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The organization of proteins in the apposed nanodomains of pre- and postsynaptic

compartments is thought to play a pivotal role in synaptic strength and plasticity. As such,

the alignment between pre- and postsynaptic proteinsmay regulate, for example, the rate

of presynaptic release or the strength of postsynaptic signaling. However, the analysis of

these structures has mainly been restricted to subsets of synapses, providing a limited

view of the diversity of synaptic protein cluster remodeling during synaptic plasticity.

To characterize changes in the organization of synaptic nanodomains during synaptic

plasticity over a large population of synapses, we combined STimulated Emission

Depletion (STED) nanoscopy with a Python-based statistical object distance analysis

(pySODA), in dissociated cultured hippocampal circuits exposed to treatments driving

different forms of synaptic plasticity. The nanoscale organization, characterized in terms

of coupling properties, of presynaptic (Bassoon, RIM1/2) and postsynaptic (PSD95,

Homer1c) scaffold proteins was differently altered in response to plasticity-inducing

stimuli. For the Bassoon - PSD95 pair, treatments driving synaptic potentiation caused

an increase in their coupling probability, whereas a stimulus driving synaptic depression

had an opposite effect. To enrich the characterization of the synaptic cluster remodeling

at the population level, we applied unsupervised machine learning approaches to include

selected morphological features into a multidimensional analysis. This combined analysis

revealed a large diversity of synaptic protein cluster subtypes exhibiting differential

activity-dependent remodeling, yet with common features depending on the expected

direction of plasticity. The expanded palette of synaptic features revealed by our

unbiased approach should provide a basis to further explore the widely diverse molecular

mechanisms of synaptic plasticity.

Keywords: super-resolution microscopy, synaptic plasticity, synaptic proteins, quantitative image analysis,

synapse organization, unsupervised machine learning
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1. INTRODUCTION

Learning and memory at the molecular level is characterized
by a remodeling of protein organization at synapses. Neurons
can have several thousands of synapses, which contain a dense
assembly of a wide diversity of proteins (Micheva et al., 2010).
The wealth of the synaptic proteome gives rise to supercomplexes
of structural and functional proteins that encode synaptic
function through multiple signaling cascades (Frank and Grant,
2017). This allows synapses to respond to a rich variety of stimuli
and therefore shape circuit activity (Branco and Staras, 2009).
Hence, to understand the molecular mechanisms underlying
learning and memory at the circuit level, the heterogeneous
synaptic population, beyond the individual synapses, needs to
be considered.

Fluorescence labeling combined with optical nanoscopy
allows different protein species to be discriminated
and their organization to be resolved into subsynaptic
nanodomains. Groundbreaking studies using STochastic Optical
Reconstruction Microscopy (STORM) on dissociated and slice
cultures described the highly organized nano-architecture of
synaptic proteins (Dani et al., 2010; Nair et al., 2013; Tang
et al., 2016). Further studies have described the nanometric
arrangement of several proteins at excitatory and inhibitory
synapses, ranging from glutamatergic receptors and scaffold
proteins to transsynaptic adhesion proteins, and assessed their
activity-dependent re-organization (Nair et al., 2013; Broadhead
et al., 2016; Glebov et al., 2016, 2017; Tang et al., 2016; Haas
et al., 2018; Hruska et al., 2018; Crosby et al., 2019). However,
a particular challenge for quantitative assessment of synaptic
remodeling with microscopy is that the changes in synaptic
strength are heterogeneously distributed across the neuron and
are expressed in diverse forms (Edelmann et al., 2017), such
that selection of regions of interest (ROIs) can bias the results.
Thus, exploiting an analysis framework that can address synaptic
remodeling at the population level and discriminate distinct
characteristics of synaptic domains should help to further
understand the rules that govern synaptic plasticity.

The identification of pre- and postsynaptic nanodomains or
protein clusters is generally performed in manually selected,
well-identifiable synapses. This is necessarily influenced by
the microscope resolution, labeling quality and specificity, and
selected morphological criteria, which can vary across studies. A
defining criterion for the identification of a functional synapse
has been the presence of pre- and postsynaptic proteins in a
close vicinity. Characterization of the organization of pre- and
postsynaptic proteins can be performed using several metrics,
such as their distance to each other (e.g., Nearest Neighbor
Distance), correlation of intensity (Pearson coefficient) and
degree of overlap (Manders Overlap coefficient) (Dunn et al.,
2011). However, these metrics are sensitive to factors such
as signal to noise ratio, labeling density, optical resolution,
and signal intensity (Lagache et al., 2018). A further challenge
is to determine whether the detected protein clusters are
distributed in a spatially organized manner or are randomly
distributed to each other (Helmuth et al., 2010; Szoboszlay
et al., 2017; Lagache et al., 2018). To address these limitations,
distance-based methods that statistically infer spatial association

(coupling) between sub-cellular structures have been introduced
(Helmuth et al., 2010; Lagache et al., 2013, 2018). Statistical
Object Distance Analysis (SODA) was recently developed to
analyze automatically and quantitatively the spatial association
(coupling) betweenmolecules (or protein clusters) in microscopy
images (Lagache et al., 2018). In this approach the distance
between protein pairs is measured and the enrichment of protein
clusters at a given distance is statistically assessed given the
null hypothesis of randomly positioned objects. SODA generates
maps of spatially associated (coupled) and randomly positioned
clusters (uncoupled), providing quantitative measurements of
the association level (coupling index) and of the distance
(coupling distance) between two associated objects. This
approach allows to compute the probability of finding spatially
associated protein cluster pairs at a given distance (coupling
probability) (Lagache et al., 2018).

To explore the diversity of activity-dependent remodeling
of synaptic proteins at the nanoscale over a large population
of synapses, we adapted SODA into Python (pySODA).
We used this approach to quantify the coupling properties
(probability and distance) of synaptic protein clusters in
cultured hippocampal neurons exposed to various stimulation
conditions and imaged with STimulated Emission Depletion
(STED) microscopy. We applied pySODA to analyse the spatial
distribution of different pre- and postsynaptic protein pairs
and found them to exhibit variable coupling probabilities and
coupling distances. We found that stimuli driving synaptic
plasticity caused significant changes in coupling properties
for distinct protein pairs. For the protein pair Bassoon and
PSD95, both chronic inhibition (leading to synaptic scaling)
and an acute stimulus (leading to Long Term Potentiation of
synaptic transmission [LTP]) caused an increase in their coupling
probability, whereas an acute stimulus leading to Long Term
Depression of synaptic transmission (LTD) had an opposite
effect. To enrich the characterization of the synaptic cluster
remodeling at the population level, we applied unsupervised
machine learning approaches to include selected morphological
features into amultidimensional analysis. This combined analysis
revealed a large diversity of synaptic protein cluster subtypes
exhibiting differential activity-dependent changes. Mapping
of these changes revealed common features depending on
the expected direction of plasticity. Our results provide a
new framework to investigate the rich diversity of synaptic
remodeling processes from a large population of synapses.

2. MATERIALS AND METHODS

2.1. Cell Culture and Neuronal Stimulations
Dissociated rat hippocampal neurons were prepared as described
previously (Nault and De Koninck, 2009). In brief, before
dissection of hippocampi, neonatal rats were sacrificed by
decapitation, in accordance with procedures approved by
the animal care committee of Université Laval. Thereafter,
dissociated cells were plated on PDL-Laminin coated glass
coverslips (12 mm) in a 24 well plate at a density of
200 cells/mm2. The growth media consisted of Neurobasal
and B27 supplement (50:1) and was supplemented with
penicillin/streptomycin (50 U per mL; 50 µg per mL) and
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0.5 mM L-GlutaMAX (Invitrogen). Fetal bovine serum (2%;
Hyclone) was added at the time of plating. After five days, half
of the media was replaced by new media without serum and in
which Ara-C (5 µM; Sigma-Aldrich) was added to limit non-
neuronal cell proliferation. Thereon the cultures were fed twice
a week by replacing half of the growth medium with serum- and
Ara-C-free medium.

