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Recent developments in serial-section electron microscopy allow the efficient generation
of very large image data sets but analyzing such data poses challenges for software
tools. Here we introduce Volume Annotation and Segmentation Tool (VAST), a freely
available utility program for generating and editing annotations and segmentations of
large volumetric image (voxel) data sets. It provides a simple yet powerful user interface
for real-time exploration and analysis of large data sets even in the Petabyte range.
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INTRODUCTION

The acquisition of microscopic data is becoming ever faster and more and more automated, leading
to the generation of enormous image datasets. At the same time progress in processing speeds
and storage capacity of computer hardware enables imaging scientists to work with big data. In
neuroscience acquisition of high-resolution volumetric data sets of the nervous system has become
routine, with the goal of addressing a number of long-standing questions (Briggman and Bock,
2012; Helmstaedter, 2013; Morgan and Lichtman, 2013, 2017; Plaza et al., 2014; Titze and Genoud,
2016). Projects include descriptions of the entire nervous systems of a variety of animals, for
example Caenorhabditis elegans (White et al., 1986; Varshney et al., 2011), Drosophila melanogaster
(Zheng et al., 2017), Zebrafish (Hildebrand et al., 2017); wiring diagrams of specific parts of larger
nervous systems, for example mouse retina (Helmstaedter et al., 2011, 2013; Kim et al., 2014; Bae
et al., 2018), thalamic nuclei (Morgan et al., 2016), and cortex (Bock et al., 2011; Kasthuri et al.,
2015; Lee et al., 2016); function-structure relationships, for example directional selectivity in the
retina (Briggman et al., 2011; Kim et al., 2014), detection of visual motion in drosophila (Takemura
et al., 2013), learning and plasticity in hippocampus (Mishchenko et al., 2010; Bartol et al., 2015),
synapse elimination in the neuromuscular junction (Tapia et al., 2012); and many others.

Several experimental techniques have been introduced to enable processing and imaging such
large volumes of tissue with electron microscopy. Among these are the development of advanced
techniques for preparing and staining very large pieces of tissue for electron microscopy (McIntyre
and Fahy, 2015; Mikula and Denk, 2015), block-face cutting and imaging methods like SBEM/SBF-
SEM (Denk and Horstmann, 2004) and FIB-SEM (Knott et al., 2011; Hayworth et al., 2015),
automated collection of sections on tape, for example ATUM (Hayworth et al., 2006; Kasthuri et al.,
2015), and high-speed imaging techniques like TEMCA (Bock et al., 2011), and the Zeiss mSEM
(Eberle et al., 2015).
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Because of the wider availability of these methods, analyzing
big data sets poses a challenge for a growing number of
researchers. Many existing software tools are not well suited for
big data nor the wide variety of research questions these data sets
allow. Many, if not all, of the software applications for analyzing
microscopic image data allow labeling of cellular or subcellular
constituents of the volumetric tissue. This fundamental process is
called segmentation and can be done in several ways including:
(1) Bread crumbs/Seeds; Markers are placed inside objects
to identify their location from one section to the next, (2)
Skeletonization; If objects have a tree- or graph-like structure,
they can be described by a set of nodes that are connected by
straight lines called edges, (3) Outlining; Objects of arbitrary
shape can be delineated by their outlines in each section to create
the surface of a 3-dimensional object, (4) Voxel painting; Objects
of arbitrary shape can be labeled by filling in their area in each
section to create a volume.

As the number of biological laboratories analyzing large
image data sets is increasing, it is the purview of computer
scientists to create the (segmentation) tools for analyzing such
data sets. Taking into consideration the diverse range of potential
applications from 3D microscopy, an ideal segmentation tool
would have the following features:

• Usability. Easy to set up and use, without complicated
dependencies on external libraries and packages; accessible
documentation.
• Scale and speed. Ability to work with Petabyte-sized data

sets interactively, including data sets stored in online
databases.
• Interactivity. Easy import and export functions, to enable

interactivity with other programs (for example for image
stack alignment, data analysis and 3D rendering).
• Versatility: Full freedom to label any 3D object in the

dataset, for example to generate flexible ground truth for
automated segmentation by artificial neural networks.
• Organization of labeled objects to represent object classes

and parts.
• Flexible visualization: Multi-layer image stack overlays

and configurable color channels for light microscopy (LM)
and correlated light and electron microscopy (CLEM)
applications, selective display and highlighting of relevant
objects and semantic object groups.
• Automation: Ability to make use of automatic

segmentations if available, to help manual segmentation
and/or as a basis for manual proof-reading.
• Data privacy: Full control over who can access the data set.
• Extensibility, scripting: Users may want to write their own

scripts that exchange data with the segmentation program,
for example for custom data analysis.

Table 1 shows a comparison of features of several popular
programs for EM stack segmentation. Many tools were originally
made for smaller data sets and require the complete data to be
loaded in memory, which is not feasible for large image stacks,
though for some programs workaround exist; these include ITK-
SNAP (Yushkevich et al., 2006), trakEM2 (Cardona et al., 2012),

Reconstruct (Fiala, 2005), which loads two complete sections
at a time, ilastik (Sommer et al., 2011), and IMOD (Kremer
et al., 1996). Other tools are limited to be used only by their
respective developers, like Eyewire (Marx, 2013; Kim et al., 2014;
Bae et al., 2018), and/or are specialized for skeleton tracing, like
Catmaid (Saalfeld et al., 2009), Knossos (Helmstaedter et al.,
2011), and WebKnossos (Boergens et al., 2017), or for splitting
and merging for proof-reading of automatic segmentations like
Raveler (Chklovskii et al., 2010; Takemura et al., 2013) and
its successor NeuTu1. The professional tools Imaris (Bitplane
Inc.) and Amira-Avizo (Thermo Fisher Scientific) have work-
arounds to use large data sets that cannot be fully loaded
into memory. However these latter programs appear to have
only rudimentary tools for manual segmentation and are not
specialized to do voxel painting or proof-reading of automatic
segmentations. Neurolucida (MBF Bioscience) is a specific tool
for analyzing light microscopy data and appears to be RAM-
size limited. Neurolucida 360 does support large datasets beyond
the machine’s RAM limit, however it is still focused on light
microscopy applications.

