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The prelimbic (PL) region of the medial prefrontal cortex (mPFC) has been implicated in
both driving and suppressing motivated behaviors, including cocaine-seeking in rats.
These seemingly opposing functions may be mediated by different efferent targets
of PL projections, such as the nucleus accumbens (NAc) core and rostromedial
tegmental nucleus (RMTg), which have contrasting roles in reward-seeking behaviors.
We sought to characterize the anatomical connectivity differences between PL neurons
projecting to NAc core and RMTg. We used conventional retrograde tracers to
reveal distinct subpopulations of PL neurons projecting to NAc core vs. RMTg in
rats, with very little overlap. To examine potential differences in input specificity for
these two PL subpopulations, we then used Cre-dependent rabies virus (EnvA-RV-
EGFP) as a monosynaptic retrograde tracer and targeted specific PL neurons via
injections of retrograde CAV2-Cre in either NAc core or RMTg. We observed a similar
catalog of cortical, thalamic, and limbic afferents for both NAc- and RMTg-projecting
populations, with the primary source of afferent information arising from neighboring
prefrontal neurons in ipsilateral PL and infralimbic cortex (IL). However, when the two
subpopulations were directly compared, we found that RMTg-projecting PL neurons
received a greater proportion of input from ipsilateral PL and IL, whereas NAc-projecting
PL neurons received a greater proportion of input from most other cortical areas,
mediodorsal thalamic nucleus, and several other subcortical areas. NAc-projecting PL
neurons also received a greater proportion of contralateral cortical input. Our findings
reveal that PL subpopulations differ not only in their efferent target but also in the input
specificity from afferent structures. These differences in connectivity are likely to be critical
to functional differences of PL subpopulations.
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INTRODUCTION

The prelimbic (PL) region of the medial prefrontal cortex
(mPFC) plays roles in both driving and suppressing motivated
behaviors, including drug-seeking and conditioned fear
(Moorman et al., 2015; Gourley and Taylor, 2016). Opposing
behavioral functions for PL may be mediated by distinct efferent
projections. This is supported by previous work demonstrating
bidirectional behavioral effects after optogenetic stimulation
of distinct PL projection pathways, including PL projections
to lateral habenula vs. dorsal raphe in a forced swim task
(Warden et al., 2012), nucleus accumbens (NAc) vs. basolateral
amygdala (BLA) in an active avoidance task (Diehl et al., 2020),
and NAc vs. paraventricular nucleus of the thalamus during
cue-induced reward-seeking (Otis et al., 2017). Additionally,
whereas PL projections to NAc core have been shown to drive
cue-induced reinstatement of cocaine-seeking (McFarland et al.,
2003; Stefanik et al., 2013, 2016; McGlinchey et al., 2016; James
et al., 2018), we recently showed that PL projections to the
rostromedial tegmental nucleus (RMTg) play a suppressive role
in cue-induced reinstatement (Cruz et al., 2020).

Here, we sought to characterize anatomical connectivity
differences between PL neurons projecting to NAc core and
RMTg, given that these two efferent targets often have opposing
influences on reward-seeking behavior. The NAc core is critically
involved in driving motivated behavior and action initiation,
particularly when guided by incentive stimuli (Du Hoffmann
and Nicola, 2014; Floresco, 2015; Hamid et al., 2016; Syed
et al., 2016; Mohebi et al., 2019; Sicre et al., 2019). Conversely,
the RMTg, or tail of the ventral tegmental area (tVTA), is
involved in behavioral inhibition and aversive valence encoding,
via its inhibitory influence on dopamine neurons in the ventral
tegmental area (Jhou et al., 2009a,b, 2013; Kaufling et al., 2009,
2010; Balcita-Pedicino et al., 2011; Barrot et al., 2012; Bourdy
et al., 2014; Vento et al., 2017; Li et al., 2019; Smith et al.,
2019). Previous work has demonstrated that mPFC projections
to a variety of brain structures typically arise from different
subpopulations of mPFC neurons (Akintunde and Buxton,
1992; Pinto and Sesack, 2000; Gabbott et al., 2005). Therefore,
we hypothesized that distinct subpopulations of PL neurons
project to NAc core vs. RMTg, and we sought to investigate
connectivity differences for these subpopulations, as differences
in input/output specificity are likely to be critical to their
functional differences.