Acute stimuli to neuronal cultures were performed in HEPES
buffered solutions at 37◦C at 21-22 DIV. The following solutions
were used: high Mg2+/low Ca2+ (in mM: NaCl 98, KCl 5, HEPES
10, CaCl2 0.6, Glucose 10, MgCl2 5), 0Mg2+/Gly/Bic (in mM:
NaCl 104, KCl 5, HEPES 10, CaCl2 1.2, Glucose 10, MgCl2 0,
Glycine 0.2, Bicuculline 0.01), and Glu/Gly (in mM: NaCl 102,
KCl 5, HEPES 10, CaCl2 1.2, Glucose 10, MgCl2 1; Glutamate
0.1, Glycine 0.01); Osmolality: 240–250 mOsm/kg, pH: 7.0–
7.35. Incubation lasted 10 min for high Mg2+/low Ca2+ and
0Mg2+/Gly/Bic treatments and 2 min for Glu/Gly stimulation.
After the treatment, the cells were directly transferred in a
4% paraformaldehyde (PFA) solution for fixation (See Fixation
and Immunostaining). To induce synaptic scaling TTX (2 µM
final concentration, Sigma-Aldrich) was added 48, 24, or 4 h
before fixation.

2.2. Fixation and Immunostaining
Cultured hippocampal neurons were fixed at 21-22 DIV for
10 min in freshly prepared 4% PFA solution containing: 4%
Sucrose, 100 mM phosphate buffer, 2 mM Na-EGTA. The
solution was adjusted to pH 7.4 and used at 37◦C. Fixed cells
were subsequently washed three times for 5 min with phosphate
buffer saline (PBS) supplemented with 100 mM Glycine. Before
immunostaining, cells were permeabilized with 0.1% Triton
X-100 and blocked with 2% goat serum (GS) for 30 min.
Incubation with primary (PAB) and secondary antibody (SAB)
was performed in a 0.1% Triton X-100 and 2% GS PBS solution
at room temperature (see Table 1). PAB were incubated for 2
h followed by 3 washes in PBS. SAB and Oregon Green 488
Phalloidin (Invitrogen (A12379), dilution 1:50) (Baddeley et al.,
2011) were incubated for 1 h and finally washed 3 times in PBS.
Coverslips were mounted in Mowiol-DABCO for imaging.

2.3. STED Microscopy
STimulated Emission Depletion microscopy (Hell and
Wichmann, 1994) was performed on a 4 color Abberior Expert-
Line STED system (Abberior Instruments GmbH, Germany),
equipped with a 100x 1.4NA oil objective, a motorized stage,
and auto-focus unit. Imaging of synaptic proteins labeled with
Alexa 594 and STAR 635P was performed with 561 and 640 nm
pulsed excitation lasers and a single pulsed 775 nm depletion
laser (40 MHz). Fluorescence was detected on two avalanche
photodiodes (APD) using a ET685/70 (Chroma, USA) filter for
STAR 635P and 615/20 (Semrock, USA) filter for Alexa 594.
Phalloidin Oregon Green 488 was excited in confocal mode
using a 40 MHz excitation laser at 485 nm and the fluorescence
was detected on a third APD with a 525/50 (Semrock, USA)
fluorescence filter. Scanning was conducted in a line scan mode
with a pixel dwell time of 30µs and pixel size of 15 nm. Line
repetitions of 5 and 3 were selected for the STAR 635P and Alexa
594, respectively. Confocal detection pinhole was set around 1

Airy unit. Spectral unmixing was performed using the ImageJ
Spectral Unmixing Plugins (Zimmermann et al., 2002; Neher and
Neher, 2004; Schindelin et al., 2012). The lateral resolution was
approximated by measuring the Full Width at Half Maximum
(FWHM) on the fitted line profiles (Lorentzian fit) of 12 isolated
protein clusters (STAR 635P : 67.5 nm, SEM 6.7; Alexa 594 nm :
72.6 nm, SEM 8.7).

2.4. SODA Analysis
The Statistical Object Distance Analysis (SODA) algorithm was
used to analyze the spatial distribution and relations of synaptic
protein clusters in STED images (Lagache et al., 2018). Initially
developed as a plugin within the Icy image analysis software (De
Chaumont et al., 2012), SODA was adapted as a stand-alone
Python analysis routine to improve its integration into other high
throughput analysis frameworks. SODA requires binary images
of segmented protein clusters for each channel (561 and 640 nm)
as well as a mask of the region of interest (ROI) comprising
the neuronal processes. To generate the ROI mask, we applied
a gaussian blur (standard deviation of 10) on the sum of both
STED channels and subsequently thresholded the image using
50% of the mean intensity value. Large fields of view (2,000
µm2) were acquired and clusters were automatically segmented
using wavelet transform decomposition (Olivo-Marin, 2002).
The wavelet segmentation parameters (scales 3 and 4) were
chosen to discard small low intensity clusters due to non-specific
staining and to avoid undesirable separation of clusters. Detected
clusters with an area< 5 pixels and a width/height<3 pixels were
removed. The weighted centroids of the detected clusters were
calculated on the raw STED images and only clusters inside the
foreground mask were considered for the SODA analysis.

SODA is based on Ripley’s K function (Ripley, 1976) with an
additional boundary correction element k (Haase, 1995).

K(r) =
Volume of ROI

n1n2

∑

x,y

1
{

d(x, y) ≤ r
}

k(x, y) (1)

where ni is the number of objects in the channel i. This function
is used to count objects that are separated by a distance d(x, y)
shorter than a radius r. For SODA, incremental subtractions of
the K function for a series of distances r (corresponding to the
pixel size of 15 nm in our experiments) are used in order to count
objects from different channels that are within specific distance
intervals. This creates the vector

G =
[

K(ri+1)− K(ri)
]

i=0..N−1 (2)

where N is the number of rings (see Supplementary Figure 1).
With a large enough amount of objects (>100, generally reached
in STED imaging of synaptic proteins for a large field of view of
2,000µm2), each componentGi ofG is normally distributed with
meanµi and standard deviation σi, forming vectorsµ and σ . The
reduced Ripley’s vector

G
0 =

1

σ
A
−1 · [G− µ] (3)
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TABLE 1 | Primary and secondary antibodies used for STED imaging.

Primary antibodies

Antibody Company Catalogue no. Dilution Epitope Reference

Mouse anti-PSD95 (6G6-1C9) Abcam MA1-045 1 : 500 Purified recombinant rat PSD-95 Ladépêche et al. (2018)

Mouse anti-Bassoon Enzo ADI-VAM-PS003 1 : 500 AA 3569 to 3769 from rat Bassoon Dani et al. (2010); Tang et al. (2016)

Rabbit anti-Bassoon Synaptic Systems 141003 1 : 500 AA 3569 to 3769 from rat Bassoon Dani et al. (2010)

Rabbit anti-Homer1c Synaptic Systems 160023 1 : 500 AA 152 to 354 from human Homer1b/c Lagache et al. (2018)

Rabbit anti-RIM1/2 Synaptic Systems 140203 1 : 500 AA 1 to 466 from rat Rim2 Dani et al. (2010); Tang et al. (2016)

Rabbit anti-KCC2 Millipore 07-432 1 : 1000 residues 932-1043 of rat KCC2 Doyon et al. (2011)

Secondary Antibodies

Antibody Company Catalogue no. Dilution Reference

GAM STAR 635P Abberior 2-0002-007-5 1 : 250 Durand et al. (2018)

GAM Alexa 594 Thermofisher A11005 1 : 100 Durand et al. (2018)

GAR STAR 635P Abberior 2-0012-007-5 1 : 250 Durand et al. (2018)

GAR Alexa 594 Thermofisher A11037 1 : 100 Di Biase et al. (2009)

is used to detect these enriched rings, where A is a matrix that
corrects for the overlap between rings. Only elements of G

0

that are higher than a universal threshold T(N) = 2 log(N)
(Donoho et al., 1997) are deemed significant and are conserved;
the other elements are set to 0. The coupling probability P(x, y)
for each pair of objects (x, y) in different channels can then be
calculated with

P(x, y) =
N−1
∑

i=0

1
{

ri < d(x, y) ≤ ri+1
} σiG

0
i 1

{

G0
i > T(N)

}

Gi
(4)

where 1{} is the Iverson bracket and equals 1 if the inequality
inside the brackets is true and 0 otherwise.

