feedforward input from granular to supragranular layers
(Figure 1C). Pyramidal neurons in the granular layer synapse
with interneurons and pyramidal neurons in the supragranular
layer. This feedforward input is modeled as inter-laminar
synaptic connections targeting basal dendrites of supragranular
pyramidal neurons (Figure 1B). The same formula was used to
determine the probability of these connections, with s = 2 and p0
varying from 0.5 to 0.8.
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The strength of intra- and inter-layer connections is modified
dynamically by ongoing network activity according to a
phenomenological model of short-term synaptic plasticity (STP;
Markram and Tsodyks, 1996; Varela et al., 1997, 1999; Wang
et al., 2006). Although the STP model can produce either
depression or potentiation of synaptic strength, we focused
exclusively on synaptic depression because studies of mouse
auditory cortex (Levy and Reyes, 2012) have showed strong short
term depression (STD) on AMPA synapses of both pyramidal
cells and fast-spiking inhibitory cells. For AMPA synapses in the
model, this reported STD was modeled with fast (D1 = 0.46;
τD1 = 0.38 s and slow (D2 = 0.76; τD2 = 9.2 s) synaptic
depression factors (Varela et al., 1997). Network neurons were
simulated in the absence of background firing activity to facilitate
identification and for better visualization of stimulus driven
adaptation in neuronal activity (Bernacchia, 2014; Kudela and
Anderson, 2015), after confirming that background activity,
i.e., 5–8 Hz spontaneous firing rate (Munguia et al., 2013), did
not alter the results. Secondary inputs to layers IV and II/III,
including other inter-laminar, inter-regional and commissural
inputs and background firing were omitted from the model to
allow direct examination of the main thalamic inputs to auditory
cortex. GENESIS implementation of the Varela et al.’s (1997) STP
model are at the repository for the continued development of the
GENESIS 2.4 neural simulator2.

Model Tuning
Single 50-ms pulse inputs to different rows of the network
elicited single neuron and population level action potentials
that were spatially restricted to the stimulated row (Figure 1D).
The ‘‘row’’ specific nature of these responses is consistent with
the frequency-specific responses characteristic of neurons in
primary auditory cortex and confirms the functional tonotopic
organization of the model.

Model Simulations
Three batch simulations were performed to investigate effects
of stimulus repetition on the network model. All simulations
were based on the same experimental adaptation paradigm that
was used in the human intracranial recording studies. The
experimental paradigm is a 300-trial passive auditory oddball
task used to present two 200-ms duration single-frequency
(pure) tone stimuli: 1,000 Hz and 1,200 Hz which are readily
distinguishable by the human ear. Oddball paradigms are
commonly used to study neural adaptation in both human
and animal studies (Ulanovsky et al., 2004; Von der Behrens
et al., 2009; Eliades et al., 2014; Malinowska et al., 2017). The
1,000 Hz tone was designated as the high-probability (repetitive)
stimulus and presented consecutively (2–12 repetitions; 82%
of total number of trials); the low-probability 1,200 Hz tone
was interspersed infrequently (12% trials) and non-consecutively
among the repetitive stimulus trials. The tone stimuli were
presented on sequential trials at an inter-stimulus interval of
1,200 ms to match the experimental recording paradigm and

2https://github.com/genesis-sim/genesis-2.4

for consistency with other human auditory adaptation studies
(Lanting et al., 2013; Eliades et al., 2014).

Simulation 1 was implemented to test whether repetitive,
excitatory (e.g., non-adapted) input to layer IV model neurons
leads to the reduction (adaptation) of single-neuron and
population-level responses. We used the oddball paradigm
to deliver a repetitive pulse input at a high-probability
rate of 0.5–1 Hz for a period of 10 s, interspersed by a
second low probability input of 0.1–0.2 Hz. The high- and
low-probability inputs were delivered to simulated neurons
centered on two different rows of the layer IV array: rows
18 and 30 approximating pure tone inputs of 1,000 Hz and
1,200 Hz, respectively. AMPA synapses were modeled with
fast D1 = 0.46 and slow D2 = 0.76 synaptic depression
factors in the STP model (Varela et al., 1997). Both single
neuron and population level (across-row) responses were
simulated. To control for potential effects of input location on
neuronal responses, akin to intrinsic differences in the frequency
preferences of neurons along the tonotopic gradient in auditory
cortex, the stimulation was re-run switching the location of the
high and low probability input rows.