To address the requirements of an ideal segmentation tool
and to supersede the functionality of available segmentation tools,
we built VAST, a lightweight, freely available utility program for
manual annotation and segmentation of large volumetric image
(voxel) data sets even in the Petabyte range. VAST is written
in C++ with Direct3D graphics for optimal performance (see
Figure 7 for information about the internal program structure).
It provides an intuitive yet powerful user interface for exploring
image stacks at interactive speeds, and for labeling structures of
interest by voxel painting at multiple resolutions. As Table 1
shows, VAST solves many of the problems that beset other
tools. For ground truth annotation by voxel painting VAST is
an excellent choice. In addition, because of the availability of
automatically segmented data, we found VAST can reconstruct
whole volumes faster than fully manual segmentation (see below).
Although this tool was developed for neural circuit analysis of
EM datasets, it can load and process any three-dimensional 8- or
24-bit image stack and be used for other applications like multi-
color light microscopy, CLEM, video analysis and object tracking.
VASTs extensive import and export functions make it easy to
integrate it with other applications.

Volume Annotation and Segmentation Tool can open
grayscale and RGB image stacks which have been either imported
into VAST’s own 3D data file format or are stored locally in
image tiles, and it can stream image data from several online
sources. Multiple image and segmentation layers of the same
dataset can be loaded and displayed together. Segmented objects
can be named, grouped and organized in a tree structure, and
segmentations and their metadata can be imported and exported.
Automatic segmentations can be proof-read with merge and split
operations and novel trans-layer masking techniques. Custom
client programs can exchange data with VAST via a documented
API. VAST includes the API client program “VastTools” which
runs in Matlab (The Mathworks, Inc.) and provides additional

1https://github.com/janelia-flyem/NeuTu
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FIGURE 1 | The Volume Annotation and Segmentation Tool (VAST) user interface. The main window of VAST shows an EM dataset with a manual segmentation
layer as transparent overlay in which segments are colored by type (colors of collapsed folders in the “Segment Colors” tool window). The “3D Viewer” window (B)
shows spiny dendrites in the area in individual colors. The tool windows A and C–F are explained further in section 2 of the main text.

functions for exporting, measuring, and navigating data loaded
into VAST.

Volume Annotation and Segmentation Tool has been key for
the data analysis for a number of scientific papers and continues
to be a versatile tool with growing functionality and an expanding
user base (Tomassy et al., 2014; Kasthuri et al., 2015; Ai-Awami
et al., 2016; Joesch et al., 2016; Ke et al., 2016; Morgan et al.,
2016; Quadrato et al., 2017; Sheu et al., 2017; Zung et al., 2017).
Because VAST is designed as a general labeling tool, it is not
limited to tracing neurites, but can be used for a large variety of
3D data sets and tasks (see Figures 5, 6). This includes working
with electron-microscopic, multi-channel light-microscopic, and
Micro-CT data sets as well as videos, and annotating arbitrary
structures, regions and locations, depending on the user’s needs.

The version of VAST discussed in this paper is VAST Lite
1.2. An earlier version of VAST, which lacked most of the key
features reported here, was briefly discussed in the methods
section of (Kasthuri et al., 2015). New features implemented since
then include: VSVI files (section “Reading Image Files Directly,
.VSVI”), VSVR files for Google Brainmaps and Butterfly servers
(section “Reading From Online Databases, .VSVR”), collect tool
(section “Organization of Segments in Hierarchies”), working
with multiple image stack and segmentation stack layers (section
“Working With Multiple Image and Segmentation Stack Layers”),
image layer coloring and blending (Figure 3), filling tool (section
“Manual Segmentation by Drawing and Filling”), trans-layer

masking (section “Working With Automatic Segmentations” and
Figure 4), the 3D viewer (section “The Integrated 3D Viewer” and
Figure 5), and the API and VastTools (section “The VAST API
and VastTools”). At the time of writing of this manuscript, the
current version of VAST can be downloaded at: https://software.
rc.fas.harvard.edu/lichtman/vast/.

THE VAST USER INTERFACE

Volume Annotation and Segmentation Tool’s user interface is
based on familiar Windows controls and is optimized for efficient
use of pen tablets for fast and accurate user interaction. The main
window of VAST (Figure 1) shows a 2D section of the loaded
dataset(s) and has several floating tool windows which can be
moved and resized. The tool bar of the main window provides
quick access to the different editing tools, as well as a switch to
hide all image layers (EM), and sliders to control the opacity of
the selected segmentation layer (Alpha) and, if enabled, separately
for the segment or group of segments selected in the ‘Segment
Colors’ tool window (SelAlpha). To increase the number of
distinguishable segment colors beyond RGB, VAST can combine
two 24-bit RGB colors with one of 16 patterns to reach a color
space of almost 52 bits. The strength of the patterns can be
controlled with the ‘Pattern’ slider. Figure 2 shows examples
of different settings of Alpha, SelAlpha, and Pattern. Further
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FIGURE 2 | Selective segmentation display. Which segments in a segmentation layer are shown in what color depends on the selection and folder collapse state of
the segment hierarchy. The top shows the appearance in the VAST main window; the middle shows the transparency and pattern settings of the segmentation
layer in the “Layers” tool window, and the bottom shows the “Segmentation Colors” tool window. (A) All object type folders are closed, so all objects are shown in
colors depending on their identity (Dendrite, Axon, Glia, Other). Patterns are disabled. (B) By enabling “Sel Alpha” for selective opacity control of the selected branch,
disabling Alpha and selecting the “Dendrites” folder, now only dendrite segments are shown and colored depending on their subtype (spiny or smooth). (C) When
“Alpha” and “Sel Alpha” are both enabled, the opacity of the selected subfolder and all other segments can be controlled separately. In this example, the segments in
the “Smooth Dendrites” folder are given a higher opacity with the “Sel Alpha” slider to highlight them. (D) The folders in the segmentation hierarchy are opened such
that all neurites and glial branches in the segmentation are shown with individual colors. Here patterns are enabled, showing all segments with their individual
patterns. The strength of the patterning can be controlled with the “Pattern” slider.

options for color correction and blending of individual layers are
provided in the ‘Layers’ tool window (Figure 1A).

