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This study aimed to investigate the changes of α-synuclein in serum and its relationship
with default mode network (DMN) connectivity after acute mild traumatic brain injury (mild
TBI). Fifty-two patients with mild TBI at the acute phase and 47 matched healthy controls
were enrolled in the study. All participants received resting-state functional magnetic
resonance imaging (fMRI) and neuropsychological assessments. Relations between the
levels of α-synuclein in serum and clinical assessments were obtained using multivariate
linear regression. Results showed that the patients with lower α-synuclein presented
more complaints on post-concussion symptoms and depression. Moreover, patients
with high levels of α-synuclein exhibited significantly decreased functional connectivity
in the left precuneus and increased functional connectivity in both the left anterior
cingulate cortex and ventro-medial prefrontal cortex (MPFC) compared with patients with
low levels of α-synuclein. These findings supported that α-synuclein may modulate the
functional connectivity within the DMN and suggest the feasibility of using α-synuclein as
an objective biomarker for diagnosis and prognosis of mild TBI.
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INTRODUCTION

Traumatic brain injury (TBI) is a major public health problem affecting approximately 1.6 million
people every year in the United States. Most (about 80%) are diagnosed with mild TBI (mTBI;
Langlois et al., 2006), among whom 10%–20% suffer from persistent headaches, difficulty
of thinking, memory problems, attention deficits, mood swings, and frustration (McAllister,
2008; Zemek et al., 2013). However, mTBI diagnosis can be missed by conventional computed
tomography and magnetic resonance imaging (Lee et al., 2008). Consequently, it is challenging to
predict who will suffer from persistent symptoms after mTBI.

mTBI was recently found to probably cause progressive neurocognitive dysfunction (Mac
Donald et al., 2017), leading to an increased risk of developing neurodegenerative and
psychiatric diseases (Gardner and Yaffe, 2015), including Parkinson’s disease (PD). However, the
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pathophysiological mechanism underlying mTBI and its
relationship with the risk of developing PD remain unclear. An
evaluation of some 1,900 studies determined the plausibility
of developing PD under moderate to severe TBI (Institute
of Medicine, 2009). However, only ‘‘suggestive/limited
evidence’’ was found relating mTBI with clinical diagnosis
of PD (Institute of Medicine, 2009). Other studies have
investigated the risk of developing PD from mTBI but obtained
inconsistent findings (Gardner et al., 2015). Magnoni and Brody
(2010) suggested that these results may partly be derived from
the putative linkage between TBI and neurodegeneration,
with the occurrence of TBI increasing the risk of
neurodegenerative diseases.

Several biomarkers are available to diagnose and assess TBI,
including imaging and fluid-based techniques (Kochanek
et al., 2008). Supporting studies unveil some signatures
of these biomarkers associated with TBI. Among these
biomarkers, α-synuclein (α-syn) is the hallmark of a
number of neurodegenerative diseases (Tokuda et al., 2010;
Mollenhauer et al., 2011). Being a presynaptic protein activated
by phosphorylation and other pathways, α-syn plays an
important role in the circulation of synaptic vesicles. Cellular
and genetic modification eventually leads to an overexpression
of the total α-syn, and its accumulation has been proven to cause
neuronal damages (Werner and Engelhard, 2007; Klein and
Westenberger, 2012). In particular, the overexpression of α-syn
may be a pathological link between TBI and the development
of PD pathologies (Acosta et al., 2015). These results provide a
reliable basis for us to investigate mTBI through the study of
serum α-syn.