In our pySODAworkflow, 16 rings with a width of 15 nmwere
used, for a maximal distance of 240 nm, which is further than
the largest distance described between synaptic elements such as
Bassoon and Homer1c (Dani et al., 2010).

2.5. Multidimensional Analysis
Multidimensional analysis was performed on all acquired 2-
color images of PSD95 and Bassoon. Analysis was performed
independently for chronic (Naive, 48 h TTX) and acute (high
Mg2+/low Ca2+, 0Mg2+/Gly/Bic, Glu/Gly) stimuli. Only coupled
clusters were considered. Morphological features were obtained
from the detected clusters in the wavelet segmented image
consisting in : (1) area, (2) eccentricity, (3) perimeter, (4) major,
and (5) minor axis length. These were further combined with
the coupling distance and probability that were obtained from
the pySODA analysis, resulting in a 7 dimensional feature space.
All features were normalized to [0, 1] range using a min-max
scaling. A Uniform Manifold Approximation and Projection
(UMAP)was used to embed the 7-dimensional feature space onto
a 2-dimensional plane (McInnes et al., 2018). UMAP analysis
was performed using the provided Python implementation of
this dimension reduction technique. We used a number of
25 neighbors to make a compromise between local and broad

structure in the input feature space. A minimal distance of 0.05
in the embedded space was used to avoid compressing points
together too tightly and allow more sparse local structures.

The embedded feature space was characterized by estimating
the density of points using a bivariate kernel density estimation
(KDE) of the UMAP for each stimuli. Ten uniformly spaced
contour levels were generated for visualization. The local average
cluster features (morphological, distance and coupling) was
overlaid on the KDE maps to give better insight into each
feature’s evolution. Hence, it allowed an improved visualization
of the remodeling that occurs during stimulation and therefore
enabled correlation of feature changes with activity. Local
maxima in the KDE map, depicting different subtypes of
synapses, were identified and their position was estimated
using peak_local_max implemented in Scikit-Image (van der
Walt et al., 2014). The average features from each local
maximum were extracted to create a 7-dimensional vector
describing each local maximum, termed synaptic subtype, in the
KDE plot.

To group synaptic subtypes with similar features,
agglomerative hierarchical grouping (also referred to as
hierarchical clustering) was performed using the feature vector
corresponding to each local maximum of the KDE plots.
The AgglomerativeClustering function from Scikit-Learn with
euclidean affinity and Ward linkage was used to perform
hierarchical grouping (Pedregosa et al., 2011). We calculated
the number of groups (synaptic subtypes) that best describe our
data based on maximization of the silhouette score, a measure
of similarity within a group and dissimilarity between different
groups (Rousseeuw, 1987; Zhao et al., 2018).

To investigate the association between the groups identified
with hierarchical grouping in the acute and chronic stimulation
datasets, we projected all instances (detected protein clusters)
of one dataset onto the other dataset and vice versa. We used
the Euclidean distance to assign each detected protein cluster
to one group. With this approach, we computed the proportion
of detected protein clusters of one dataset belonging to each
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synaptic subtype in the feature space of the other dataset (see
Figures 8B,C).

2.6. Statistical Analysis
Statistical analysis on cumulative frequency curves (CF) and
histograms (H) was performed using a randomization test with
the null hypothesis being that the different conditions (A, B)
belong to the same distribution. The absolute difference between
mean values of A and B was calculated for each bin of the CF or
H (Dgt = |µA − µB|).

For the randomization test, each value belonging to A and B
was randomly reassigned to A’ and B’, with the sizes of A’ and B’
being NA and NB, respectively. The absolute difference between
the mean values of A’ and B’ was determined (Drand = |µA′ −

µB′|) and the randomization test was repeated 10,000 times. The
obtained distribution was compared with the absolute difference
of the mean of A and B (Dgt) to verify the null hypothesis.

When the number of groups was greater than two, the
F-statistic was sampled from each group using a resampling
method. The F-statistic was calculated from each group (A, B,
C, etc.) as a ground truth (Fgt). Each value of the CF or H was
randomly re-assigned to new groups (A’, B’, C’, etc.) where group
X’ has the same size as group X. The F-statistic from each newly
formed group (Frand) was calculated and we repeated this process
10,000 times. We compared Frand with Fgt to confirm the null
hypothesis that the groups have the same mean distribution.
When the null hypothesis was rejected, i.e. at least one group did
not have the same mean distribution, we compared each group
in a one-to-one manner using the randomization test described
above. In all cases, a confidence level of 0.05 was used to reject the
null hypothesis (Supplementary Figures 4, 6, 8, 9, 18, 21).

To calculate the statistical difference between synaptic
subtypes, a Chi-square test was used, followed by a post-hoc
Chi-square test comparing each synaptic subtype with all other
subtypes (Supplementary Tables 2, 4, 6, 8).

2.7. Localization Error
The weighted centroid of the synaptic clusters was calculated
from the intensity image and the synaptic cluster shape using
the weighted_centroid attributes of the regionprops method
implemented in Scikit-Image (van der Walt et al., 2014). Hence,
a localization error is arising from the uncertainty of the number
of counts in the intensity image. The STED setup uses a
single photon counting module (Excelitas Technologies, SPCM-
AQRH-13) which has an uncertainty on the number of counts
of 0.5%. Therefore, using the general error propagation equation
one can calculate the uncertainty of localization of the weighted
centroid. The calculated localization error is 3 nm.

3. RESULTS

3.1. Quantitative Assessment of Synaptic
Protein Coupling Properties at the
Population Level
To examine the nanometric distribution of synaptic proteins,
we fixed 21-22 DIV primary cultured rat hippocampal neurons
and immunostained them for pre- (Bassoon, RIM1/2) and

postsynaptic (Homer1c, PSD95) scaffold proteins.We performed
two-color STED microscopy of these protein pairs combined
with confocal imaging of the F-actin cytoskeleton (stained with
Phalloidin-Oregon Green 488) to highlight proximal dendrites
with spines (Figure 1A).

To quantify the spatial organization of the protein pairs,
we implemented SODA in Python (pySODA). Protein clusters
were segmented using wavelet transform, and a foreground
mask was generated with a gaussian kernel convolution on
the sum of both STED channels (see section Materials and
Methods and Figures 1B,C). Using the pySODA framework,
the coupling properties between synaptic scaffold protein pairs
were calculated (Lagache et al., 2018) (Supplementary Figure 1).
The coupling probability was determined for each cluster
from the statistical analysis of the measured distances
between neighboring clusters of different channels (see section
Materials and Methods and Supplementary Figure 1). Coupled
clusters were identified when the probability of localizing
two synaptic partners at a given distance was greater than
the statistical threshold (Lagache et al., 2018) (Figures 1D,E,
Supplementary Figure 1, and section Materials and Methods).
For each synaptic cluster, pySODA identified neighboring
clusters found within concentric rings spaced 15 nm apart
(pixel size of the STED images), providing distance-dependent
coupling probabilities (Supplementary Figure 1 and section
Materials and Methods).