The ‘Coordinates’ tool window (Figure 1C) shows the current
volume coordinates (center point of the main window) which
can be copied from and pasted into the text field to store and go
to particular coordinates in the stack. Its drop-down menu lists
coordinates that were recently visited.

The ‘Drawing Properties’ tool window (Figure 1D) contains
the parameters relevant for the pen tool, including settings for
the optional ‘masking’ mode. This mode can be used to constrain
manual painting by an automatic segmentation result, which can
lead to an increase of accuracy and speed of manual tracing, even
if the automatic segmentation has errors.

Equivalently, the ‘Filling Properties’ tool window (Figure 1E)
contains the parameters relevant for the filling tool. Filling
can also use masks derived from colored regions in a separate
source layer, which allows for efficient proof-reading of automatic
segmentations (split and merge operations).

The ‘Segment Colors’ tool window (Figure 1F) lists all
segments used in the selected segmentation layer, with their color
and label, in a tree folder structure which represents grouping
and parts/subparts relationships of segments. Collapsing and
expanding these folders determines the display colors in the main

window – segments in collapsed folders will be shown in the
folder color (Figure 2). The search field at the top of the tool
window can be used to find segments by (part of) their label text
or their internal ID. The ‘Menu’ button leads to a context window
with many more functions to edit segment properties and the tree
hierarchy.

All tool windows are listed under ‘Window’ in the main menu;
this also includes a window with control buttons to be used with
touch screens, a window showing all keyboard shortcuts, and the
options window for the ‘Remote Control API server’ to link to
external programs via TCP/IP.

IMPORTING IMAGE STACKS

Volume Annotation and Segmentation Tool can access image
data from three types of sources: (1) image stacks which have
been imported into VASTs own data file format (“VAST Volume”,
.VSV/.VSVOL), (2) image data sets stored as image files, accessed
via a .VSVI descriptor file (“VAST Volume of Images”), and
(3) data sets stored online, accessed via a .VSVR descriptor
file (“VAST Volume of Remote data”). Segmentation data can
be imported from image files representing segment IDs, and
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optionally a metadata description file, into VASTs segmentation
file format (.VSS/.VSSEG). The image file formats from which
VAST can import are listed in Table 2.

VAST Image Data Files, .VSV/.VSVOL
These files store a complete image stack together with a resolution
pyramid of lower-resolution versions of the same image data
[“mipmaps”, (Williams, 1983)]. During importing, the image
data is reordered as 16 pixel × 16 pixel × 16 pixel cubes in
optional Z-order and packed with lossless or lossy compression.
Mipmaps are precomputed. A file-internal tree of pointer blocks
is generated which allows VAST to access arbitrary regions with
minimal overhead.

Keeping the image data of one data set in a single file has the
advantage that it can only be copied as a whole, making storage
and distribution of data sets simpler. Also, the file system does not
have to handle thousands or millions of image files. However, this
comes at the disadvantage that images in the dataset cannot be
modified or the stack extended without regenerating the data file.
Also, the importing procedure is impractical for large datasets,
not only because the target file can get unwieldy, but also because
importing can take a very long time since processing cannot be
easily parallelized. For example, importing the ∼6.8 teravoxel
data set of (Morgan et al., 2016) took around 30 days on a
single computer, with disk and network I/O being the largest
bottleneck. Therefore, for large datasets (exceeding one terabyte),
we typically keep the image data in individual image tile files
which VAST can load directly.

Reading Image Files Directly, .VSVI
Image stacks can be kept as a collection of image files (.PNG,
.TIFF, or .JPG) with a descriptor file for VAST (.VSVI, “VAST
Volume of Images”). VAST can then load and cache specific

regions directly from the images. The image files have to be
stored in a regular directory structure, and reduced-resolution
images (mipmaps) have to be precomputed and stored as separate
files. Then, a .VSVI file for VAST is prepared. This is a text file
following the JSON syntax which specifies the naming scheme
and storage location of the image tiles, as well as other metadata
for the data set. The .VSVI file can be opened in VAST, which then
loads regions of the dataset from the image files as requested.

Reading From Online Databases, .VSVR
Volume Annotation and Segmentation Tool can also stream in
remote data from online databases. Some data sets are too large to
be stored locally, and/or they reside on a server which is accessible
via HTTP. VAST can load data from such sources dynamically
by requesting parts of the data set from the server. Currently,
protocols for openconnecto.me, neurodata.io, Harvard Butterfly
servers, and Google Brainmaps are supported. The specification
of the source address, the data request protocol, and additional
metadata is stored in a .VSVR file (also a JSON text file). Once
such a file is opened, VAST will request and stream in image data
from the server dynamically. In the case of Google Brainmaps,
VAST will first negotiate access rights with the server through
the OAuth2 protocol (including user login in a browser window).
VAST always caches the image data locally to optimize speed and
minimize the network load. Several .VSVR files linking to existing
online datasets are included in the VAST supplementary package
(see section “The VAST API and VastTools”).

Importing Segmentations, .VSS/.VSSEG
Similar to.VSV files described above, VAST stores segmentations
in single files with extension .VSS or .VSSEG. These files contain
the voxel data in 16 pixel × 16 pixel × 16 pixel cubes, including
mipmaps, as well as the metadata for the segments. To allow

TABLE 2 | Available data and file formats for importing and exporting in Volume Annotation and Segmentation Tool (VAST) and VastTools.