Simulation 2 was conducted to simulate repetition effects on
LFP recordings for comparison with experimental recordings
(see below). Model input parameters were matched to those
of the experimental oddball paradigm. A simulated electrode
was positioned at height z = 1 mm above the bottom of the
supragranular layer (II/III) in extracellular space to represent
LFP recordings. The simulated electrode was located above
the middle of the iso-frequency band (x-y plane) centered
at rows 18 and 30. The LFP was calculated as the sum
of transmembrane and capacitive currents from all neuronal
compartments of all responding neurons in the network using
the GENESIS efield object, taking into account the distance
between the electrode and a given neuronal compartment
(Nunez, 1981; Nunez and Srinivasan, 2006). The medium
in which neurons are embedded is treated as homogenous
without capacitance effects. LFPs were generated separately for
frequent (repetitive) and infrequent inputs and averaged in
the time domain for comparison with human auditory evoked
responses.

Simulation 3 was performed to test two candidate
mechanisms of adaptation: neural fatigue and neural sharpening.
The neural fatigue account predicts a decrease in overall
neuronal firing rate due to decreased excitatory synaptic inputs,
while neural sharpening predicts a decrease in the number of
responding neurons due to changes (increases) in inhibitory
synaptic inputs. The main dependent variables were the total
number of action potentials fired (firing rate) and the total
number of responding neurons. We first ran Simulation 3 with
excitatory (AMPA) synaptic inputs and without inhibitory
synaptic inputs (weak GABA synaptic weights) e.g., matching
all parameters to Simulation 1. We then re-ran Simulation 3
without excitatory synaptic inputs implemented by AMPA
modeled as non-depressing synapses. To examine effects of
inhibitory synaptic inputs on adaptation, we next ran Simulation
3 with both excitatory and inhibitory synaptic inputs. Inhibitory
inputs were implemented via lateral (intra-layer) interneurons.
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Experimental Recordings
Model simulated LFPs were compared with intracranial
electrocorticographic (ECoG) recordings from a normal-
hearing, right-handed, adult male epilepsy patient undergoing
intracranial monitoring for clinical purposes of seizure
localization. ECoG signals were recorded from subdural
electrodes (2.3 mm diameter, 9 mm spacing) embedded in
an 8 × 8 array that was implanted over the lateral cortical
surface of the right hemisphere (Figure 3A). The passive
auditory oddball paradigm was used to present the tone
stimuli at a comfortable listening level through binaural insert
earphones while the patient watched an animated movie
with no sound. ECoG recording parameters are described
in detail elsewhere (Boatman-Reich et al., 2010; Eliades
et al., 2014). The patient provided informed consent for
the auditory ECoG recordings in compliance with Johns
Hopkins Institutional Review Board requirements. The study
was approved by the Johns Hopkins Institutional Review
Board.

Auditory evoked responses were computed for each electrode
channel by averaging trials in the time domain, based on
stimulus probability (frequent, infrequent). Identification of
an N1 response in the averaged waveforms was used to
confirm the presence of an evoked response. The evoked
N1 response is a robust, vertex-negative deflection that peaks
around 100 ms after stimulus presentation and is thought to
reflect an early, automatic cortical response to sound, with neural
generators in primary auditory cortex. For comparison with
the model simulated LFPs, we used auditory evoked responses
recorded from an electrode located directly over the posterior
section of the Sylvian fissure, corresponding to auditory cortex
(Figure 3A).