We first assessed the performance of pySODA by measuring
the coupling probability of presynaptic Bassoon clusters that
were concurrentlymarkedwith two distinct secondary antibodies
labeled with the fluorophores Alexa 594 and STAR 635P,
respectively. As expected for antibodies targeting the same
protein, a maximal coupling probability of 0.98 was calculated for
clusters found within 15 nm (Supplementary Figures 2A,B). We
next evaluated the coupling probability between the presynaptic
protein Bassoon and the membrane receptor KCC2 (reported
not to be enriched at synapses in basal conditions) (Doyon
et al., 2011). As expected, even though the cluster density of
KCC2 is high, the calculated coupling probability for Bassoon -
KCC2 was very low (0.05, SEM 0.03) and was only above
the statistical threshold for clusters spaced by more than 200
nm (Supplementary Figures 2C,D). We also tested whether the
increased resolution provided by STED, as compared to confocal
microscopy, was necessary for assessing the association between
synaptic proteins using the pySODA analysis. We found that the
confocal resolution (approximately 235 nm) is not sufficient for
such analysis (Supplementary Figure 3).

Next, we used pySODA to characterize four different pairs
of pre- and postsynaptic scaffold proteins: (1) Bassoon and
RIM1/2 (presynaptic), (2) PSD95 and Homer1c (postsynaptic),
(3) Bassoon and PSD95 (transsynaptic), and (4) Bassoon
and Homer1c (transsynaptic) (Figures 2A,B). Both Bassoon -
RIM1/2 and PSD95 - Homer1c protein pairs show maximal
coupling probability (CP) between 30 and 45 nm (CP Bassoon
- RIM1/2: 0.88, SEM 0.01; CP PSD95 - Homer1c: 0.83, SEM 0.01)
(Figure 2C), consistent with the distances measured between
these protein pairs with STORM (Dani et al., 2010). Though
a similar distribution of coupling distances was calculated for
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FIGURE 1 | Statistical object distance analysis (SODA) of two-color STED images of the scaffold protein pair PSD95 and Bassoon. (A) 3 channel image of a neuron

stained with Bassoon-STAR 635P (red), PSD95-Alexa 594 (green) with the corresponding confocal image of Phalloidin-Oregon Green 488 (blue). To better distinguish

low intensity clusters combined with the F-actin staining, a log intensity scale was used. (B) Raw 2-color STED image (linear intensity scale) showing the region

boundaries used for SODA analysis (white contour line). (C) Segmented clusters, within the region boundaries, of PSD95 (green) and Bassoon (red) using wavelet

transform. (D) pySODA analysis of the image shown in (C). Coupled (Bassoon-red, PSD95-green) and uncoupled (Bassoon-light gray, PSD95-dark gray) clusters

identified with the pySODA analysis approach. (E) Representative regions of interest (ROI) from the image shown in (D) (Insets 1-3) showing the raw 2-color STED

images (left), the corresponding segmented clusters within the foreground mask (middle-left) as well as the coupled and uncoupled clusters identified with pySODA

(middle-right) and enlarged insets (ROI’) from the pySODA map (right). Cyan (PSD95 Cw ) and magenta (Bassoon Cw ) circles represent the weighted centroids of

coupled clusters (right). Scale bars: 5 µm (A), 500 nm (E).
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FIGURE 2 | Coupling properties of synaptic scaffold protein pairs at low neuronal activity measured with pySODA. (A) Schematic representation of the axial positions

of the four synaptic scaffold proteins analyzed in this work. (B) Two examples of representative confocal and STED images of synaptic scaffold pairs. (C) Coupling

probability and distance histograms measured for coupled cluster pairs of Bassoon - RIM1/2 (red, n = 16), PSD95 - Homer1c (yellow, n = 6), Bassoon - PSD95

(green, n = 18), Bassoon - Homer1c (blue, n = 17). Each 15 nm bin represents the average coupling probability calculated from the individual images of independent

neurons with standard error. (D) Cumulative frequency plots of coupling distance (left) and coupling probability (right) for each synaptic element pair with standard

error (shaded area). (C,D) n = number of neurons from 2 independent cultures. Statistical difference between scaffold protein pairs was assessed using a

randomization test (see section Materials and Methods and Supplementary Figure 4). Scale bar 250 nm.

Bassoon - RIM1/2 and PSD95 - Homer1c pairs (Figure 2D,
left), the distribution of coupling probabilities for Bassoon
- RIM1/2 is shifted to higher levels (Figure 2D, right and
Supplementary Figure 4A). This suggests a more organized
distribution of Bassoon and RIM1/2 clusters compared to PSD95
and Homer1c.

Since proteins involved in synaptic transmission are thought
to be strategically apposed on each side of the cleft (Tang
et al., 2016), we examined the coupling properties of two pairs:
Bassoon - PSD95 and Bassoon - Homer1c. The highest coupling
probability for Bassoon - PSD95 is at a distance of 90–105
nm (CP 0.62, SEM 0.03), while it is between 120 and 135 nm
(CP 0.32, SEM 0.03) for Bassoon - Homer1c (Figure 2C), in
accordance with distances reported for these proteins (Dani et al.,
2010). For Bassoon, the coupling probability was significantly
higher with PSD95 than with Homer1c (Figures 2C,D and
Supplementary Figure 4F). Indeed >60% of Bassoon - PSD95
couples showed a coupling probability >0.5, while it is only the
case for 2% of the Bassoon -Homer1c couples (Figure 2D). These
results suggest higher spatial organization between Bassoon and
PSD95, as compared to Homer1c. The coupling probability of
the transsynaptic partners, as compared to that of the pre- or
postsynaptic protein pairs, is necessarily reduced by the fact that
a certain proportion of the detected synaptic protein clusters are
not part of a functional synapse (i.e., not associated with a pre- or
postsynaptic counterpart) (Figure 2C).

Our pySODA framework confirms previous observations
regarding the measured distance between synaptic scaffold
elements (Dani et al., 2010), while characterizing the coupling
properties of the different protein pairs. We thus aimed
to use this unbiased approach to analyze synaptic cluster

organization at the population level under conditions affecting
synaptic plasticity.

3.2. Activity-Dependent Stimuli Modulate
Coupling Properties of Synaptic Protein
Pairs
Recent studies have shown that manipulation of synaptic
strength in dissociated cultures can re-organize synaptic scaffold
proteins at the nanoscale (Fukata et al., 2013; Tang et al.,
2016; Hruska et al., 2018). An increase in synaptic strength
can be induced in cultured hippocampal neurons using brief
applications of an external solution containing no Mg2+, 200
µM glycine and 10 µM bicuculline (0Mg2+/Gly/Bic), which
drives strong synaptic NMDA receptor activation (Lu et al., 2001;
Arnold et al., 2005). We assessed whether such a stimulation
alters the coupling properties of synaptic scaffold proteins,
by incubating the neurons for 10 min in 0Mg2+/Gly/Bic or
in an activity-reducing solution containing 5 mM Mg2+ and
0.6 mM Ca2+ (high Mg2+/low Ca2+) prior to fixation (see
section Materials and Methods) (Lu et al., 2001; Bayer et al.,
2006).