Importing To Data formats File formats

EM/LM image stack files, .VSV/.VSVOL 8 bit, 24 bit images .png, .tif, .bmp, .jpg

Segmentation stack files, .VSS/.VSSEG 16 bit IDs as images .png, .tif, .txt for metadata

.VSVI image tiles RGB, graylevel images .png, .tif, .bmp, .jpg

Exporting To Data formats File formats

VAST EM/LM image stacks 8 bit, 24 bit images .png, .tif, .raw

Segmentation stacks 16 bit IDs as images .png, .tif, .raw

Screenshot stacks 24 bit (RGB) images .png, .tif, .raw

3D viewer screenshots 24 bit (RGB) image .png, .tif, .bmp

Segmentation metadata Text file .txt

VastTools.m 3D object meshes Triangle mesh .obj/.mtl

Isosurface shells Triangle mesh .obj/.mtl

3D particle clouds Triangle mesh .obj/.mtl

3D boxes Triangle mesh, texture .obj/.mtl, .png

3D scale bars Triangle mesh .obj/.mtl

Projection images 24 bit (RGB) image .png, .tif, .bmp, .jpg

Surface measurements Text file .txt

Volume measurements Text file .txt

Particle metadata Text file .txt
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segmentation files to store arbitrary subregions of a large data
set and to make arbitrary extension of those regions possible
as users continue to trace, a tree of file-internal pointer blocks
(16 × 16 × 16 pointers per block/tree node) is maintained
which references the storage location of different segmentation
image blocks within the segmentation file. Pointer blocks are also
cached in memory when the segmentation file is opened in VAST
for optimal file access speed. Selective storage of subregions of the
dataset keeps file sizes small if sparse segmentations are generated
on very large image stacks.

ORGANIZING DATA IN VAST

In VAST, image and segmentation data can have attributes
in three separate categories; multiple resolutions, semantic
hierarchies of segments, and multiple layers showing different
data from the same location. The following sections discuss these
possibilities.

Multiresolution Voxel Representation of
Image and Segmentation Stacks
Different from many other segmentation tools for large image
stacks, VAST uses voxels not only to represent image stacks,
but also segmentations. A voxel is a three-dimensional image
element, equivalent to the two-dimensional pixel. Analogous to
the brightness or color value of a voxel in a microscopic image
stack, in a segmentation layer in VAST each voxel stores one ID
(segment identifier number). When VAST displays segmentation
data, these IDs are translated to colors based on a metadata table.

Voxel representations of segmentations are typically more
memory-intensive than vectorized outlines (Fiala, 2005) or ‘area
lists’ (Cardona et al., 2012), because an ID value has to be
stored for each voxel rather than a set of coordinate points and
edges around the perimeter of the segment region. However, a
segmentation stored in voxels has a more direct relationship to
the image stack it is based on, can directly represent segmentation
data produced by machine learning algorithms which is typically
also voxel-based, and allows for voxel-by-voxel masking and
filling.

While scaling of vector data is straight-forward in computer
graphics, voxel data is more difficult to handle. In VAST, image
and segmentation stacks use mipmaps to limit the amount of
voxel data which must be handled at one time. Mipmaps are
lower-resolution versions of the original images. VAST uses
powers-of-two XY mipmaps, which means that for example for
original images of 4096 pixel × 4096 pixel, there will also be
versions with 2048 pixel × 2048 pixel, 1024 pixel × 1024 pixel,
512 pixel × 512 pixel, and 256 pixel × 256 pixel available.
Because the number of pixels on a computer screen is limited,
the data which has to be loaded and displayed to fill the screen is
always limited by the extent of the display area and the on-screen
resolution. Like Google Maps, by loading just the part of the data
set at the resolution necessary for the current zoom level and view
region, VAST loads and caches data for display from the center of
the view area outwards as needed.

Volume Annotation and Segmentation Tool implements LRU
(least-recently-used) memory caches for image and segmentation
data. LRU caches remove the least recently used image blocks
first when memory runs low. Individual cache blocks can be
locked and marked as modified. For segmentation data, VAST
preferentially removes unmodified cache blocks. Modified cache
blocks cannot be deleted, so disk buffering is used when the
memory cache overflows with modified cache blocks.

Organization of Segments in Hierarchies
Grouping objects into different classes and representing each
object as a hierarchy of parts can be an important intermediate
step for further analysis of labeled objects in a data set. For
example, counting spines or measuring their volume and other
morphological properties becomes much easier once each spine
is represented as a separate sub-object of its dendrite. In VAST,
segments can be arranged in a configurable hierarchy tree which
is visualized in the ‘Segment Colors’ tool window. VAST uses the
segment hierarchy tree to selectively color and display objects in
different sub-branches. Objects in collapsed folders are shown in
the folder color, and transparency can be separately controlled for
the selected segment and its children versus all other segments,
so that users can hide or highlight semantic groups of objects
(see Figure 2). The same hierarchy is also used for selective
exporting, and for operations on the segmentation layer like drag
and drop, deleting and welding of branches. The tree structure
can be exported or accessed via the API together with the rest of
the segmentation metadata (segment IDs, labels, anchor points,
bounding boxes) and analyzed externally.

Volume Annotation and Segmentation Tool provides a
“Collect” tool which can be used to collect (translocate) segments
which are clicked in the 2D view into the selected folder in
the segment hierarchy. This can be used to quickly classify
segments into different classes represented by different folders in
the hierarchy. Since each segment stores an anchor point and a
label text, segments can also be used as bookmarks to annotate
and store locations of interest. The paint color can be used as a
visual marker.