RESULTS

Model simulation results are presented in this section. In
Simulation 1, we investigated effects of repetitive, non-adapted
inputs on the model’s neural firing patterns. Simulated
membrane potential traces from one pyramidal cell in each
of the two input rows and raster plots of the aggregate
across-row population activity at the supragranular layer are
shown in Figure 2. For the high-probability input stimulus
(row 18), we observed a reduction of up to 50% in simulated
single neuron and population level firing rates. Conversely, no
reduction was observed at the single neuron or population
level for the low-probability input stimulus (row 30). When the
simulation was re-run switching the high- and low-probability
inputs between the two rows, we again observed a decrease
in single neuron and population-level firing activity within
the high-probability input row (now row 30), but not in the
low-probability input row (now row 18). These results indicate
that adaptation of simulated single neuron and population
level responses occurs independently in cortex and is stimulus-
specific.

Simulation 2 was conducted to derive simulated LFPs for
comparison with ECoG recordings acquired directly from
human cortex under the same experimental conditions. As

shown in Figure 3, both simulated and experimental responses
to highly repetitive stimulus inputs were reduced compared with
responses to low-probability inputs, consistent with stimulus-
specific adaptation of the high-probability response. Similarly,
both the trial-averaged simulated LFPs and human auditory
evoked responses to high- and low-probability stimuli comprised
bi-phasic waveforms: positively deflecting peaks followed by
negatively deflecting peaks. The peak of the initial positive
deflection in the human evoked response waveforms occurred
around 55–60 ms post-stimulus, consistent with the evoked
P1 response. The subsequent negative deflection, peaking around
100–105 ms post-stimulus, was identified as the N1 response.
Neural generators for both the P1 and N1 are located in primary
auditory cortex; the P1 also has neural generators in thalamus.

The corresponding ‘‘P1-N1’’ peaks in the simulated
waveforms were generated solely by excitatory postsynaptic
activity in supragranular pyramidal neurons (Figure 4). The
first simulated positive waveform peak coincided with activation
of pyramidal neurons in the supragranular layer by excitatory
feedforward projections from the granular layer (Figure 4). The
positive voltage deflection reflected the synchronized arrival of
EPSPs at basal dendrites of pyramidal neurons in supragranular
layers II/III and their vertical propagation towards the cell somas
and the simulated electrode positioned above the supragranular
layer. The negative peak in the simulated waveform emerged
approximately 30–40 ms later and co-occurred with the arrival
of EPSPs at the apical dendrites of pyramidal neurons in the
supragranular layer. Barrages of EPSPs were generated at apical
dendrites by lateral (intra-layer) input, representing modulatory
cortical feedback, and were secondary to EPSPs at the basal
dendrites. The negative waveform deflection reflected the
propagation of EPSPs in the opposite direction along apical
dendrites: towards the cell somas and away from the electrode.
The broader width of the negative waveform suggests that arrival
of EPSPs at apical dendrites of pyramidal neurons may be less
temporally correlated than at basal dendrites. Repetition-related
decreases in P1 and N1 amplitudes reflect dynamic adjustment
(depression) of AMPA synaptic connections resulting in the
weakening of synaptic inputs from layer IV to layer II/III
pyramidal cells with repetition.

A notable difference between the simulated and human LFPs
is the lack of identifiable second positive peak (P2) response
in the simulated waveforms. In human recordings, including
ours, the P2 is a vertex-positive response that follows the
N1 response and occurs around 200 ms post-stimulus with its
neural generators located outside of primary auditory cortex
in higher auditory areas. We speculate that the absence of a
P2 response in the simulated waveform reflects the lack of
synaptic inputs to the model from non-primary auditory areas,
including the lateral superior temporal gyrus. Similarly, a second
negative peak occurring around 150 ms in the human LFP
response (N2) to the infrequent tone was not observed in the
simulated LFP likely also reflecting the lack of synaptic inputs
from non-primary auditory sources in the model.