Resting-state functional magnetic resonance imaging
(fMRI) has enabled the evaluation of brain networks without
task-based fMRI experiments. The default mode network
(DMN) is a well-recognized brain network activated during
the resting states and suppressed during the execution of
attention and decision-making tasks (Zhang and Raichle, 2010).
The DMN typically comprises the posterior cingulate cortex
(PCC), precuneus, inferior parietal, and medial prefrontal
cortex (MPFC) areas (Ralchle and Snyder, 2007). Many
studies have determined that several psychiatric disorders
alter DMN functional connectivity (Buckner et al., 2008;
Rocca et al., 2010; Slobounov et al., 2011). In addition, Zhou
et al. (2012) verified significantly reduced connectivity in the
PCC and parietal regions, and increased frontal connectivity
around MPFC in the mTBI patients (Zhou et al., 2012).
Likewise, Mayer et al. (2011) found decreased connectivity
within the DMN and increased connectivity between its
nodes and the lateral PFC in the mTBI patients (Mayer
et al., 2011). However, few studies have addressed the
mechanism of changes in the DMN functional connectivity
in the mTBI patients. Despite being challenging, this type
of study would be insightful for characterizing mTBI. Our
main hypothesis was that serum α-syn concentration in
the mTBI patients during acute phase will change, and
that this inflammatory marker is correlated with clinical
neurocognition and functional connectivity within the DMN in
the brain.

MATERIALS AND METHODS

Participants
Acute head trauma patients from the local emergency
department (ED) in August 2016 and June 2017, with
non-enhanced head CT, consecutively became the initial
patients in the present study. Inclusion criteria for the mTBI
patients were based on guidelines from the World Health
Organization’s Collaborating Centre for Neurotrauma Task
Force (Holm et al., 2005): (i) an initial Glasgow Coma Scale
(GCS) score of 13–15; (ii) one or more of the following: loss
of consciousness (LOC) <30 min, post-traumatic amnesia
(PTA) <24 h, and/or other transient neurological abnormalities
such as focal signs and seizure; and (iii) within 1 week after onset
of mTBI. Exclusion criteria for mTBI patients included: (i) pre-
TBI, pre-existing psychological disorders, Posttraumatic stress
disorder (PTSD), substance abuse, and alcohol dependance; and
(ii) a structural abnormality on neuroimaging (CT and MRI);
(iii) manifestation of mTBI as complication from other injuries
(e.g., systemic injuries, facial injuries, or spinal cord injury); and
(iv) other problems (e.g., psychological trauma, language barrier,
or coexisting medical conditions), or caused by penetrating
craniocerebral injury. Overall, 52 patients with mTBI were
enrolled in this study.

Healthy controls were recruited by the local imaging research
facilities. Forty-seven age- and gender-matched healthy control
participants without neurologic impairment or psychiatric
disorders were enrolled.

All participants were right-handed according to the
Edinburgh Handedness Inventory (Espírito-Santo et al., 2017).
All subjects gave written, informed consent in person approved
by the Research Ethics Committee of Second Affiliated Hospital
of Wenzhou Medical University and conducted in accordance
with the Declaration of Helsinki.

Serum α-Synuclein Collection
Serum samples for patients and controls were collected in the
morning. All participants also did not take any medications.
Samples were aliquoted and stored at −80◦C until the
time of assay after collection and centrifugation. The levels
(pg/mL) of α-syn in serum were measured using reagents
on a Luminex multiplex bead system (Luminex Corporation,
Austin, TX, USA). Serum α-syn assay was performed at
Covance using a commercially available ELISA Assay Kit
(Covance, Dedham, MA, USA; Mollenhauer et al., 2013). A
fluorescence detection laser optic system was used to analyze
the binding of each individual protein on the microsphere
simultaneously, which permits multiplexed analysis of each of
the analytes in one sample. Immunoassays were performed
according to manufacturer’s protocols. Intra- and inter-assay
coefficients of variation observed for Luminex quantification
were less than 20 percent and 25 percent, respectively.
Samples with levels that were undetectable by the assay
were set to 0.0001 pg/mL. The levels of α-syn >3 standard
deviations above and below the population mean within
group were considered outliers and excluded for all analysis
(Diamond et al., 2015).
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Neuropsychological Tests
For all participants, comprehensive cognitive tests were
performed within 48 h of blood sample collection and MRI
acquisition. These tests included: (i) Trail-Making Test Part
A and Digit Symbol Coding (DSC) score from the Wechsler
Adult Intelligence Scale-III (WAIS-III), to examine cognitive
information processing speed; (ii) Forward Digit Span (FDS)
and Backward Digit Span from the WAIS-III, to assess working
memory (Harman-Smith et al., 2013); (iii) Verbal Fluency Test,
to assess verbal fluency including language ability, semantic
memory, and executive function (Joy et al., 2004); (iv) Beck
Depression Inventory-II (BDI-II), to assess depression severity
(Reiland, 2017); (v) PTSD Checklist—Civilian Version (PCL-C;
Weathers et al., 1991); and (vi) Fatigue Severity Scale (Krupp
et al., 1989) and Insomnia Severity Index (ISI; Sadeghniiat-
Haghighi et al., 2014). In addition, post-concussive symptoms
(PCS) were measured with the Rivermead Post-Concussion
Symptom Questionnaire (RPQ; King et al., 1995).