Using conventional retrograde tracers, we show that PL
neurons projecting to NAc core and RMTg are markedly
separate, forming two largely distinct sublayers of pyramidal
cells in rats (Figure 1). Therefore, we investigated these two
PL projection pathways in terms of afferent connectivity,
considering that input specificity might influence differential
recruitment of these populations during behavior. We used
Cre-dependent rabies (EnvA-RV-EGFP) as a monosynaptic
retrograde tracer to determine direct afferents to the two
different PL projection neuron subpopulations (Wickersham
et al., 2007a,b, 2010; Callaway, 2008; Wall et al., 2010, 2013;
Watabe-Uchida et al., 2012). Cre was expressed specifically in
RMTg- or NAc-projecting neurons using retrograde CAV2-Cre

microinjected into the efferent target (RMTg or NAc), followed
by microinjection of AAV helper viruses and EnvA-RV-EGFP
into PL. Our results revealed that PL neurons projecting to either
NAc core or RMTg receive input from similar afferents, but differ
in the proportions of input arising from these afferents.

MATERIALS AND METHODS

Animals
Male Sprague Dawley rats (initial weight 250–300 g; Charles
River, Raleigh, NC, USA) were single-housed under a 12-h
reverse light/dark cycle (ZT0 = 19:00) and had access to food and
water ad libitum. Animals were housed in a temperature- and
humidity-controlled animal facility with AAALAC accreditation.
All experiments were approved by the Institutional Animal
Care and Use Committee at Texas A&M University and
conducted according to specifications of the National Institutes
of Health as outlined in the Guide for the Care and Use of
Laboratory Animals.

Viruses
The transduction and monosynaptic spread of glycoprotein (G)-
deleted rabies virus (RV) with EnvA pseudotyping (EnvA-RV-
EGFP) is limited to neurons expressing TVA receptor and rabies
glycoprotein (RG) in a Cre-dependent manner (Wickersham
et al., 2007a,b; Watabe-Uchida et al., 2012). We targeted specific
PL neurons by injecting either NAc core or RMTg with
retrograde Cre-expressing virus (CAV2-Cre) and injecting PL
with Cre-dependent helper AAV viruses (TVA and RG) and
EnvA-RV-EGFP.

EnvA-RV-EGFP (titer of 4.3 × 10e8) was provided by Ed
Callaway via the Gene Transfer, Targeting, and Therapeutics
Facility at the Salk Institute (Wickersham et al., 2007a).
AAV-TVA (AAV1-EF1a-FLEX-TVAmCherry, a titer of
4 × 10e12) and AAV-RG (AAV1-CA-FLEX-RG, a titer of
4 × 10e12) were obtained through the viral vector core at the
University of North Carolina (developed by Watabe-Uchida
et al., 2012). CAV2-Cre (CAV2-CMV-Cre recombinase)
was provided by Eric J. Kremer at the Institut de Genetique
Moleculaire de Montpellier (Kremer et al., 2000). We diluted
CAV2-Cre 1:10 in 10% glycerol in PBS for a final titer of
10.3× 10e11 ppml, based on preliminary experiments indicating
cell toxicity at higher titers. All viral procedures were approved
by the Institutional Biosafety Committee at Texas A&M
University and conducted according to specifications of the
National Institutes of Health.

Stereotaxic Surgery
Rats were anesthetized with vaporized isoflurane (induced at 5%,
maintained at 1–2%), given the analgesic ketoprofen (2 mg/kg,
s.c.), and placed in a stereotaxic frame (Kopf, Tujunga, CA, USA).
A skin incision was made over the skull and holes were drilled in
the skull over the target sites. Intracranial injections were made
using a pulled glass micropipette and Nanoject 2010 injector
(World Precision Instruments, Sarasota, FL, USA). After the
injection, the pipette was slowly raised from the brain and the
skin was stapled closed.
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For conventional retrograde tracing, rats were given unilateral
microinjections of 100 nl of 2% Fluoro-Gold (FG, Fluorochrome,
Denver, CO, USA) into unilateral NAc core (AP +1.8, ML +2.6,
DV –7.3 from bregma, 6◦) and 100 nl of 0.2% cholera toxin
subunit b (CTB, List Biological Laboratories, Campbell, CA,
USA) into RMTg (AP –7.2, ML +1.9, DV –7.6 from dura, 10◦).
FG was used only in NAc because it tended to cause toxicity in
RMTg, evident by circling of animals after unilateral injection.
Rats were sacrificed at least 1 week after injections.