Working With Multiple Image and
Segmentation Stack Layers
Volume Annotation and Segmentation Tool can load multiple
image and segmentation layers of the same dataset at the same
time, visualize them together in 2D and 3D, and use the data in
one layer to guide labeling in another (trans-layer masking). Both
8-bit graylevel and 24-bit RGB images are supported for image
layers. Segmentation layers are currently limited to 16-bit values
per pixel (65535 segments maximally). Since VAST can load
multiple graylevel and RGB image stack layers, it can also be used
to visualize and annotate multi-channel light-microscopic image
stacks. VAST can assign an arbitrary color to each channel, and
filter and blend the layers in several ways (see Figure 3). Using
masking, 3D models can be traced semi-automatically from
optical image data. For combined light and electron microscopy
(CLEM) data sets, once aligned, EM and LM image stacks can be
loaded together and superimposed, for example to allow for easy
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FIGURE 3 | Layer blending. For each image layer, VAST can apply color filters, recolor channels of RGB images, adjust contrast and brightness, and blend the layers
with different modes.

identification of structures in the electron-microscopic images
which are fluorescently labeled in the light-microscopic image
stack.

Volume Annotation and Segmentation Tool can also load
more than one segmentation layer at once. This can be useful if
single pixels should be given more than one ID. For example, one
segmentation layer can be used to trace out axons and dendrites,
and a second one is used to trace organelles (mitochondria,
vesicles, synaptic contacts; see Figures 6D–F). The overlap of the
labels in different layers can then be used by an external script
to analyze which organelles are in which axons and dendrites,
and which axons and dendrites are connected with synapses
and where. This method was used to compute the synaptic
connectivity in (Kasthuri et al., 2015).

Another application is to load different parts of a segmentation
and display them together, if those parts are stored in separate
files, for example if several people work on segmenting different
parts of the same data set.

GENERATING AND EDITING
SEGMENTATIONS

Manual Segmentation by Drawing and
Filling
Volume Annotation and Segmentation Tool provides a pen tool
with adjustable tooltip size and a 3D fill tool for manual editing.
They can be accessed via the pencil and the paint bucket button
in the toolbar. A pipette tool is also provided which selects the
segment clicked in the 2D view for painting.

In VAST, users always edit the segmentation at the currently
viewed mipmap resolution. A segmentation layer can thus
contain segmented objects at different resolutions, and VAST
automatically combines the information from different mip levels
as the user moves and zooms through the data set. This allows
for voxel painting on very large image stacks. Voxel painting

speed in VAST is independent of the zoom level, allowing users
to paint very large regions (gross morphology, cell bodies) at low
resolution as instantly as fine axonal processes at high resolution.
To our knowledge VAST is the first and only application in
existence which provides this functionality.

Editing in VAST is non-destructive in the sense that the source
segmentation files are not changed unless the user saves changes
back to the opened file explicitly. All changes are kept in VASTs
cache system until the user saves them or discards them by exiting
the program.

The parameters of the pen tool are accessible in the “Drawing
Properties” tool window (see Figure 1D). The diameter of the
tooltip can be set to specific values and locked. If “Fill” is
enabled in the “Drawing Properties” tool window, VAST will
automatically fill empty closed contours as they are drawn. Users
can choose to paint on all voxels or to restrict painting to only
empty voxels or to voxels of the direct parent segment of the
selected segment in the hierarchy. Painting and filling can be
restricted to a specified mip level, so that a required resolution
can be guaranteed. If the “Max Paint Depth” option is set to a
nonzero value, VAST will look in the Z-stack for voxels with the
paint color (selected segment ID) at the same XY coordinates in
neighboring sections and fill the gap in Z with the paint color,
up to the specified distance. This can be used to speed up rough
manual tracing, for example by setting “Max Paint Depth” to+-8
and painting outlines of the object only in every eighth section.
VAST will fill in the vertical overlap between painted outlines in
the seven sections which were skipped. Users can then check and
correct the segmentation where needed to refine the object shape.

When users hold down the “Delete” key, which can be mapped
to buttons on the pen of a tablet, the pen will erase instead of
painting. Holding down the “Shift” key will allow users to pick
colors from the 2D view. As long as the “Control” key is held
down, users can pan the view with the pen or mouse instead of
painting. Holding down the “Tab” key allows for quick changes of
the pen tooltip size. These modifiers allow for rapid and intuitive
access to the different functions needed during manual painting.
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The parameters of the “Fill” tool can be set in the “Filling
Properties” tool window (Figure 1E). Some of the options
are (linked) duplicates of the same options in the “Drawing
Properties” tool window described above. The fill tool can be used
to recolor complete connected components of segments with a
single click, but it shows its real power when used in combination
with trans-layer masking, as described below.

Working With Automatic Segmentations
While VAST does not generate automatic segmentations itself,
it can be used to proof-read automatic segmentations generated
elsewhere. Automatic segmentations can be loaded into VAST
in two fundamentally different ways. First, they can be loaded
as an image layer and used to guide manual segmentation in
a separate segmentation layer. This allows users to generate a
separate proof-read copy of the segmentation data. Second, if
the automatic segmentation does not exceed the 16-bit limit for
number of segments (65,535), it can be loaded as a segmentation
layer itself and then edited by the user with split and merge
operations as well as fully arbitrary manual corrections. The
VAST download page contains a link to Youtube tutorial videos
illustrating the proofreading process (specifically2,3).

Using Automatic Segmentations to Guide Manual
Painting
Volume Annotation and Segmentation Tool can use two types
of automatic segmentation results to guide manual painting:
boundary (probability) maps, in which each voxel is assigned its
probability to be located on a boundary between objects, and
candidate segmentations, in which each voxel stores an object ID.
In both cases the automatic segmentation is loaded as an image
layer (source layer) and the “Masking” feature is used to constrain
the painting area in a separate segmentation layer (target layer)
based on information from the source layer (see Figure 4). In
this mode, parts of the automatic segmentation can be transferred
from the source to the target layer by the user, keeping the
“raw” source and the “proof-read” target segmentations strictly
separate.