Simulation 3 tested two competing accounts of adaptation:
neural fatigue and neural sharpening. With repetitive inputs, we
observed a decrease in single cell and population level firing
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FIGURE 2 | Simulated single neuron and neuronal population action potentials. Top row shows decreased single-neuron firing with repetitive (frequent) presentation
of a 50-ms pulse to rows 18 (A) or 30 (B) over a 10-s period. The decrease in firing rates was row-specific, simulating stimulus-specific adaptation. Note: no
decrease in firing rate was observed when the same input pulse was presented infrequently to rows 30 (A) or 18 (B). Bottom row shows raster plots of
population-level firing activity corresponding to the same row and input conditions (top row). Decreased population-level firing activity (horizontal extent), was
observed with repetitive inputs to row 18 (C) and row 30 (D).

rates in or close to the corresponding row (row 18), but not
in the row that received infrequent inputs (row 30), as shown
in Figure 5. The average decrease in firing rate from the first
to the second repetition was 40%. When the simulation was

re-run with AMPA modeled as non-depressing synapses but
all other parameters the same, we observed no corresponding
decrease in firing rates with repetitive inputs (data not shown).
These results suggest that firing rate adaptation is associated

FIGURE 3 | Model simulated local field potentials (LFPs) and human auditory evoked responses. (A) Lateral view of the right hemisphere showing 8 × 8 subdural
electrode array (top left); electrode positions are co-registered to the individual 3D MRI brain reconstruction. Filled electrodes denote sites that were in
auditory-responsive cortex. Arrow points from electrode used to compute the auditory evoked response (right). The auditory evoked response was derived
separately for the repetitive (frequent, black) and infrequent (red) stimuli and overlaid for comparison. Time is on the x-axis in seconds, with dashed line at 0-ms
denoting stimulus onset; amplitude is on the y-axis with negative deflections pointing upwards e.g., above zero. (B) Model simulated LFP using the same input
paradigm as the experimental recordings. Note: pulse inputs were delayed by 50 ms to account for neural transmission delay between ear and cortex in the human
auditory system.
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FIGURE 4 | Simulated LFPs showing P1 and N1 generation in the model.
(A) Simulated averaged evoked responses to frequent inputs plotted along
with single-neuron activity of selected neurons in rows 18 (frequent tone), 20,
22 and 24. The smaller amplitude positive deflection (P1) reflects the arrival of
excitatory synaptic inputs at basal dendrites of layer II/III pyramidal neurons in
row 18 through feedforward connections from layer IV. These inputs cause the
initial neuronal firing of neurons in row 18. The subsequent negative deflection
(N1) reflects the arrival of all excitatory post-synaptic inputs at the apical
dendrites of pyramidal neurons in rows adjacent to row 18 and through lateral
feedback connections in layer II/III. These lateral feedback inputs are
secondary to neuronal activity in row 18. Note: by convention, negative LFP
deflections are shown pointing upward. (B) LFP traces (black) in response to
excitatory synaptic current inputs (sinks) injected into the basal (left) and apical
(right) dendrite of a layer II/III model of pyramidal neuron. Red and blue
contour lines correspond to positive and negative values for the LFP
amplitude, respectively. The position of electrode corresponds to the position
of electrode in Simulation 2.

with synaptic depression modeled in AMPA synapses, consistent
with the neural fatigue account. However, when inhibitory inputs
were introduced within both granular and supragranular layers,
simulated responses to repetitive input (row 18) showed little to
no reduction in firing rate, but instead a decrease in the number
of responding neurons (Figure 6). No reduction in neural activity
in the array row that received the infrequent stimulus input
was observed, except for two consecutive stimuli separated by
one frequent stimulus. The average decrease in the number
of responding neurons from the first to the second repetition
was 38%. These results suggest that lateral inhibition from local
interneurons results in a sparser neuronal representation with
repeated stimulus inputs consistent with the neural sharpening
account. The decrease in the number of responding neurons
was most evident in layers II/III, in agreement with a prior

computational modeling study of adaptation in medial temporal
cortex (Norman andO’Reilly, 2003). Taken together, results from
Simulation 3 suggest that neural fatigue and sharpening accounts
may not be mutually exclusive, but rather co-exist in auditory
cortex and are state-dependent i.e., determined by the balance of
inhibitory and excitatory connections.