For monosynaptic retrograde tracing, rats were given two
surgeries. During the first stereotaxic surgery, CAV2-Cre
(1,000 nl) plus biotin dextran (10 K MW, 0.2% final volume, for
visualization of injection site) was injected unilaterally into either
NAc core (AP +1.8,ML +2.6, DV –7.3 from bregma, 6◦) or RMTg
(AP –7.2, ML +1.8, DV –7.6 from dura, 10◦), and a mixture of
AAV-RG and AAV-TVA (1,000 nl of a 1:1 mix) was injected
into ipsilateral PL (AP +3.1, ML +1.2, DV –3.8 from skull, 12◦).
Three weeks later during a second stereotaxic surgery, EnvA-RV-
EGFP (1,000 nl) was injected into the same location in ipsilateral
PL. Rats were sacrificed 7 days after rabies injections.

Tissue Processing
Rats were deeply anesthetized with isoflurane and then
transcardially perfused with 0.9% NaCl followed by 10% neutral-
buffered formalin via a peristaltic pump (Cole Parmer, Vernon
Hills, IL, USA). Brains were collected, post-fixed in 10% formalin
overnight at 4◦C, placed in 20% sucrose in phosphate-buffered
saline (PBS) with 0.02% sodium-azide at 4◦C for ≥2 days,
frozen in dry ice, cut into 40-µm thick coronal sections on
a cryostat, and collected into PBS-azide for storage before
immunohistochemistry (IHC). For IHC, all incubations and
rinses took place at room temperature on a shaker. Sections were
rinsed in PBS three times between steps.

For FG and CTB tracing, free-floating sections were incubated
overnight in goat anti-CTB (1:50 K, List Biological Labs Cat#
703, RRID: AB_10013220) in PBS with 0.25% Triton X-100
(PBST, Sigma–Aldrich), and then incubated for 1 h in Alexa
Fluor 594-conjugated donkey anti-goat (1:500 in PBST, Jackson
Immunoresearch Labs cat# 705-585-147, RRID:AB_2340433).
Sections were mounted onto glass slides, coverslipped with
ProLong Diamond Antifade (Thermo Fisher Scientific, Fair
Lawn, NJ, USA), sealed with clear nail polish, and stored at 4◦C.

For RV tracing, one well (every 12th section) was used
for mCherry/EGFP fluorescence (for counting starter cells),
and one well (every 12th section) was used for IHC to
visualize mCherry/EGFP with DAB (for counting inputs to
PL). For fluorescence, sections were mounted onto glass slides,
coverslipped with ProLong Diamond Antifade, sealed with
clear nail polish, and stored at 4◦C. For DAB, free-floating
sections were incubated for 15 min in 0.3% H2O2 in PBS,
overnight in mouse anti-DsRed (1:2 K in PBST, Takara Bio
Cat# 632392, RRID: AB_2801258), 1 h in biotinylated donkey
anti-mouse (1:500 in PBST, Jackson Immunoresearch Labs Cat#
715–065–151, RRID: AB_2340785), and 45 min in ABC (Vector
Elite Kit, 1:500 in PBST, Vector). The reaction was visualized
via incubation for 10 min in 0.025% 3,3′-diaminobenzidine
(DAB), 0.05% nickel ammonium sulfate, and 0.015% H2O2

(to yield black DAB color). Sections were then incubated
overnight in rabbit anti-GFP (1:50 K in PBST, Abcam Cat#
ab290, RRID:AB_303395), 1 h in biotinylated donkey anti-rabbit
(1:500 in PBST, Jackson Immunoresearch Labs Cat# 711-065-
152, RRID: AB_2340593), 45 min in ABC (Vector Elite Kit,
1:500 in PBST, Vector), and visualized via the sameDAB reaction
but without nickel (to yield brown DAB color). Sections were
mounted onto Superfrost Plus slides, dried, counterstained with
Methyl Green (0.5% in sodium acetate buffer, Sigma–Aldrich),
and coverslipped with Permount (Thermo Fisher Scientific, Fair
Lawn, NJ, USA).

Data Analysis
Fluorescent and brightfield images were acquired using an
Olympus BX51 microscope. For CTB and FG tracing, neurons
were counted in PL on two sections per rat. Four rats were
excluded from CTB/FG analysis due to small/missing RMTg
injections. One rat was removed from CTB/FG analysis after
being identified as a significant outlier (Grubb’s method) due to
a higher percentage of double labeling. The remaining data were
analyzed with a paired t-test. For rabies tracing, all EGFP-labeled
neurons were counted on all sections stained with DAB (every
12th section) and categorized into brain regions according to
boundaries identified by Paxinos and Watson (2007). RMTg
boundaries were defined (Figures 1B, 2C) according to Smith
et al. (2019). A neuron was only counted if a soma was clearly
visible. Fluorescent sections were used to count all double-
labeled neurons (EGFP + mCherry) on every 12th section.