Image Acquisition
Following acute head injury, non-contrast CT scans were
performed on all consecutive patients with a 64-row CT scanner
(GE, Lightspeed VCT). MRI scans were acquired using a 3.0T
MRI scanner (GE 750). A custom-built head holder was used
to prevent head movements. All participants were instructed
to remain in a relaxed state, to avoid engaging in any mental
activities, and to keep their eyes closed. Alertness during the
scan was confirmed immediately after the whole scan was
completed. MRI protocols involved the high-resolution T1-
weighted 3D MPRAGE sequence (echo time (TE) = 3.17 ms,
repetition time (TR) = 8.15 ms, flip angle = 9◦, slice
thickness = 1 mm, field of view (FOV) = 256 mm × 256 mm,
matrix size = 256 × 256), single-shot, gradient-recalled echo
planar imaging (EPI) sequence with 54 slices covering the whole
brain (TR = 2,000 ms, TE = 30 ms, slice thickness = 3 mm,
flip angle = 90◦, FOV = 216 mm × 216 mm, matrix
size = 64 × 64, voxel size = 3 mm × 3 mm × 3 mm), and
axial FLAIR (TR = 9,000 ms, TE = 95 ms, flip angle = 150◦,
thickness = 5 mm, slices = 20, FOV = 240 mm × 240 mm, matrix
size = 173 × 256).

The presence of focal lesions and cerebral microbleeds was
determined by an experienced clinical neuroradiologist (with
10 years’ experience), who assessed multiple modalities of
neuroimaging data (T1-weighted, SWI, FLAIR) for all subjects
in random sequence. The neuroradiologist was blind to clinical
information and group membership (patient or control).

Preprocessing of Resting-State fMRI Data
Data processing was performed using SPM12 (Statistical
Parametric Mapping, University College of London, London,
UK) on MATLAB platform (R2013a; MathWorks, Natick,
MA, USA). Image preprocessing steps included anatomical
segmentation, normalization to Montreal Neurological Institute
(MNI) space, spatial smoothing (full-width at half-maximum,
FWHM = 6 mm), band-pass filtering (0.01–0.1 Hz), and
regressing out signal contributions from head motion, white
matter, and cerebrospinal fluid (Thompson et al., 2016). We

adopted a seed-based method to extract the DMN. Regions
of interest (ROI) in the DMN were defined based on a
previous task fMRI study (Duan et al., 2012). In our study,
we selected only the PCC (MNI coordinates: 0, −52, 27) as
the seed for brain network connectivity analysis. Next, for
each subject, the time series of the mean BOLD signal of
a 10-mm radius sphere centered at the peak coordinate of
ROI was extracted to calculate the functional connectivity with
each voxel of the whole brain. Prior to statistical analysis, the
functional connectivity maps were transformed into z-values
using Fisher transformation to improve normality. We then
performed conjunction analyses to identify brain areas that
were positively correlated with the PCC seed. A family-wise
error (FWE) method with a threshold of P < 0.05 was set for
multiple comparisons. A voxel-wise one-way analysis of variance
(ANOVA) was used to test for network functional connectivity
differences (P < 0.05, FWE correction) across three groups with
gender as a nuisance covariate within DNM mask. We then
used post hoc analyses to test for network functional connectivity
differences (P < 0.05, FWE correction) across each of the
two groups.