For the Bassoon - RIM1/2 cluster pairs, identified as
coupled with pySODA, the mean coupling distance was
59 nm in high Mg2+/low Ca2+ and remained unchanged
upon a 0Mg2+/Gly/Bic stimulation (61 nm, Figures 3A,B

and Supplementary Figure 5). For both conditions, more
than 50% of the coupled Bassoon - RIM1/2 clusters
exhibited a coupling probability >0.75, suggesting that
the eminent spatial organization of the presynaptic pair
is not affected by neuronal activity (Figures 3C,D). By
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FIGURE 3 | Activity-dependent re-organization of pre- and postsynaptic scaffolding protein pairs measured with the pySODA analysis framework. (A,E,I,M)

Representative two-color STED images of synaptic protein pairs for the activity reducing high Mg2+/low Ca2+ condition (left) or synaptic stimulation 0Mg2+/Gly/Bic

(right). Cumulative frequency graphs of the coupling distance (B,F,J,N) and of the coupling probability (C,G,K,O) measured for coupled protein pairs. (D,H,L,P)

Histograms of the mean coupling probability per neuron at a given distance. Measurements were performed on two-color STED images of (A–D) the presynaptic

protein pair Bassoon - RIM1/2 (High Mg2+ / low Ca2+(gray): n = 16 and 0Mg2+/Gly/Bic (red): n = 21); (E–H) the postsynaptic protein pair PSD95 - Homer1c (high

Mg2+ / low Ca 2+(gray): n = 9 and 0Mg2+/Gly/Bic (orange): n = 12); (I–L) the transsynaptic pair Bassoon - PSD95 (High Mg2+/ low Ca 2+(gray): n = 18 and

0Mg2+/Gly/Bic (green): n = 24) and (M–P) the transsynaptic pair Bassoon - Homer1c (High Mg2+/ low Ca 2+(gray): n = 17 and 0Mg2+/Gly/Bic (blue): n = 17). Shown

are the means (plain lines) with standard error (shaded area). n = number of neurons from 3 independent cultures. Statistical difference was assessed using a

randomization test (see section Materials and Methods and Supplementary Figure 6). Exact p-values are reported in Supplementary Figure 6, with *p < 0.05, **p

< 0.01, and ***p < 0.001. Scale bar 250 nm.

contrast, there was an activity-dependent increase of the
mean coupling distance between PSD95 and Homer1c
(Figures 3E,F and Supplementary Figure 5), which was
associated with a reduced coupling probability (statistically
significant for clusters separated by less than 30 nm)
(Figures 3G,H and Supplementary Figure 6B). Thus, these
two pairs of proteins exhibit different activity-dependent
re-organization.

We next assessed whether neuronal activity affects the
coupling properties between the transsynaptic protein pairs : (1)
Bassoon - PSD95 and (2) Bassoon - Homer1c. For Bassoon and
PSD95, increasing neuronal activity yielded a larger population
of couples characterized by a smaller coupling distance,
combined with an increased coupling probability (Figures 3I–L).
Indeed, in the 0Mg2+/Gly/Bic condition, a significantly higher

coupling probability was calculated for coupling distances
between 15 and 75 nm (Figure 3L), while the mean distance
between coupled cluster pairs was significantly decreased from
106 to 93 nm (Supplementary Figures 5, 6C). By contrast,
synaptic stimulation increased the mean coupling distance
between Bassoon and Homer1c and decreased their coupling
probability (Figures 3M–P and Supplementary Figure 5). This
decrease is consistent with the reduction of the coupling
probability measured for the postsynaptic pair Homer1c - PSD95
(Figure 3G). These results suggest that the synaptic distributions
of Homer1c with respect to other synaptic scaffolding proteins
is regulated by activity. Our results thus show that pySODA
is sufficiently sensitive to reveal activity-dependent changes
in coupling properties between scaffold protein pairs at the
population level.
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3.3. The Coupling Properties and
Morphological Features of Bassoon and
PSD95 Are Differently Affected by Long
Term Potentiation- or Depression-Inducing
Stimuli
In cultured neurons, while the synaptic NMDA receptor
stimulation (0Mg2+/Gly/Bic) can induce LTP, stimulation of
extrasynaptic NMDA receptors can induce LTD (Carroll et al.,
1999; Lu et al., 2001). We thus assessed the impact of these
LTP- or LTD-inducing stimuli on the coupling properties of
the Bassoon - PSD95 pair, by fixing the neuronal cultures
immediately after a 10 min 0Mg2+/Gly/Bic or 2 min Glu/Gly
stimulation.

As shown in the previous section, 0Mg2+/Gly/Bic stimulation
compared to the high Mg2+/low Ca2+ condition resulted
in an increase of the coupling probability and a reduction
of the mean coupling distance of Bassoon and PSD95
(Figures 3J–L and Supplementary Figure 7). In contrast, the
Glu/Gly stimulation led to a reduction in both the coupling
probability and the mean coupling distance (Figures 4A,B and
Supplementary Figures 7,8). These results suggest that while an
LTP-inducing stimulus tends to increase the spatial organization
between PSD95 and Bassoon, the LTD-inducing stimulus has an
opposite effect toward more randomly distributed cluster pairs
(Figure 4B and Supplementary Figure 8).

Our results thus far described the activity-dependent changes
in coupling properties of synaptic scaffold proteins at the
population level. Characterizing additional morphological
features of synaptic scaffold protein clusters would be beneficial
to appreciate the diversity of the remodeling and to understand
further synaptic plasticity (Lagache et al., 2018). We thus
added quantitative morphological feature measurements of the
Bassoon - PSD95 cluster pairs to the coupling properties analysis.
Previous studies (Harris et al., 1992; Matsuzaki et al., 2004)
have shown a positive correlation between synaptic strength,
spine volume and PSD area. We therefore wondered how the
observed changes in coupling probability are reflected in the
area and eccentricity of the Bassoon and PSD95 clusters, as
well as on their spatial distribution in dendritic shafts and
spines. We observed opposing effects of the two stimulation
paradigms, with the Glu/Gly treatment decreasing significantly
the size of both Bassoon and PSD95 couples (Figures 4C,D
and Supplementary Figure 9) and with the 0Mg2+/Gly/Bic
stimulation increasing of the size of PSD95 clusters (Figure 4D
and Figure S9), which was independent from the cluster density
(Supplementary Figure 10). In accordance with previous
reports (Colledge et al., 2003; Chowdhury and Hell, 2019), we
also observed a similar trend in the cluster intensity of coupled
PSD95 clusters (Supplementary Figure 11A).We found a higher
proportion of coupled Bassoon and PSD95 clusters within spines
compared to the dendritic shafts (Supplementary Figure 12).

To enrich the characterization of synaptic features in our
analysis, we included for each cluster, in addition to the (i)
coupling probability and (ii) coupling distance, the (iii) area, (iv)
eccentricity, (v) minor axis length, (vi) major axis length, and
(vii) perimeter (see section Materials and Methods). To visualize
the impact of the different stimulation protocols on these

features, we used the dimension reduction technique Uniform
Manifold Approximation and Projection (UMAP), which can be
used to visualize a high dimensional dataset in a 2-dimensional
space (Figure 4E) (McInnes et al., 2018). Local maxima on
the Kernel Density Estimate plots (KDE) generated from the
scatterplot of the UMAP embedding for each stimulation
paradigm were used to identify the major categories of Bassoon
and PSD95 clusters (synaptic subtypes) for each stimulation
condition (Figure 4F and Supplementary Figure 13). This
yielded a wide range of Bassoon and PSD95 cluster subtypes
exhibiting different morphological features and coupling
properties (Supplementary Figures 14, 15). To identify
the synaptic subtypes that are most prominent across the
stimulation conditions, we used agglomerative hierarchical
grouping (also known as hierarchical clustering) (Figures 5A,B,
Supplementary Figures 16, 17, and section Materials and
Methods). This approach allows to group observations in a
way that the similarity within a group (in our case synaptic
protein pairs belonging to one synaptic subtype) is maximized
and that the dissimilarity between groups (synaptic subtypes)
is also maximized. We relied on the maximization of the
silhouette score (Rousseeuw, 1987), a measure of similarity
within groups, to determine the number of synaptic cluster
subtypes that best describe the properties of the detected protein
clusters at the population level and across stimulation conditions
(Supplementary Figures 16, 17, and section Materials and
Methods). With this approach we identified 12 main groups,
which we refer to as synaptic subtypes, for Bassoon and 8 for
PSD95 protein clusters (Figures 5A–D). We next measured
the euclidean distance between each detected protein cluster
and the synaptic subtypes in the multidimensional feature
space (comprising morphological features and coupling
properties). This allowed to assign each detected cluster to one
main subtype and to quantify the prevalence of the synaptic
subtypes for each stimulation condition (Figures 5E–H and
Supplementary Tables 1, 3).