FIGURE 1 | Retrograde tracing of prelimbic (PL) neurons projecting to
nucleus accumbens (NAc) core and rostromedial tegmental nucleus (RMTg).
(A) Representative photo of retrogradely-traced neurons in PL following
injections of Fluoro-Gold (FG) in NAc core (blue) and CTB in RMTg (magenta).
Photo location is shown in the inset (magenta box). Scale bar = 100 µm.
(B) Location and spread for retrograde tracer injections in NAc core (FG, red)
and RMTg (CTB, blue). Each rat is represented by one translucent outline,
and outlines are overlapped. Anterior-posterior (AP) levels represent mm from
bregma. Scale bar = 1 mm. (C) Percentage of PL neurons that project to
both NAc core and RMTg (i.e., double-labeled for both CTB and FG), as a
proportion of the total number of PL neurons projecting to NAc core (all
FG-labeled cells) or RMTg (all CTB-labeled cells). Averages (± SEM) are
shown, as well as individual data points for each rat (n = 11, *p < 0.05).
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FIGURE 2 | Virus injection strategy for labeling monosynaptic inputs to NAc
core-projecting vs. RMTg-projecting PL neurons. (A) CAV2-Cre was injected
into either NAc core (upper schematic) or RMTg (lower schematic), and rabies
helper viruses (AAVs) were injected into PL during the initial surgery.
EnvA-RV-EGFP was injected into PL 21 days later. Rats were sacrificed
7 days later. Brains were analyzed for starter cells (mCherry + EGFP) and
input cells (EGFP). (B) Representative photo of CAV2-Cre injection site in NAc
core with biotin dextran marking the center of the injection (arrow). Scale
bar = 200 µm. (C) Location for CAV2-Cre injections in NAc core (red) or
RMTg (blue). Each rat is represented by one translucent dot marking the
center of the injection site. Scale bar = 1 mm. (D) Representative
low-magnification fluorescent photo of EnvA-RV-EGFP labeling in PL at the
injection site. Photo location is shown in the inset (magenta box). White
dashed-outline box indicates the area shown at higher magnification in panels
(E–G). Scale bar = 500 µm. (E) mCherry expression (pseudocolored as
magenta, from AAV helper viruses). (F) EGFP expression (green, from
EnvA-RV-EGFP). (G) Merged image showing both mCherry and EGFP (with
dual fluorescence shown in white). Neurons expressing both mCherry and
EGFP are starter cells for retrograde labeling, whereas neurons expressing
only EGFP are monosynaptic afferents to the starter cells. Scale
bar = 100 µm.

Expression of EGFP alone indicated input cells, and expression
of both mCherry and EGFP indicated starter cells. Inputs were
normalized within each animal and calculated as a percentage of
total inputs per rat. Brain regions were only included in analysis
and figures if normalized inputs were ≥0.2% in ≥2 rats. Data
were analyzed using two-way ANOVAs (with repeated measures
when appropriate) and Sidak post hoc analyses.

RESULTS

Conventional Retrograde Tracing in PL
Targets
Sparse double labeling was seen in PL (Figure 1A) when
conventional retrograde tracers (FG and CTB) were injected into
ipsilateral NAc core and RMTg (Figure 1B; n = 11). We observed
NAc-projecting PL neurons in layers II/III and upper layer V,
whereas RMTg-projecting neurons were located in deeper layer
V (Figure 1A). Double-labeled neurons (projecting to both NAc
core and RMTg) represented only 0.5% ± 0.1 of PL neurons
projecting to NAc core and 1.1% ± 0.3 of PL neurons projecting
to RMTg (Figure 1C; t(10) = 3.004, p = 0.013). These data
indicate that PL neurons projecting to NAc core vs. RMTg are
predominantly separate subpopulations.

Monosynaptic Retrograde Tracing in PL
Subpopulations
To determine whether these PL subpopulations differ in terms of
input specificity, we conducted monosynaptic retrograde tracing
in each projection subpopulation via retrograde Cre delivery
(Figure 2A). CAV2-Cre was injected into either NAc core (n = 4)
or RMTg (n = 4; Figures 2B,C), and Cre-dependent helper AAVs
driving expression of TVA-mCherry and RG were injected into
PL. Three weeks later, EnvA-RV-EGFP was injected into PL.
Rabies only infects and monosynaptically spreads from neurons
expressing both TVA and RG.