Statistical Analysis
All statistical analyses were performed using SPSS (version
19, IBM Corp, New York, NY, USA) and Prism (Version 7,
GraphPad Software, San Diego, CA, USA). The Shapiro–Wilk
W test was used to test for normality distribution in all
continuous variables. The independent two-sample t-test and
the Mann–Whitney test were used to compare group differences
based on data normality. Chi-square analyses were applied
to assess categorical variables. Multivariate linear regression
analysis was used to determine the association between the levels
of α-syn and neuropsychological testing. The levels of α-syn,
age, gender, and education years were entered into the model as
independent variables, with results of cognitive tests in the mTBI
patients as dependent variables.

RESULTS

Participant Characteristics
Fifty-two patients with mTBI (27 males, age of
34.48 ± 13.32 years, education level of 9.31 ± 4.36 years) and 47
matched healthy controls (22 males, age of 35.43 ± 12.01 years,
education level of 11.39 ± 5.66 years) were recruited for this
study. No significant differences existed between the mTBI
patients and healthy controls regarding age, education level,
and gender (p > 0.05). The detailed demographic data and
clinical characteristics of the participants are summarized in
Table 1. Upon arrival at the emergency department, all patients
with mTBI had an initial GCS of 15. The causes of injury
included motor vehicle accidents (58%), assaults (25%), and
falls (17%). All the mTBI patients had negative computed
tomography findings.

We divided the mTBI patients into two groups according
to the split criteria of whether the α-syn levels were above
or below the mean plus one standard deviation α-syn level
in the healthy controls. Therefore, patients with α-syn levels
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TABLE 1 | Summary of demographic characteristic and neuropsychological test
scores between patients and controls at acute phase.

mTBI
patients

Controls P-value

Demographic
Age 34.5 ± 13.3

(14–63)
35.4 ± 12.0

(14–60)
0.462

Gender (M/F) 27/25 22/25 0.258
Education 9.3 ± 4.4 11.4 ± 5.7 0.062
α-syn 536.9 ± 152.4 517.2 ± 86.3 0.470
Neuropsychological test
TMT A 60.5 ± 43.5 46.3 ± 33.2 0.073
FDS 8.1 ± 1.6 8.5 ± 1.5 <0.001∗

BDS 4.1 ± 1.5 4.6 ± 1.9 0.458
LF 17.3 ± 5.4 18.9 ± 5.9 0.280
DSC 37.9 ± 16.2 47.2 ± 16.9 0.007∗

Self-report measures
PCS 10.6 ± 7.1 2.1 ± 2.6 <0.001∗

PCL-C 25.0 ± 6.3 17.0 ± 0.0 <0.001∗

FSS 10.4 ± 5.7 9.0 ± 0.0 0.054
BDI 4.7 ± 3.7 0.1 ± 0.2 <0.001∗

ISI 6.9 ± 6.2 1.9 ± 3.1 <0.001∗

mTBI severity (N%)
GCS = 15 52 (100%)
GCS = 13, 14 0 (0%)
Causes for mild TBI (N%)
Motor vehicle accident 30 (58%)
Assaults 13 (25%)
Fall 9 (17%)

TMT A, Trail-Making Test Part A; FDS, Forward Digit Span Task; BDS, Backward Digit
Span Task; LF, Language Fluency; DSC, Digit Symbol Coding; PCS, Postconcussive
Symptoms Scale; PCL-C, Post-Traumatic Stress Disorder Checklist Civilian; FSS, Fatigue
Severity Scale; BDI, Beck Depression Inventory; ISI, Insomnia Severity Index; GCS,
Glasgow Coma Scale. ∗p < 0.05.

lower than 536.93 pg/mL were categorized into the Patient-A
group, and those with α-syn levels higher than 536.93 pg/mL
were divided into the Patient-B group. Patient-A consisted of
25 patients (12 male, age of 33.92 ± 13.67 years, education
level of 9.40 ± 4.15 years), and Patient-B consisted of
27 patients (15 males, age of 35.00 ± 13.24 years, education
level of 9.22 ± 4.62 years). No significant differences occurred
between Patient-A and B in terms of age, education level,
and gender (p > 0.05). The detailed demographic data and
clinical characteristics of the patients per groupwere summarized
in Table 2.