DISCUSSION

We implemented a simple, but biologically realistic neural
network model to investigate adaptation in auditory cortex.
Studies of adaptation in previous models were limited almost
exclusively to analyses of spike population responses (i.e., mean
spike counts). The novelty of our network model lies in
its ability to model adaptation at the level of cortical
evoked responses, and in addition to population and single-
neuron levels. Model simulations showed decreased single-
neuron, population-level and LFP activity when repetitive,
non-adapted inputs were introduced to layer IV pyramidal
neurons. The observed decreases in neuronal activity were row
(frequency) specific in that they did not generalize to other
rows in the model. These results demonstrate that stimulus-
specific adaptation can arise from independent cortical sources.
Simulated LFP adaptation profiles were verified by comparison
with auditory evoked responses recorded from human cortex
and are consistent with prior adaptation studies (Ulanovsky
et al., 2004; Farley et al., 2010; Briley and Krumbholz, 2013;
Lanting et al., 2013; Eliades et al., 2014; Kar and Krekelberg,
2016). Importantly, although our results support independent
cortical mechanisms of adaptation, they do not preclude other
potential sources of adaptation, such as secondary (non-
lemniscal) inputs from thalamus (Anderson et al., 2009; Antunes
et al., 2010). Future modeling studies may be useful for
elucidating the relationship between cortical and other sources
of adaptation.

An unexpected finding from the LFP simulations was that
both bi-phasic (P1-N1) peaks in the simulated waveform were
generated from excitatory postsynaptic activity of supragranular
pyramidal neurons. This contrasts with previous reports that
these bi-phasic deflections reflect sequences of excitatory (P1)
followed by inhibitory (N1) post-synaptic inputs (Tan et al.,
2004; Oswald et al., 2006). However, a similar finding was
reported in a recent study of rat somatosensory cortex where
reduced inhibitory post-synaptic activity affected only the
late phase of the N1 by increasing its peak and duration
(Bruyns-Haylett et al., 2017). Based on the time course and
morphology of the simulated LFP components, we speculate
that the initial positivity (P1) reflected bottom-up activity
of the basal dendrites of pyramidal neurons in layers II/III
as shown in Figure 4. The subsequent negative deflection
(N1) occurred 30–40 ms later, reflecting the arrival of
excitatory post-synaptic inputs at the apical dendrites of layers
II/III pyramidal neurons through lateral feedback connections.
The excitation that gives rise to the N1 is terminated by
subsequent inhibition from interneurons. To our knowledge,
this is the first demonstration that the bi-phasic, P1-N1
components of the LFP may reflect differences in the location
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FIGURE 5 | Model simulations with AMPA modeled synaptic depression. (A) Plot shows decrease in number of APs fired by layer II/III pyramidal cells with repetitive
(black) but not infrequent (red) inputs. (B) Schematic of the neural fatigue model adapted from Grill-Spector et al. (2006). Tuning curves of responses before and after
stimulus repetition. Repeated stimulus corresponds to center of tuning curves along stimulus dimension axis. (C) Plot showing number of neurons responding to the
frequent (black) and infrequent (red) stimulus. (D) Raster plot of neuronal population activity showing decrease in response firing rate (horizontal extent) but not in the
number of neurons firing.

of excitatory postsynaptic inputs to dendritic targets (basal
vs. apical) rather than alternating sequences of excitatory and
inhibitory inputs, and will need to be confirmed by future
studies.

We next used the model to examine effects of excitatory and
inhibitory synaptic inputs on adaptation, measured as changes
in neuronal firing rate and number of responding neurons.
When synaptic depression was modeled in AMPA synapses,

FIGURE 6 | Model simulations with lateral inhibition. (A) Plot shows number of APs fired by layer II/III pyramidal cells in response to frequent (black) vs. infrequent
(red) inputs. (B) Schematic of sharpening model adapted from Grill-Spector et al. (2006). Repeated stimulus corresponds to center of tuning curves along stimulus
dimension axis. (C) Plot shows decrease in number of responding neurons consistent with neural sharpening account. (D) Raster plot of neuronal population activity
showing decrease in number of responding neurons (vertical extent) but not firing rate.
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we observed a decrease in single-neuron and population-level
firing rates with repetitive stimulus inputs, consistent with
effects of neural fatigue. However, when inhibitory inputs were
introduced, simulated responses to repetitive inputs showed
little to no reduction in firing rate, but instead a decrease in
the number of responding neurons, consistent with effects of
neural sharpening. These results suggest that lateral inhibition
contributes to cortical adaptation not by decreasing neuronal
firing rates through modulatory feedback, but rather by reducing
the size of the responding neuronal population. The decrease in
the number of responding neurons was most evident in layers
II/III, in agreement with a prior computational modeling study of
visual adaptation and recall in medial temporal cortex (Norman
and O’Reilly, 2003).