Wemapped and counted the number of starter cells (mCherry
+ EGFP) using fluorescent labeling (representative images in
Figures 2D–G). We counted the number of input cells (EGFP)
across different brain regions using immunohistochemistry with
DAB labeling (representative images in Figure 4). Starter cells
projecting to either NAc core or RMTg were primarily in PL, but
also in neighboring infralimbic cortex (IL; Figure 3A). Although
the average number of starter cells differed for NAc vs. RMTg
(t(6) = 5.50, p = 0.0015), the number of transsynaptically labeled
cells was correlated with the number of starter cells (Figure 3B;
r = 0.91, p = 0.0019).

Inputs were normalized within each animal and calculated
as a percentage of total inputs per rat (Figure 3C). The
total ipsilateral inputs were significantly greater than total
contralateral inputs (main effect for contra/ipsi: F(1,6) = 37,354,
p < 0.0001), and the two PL subpopulations differed in
terms of ipsilateral vs. contralateral inputs (main effect for PL
subpopulation: F(1,6) = 14.24, p = 0.009; interaction: F(1,6) = 83.43,
p < 0.0001). Therefore, we separately analyzed contralateral
and ipsilateral inputs when comparing afferents for the two PL
subpopulations. PL neurons projecting to NAc core vs. RMTg
were significantly different in terms of ipsilateral input (two-
way ANOVA, overall effect of PL subpopulation: F(1,6) = 53.44,
p = 0.0003; overall effect of afferents: F(29,174) = 86.11, p< 0.0001;
interaction: F(29,174) = 5.05; p < 0.0001). We found significant
differences for ipsilateral PL and IL (p’s < 0.0001), and
mediodorsal thalamic nucleus (MD; p = 0.036). PL neurons
projecting to NAc core vs. RMTg were also significantly
different in terms of contralateral input (overall effect of PL
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FIGURE 3 | Quantification of monosynaptic inputs to NAc core-projecting vs. RMTg-projecting PL neurons. (A) Location of starter cells projecting to NAc core (red)
or RMTg (blue). Each dot is one starter cell, and starter cells are shown together for all rats (n = 4 NAc core, 4 RMTg). (B) Relationship between number of starter
cells and number of input cells (r = 0.91; **p < 0.01). (C) Contralateral and ipsilateral inputs to PL neurons projecting to NAc core vs. RMTg. Percentages reflect the
number of cells quantified for each brain region divided by the total number of cells quantified for the whole brain per rat. Averages (±SEM) are shown only for brain
regions with inputs ≥0.2% in ≥2 rats are shown. Statistically significant post hoc differences are shown (*p < 0.05; ****p < 0.0001). Abbreviations for thalamic nuclei:
AM, anteromedial; AVDM, dorsomedial part of anteroventral; AVVL, ventrolateral part of anteroventral; CL, centrolateral; CM, central medial; IAM, interanteromedial;
IMD, intermediodorsal; LDDM, dorsomedial part of lateroventral; LPMR, mediorostral part of lateral posterior; MD, mediodorsal; MDC, central part of mediodorsal;
MDL, lateral part of mediodorsal; MDM, medial part of mediodorsal; PC, paracentral; PF, parafascicular; PT, paratenial; PVA, anterior part of paraventricular; PVP,
posterior part of paraventricular; Re, reuniens; Rh, rhomboid; VA, ventral anterior; VL, ventrolateral; VM, ventromedial; VPM, ventral posteromedial; VRe, ventral
reuniens.

subpopulation: F(1,6) = 119.9, p < 0.0001; overall effect of
afferents: F(6,36) = 60.46, p < 0.0001; interaction: F(6,36) = 34.06;
p < 0.0001), with significant differences for contralateral
PL (p < 0.0001).

For both populations, the primary source of afferent
information was neighboring prefrontal neurons in PL and
IL (Figures 4A,B). However, RMTg-projecting PL neurons
received a significantly higher percentage of inputs from local
ipsilateral PL and IL neurons (Figure 3C; PL: 39.4% ± 0.2 and
IL: 20.1% ± 3.8), as compared to NAc-projecting PL
neurons (PL: 26.9% ± 4.0 and IL: 11.8% ± 1.3). We also
observed that RMTg-projecting PL neurons received a
higher percentage of input from the medial orbitofrontal
cortex (OFC), while NAc-projecting PL neurons received