This analysis revealed that the coupling properties and
morphological features of coupled Bassoon - PSD95 pairs
are not directly correlated. For example, similar coupling
probabilities (e.g., STBassoon1-4, CP 0.48–0.55) were associated
with a large range of mean coupling distances (53–100 nm) and
cluster eccentricities (0.41–0.83), (Supplementary Tables 1, 3).
Indeed, the population of coupled Bassoon and PSD95
clusters can be described by subtypes exhibiting a large
diversity of complementary coupling and morphological features
(Figures 5A–D).

Using this approach we identified three levels of coupling for
the detected synaptic subtypes : (1) weak coupling (CP < 0.5),
(2) moderate coupling (0.5 > CP < 0.7), and (3) strong coupling
(CP > 0.7) (Figures 5A,B and Supplementary Tables 1, 3).
As expected from the pySODA analysis, we observed for
both Bassoon and PSD95 clusters a significant increase
in the proportion of strongly coupled subtypes following
the LTP-inducing stimulus 0Mg2+/Gly/Bic (STBassoon9-12,
STPSD954,7, Figures 5E,F and Supplementary Tables 1–4). In
contrast, the LTD-inducing stimulus significantly increased
the prevalence of weakly coupled clusters (STBassoon3,5-8,
STPSD952-3, Figures 5G,H and Supplementary Tables 1–4).
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FIGURE 4 | Activity dependent re-organization of Bassoon and PSD95 cluster pairs for different activity promoting stimuli. (A) Cumulative frequency curves of the

coupling distance (left) and probability (right) measured for coupled Bassoon and PSD95 clusters in high Mg2+/low Ca2+ (black, n = 18), 0Mg2+/Gly/Bic (green, n =

24), and Glu/Gly (orange, n = 7). n = number of neurons from 2 (Glu/Gly) or 3 (high Mg2+/low Ca2+, 0Mg2+/Gly/Bic) independent neuronal cultures. (B) Histograms of

the mean coupling probability per neuron at a given distance in high Mg2+/low Ca2+ (gray), Glu/Gly (orange), and 0Mg2+/Gly/Bic (green). (C,D) Cumulative frequency

curves of area (left) and eccentricity (right) of coupled (solid line) and uncoupled (dashed line) Bassoon (C) and PSD95 (D) protein clusters. (E) Scatterplot of the

UMAP embedding and (F) corresponding kernel density estimation (KDE) maps of coupled Bassoon clusters in high Mg2+/low Ca2+ (black), 0Mg2+/Gly/Bic (green),

and Glu/Gly (orange). Local maxima identifying synaptic (A,C,D) shown are the means (plain and dashed lines) with standard error (shaded area). Statistical difference

was accessed using a randomization test (see section Materials and Methods and Supplementary Figures 8, 9). Exact p-values are reported in

Supplementary Figures 8, 9 with *p < 0.05, **p < 0.01, and ***p < 0.001.

When considering morphological features such as area and
eccentricity, the 0Mg2+/Gly/Bic and Glu/Gly stimulations had
an opposite effect on the proportion of small and round subtypes
(STBassoon4, STPSD954-5) that could not be explained solely by
the analysis of their coupling properties (Figures 5A,B,E,H).
Additionally, we identified for each protein one subtype of small,
eccentric and highly coupled clusters (STBassoon12, STPSD957) that
are solely detected following the LTP paradigm (Figures 5E,F
and Supplementary Tables 1, 3).

This multidimensional analysis of morphological and
coupling properties confirms that both stimuli have an opposite
effect on the prevalence of certain synaptic subtypes, and it

underlines the diversity in the characteristics and activity-
dependent remodeling of the cluster subtypes forming functional
synapses. The complementary information on the morphological
and coupling properties of the cluster subtypes reveals a more
complete description of synaptic plasticity.

3.4. Chronic Inhibition of Neuronal Activity
Influences the Morphological and Coupling
Properties of Bassoon and PSD95
The chronic inhibition of action potentials with the sodium
channel blocker Tetrodotoxin (TTX) leads to the strengthening
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FIGURE 5 | Activity dependent modification of the prevalence of synaptic cluster morphology and organization. (A,B) Hierarchical grouping of presynaptic Bassoon

(A) and postsynaptic PSD95 (B) cluster subtypes for 4 selected features (hierarchical grouping including all features are shown in Supplementary Figures 16, 17).

Synaptic subtypes were identified from the detected local maxima in the KDE plots generated from the scatterplot of the UMAP embedding of all detected Bassoon

and PSD95 clusters (Figure 4, Supplementary Figure 13). Minimum (yellow) and maximum (dark blue) value of the heatmap for each feature: coupling probability

(min: 0, max: 1), distance (min: 0 nm, max: 180 nm), area (min: 0.7 · 10−2
µm2, max: 11.8 · 10−2

µm2 ), and eccentricity (min: 0.4, max: 1). (C,D) Representative STED

images of (C) Bassoon and (D) PSD95 clusters (top) with corresponding two-color STED image (bottom). Proportions of Bassoon (E,G) and PSD95 (F,H) cluster

belonging to each synaptic subtype depending on the neuronal activity state: high Mg2+/low Ca2+ vs. 0Mg2+/Gly/Bic (E,F), high Mg2+/low Ca2+ vs. Glu/Gly (G,H).

Stars represent significant changes in the proportion of synaptic subtypes using Chi-square test. Exact p-values are reported in Supplementary Tables 2, 4 with *p

< 0.05, **p < 0.01, and ***p < 0.001. Image size: 0.96 µm2.
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of excitatory synapses, referred to as synaptic scaling (Turrigiano
et al., 1998), which is mediated by the insertion of postsynaptic
glutamate receptors (Watt et al., 2000) and the remodeling of pre-
and postsynaptic scaffold proteins (Sun and Turrigiano, 2011;
Glebov et al., 2016). We therefore hypothesized that a prolonged
TTX treatment in cultured neurons would lead to an increase in
Bassoon and PSD95 coupling probability.

We incubated 21-22 DIV neuronal cultures with TTX for 4,
24, and 48 h prior to fixation. The duration of TTX treatment
correlated with increased coupling probability between Bassoon
and PSD95, but had no effect on the mean coupling distance
(Figures 6A,B and Supplementary Figures 18, 19). The
modulation of the coupling probability was also observed
when comparing the LTP and LTD conditions to the naive
condition (Supplementary Figure 20). The TTX treatment
led to a significant increase in the size of the coupled PSD95
(Figures 6C,D and Supplementary Figure 21), the cluster
density, number of coupled clusters, and cluster intensity
(Supplementary Figures 11B, 22).

We applied again the UMAP-based analysis to characterize
the diverse features of the Bassoon - PSD95 synaptic
clusters, following chronic TTX treatment (Figures 6E,F
and Supplementary Figure 23). Hierarchical grouping identified
9 groups that we refer to as the main synaptic subtypes for each
protein (Figures 7A–D and Supplementary Figures 24–27).