These modeling results demonstrate that cortical adaptation
can arise from either neural fatigue or neural sharpening
and that these mechanisms co-exist and are state-dependent
i.e., determined by the balance of inhibitory and excitatory
connections or by the duration of neural responses. For example,
the range of adaptation that initially arises from reduction in
firing rate (neural fatigue) could be effectively extended by a
reduction in number of responding neurons (neural sharpening)
as the neuronal firing pattern becomes sparse. Our results help
to reconcile prior competing accounts of adaptation and are
consistent with recent ECoG findings showing multiple sources
of adaptation in human auditory cortex (Malinowska et al.,
2017).

The novel aspects of our study are three-fold: (1) the neural
fatigue and sharpening mechanisms are shown to rely exclusively
on the firing rate of neurons, a finding that was predicated on
using a neuronal spiking model; (2) adaptation behaviors were
observed in a network composed of morphologically realistic,
multicompartmental neuronmodels; suchmodels are required in
order to generate extracellular field potentials; and (3) simulated
cortical field potentials were compared directly to experimental
recordings from human cortex. To our knowledge, this has
not been done previously. Although other studies have used
computational models to investigate adaptation in auditory
cortex (Mill et al., 2011; Wang and Knösche, 2013; May et al.,
2015; Yarden and Nelken, 2017), most were not designed to be
biologically realistic in terms of the morphological detail needed
to represent extracellular field potentials recorded in vivo. In
contrast, our model uses multicompartmental representations of
excitatory and inhibitory neurons. This approach is useful for
modeling LFPs that are produced by spatially separated currents
that enter and leave cells at different points along the dendritic
trees. Inclusion of realistic spiking neuron representations
also allowed us to implement models of STP that can be
fit to measurements in situ in auditory or other sensory
(e.g., somatosensory) cortices. Other realistic features of the
model include the laminar (multi-layer) architecture, intra- and
inter-layer synaptic connectivity, and tonotopic organization
characteristic of primary auditory cortex. These features were
important for investigating the specific neural mechanisms of
adaptation.

The current implementation of our model has several
limitations that warrant mention. A number of features

have been simplified or omitted to reduce the number of
model parameters, including gap junction inhibition between
basket cells, slow GABAergic, and NMDA receptor-mediated
synaptic transmissions. Although NMDA synapses provide slow
long-term potentiation (LTP), the timescale of the observed
adaptation suggests that short-term depression is more likely
the dominant factor (please see Supplementary Figure S1 for
further details). Indeed, our initial attempts using a spike-
timing-dependent plasticity model for LTP produced effects
that were too long lasting. Another potential limitation is
that although our model was designed to represent auditory
cortex without associated subcortical nuclei, we cannot rule-out
potential subcortical contributions at the spiking level. However,
adaptation of simulated LFPs in the model was attributed
exclusively to cortical sources. Specifically, our model offers
an explanation for how different biphasic components of the
evoked potentials are generated in upper cortical layers and why
these evoked responses decrease with stimulus repetition. Finally,
as noted earlier, the model also does not include layers V/VI
that provide secondary input to layer IV neurons or secondary
cortical and laminar inputs to layers IV and II/III. The model will
be expanded to include these features in future implementations.

SUMMARY

We used a neural network model with multicompartmental cell
representation to investigate neural mechanisms of adaptation in
auditory cortex. Model simulations demonstrate that adaptation
can arise independently from cortical sources and is supported
by multiple, state-dependent neural mechanisms. Our findings
highlight the utility of using computational modeling to study
the neurobiological bases of complex cortical functions such as
adaptation.
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