a higher percentage of input from the dorsal tenia tecta,
lateral OFC, and agranular insular cortex. The percentage of
inputs was similar for NAc-projecting and RMTg-projecting
PL neurons for secondary motor cortex, anterior olfactory
nucleus, ventral OFC, dorsal peduncular cortex, cingulate
cortex areas 1 and 2, entorhinal/ectorhinal/perirhinal
cortex, and piriform cortex. Interestingly, NAc-projecting
PL neurons received a significantly greater percentage of
contralateral cortical input from PL (2.92% ± 0.30) as
compared to RMTg-projecting PL neurons (0.43% ± 0.15).
NAc-projecting PL neurons also received a greater percentage
of contralateral inputs from IL, secondary motor cortex, all
areas of OFC (medial, ventral, and lateral), and cingulate
cortex area 1.
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FIGURE 4 | Representative brightfield photos showing monosynaptic afferents to PL neurons projecting to NAc core (top row) or RMTg (bottom row), with EGFP
expression visualized via immunohistochemistry with DAB labeling (brown) and counterstaining via Methyl Green. (A,B) Ipsilateral and contralateral inputs in PFC;
scale bar = 1 mm. High-magnification photo (A’) shows neuronal labeling in the area indicated by the white dashed-outline box; scale bar = 100 µm. (C,D) Inputs
from thalamic nuclei; scale bar = 500 µm. High-magnification photo (C’) shows neuronal labeling in the area indicated by the white dashed-outline box; scale
bar = 100 µm. (E–H) Inputs from claustrum, dorsal endopiriform nucleus, and BLA; scale bar = 200 µm. (I,J) Inputs from ventral hippocampus CA1; scale
bar = 1 mm. High-magnification photo (I’) shows neuronal labeling in the area indicated by the black dashed-outline box; scale bar = 100 µm. AD, anterodorsal
thalamic nucleus; AI, agranular insular cortex; AM, anteromedial thalamic nucleus; AVDM, dorsomedial part of anteroventral thalamic nucleus; AVVL, ventrolateral
part of anteroventral thalamic nucleus; BLA, basolateral amygdala; Cg, cingulate cortex part 1; Cl, claustrum; CM, central medial thalamic nucleus; DEn, dorsal
endopiriform nucleus; DP, dorsal peduncular cortex; DTT, dorsal tenia tecta; IAM, interanteromedial thalamic nucleus; IL, infralimbic cortex; LA, lateral amygdala; LO,
lateral orbitofrontal cortex; MD, mediodorsal thalamic nucleus; MHb, medial habenular nucleus; mt, mammillothalamic tract; PC, paracentral thalamic nucleus; PL,
prelimbic cortex; PT, paratenial thalamic nucleus; PVA, anterior part of paraventricular thalamic nucleus; Re, reuniens thalamic nucleus; Rh, rhomboid thalamic
nucleus; Rt, reticular thalamic nucleus; sm, stria medullaris; Sub, submedius thalamic nucleus; VA, ventral anterior thalamic nucleus; VL, ventrolateral thalamic
nucleus; VM, ventromedial thalamic nucleus; VRe, ventral reuniens thalamic nucleus.

Both PL subpopulations received prominent afferent
information from the thalamus (Figures 4C,D),
including subregions within the midline thalamic nuclei
(anterior/posterior parts of paraventricular, paratenial,
rhomboid, reuniens, ventral reuniens), anterior thalamic
nuclei (anteromedial, ventrolateral/dorsomedial parts of
anteroventral, interanteromedial), reticular thalamic nucleus,
MD (mediodorsal, lateral/central/medial parts of mediodorsal,
intermediodorsal), lateral thalamic nuclei (dorsomedial part of
lateroventral, mediorostral part of lateral posterior), intralaminar
thalamic nuclei (paracentral, central medial, centrolateral,
and parafascicular), and ventral thalamic nuclei (ventral
anterior, ventromedial, ventral posteromedial, ventrolateral;
Figure 3C). NAc-projecting PL neurons received a higher
percentage of inputs from all thalamic regions, as compared
to RMTg-projecting PL neurons, with a significant difference
observed for MD (6.6%± 0.7 vs. 2.1%± 0.6).

We also saw prominent inputs from the dorsal endopiriform
nucleus, claustrum (Figures 4E,G), BLA (Figures 4F,H), and

CA1 in the ventral hippocampus (Figures 4I,J). For all of these
areas, NAc-projecting PL neurons received a greater percentage
of input (Figure 3C). In contrast, the two subpopulations of
PL neurons were similar in terms of afferent input arising from
the lateral septum, diagonal band, and navicular nucleus, ventral
pallidum, globus pallidus, and ventral subiculum (Figure 3C).