To use a boundary probability map for this process, it is
selected as the source layer, and VAST’s “Masking” mode is set
up to restrict painting to contiguous regions of “interior” voxels
only (excluding the boundaries) by setting an appropriate source
layer pixel value range. Either the pen or the fill tool can then be
used to create segments with boundaries defined by the boundary
probability map.

If the automatic segmentation in the source layer provides
candidate objects or supervoxels instead, masking can be set up
so that for each pen stroke or fill operation, the color in the
source layer is picked and painting of the new segment in the
target layer is constrained to the region in which the source
layer has the picked color (as shown in Figure 4). In this mode,
single segments can be copied from the source to the target
layer with the pen and fill tools, which allows for correction
of split and merge errors. Another strategy is described in

2http://www.youtube.com/watch?v=BZ_0TVMSdjA
3http://www.youtube.com/watch?v=4XCNRgDzSjc

FIGURE 4 | Masked painting. During painting, VAST intersects a mask of the
pen tooltip (Pen Mask) with a mask derived from the target layer (Paint All,
Background or Parent) and optionally, if “Masking” is enabled, a mask derived
from an additional source layer (Brightness/Color range or Picked Segment) to
constrain which voxels in the target layer are painted. This can for example be
used to guide manual painting in the target layer by an automatic
segmentation in the source layer.

section “Correcting Automatic Segmentations in VAST”. VAST
supports 8-bit and 24-bit image layers, which restricts the number
of representable distinct objects to a maximum of 16,777,215.
However, data sets with more segments can be loaded as well,
though only 24 bits of their object IDs will be available in VAST.
This can lead to mergers of neighboring objects in rare cases,
if the originally different IDs are represented by the same 24-
bit number. Those mergers can however be corrected easily by
the user. In this manner segmentations with virtually unlimited
numbers of segments can be used to guide the generation of a
proof-read segmentation. Care should be taken during importing
such that segments with IDs of multiples of 224 are not mapped
to 0 and disappear.

Correcting Automatic Segmentations in VAST
When an automatic segmentation is loaded into VAST as a
segmentation layer, the user has full freedom to manipulate the
segments by painting or erasing. Split errors (cases in which a
single object consists of several parts in the segmentation) can be
corrected non-destructively by collecting all parts of the object
into a folder using the ‘Collect’ tool. If necessary, all segments of a
folder can be “welded” to a single segment. Merge errors (several
actual objects appear as a single object in the segmentation) are
more difficult to correct because the user must define where
within the merged object the boundaries should be. To correct
mergers, the user can paint over part of a segment with a different
segment. For this, VAST’s “Parent” mode can be used, which
restricts painting to the immediate parent of the current paint
color in the segment hierarchy. One side of the split boundary
is relabeled in a different segment color by painting, and the
remaining part of the branch which should be split off is recolored
by filling. Alternatively, the user can split an object into separate
connected components by erasing the segment at the point of
connection to disconnect the parts, and then use the fill tool to
change the segment ID of one of the connected components.
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FIGURE 5 | Example screenshots of the 3D viewer. (A) Capillary running through cortex, rendered from EM image stack. (B) Segmented spiny dendrites and cell
bodies (fully manual segmentation). (C) Organelles in a neuron soma; mitochondria in orange, Golgi apparatus in blue, lysosomes dark gray, nucleus light gray (fully
manual segmentation). (D) Erythrocyte in a capillary in LGN rendered from an EM image stack. (E) Micro-CT scan of a fossil specimen of Paleothyris acadiana
(Museum of Comparative Zoology, Harvard). Data in A–C from (Kasthuri et al., 2015); D from (Morgan et al., 2016); E with kind permission of S. Pierce, Museum of
Comparative Zoology, Harvard.

Afterwards the boundary where the split was performed can be
cleaned up by manual painting.

On-demand automatic segmentation of very large data sets is
in principle possible if the segmentation image stack is loaded
from a web server and the segmentation is done on the server
side. VAST would request parts of the automatic segmentation
from the server, which would do the on-demand computation
and send the result to VAST. This approach could for example
be used to trace axons quickly over very large distances without
requiring a complete automatic segmentation of the whole
data set.

Multi-User Segmentation, Splitting and
Merging of Segmentations
Even though VAST is not a client-server solution where multiple
users can edit a single segmentation at the same time, by
requesting data from and committing changes to a central data
server, it is possible to have several scientists work on the
same dataset and combine the results. VAST provides a merge

function by which several .VSS segmentation files can be merged
into one, with options to define voxel overwrite and segment
ID renumbering rules. When merging a ‘source’ segmentation
onto a ‘target’ segmentation, conflicts are resolved on a voxel-
by-voxel basis. The user can decide whether nonzero target
voxels can be overwritten by merged-in source data (source
precedence) or are write protected (allowing only empty target
voxels to be written; target precedence). VAST can also export and
import segmentations as image stacks with metadata, allowing for
more complicated merge procedures done externally. Also when
importing segmentation images onto an existing segmentation,
either source or target precedence can be applied.

Parts of segmentation files can be recombined by using branch
deleting or branch exporting and merging. A selected segment
or branch of segments (selected segment and child tree in the
segmentation hierarchy) can be saved to a separate .VSS file using
“File/Save Segmentation As Special . . .” and subsequently merged
with a target segmentation file. Alternatively, the “Delete Segment
+ Subtree” function from the context menu of the “Segment
Colors” tool window can be used to delete all unwanted segments,
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FIGURE 6 | Examples of 3D models segmented in VAST and rendered in Autodesk 3ds Max. (A) Spiny dendrite (red) and axons (green) in a
10 µm × 10 µm × 6 µm cube of mouse cortex. At a voxel size of 6 nm × 6 nm × 30 nm, even the finest neural processes are segmentable. (B) Neurons traced in a
low-resolution EM stack of mouse cortex, shown in situ above one EM section, with apical dendrites running in a bundle toward the pia (to the right in the image).
Field of view roughly 510 × 340 micrometers. (C) Putative basket cell in rat cortex, traced semi-automatically with trans-layer masking in a
∼100 µm × 100 µm × 200 µm tissue volume. Tracing this cell took ∼15 h for a single expert. (D) Organelles in a neuron cell body (same cell as Figure 5C) shown
from two directions. Nucleus white, with pores visible; endoplasmic reticulum green, mitochondria yellow, Golgi apparatus blue. (E) Two spiny apical dendrites with
side branches in rat cortex. Synapses shown in yellow. (F) Spiny dendrite in red, with transparent axons making synapses on it. Neurotransmitter vesicles (white)
were exported using particle clouds to generate spherical vesicles. All images are based on EM data from the lab of Jeff Lichtman, Harvard. All segmentations
except C were done fully manually. A,B,D,F used data published with (Kasthuri et al., 2015).

and the result can be saved to a separate .VSS file and then
processed further.