Consistent with the results obtained with pySODA
(Figures 6A,B), chronic TTX significantly promoted strongly
coupled synaptic subtypes (STBassoon1,6; STPSD956,7,9; CP >

0.6), while the prevalence of weakly coupled subtypes was
reduced (STBassoon7-9; STPSD951-3; CP < 0.4) (Figures 7E,F
and Supplementary Tables 5–8). Our results also indicate that
compared to basal condition, the 48h TTX treatment strongly
reduced the proportion of small synaptic subtypes (area <

0.03 µm2) from 49 to 30% (STBassoon4,5,8,9) for Bassoon and
for PSD95 from 37 to 23% (STPSD951,8), (Figures 7E,F and
Supplementary Tables 5–8). Interestingly, while the PSD95
cluster population in this homeostatic plasticity paradigm is
best represented by similar percentages (10–20%) of the main
synaptic subtypes (Figure 7F), a large proportion of Bassoon
clusters (38%) belongs to a small, eccentric, and strongly coupled
subtype (STBassoon6, Figure 7E).

Thus, the pySODA approach combined with
multidimensional analysis of morphological and coupling
properties revealed that the organization of functional
synapses at the nanoscale is modulated by chronic inhibition of
action potentials.

3.5. Mapping of Synaptic Subtypes of
PSD95/Bassoon Reveals Common
Features Between Different Forms of
Plasticity Induction
This diverse array of synaptic subtypes revealed from hierarchical
grouping is the product of non-biased approaches which had
no pre-conceived notion of what features of synaptic plasticity
should emerge following different stimuli. Hence, the number
of groups resulting from this data-driven unsupervised grouping

approach intrinsically varied with the number of instances
supporting the model and the distribution of these instances in
the representation space.

In the face of this diversity, we asked whether certain synaptic
subtypes emerged across the acute and chronic treatments
(Supplementary Figure 28).We projected all instances (detected
protein clusters) of one dataset (e.g. acute treatment) into the
groups (synaptic subtypes) determined from the other dataset
(e.g. chronic treatment) and vice versa (Figure 8A). We next
computed the proportion of the protein clusters of one dataset
that were associated to each synaptic subtype of the other dataset
(Figures 8B,C). This approach shows strong correspondence
between some groups, while others are unique to an experimental
paradigm (Figures 8D,E). For example, for 7 of the 12 groups
identified in the acute treatment experiment, more than 75% of
their detected Bassoon clusters can be associated with a single
group in the chronic treatment experiment (Figure 8B, STacute2,
7-11). A predominant subtype emerges in the chronic inhibition
experiment (STchronic6, 32% of all coupled Bassoon clusters),
which can be represented by 4 subgroups in the acute stimulation
experiment (STacute1, 9, 11, 12) (Figures 8B,D). In addition to
the observed similarity in morphological and coupling properties
between STchronic6 and STacute1, 9, 11, 12, we note that all
these subgroups are favored by the treatments that typically
induce synaptic potentiation (cLTP stimulation and chronic TTX
application) (Figures 5, 7, 9, favored by 0Mg2+/Gly/Bic : yellow,
favored by 48 h TTX : blue). A similar association between both
experiments is observed for strongly coupled PSD95 clusters for
which STacute4, 6, 7, 8 & STchronic6, 7, 9 are highly correlated
(Supplementary Figure 28) and are favored by cLTP or chronic
TTX stimuli (Figures 5, 7, 9, favored by 0Mg2+/Gly/BIC : yellow,
favored by 48 h TTX : blue). Similarly, a correlation, although less
strong, is observed between the subtypes promoted by the LTD
paradigm and those decreasing following chronic TTX treatment
(Figure 9, favored by Glu/Gly : red/orange, decreased by 48 h
TTX : violet).

Additionally, the unsupervised machine learning approach
identified subtypes that are specific to one stimulation paradigm,
generally encompassing a small proportion of the overall detected
clusters, and that are not mapped between experiments. This is
the case for the Bassoon STacute12 and PSD95 STacute7 which
describe small, eccentric, and strongly coupled protein clusters
and are solely found following a cLTP stimulus (Figures 5E,F,
8B,C). These subtypes would likely have been overlooked by
conventional rule-based analysis, as they describe only a small
proportion of the data of a single stimulus paradigm.

Thus, the unsupervised grouping approach used to describe
synaptic remodeling shows strong correlation between synaptic
subtypes of the acute and homeostatic plasticity paradigms. It
highlights strong similarities in the effect of cLTP and 48 h TTX
treatment on synaptic organization and architecture.

4. DISCUSSION

We implemented a high-throughput analysis framework based
on statistical object distance analysis, pySODA, to investigate
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FIGURE 6 | Chronic TTX treatment induced re-organization of the synaptic scaffold protein pair Bassoon - PSD95. (A) Cumulative frequency curves of the coupling

distance (left) and probability (right) measured for coupled Bassoon and PSD95 clusters for naive (gray, n = 35), 4 h TTX (light orange, n = 20), 24 h TTX (dark orange,

n = 23) and 48 h TTX (red, n = 33). (B) Histogram of the mean coupling probability per neuron at a given distance for naive (gray) and 48 hours TTX (red). (C,D)

Cumulative frequency curves of the area (left) and eccentricity (right) of coupled (solid line) and uncoupled (dashed line) Bassoon (C) and PSD95 (D) protein clusters.

(E) Scatterplot of the UMAP embedding and (F) corresponding KDE plots of coupled Bassoon clusters for naive (black) and 48 h TTX (red). Subtypes of synaptic

clusters are indicated on the KDE maps (numbers in red) referring to local maxima (see section Materials and Methods). (A,C,D) Shown are the means with standard

error (shaded area). Statistical difference was assessed using a randomization test (see section Materials and Methods, Supplementary Figures 18, 21). n =

number of neurons from 2 independent neuronal cultures.

the diversity of synaptic remodeling at the population level and
discriminate distinct characteristics of synaptic protein clusters.
We chose pySODA to detect pairs of synaptic protein clusters,

as this approach was shown to be less dependent on labeling
density, optical resolution, and signal intensity. Importantly, it
provides an unbiased selection of clusters, ensuring the analysis
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FIGURE 7 | Chronic TTX treatment modifies the prevalence of synaptic cluster morphology and organization. (A,B) Hierarchical grouping of presynaptic Bassoon (A)

or postsynaptic PSD95 (B) synaptic subtypes for 4 selected features (hierarchical grouping including all features are shown in Supplementary Figures 26, 27).

Synaptic subtypes were identified from the detected local maxima in the KDE plots generated from the scatterplot of the UMAP embedding of all detected Bassoon

and PSD95 clusters (Figure 6 and Supplementary Figure 23). Minimum (yellow) and maximum (dark blue) value of the heatmap for each feature: coupling

probability (min: 0, max: 1), distance (min: 0 nm, max: 180 nm), area (min: 0.7 · 10−2
µm2, max: 11.8 · 10−2

µm2), and eccentricity (min: 0.4, max: 1). (C,D)

Representative STED images of (C) Bassoon and (D) PSD95 clusters (top) with corresponding two-color STED image (bottom). (E,F) Proportions of Bassoon (E) and

PSD95 (F) clusters belonging to each synaptic subtype depending on the neuronal activity state: naive vs. 48 h TTX. Stars represent significant activity-dependent

changes in the proportion of each synaptic type using a Chi-square test. Exact p-values are reported in Supplementary Tables 6, 8 with *p < 0.05, **p < 0.01, and

***p < 0.001. Image size: 0.96 µm2.

of nearly all detectable synapses. Our study examined the activity-
dependent remodeling of the nanoscale architecture of the
active zone and the postsynaptic density by characterizing the
interactions between pre- (RIM 1/2, Bassoon) and postsynaptic

(PSD95, Homer1c) protein pairs in cultured neuronal circuits.
We combined pySODA with unsupervised machine learning
approaches to enrich the characterization of activity-dependent
changes in synaptic protein organization based on the coupling
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FIGURE 8 | Mapping the synaptic subtypes that emerged from the acute and chronic treatments. (A) Schematic representation of the mapping approach. Each

detected protein cluster of the acute treatment experiments (Dataset Acute, green circles) is assigned to the most similar (smallest Euclidean distance) synaptic

subtype of the chronic treatment experiment (Groups Chronic, red squares) and vice versa. (B,C) Results of the mapping analysis, showing the percentage of clusters

for Bassooon (B) and PSD95 (C) from each subtypes of one experiment (y- axis, Acute: left, Chronic: right) that are assigned to each subtype of the other experiment

(x-axis, Chronic: left, Acute: right). The most prominent association (proportion above 0.4) between groups are highlighted. (D,E) Results of the mapping experiments

for Bassoon (D) and PSD95 (E) showing all projections for which more than 40% of the protein clusters belonging to one synaptic subtype of the acute (left) or

chronic (right) treatment experiment where mapped into a specific subtype of the other experiment (Chronic: left, Acute: right). The majority of the synaptic subtypes of

one experiment exhibit one major connection (more than 40% of the protein clusters are associated) to one group of the other experiment.

and morphological properties of PSD95 and Bassoon synaptic
clusters. This high-throughput analysis of STED images allowed
us to examine the synaptic re-organization at the population
level (between 12,500 and 25,000 protein clusters depending
on the condition) in response to treatments inducing acute or
homeostatic plasticity.