DISCUSSION

We found that PL neurons projecting to NAc vs. RMTg
are distinct subpopulations (Figure 1). Pathway-specific
monosynaptic retrograde tracing for PL neurons projecting to
either NAc vs. RMTg (Figure 2) revealed differences in afferent
information to the two PL subpopulations (Figures 3, 4). While
RMTg-projecting PL neurons received a greater proportion
of inputs from nearby sources in ipsilateral PL and IL,
NAc-projecting PL neurons received a greater proportion
of inputs from other cortical areas, thalamic nuclei, and
subcortical areas. Also, NAc-projecting PL neurons received a
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greater proportion of contralateral cortical input. These data
are the first to demonstrate anatomical connectivity differences
between PL neurons projecting to NAc vs. RMTg, which may
contribute to opposing functions of these pathways.

PL Projection Subpopulations
We found very little overlap in PL neuron subpopulations
projecting to NAc core vs. RMTg, with NAc-projecting PL
neurons located in layers II/III and upper layer V, and
RMTg-projecting neurons located in deeper layer V (Figure 1A).
This corresponds with previous studies using conventional
retrograde tracers (e.g., CTB) injected into various mPFC targets,
which showed that distinct mPFC neuron subpopulations project
to different subcortical targets, including NAc, BLA, MD, lateral
hypothalamus, and numerous brainstem areas (Akintunde and
Buxton, 1992; Pinto and Sesack, 2000; Gabbott et al., 2005).
mPFC neurons in layers II/III, V, and VI have been shown to
project to the striatum, while mPFC neurons in layer V project to
multiple brainstem targets, including the parabrachial nucleus,
periaqueductal gray, ventral tegmental area, dorsal raphe, the
nucleus of the solitary tract, and ventrolateral medulla (Pinto and
Sesack, 2000; Ding et al., 2001; Gabbott et al., 2005).

Afferent Inputs to PL Subpopulations
Previous studies have mapped afferents to rat PL using
conventional retrograde tracers (Condé et al., 1995; Hoover and
Vertes, 2007). However, unlike conventional tracers, RV-EGFP
allows the separation of starter cells from input cells, so that
short-range projections within PL and IL can be assessed.
Although previous studies have used RV-EGFP in mouse mPFC,
they targeted all projection neurons (Ährlund-Richter et al.,
2019), interneuron populations (Ährlund-Richter et al., 2019;
Sun et al., 2019), or PL layer V (DeNardo et al., 2015). Here, we
used RV-EGFP in rat mPFC and targeted PL neurons projecting
to NAc core vs. RMTg to providemore detailed complexity about
input specificity to PL subpopulations.

We observed prominent cortical inputs from mPFC (PL,
IL, cingulate cortex, secondary motor cortex, dorsal peduncular
cortex), OFC (with the highest percentage in medial), and
agranular insular cortex, and limited labeling in the anterior
olfactory nucleus, dorsal tenia tecta, piriform cortex, and
ento/ecto/perirhinal cortex (Figures 3C, 4A,B). This parallels
previous studies with conventional tracers (Condé et al., 1995;
Hoover and Vertes, 2007). We found that for both NAc- and
RMTg-projecting populations, the primary source of afferent
information was neighboring prefrontal neurons in ipsilateral
PL and IL, as shown previously with RV-EGFP targeting
layer V neurons in PL (DeNardo et al., 2015). However, we
also identified a major distinction between afferent inputs
to NAc- and RMTg-projecting neurons. RMTg-projecting PL
neurons received a higher percentage of input from ipsilateral
PL and IL, as well as medial OFC, but a similar or lower
percentage of input from all other cortical areas. In contrast,
NAc-projecting PL neurons received a higher percentage of input
from ipsilateral dorsal tenia tecta, lateral OFC, and agranular
insular cortex. Additionally, NAc-projecting PL neurons received
a greater percentage of contralateral input, including from PL,

IL, cingulate cortex area 1, secondary motor cortex, OFC,
and dorsal peduncular cortex. These findings indicate that
RMTg-projecting neurons may be under greater local control,
while NAc-projecting neurons have greater integration of
information across hemispheres.

We found that NAc-projecting PL neurons received a higher
proportion of inputs from all thalamic regions (Figures 3C,
4C,D). We observed the greatest thalamic labeling in MD and
moderate labeling in midline thalamic nucleus, as per previous
work (Condé et al., 1995; Hoover and Vertes, 2007). We also
observed moderate labeling in intralaminar, ventral, anterior,
and reticular nuclei, and some labeling in the lateral nucleus (but
only in NAc-projecting PL neurons).