DATA VISUALIZATION, EXPORTING, AND
ANALYSIS

The Integrated 3D Viewer
The 3D viewer in VAST can be used to inspect and visualize image
and segmentation stacks. It makes use of a volumetric texture
with transparency rather than surface meshes to display voxel
data in its native format. Because the 3D textures are retrieved
from the 2D view, the same coloring and blending options are
available, and image and segmentation stacks can be visualized
together. The transparency of the 3D textures can either be

derived from the pixel brightness or set to opaque to show a full
cube. The view can be rotated and zoomed and screenshot images
can be exported. The user can also click on objects in the 3D
viewer to set the 2D window to the same location. Figure 5 shows
a selection of examples rendered with the 3D viewer.

Image Stack Exporting
For further processing and visualization of voxel data in other
applications, VAST includes functions to write image and
segmentation data back to stacks of image files. The image
stack export dialog can be found under “File/Export . . .” in the
main menu. VAST can export image stacks of data in single
image layers, segmentation layer data (images encoding IDs in
blue and green color channels), and the composited 2D view
(“screenshots”), of a definable sub-region of the loaded data set, at
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FIGURE 7 | Internal program structure and control flow of VAST. VAST is structured as a collection of modules (C++ classes) which implement different parts of the
program, the most important of which are listed in (A). The internal state of the program is held in a global state system class (B). Layers are kept in a linked list, with
each layer holding a set of further class instances depending on type (C). There are two caching systems, one for image data (D) and one for segmentation data (E).
All image layers share the image cache and all segmentation layers share the segmentation cache. (F) Shows the threading structure and the control flow of the
main thread. Even though each layer has its own loader thread, cache updating is done in the main thread only to prevent multithreading problems.

a definable mipmap resolution. Large sections can be exported as
a mosaic of image tiles. Metadata for segmentation layers can be
exported to text files using the “Save Segmentation Metadata . . .”
function in the menu of the “Segment Colors” tool window. VAST
provides a Matlab script to parse these text files. Table 2 lists the
image formats which are available for image stack exporting.

The VAST API and VastTools
Volume Annotation and Segmentation Tool includes an API
which can be accessed from client programs through the TCP/IP
network protocol, either locally on the same computer or
remotely through a network connection. Once the TCP/IP port
is enabled in VAST, client programs can connect and send API
commands to VAST to exchange data. The protocol for the API
and all API functions are documented in the user manual, which
is part of the supplementary package which can be saved to disk
from VAST (under “Info/Save Documentation .ZIP To Disk . . .”)
or downloaded from the VAST webpage4.

“VastTools.m” is a Matlab (The Mathworks, Inc.) script which
can communicate with VAST via its API. It implements a number

4http://software.rc.fas.harvard.edu/lichtman/vast/

of supplementary functions, in particular for data exporting.
VastTools is also included in VAST’s supplementary package.
Since it is a Matlab script, its source code is fully readable and it
can serve as a reference for implementing other client programs.
Also, once VastTools is running and connected to VAST, other
Matlab scripts can simply call API functions through the hidden
global variable “vdata.vast”.

The export functions of VastTools are summarized in Table 2.
Most importantly, VastTools can export surface meshes of
segmented objects to generic Wavefront OBJ files, which can
then be imported into 3D rendering applications like 3ds Max
(Autodesk, Inc.; see example images in Figure 6), Blender
(Blender Foundation) or Unity (Unity Technologies). It can
also export isosurface meshes (based on voxel brightness) which
can for example be used to visualize fluorescence signals in
light microscopic image stacks, and particle clouds, where a
prototype 3D object (for example a small sphere representing a
vesicle) is placed at the centers of all separately painted regions
and the compound object is exported (3D object instancing).
Furthermore, 3D boxes at specific locations in the data set can
be exported as wireframe models or with single-color or textured
sides, with a texture derived automatically from the loaded image
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stack. Finally, VastTools can export correctly sized scale bar
models. Figure 6 shows a selection of renderings made from 3D
models labeled in and exported from VAST.

VastTools can also render and export projection images
along cardinal axes from the loaded data with multiple options,
including illumination simulation. These projection images can
not only be exported but also be used for single-image-click 3D
navigation in VastTools’ “Simple Navigator Image” functionality.

“Target Lists” in VastTools can be used to create and organize
annotated lists of particular points of interest in the data set
loaded in VAST. Target coordinates are stored in the list together
with a zoom level and the ID of the selected segment, and text
descriptions can be added to each target. The corresponding 2D
view of any listed target can then be restored in VAST with a
single click in the target list.

Even though VAST is not a specialized analysis tool,
several measurement functions are included in VastTools. First,
Euclidian distances between any two points in the image stack
can be measured. Second, VastTools can calculate the volumes
of the volumetrically labeled segments and estimate their surface
area during mesh exporting by summing the area of all generated
mesh triangles for the object. This measurement is however likely
to provide an overestimate of the true surface area because of the
roughness of voxel models. A better estimate could be generated
externally after smoothing the 3D models. Finally, VastTools can
count the number of separately painted regions and export a list
of centroid coordinates during particle cloud exporting.