Neuropsychological Measures
Compared to the controls, the mTBI patients exhibited lower
performance in terms of information processing speed while
performing DSC task (p = 0.007), digit span forward (p< 0.001),
and verbal fluency tasks rated by language fluency (p = 0.013).
Moreover, the patients presented more complaints in the
Post-Traumatic Stress Disorder Checklist (Civilian Version)
compared to the controls (p < 0.001) and showed significant
difference in the Post-Concussion Symptom Scale (p < 0.001),
BDI (p< 0.001), and ISI (p< 0.001; Table 1).

Relationship of Serum α-Syn With
Neuropsychological Characteristics
Multiple linear regression analysis showed that lower levels
of α-syn in the mTBI patients are associated with severer

TABLE 2 | Summary of demographic characteristic and neuropsychological test
scores between patients and controls at acute phase.

Patient-A Patient-B P-value

Demographic
Age 33.9 ± 13.7

(17–60)
35.0 ± 13.2
(14–62)

0.479

Gender (M/F) 12/13 15/12 0.586
Education 9.4 ± 4.2 9.2 ± 4.6 0.941
α-syn 401.3 ± 66.3 662.5 ± 96.1 <0.001∗

Neuropsychological test
TMT A 62.0 ± 49.4 46.3 ± 33.2 0.679
FDS 8.2 ± 1.6 8.5 ± 1.5 0.718
BDS 4.2 ± 1.5 4.6 ± 1.9 0.652
LF 16.8 ± 5.9 18.9 ± 5.9 0.377
DSC 38.0 ± 14.5 47.2 ± 16.9 0.762
Self-report measures
PCS 13.4 ± 8.3 2.1 ± 2.6 0.012∗

PCL-C 25.6 ± 7.9 17.0 ± 0.0 0.612
FSS 12.0 ± 8.0 9.0 ± 0.0 0.026∗

BDI 5.6 ± 4.2 0.1 ± 0.2 0.096
ISI 8.0 ± 6.7 1.9 ± 3.1 0.161
mTBI severity (N%)
GCS = 15 25 (100%) 27 (100%)
GCS = 13, 14 0 (0%) 0 (0%)
Causes for mild TBI (N%)
Motor vehicle accident 14 (56%) 16 (59%)
Assaults 4 (16%) 9 (33%)
Fall 7 (28%) 2 (8%)

TMT A, Trail-Making Test Part A; FDS, Forward Digit Span Task; BDS, Backward Digit
Span Task; LF, Language Fluency; DSC, Digit Symbol Coding; PCS, Postconcussive
Symptoms Scale; PCL-C, Post-Traumatic Stress Disorder Checklist Civilian; FSS, Fatigue
Severity Scale; BDI, Beck Depression Inventory; ISI, Insomnia Severity Index; GCS,
Glasgow Coma Scale. ∗p < 0.05.

outcomes from the Post-Concussion Symptom Scale (β = –0.333,
p = 0.013, overall model: F(3,48) = 3.259, p = 0.019, adjusted
R2 = 0.217, Figure 1A) and severer depression according to
the BDI (β = –0.311, p = 0.022, overall model: F(3,48) = 2.840,
p = 0.034, adjusted R2 = 0.195, Figure 1B).

The α-syn levels in Patient-A were significantly different
compared with Patient-B (p < 0.001), and the α-syn levels in
controls were significantly different compared to both Patient-A
(p < 0.001) and B (p < 0.001; Figure 2B). The significant
differences persisted after multiple corrections.

The α-syn in serum of Patient-A patients was significantly
lower than those of Patient-B patients (p = 0.012) and controls
(p < 0.001). Meanwhile, the α-syn in the serum of Patient-B
patients was significantly higher than that of controls (p< 0.001;
Figure 2A).