For areas outside the cortex and thalamus, we observed
prominent labeling in dorsal endopiriform cortex and claustrum,
and moderate labeling from ventral hippocampus CA1 and BLA
(Figures 3C, 4E–J), as described previously (Condé et al., 1995;
Hoover and Vertes, 2007; DeNardo et al., 2015). Interestingly, for
all of these areas, NAc-projecting PL neurons received a greater
percentage of input. Extensive previous work has characterized
inputs to both pyramidal neurons and interneurons in PL arising
from the ventral hippocampus (Ferino et al., 1987; Jay et al.,
1989, 1992; Jay and Witter, 1991; Condé et al., 1995; Carr and
Sesack, 1996; Gabbott et al., 2002; Hoover and Vertes, 2007) and
BLA (Bacon et al., 1996; Gabbott et al., 2006; Dilgen et al., 2013;
Ährlund-Richter et al., 2019). Additionally, we detected afferent
information arising from the lateral septum, diagonal band and
navicular nucleus, ventral pallidum, globus pallidus, and ventral
subiculum. Although previous studies noted some input from
lateral and posterior hypothalamus (Condé et al., 1995; Hoover
and Vertes, 2007; DeNardo et al., 2015), we observed only sparse
labeling (<0.2% in all rats) and thus these areas were excluded
from analysis.

Notably, unlike previous studies using conventional
retrograde tracers in PL (Condé et al., 1995; Hoover and
Vertes, 2007), the current study using RV-EGFP as a tracer
did not detect inputs from the monoaminergic nuclei of the
brainstem, including ventral tegmental area, dorsal raphe,
median raphe, and locus coeruleus, indicating that RV-EGFP
does not spread transsynaptically to all retrograde afferent
neurons. This is confirmed by previous studies showing a lack of
brainstem inputs when using RV-EGFP in PL (DeNardo et al.,
2015), and a paucity of dopamine inputs when using RV-EGFP in
dorsal striatum as a monosynaptic tracer but not as a traditional
retrograde tracer (Wall et al., 2013). These results indicate that
the transsynaptic spread of RV-EGFP has reduced efficiency at
monoaminergic synapses, possibly due to differences in synapse
type, location, or distance, as compared to glutamatergic and
GABAergic synapses, and this represents a significant limitation
of transsynaptic tracing with RV-EGFP. Alternatively, these data
may indicate that these PL subpopulations do not receive direct
input from monoamine neurons. However, previous work has
shown direct synaptic contact between NAc-projecting mPFC
neurons and axon terminals containing tyrosine hydroxylase
(Carr et al., 1999). Further studies are needed to determine
whether RMTg-projecting PL neurons receive direct synaptic
input from monoamine neurons.
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Technical Considerations
In this study, we used a two-helper-virus system, and this
may have resulted in overestimating starter cells due to the
assumption that each cell was successfully infected with both
viruses. We did not demonstrate Cre dependence of the helper
viruses in the current study (e.g., by including control animals
lacking injection of CAV2-Cre), but previous work has shown
limited expression of helper viruses in the absence of Cre
(Watabe-Uchida et al., 2012; Wall et al., 2013; Schwarz et al.,
2015). Additionally, it is important to note that our injections
of CAV2-Cre likely were not restricted solely to RMTg, given
the small size of RMTg as compared to NAc core and given that
many injections show some spread outside the intended target
(Figure 1B). It is important to note as well that these studies were
performed in male rats; future studies are necessary to determine
whether sex differences exist for these PL subpopulations. Finally,
although RV-EGFP tracing reveals the presence of a connection
between two neurons, it does not reveal information about the
strength or function of the connection. One neuron may form
many synapses onto many neurons and may provide a strong
influence despite limited labeling with RV-EGFP. Therefore,
additional studies are necessary to explore potential functional
differences in afferent input to these PL subpopulations.

Conclusions
The current work shows that PL subpopulations differ not
only in their efferent target but also in the proportion of
inputs they receive from a variety of afferent structures. When
directly compared, RMTg-projecting PL neurons receive a
greater proportion of input from nearby cortical input (ipsilateral
PL and IL), whereas NAc-projecting PL neurons receive a
greater proportion of input from other mPFC and cortical areas,
thalamic nuclei, amygdala, and ventral hippocampus, as well as
contralateral mPFC. These differences in afferent information
may be critical to potential functional differences of these PL
subpopulations and may be related to the contrasting roles

played by NAc core and RMTg during reward-related behavior,
including cocaine seeking. More generally, our data indicate
that projection neuron subpopulation may be an important
organizational feature of mPFC that has been mostly overlooked,
and that differences in afferents, efferents, and function may be
critical to the diverse functionality of mPFC across a range of
behavioral responses.
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