The features discussed here are described in more detail in
VASTs user manual.

DISCUSSION

Volume Annotation and Segmentation Tool is a light-weight
and versatile tool specialized for volumetric annotation and
segmentation of objects in very large image stacks. It is a self-
contained program which is simple to set up and use even
for inexperienced users. Typical applications include: Exploring
very large EM and LM image stacks interactively; efficient
manual segmentation of arbitrary structures to generate voxel
training data for automatic segmentation algorithms; and sparse
volumetric tracing of objects of interest, either manually or
assisted by an automatic segmentation of the volume. VAST can
also be used to proofread automatic segmentations, which is
likely to become an important part of connectomic studies now
that automated methods are becoming more commonplace.

Volume Annotation and Segmentation Tool is the only
tool to our knowledge which can load multiple image and
segmentation layers at the same time and use trans-layer masking
to speed up manual segmentation and to proof-read automatic
segmentations. For example, an automatic segmentation, even
if it contains many errors, can be loaded as a separate layer
and used to provide masks for painting objects with perfect
outlines. Users can then volumetrically label neurites instantly
while scrolling through the data set, while precise boundaries of
the segmented objects are defined by the automatic segmentation.
The 3D filling function speeds this process up further. Any defects

caused by splits and mergers in the automatic segmentation can
be corrected immediately by painting and filling. This process can
also be seen as proof-reading a segmentation, in which original
and proof-read versions are kept strictly separate because they
reside in different layers.

In this way, volumetric voxel painting in VAST can reach
speeds comparable to manual skeleton tracing based on placing
nodes while scrolling through a 3D EM image stack. In both
cases the speed is likely limited by either the rate at which
images can be loaded and displayed, or by the speed at
which humans can reliably follow a winding process through
the neuropil. Voxel painting immediately generates filled-
in areas of object cross-sections, which makes it easier for
human observers to spot splits and mergers. Also, it natively
produces volumetric objects, which for skeleton tracing requires
an additional step. Also, different from tools which perform
segmentation proof-reading by agglomerating object parts, in
VAST proof-read segments are represented as voxels, which
gives the user full freedom to modify them by painting as
needed.

With VAST, these operations can be performed on image
stacks which can reach Petabytes, including datasets which
are streamed from a network source. As datasets grow larger
and more and more research labs get interested in reusing
these data-rich EM image volumes to address various scientific
questions, online hosting and remote access will become more
commonplace.

Limitations
However, there are data sets and segmentation tasks for
which VAST in its current form is not suitable. First of
all, VAST was designed as a single-user standalone program,
and as such it is not a multi-user client-server solution in
which multiple annotators can simultaneously contribute to a
shared server-hosted segmentation. While VAST allows image
stacks to be loaded dynamically from a server, segmentation
layers are currently hosted in local files only. It is possible
to combine the segmentation results from multiple users by
merging segmentation files, but this is comparatively slow and
inconvenient. Therefore it is tricky to use VAST in settings
where numerous annotators are working together to segment or
proof-read the same segmentation volume. A future version may
implement a segmentation layer type in which the data is hosted
on and synchronized with a server, for interactive multi-user
editing. The server would also keep track of the changes each user
makes (provenance tracking and version control), which becomes
more important in multi-user settings. In VAST, provenance can
be tracked rudimentarily by saving to a new file every time and
keeping the old versions, and having different users keep their
work separate.

Second, as a voxel painting program, VAST is not equipped
to work with skeletons or surface mesh data directly. It is
possible to use voxel painting to indicate skeleton lines of 3D
objects, and to analyze these externally to generate skeletons
(Morgan et al., 2016), but this is more a work-around than a true
solution. VAST does not use surface meshes internally either; for
example the 3D viewer uses a three-dimensional texture instead.
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Surface meshes of segmented objects can however be generated
in VastTools for external analysis and rendering. Measurement
of lengths, diameters, axonal branching patterns etc. are also not
included in VAST but have to be performed externally.

When using skeletons, synapses between two neurons can
be represented by edges of a special ‘synapse’ type, bridging
between the skeletons of two cells. This is not possible in VAST
since it does not provide skeletons. However, voxel annotation
of synapses can be (and has been) used to compute synaptic
connectivity (Kasthuri et al., 2015; Morgan et al., 2016; Quadrato
et al., 2017). If synapses are manually or automatically labeled so
that the synapse region overlaps with the pre- and postsynaptic
partner neurites volumetrically, the synapse label can then be
used as a mask to extract the IDs of the connected neurites
automatically. This can be done with an external script which uses
either the API or exported segmentation image stacks.

While VAST has no problem allowing users to label all the
synapses in a dataset, it is not a tool specialized for the analysis
of connectivity structure or other more sophisticated analyses of
tissue morphology. Data on synaptic partners can be exported
and analyzed downstream with specific tools, as was done in
(Kasthuri et al., 2015; Morgan et al., 2016; Quadrato et al., 2017).
The possible future addition of explicit skeletons associated with
the volumetric labels in VAST may make many of these tasks
more straight-forward.

Currently, the 2D view in VAST is limited to XY sections,
mainly because of our anisotropic ATUM data sets and the fact
that using only XY mip maps saves time and storage space. Data
can in principle be resliced externally if tracing at a different
orientation is preferable. However, supporting different mip
mapping and 2D slicing options, as well as improved capabilities
of the 3D viewer, may be useful features in the future.

Finally, VAST is based on the Windows user interface and
graphics system (Direct3D 11) for speed and simplicity, and
cannot easily be ported to other operating systems. Also it is
currently not an open source program, and feature additions and
bug fixes depend on the developers. However, its API is fully
documented and many functions can be accessed remotely for
external processing and script-based automation to add custom
functionality.

Though VAST is still being developed further and more
features are added as needed, its main strength is manual and
semiautomatic segmentation by voxel painting. Extensive import
and export functions are provided, including an API, so that
VAST can play its role as a powerful tool in a larger pipeline.
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