Default Mode Network Results
The results of the one-sample t-test used to identify brain regions
within the DMN mask with functional connectivity differences
(p < 0.05, FWE corrected) in the participants are shown in
Figure 3. We also compared the changes in the DMN between
the two groups, and Patient-B presented a prominently higher
functional connectivity in the left anterior cingulate cortex and
ventral MPFC (p < 0.05, FWE corrected), and a significantly
lower functional connectivity in the precuneus (p < 0.05, FWE
corrected) compared with Patient-A (Figure 4). There was also
no significant correlation between functional connectivity and
serum α-syn.
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FIGURE 1 | The lower levels of α-syn are associated with severer outcomes from the Post-Concussion Symptom Scale (β = –0.333, p = 0.013, overall model:
F(3,48) = 3.259, p = 0.019, adjusted R2 = 0.217, A) and severer depression according to the Beck Depression Inventory (BDI; β = –0.311, p = 0.022, overall model:
F(3,48) = 2.840, p = 0.034, adjusted R2 = 0.195, B) in the mTBI patients.

FIGURE 2 | The levels of serum α-syn of Patient-A was significantly different with Patient-B (p = 0.012) and controls (p < 0.001), meanwhile, the levels of serum
α-syn of Patient-B was significantly different with controls (p < 0.001; A). The levels of serum α-syn in Patient-A were significantly different compared with Patient-B
(p < 0.001), the levels of serum α-syn in controls were also significantly different compare with Patient-A (p < 0.001) and Patient-B (p < 0.001; B). ∗p < 0.05,
∗∗p < 0.001.

DISCUSSION

In this study, we explored α-syn as candidate biomarker and
combined it with brain imaging data for both diagnosis and
prognosis of patients suffering from mTBI. Compared with
the healthy control group, the mTBI patients had lower scores
for FDS and DSC, and higher scores for PCS, PCL-C, BDI
and ISI. These results were consistent with neuropsychiatric
symptoms of the mTBI patients: persistent headaches, difficulty
thinking, memory deficits, inattention, emotional instability,
and brief frustration after injury. We found that patients
with lower α-syn levels exhibited severe post-concussion and
depressive symptoms. Moreover, patients with higher α-syn
levels, compared to those with lower α-syn levels, showed
significantly increased functional connectivity in the left

anterior cingulate cortex and ventral MPFC, and a significantly
decreased connectivity in the precuneus. To the best of our
knowledge, this is the first study to examine α-syn level and
its association with the DMN during the early acute phase
of mTBI, and explore the relationship between α-syn levels
and cognitive function, which are major determinants of poor
prognosis in mTBI.

The presynaptic terminals have plenty of neuronal proteins,
one being α-syn (Vekrellis et al., 2011), which is the main
component of Lewy bodies. The accumulation of α-syn
aggregates is also found in Lewy body dementia and multiple
system atrophy (Spillantini et al., 1998). Although several
studies have examined the levels of α-syn in cerebrospinal
fluid (Mollenhauer et al., 2011, 2013) or serum (Lin et al.,
2017) of the mTBI patients, their results were inconsistent.
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FIGURE 3 | The results of the one-sample t-test used to identify brain
regions within the default mode network (DMN) mask with functional
connectivity differences.

FIGURE 4 | The red represent regions of increased rs-FC in the Patient-B
compared with Patient-A and the blue represent regions of reduced rs-FC.
Cluster extent threshold of p-value of 0.05 using a family-wise error (FWE)
correction for multiple comparisons.

Subsequently, reduction of costs, development of noninvasive
techniques, and methodological advances have enabled more
intensive and deep serum studies (Lin et al., 2017; Singh et al.,
2018). Prior studies have investigated the relationship between
TBI and the risk of developing PD (Kenborg et al., 2015; Perry

et al., 2016; Taylor et al., 2016). It has been reported that
mTBI is associated with a 56% increased risk of developing PD,
even after adjusting for demographics andmedical comorbidities
among military veterans (Gardner et al., 2018). In this study,
we found that patients with lower α-syn in serum exhibited
severer post-concussion and depressive symptoms during the
early acute phase of mTBI. Although past research on animals
found that overexpression of α-syn may constitute a pathological
link between TBI and development of pathologies similar to PD
(Stewart et al., 2014), that study adopted male rats, whose brain
function and structure notably differ from those of humans. In
addition, the subjects of our study were recruited within the
1st week after suffering mTBI. We hypothesized that during
the acute phase of mTBI, elevated α-syn is a product of
compensatory mechanisms, which means lower α-syn patients
may be unable to compensate these levels after mTBI, leading
to severer post-concussion and depressive symptoms. Schilbach
et al. (2008) suggested that decreased levels of cerebrospinal fluid
α-syn in early stage PDmay be the result of cellular compensatory
mechanisms for pathological soluble α-syn, thus obtaining lower
levels of α-syn compared with controls (Schilbach et al., 2008).