We first addressed whether a chemical LTP-inducing
stimulus (0Mg2+/Gly/Bic) affects the organization of these

scaffold elements within their synaptic compartment (pre- or
postsynaptic). We show that Bassoon and RIM1/2 are strongly
coupled and that neither their coupling probability nor their
mean coupling distance are affected by the LTP-inducing
stimulus. Conceivably, the presynaptic pair may still undergo
activity-dependent re-organization at a scale that the resolution
of this approach cannot detect. For example, Glebov et al. (2017)
implemented a FRET-based measurement to show unclustering
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FIGURE 9 | Association between synaptic subtypes depending on their prevalence in acute and chronic treatments. Synaptic subtypes that are increasing following

acute treatment of 0Mg2+/Gly/Bic (yellow) are strongly associated with the ones increasing following a 48 h chronic TTX treatment (blue). Synaptic subtypes increasing

following an acute treatment of Glu/Gly (red/orange) are mostly linked with subtypes decreasing following a 48 h chronic TTX treatment (violet) for both Bassoon (left)

and PSD95 (right). The magnitude of the links between each synaptic subtype was determined from the results of the mapping experiments shown in Figures 8B,C.

of Bassoon upon chronic TTX treatment, an effect that was not
detectable with STORM.

In contrast, we show that the same stimulus reduces the
coupling probability and increases the mean coupling distance
between Homer1c and PSD95. These results indicate that the
extent of remodeling between the postsynaptic pair is more
pronounced as compared to that of the presynaptic pair. While
the relationship between Bassoon and RIM1/2 during synaptic
plasticity has not been examined previously, it has been shown
that activity inducing stimuli can induce a rapid declustering
of Homer1c (Okabe et al., 2001; Kuriu et al., 2006) as well as
PSD95 (Steiner et al., 2008; Fukata et al., 2013) at the postsynaptic
compartment. Our data on the decreasing coupling properties
of PSD95 - Homer1c during synaptic stimulation are thus
consistent with these studies.

When looking at the relationship between pre- and post-
synaptic partners, we found that the cLTP stimulus has opposite
effects on the spatial organization of Homer1c and PSD95 to
Bassoon. Indeed the coupling probability of Homer1c - Bassoon
decreases (and coupling distance increases), whereas it increases
for Bassoon - PSD95 (and coupling distance decreases). A pool
of PSD95 was reported to leave the synapse upon synaptic
stimulation (Steiner et al., 2008; Doré et al., 2014), while we
observed an increase in the coupling probability between PSD95
and Bassoon. We can speculate that a loosely coupled pool of
PSD95 leaves the postsynaptic area upon stimulation, and that
the remaining pool exhibits an increased degree of coupling. The
further activity-dependent reduction in coupling probability of
Homer1c to both PSD95 and Bassoon suggests that Homer1c has
a weaker association with pre- and postsynaptic scaffolds upon
LTP-inducing stimulation. The activity-dependent redistribution

of Homer1c has not been clearly established (Okabe et al., 2001;
Tao-Cheng et al., 2014; Lagache et al., 2018). It is interesting
to note that Homer1c was shown to associate with Shank
and GTPase dynamin-3 to form a complex linking the PSD
with the clathrin endocytotic zone, which is necessary for
endocytosis of AMPA receptors, a process occurring mainly on
the periphery of the PSD (Lu et al., 2007). Hence, the activity-
dependent uncoupling of Homer1c from the postsynaptic area
may regulate AMPA receptors endocytosis supporting synaptic
plasticity (Petrini et al., 2009).

Tang et al. (2016) nicely showed, using super-resolution
microscopy, that LTP- and LTD-inducing stimuli produce
opposite effects on the alignment of transsynaptic nanocolumns
in dissociated hippocampal circuits. Using pySODA, we
measured an opposite effect of these stimuli on the coupling
probability of PSD95 and Bassoon at the population level. The
cLTP condition exhibited a larger proportion of highly coupled
pairs, as compared to controls, while in the LTD condition,
weakly coupled pairs were more prevalent. Thus, these observed
changes in the coupling probability could serve as a readout of
synaptic re-organization at the population level representing
early phases of LTP and LTD. Chronic inhibition of neuronal
activity, known to induce synaptic upscaling (Turrigiano et al.,
1998), also resulted in increased coupling probability between
PSD95 and Bassoon. On the other hand, the TTX treatment did
not significantly change the mean coupling distance, contrasting
with the effect of the LTP stimulus, which may reflect a different
mechanism of potentiation.

Our results are consistent with previous reports of an increase
in PSD95 area associated with acute or homeostatic synaptic
plasticity (MacGillavry et al., 2013; Tang et al., 2016). They
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additionally demonstrate an increase in the organization of pre-
and postsynaptic scaffolds as reported by recent studies (Tang
et al., 2016; Hruska et al., 2018; Crosby et al., 2019). Furthermore,
we observed that highly coupled Bassoon and PSD95 clusters
exhibit a wide range of sizes and eccentricities, which may reveal
different strategies employed by synapses to express plasticity,
that include the modulation of PSD shape (Stewart et al.,
2005), increase in spine size (Matsuzaki et al., 2004), de novo
synapse formation (Kwon and Sabatini, 2011), nanometric re-
organization of transsynaptic nanocolumns (Tang et al., 2016) or
spine organelle content (Borczyk et al., 2019).

Using the dimensionality reduction technique UMAP
combined with hierarchical grouping, we identified a broad
range of synaptic subtypes based on their morphological and
coupling characteristics. The plasticity-inducing treatments
changed the proportions of these subtypes in various ways,
yet, remarkably, common subtypes emerged for conditions
causing synaptic potentiation as well as for depression. Thus,
the two independent methods of analysis presented here, with
no prior knowledge of the conditions or pre-determined criteria
of synaptic features, converge on common features of synaptic
properties encoding synaptic potentiation or depression.

We suggest that the expanded palette of synaptic features
revealed by our unbiased approach, focusing on large numbers
of synapses, provides a basis to further explore the widely
diverse molecular mechanisms of synaptic plasticity. In our
study, we exploited dissociated cultured hippocampal neurons, a
preparation frequently used to highlight molecular traits of LTP,
LTD, or synaptic scaling (Tang et al., 2016; Glebov et al., 2017).
This approach does not, however, provide the physiological
information obtained from recordings of paired neurons in brain
slice. Combining both types of information will be important and
will require the ability to monitor a large number of live synapses
with combined readouts of synaptic proteins and functional
activity. Future studies may profit from our analysis framework
to investigate the diversity of the synaptic protein organization
across various brain regions (Broadhead et al., 2016), during
aging (VanGuilder et al., 2011), or even across species (Ryan and
Grant, 2009) to learn more on the diversity of synaptic protein
organization supporting learning and memory.
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