The DMN is a task-negative network involving self-reference
processes, such as introspection and experiential memory
(Schilbach et al., 2008; Fingelkurts and Fingelkurts, 2011).
The essential nodes of the DMN include the PCC, bilateral
angular gyri, precuneus, ventro-MPFC, and dorsal-MPFC. The
functional connectivity within the DMN has been related to
performance in higher cognitive functions such as attention
and memory (Hampson et al., 2006; Buckner et al., 2008;
Leech et al., 2011); meanwhile, cognitive dysfunctions are the
most commonly reported consequences of mTBI (van der
Naalt et al., 1999; Smith-Seemiller et al., 2003). In addition,
fMRI-based studies have illustrated the DMN dysfunction after
mTBI (Palacios et al., 2013; Nathan et al., 2015), and its
relation to several diseases such as Alzheimer’s disease, attention-
deficit/hyperactivity disorder, and schizophrenia (Whitfield-
Gabrieli et al., 2009; Koch et al., 2012).

Few studies have explored the causes of connectivity
dysfunction within the DMN. Our results showed decreased
functional connectivity between the anterior cingulate cortex and
ventro-MPFC in patients with lower α-syn in serum compared to
those with higher α-syn in serum. In addition, patients with lower
levels of α-syn suffered significantly severer post-concussive
and depressive symptoms. The brain regions involved in the
DMN are related to high-level cognitive functions and decision-
making. For instance, the precuneus is involved in learning
and memory (Price, 2000). The anterior cingulate cortex has
been associated with the anxiety disorder, post-traumatic stress
disorder (Kennis et al., 2015), while MPFC has been found
to participate in self-relevance, rapid error identification, and
social functions. Moreover, changes in functional connectivity
may be due to spontaneous seizures of neuronal ensembles,
changes in blood flow, oxidative metabolism, or combinations
of these factors (Fox and Raichle, 2007). Furthermore, α-syn
is a presynaptic protein activated by various processes such as
phosphorylation and contributes to the synaptic vesicle cycle
(Acosta et al., 2015). These findings suggest that α-syn in
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serum can modulate the connectivity of the DMN in patients
with mTBI.

Several limitations of our study remain to be addressed. First,
we only explored changes in the DMN functional connectivity
within the 1st week post-injury. However, the considered
post-injury period should be longer to accurately observe the
functional connectivity evolution, and longitudinal analyses
need to be conducted using follow-up data. Second, while
α-syn concentration in serum changed significantly during the
acute phase, the 1-week period post-injury provided limited
information for observing the dynamic changes of α-syn in the
acute phase. Third, we only considered resting-state fMRI, and
the results did not exclude the possibility of structural changes,
which can be measured by diffusion tensor imaging. Future
research must explore the relationship between structural and
functional network defects and their clinical significance.

CONCLUSION

We found that mTBI may involve a chronic, progressive,
neurodegenerative process, and may be closely associated with
the occurrence of PD. As biomarker of PD, α-syn in serum also
exhibits significant changes in the mTBI patients. Specifically,
patients with higher levels of α-syn in serum exhibited increased
functional connectivity in the left anterior cingulate cortex
and ventro-MPFC and decreased functional connectivity in the

precuneus. Therefore, α-syn in serum may be considered as one
of the modulations of the DMN connectivity in patients with
mTBI. These results suggest the plausibility of using the α-syn
in serum as objective biomarker for the prognosis of mTBI and
early intervention to prevent adverse sequels in patients with this
type of injury.
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