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Adaptive neuronal circuit function requires a continual adjustment of synaptic network
parameters known as “neuromodulation.” This process is now understood to be based
primarily on the binding of myriad secreted “modulatory” ligands such as dopamine,
serotonin and the neuropeptides to G protein-coupled receptors (GPCRs) that, in turn,
regulate the function of the ion channels that establish synaptic weights and membrane
excitability. Many of the basic molecular mechanisms of neuromodulation are now
known, but the organization of neuromodulation at a network level is still an enigma.
New single-cell RNA sequencing data and transcriptomic neurotaxonomies now offer
bright new lights to shine on this critical “dark matter” of neuroscience. Here we
leverage these advances to explore the cell-type-specific expression of genes encoding
GPCRs, modulatory ligands, ion channels and intervening signal transduction molecules
in mouse hippocampus area CA1, with the goal of revealing broad outlines of this
well-studied brain structure’s neuromodulatory network architecture.

Keywords: hippocampus, mouse, neuromodulation, GPCR (G protein-coupled receptor), ion channel,
transcriptome, single-cell RNA-Seq

INTRODUCTION

The primary function of every neuron is communication with other neurons. Though many (or
all) neurons also communicate with glial cells, and some also serve as sensory transducers or signal
directly to muscles or glands, most present thinking about the neuronal mechanisms of animal
perception, memory, cognition, and behavior revolves around neuron-to-neuron communication.
All neurons share one basic communication mechanism: they send messages by secreting diffusible
ligands from one neuron to activate receptors displayed on the surface membrane of a second,
target neuron. These receptors typically act to govern the ion channels that establish the target
cell’s electrical excitability, activity and synaptic strength. Most individual neurons communicate
in this fashion with a relatively small number (several to several hundred) of other individual
neurons. This simple notion neatly encapsulates a way to grapple the vast complexities that arise
as individual neuron-to-neuron connections iterate through extended neuronal networks that may
comprise billions. Neurons are, however, extremely diverse. They are dizzyingly diverse in their
morphologies, the messenger ligands they secrete, the receptors they display, and their ion channel
complements. It now appears, however, that it may be possible to corral all these varied dimensions
of neuronal diversity into a unified “neurotaxonomy,” where knowing a given neuron’s “type”
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allows strong prediction of that neuron’s morphology, and
thereby it’s opportunities to connect to particular other neurons,
as well as the particulars of that neuron’s molecular signaling
and electrogenic machinery (Petilla Interneuron Nomenclature
Group et al., 2008; Fishell and Tamas, 2014; Kepecs and Fishell,
2014; Oh et al., 2014; Cadwell et al., 2017; Zeng and Sanes,
2017; Tasic et al., 2018; Zeisel et al., 2018; Fishell and Kepecs,
2019; Gouwens et al., 2019; Huang and Paul, 2019; Ren et al.,
2019; Miller et al., 2020; Gala et al., 2021; Yao et al., 2021;
Campagnola et al., 2022). Here we explore this premise as
it pertains to neuromodulatory signaling in region CA1 of
mouse hippocampus.

Neuronal diversity was obvious from the earliest observations
of individual neural cells by nineteenth-century microscopists.
The great depth of this diversity has only become increasingly
obvious, however, with each increment in our anatomical,
physiological and molecular toolboxes. The recognition of
messenger ligand diversity blossomed throughout the twentieth
century and drove recognition of a corresponding receptor
diversity (Pert and Snyder, 1973; Hokfelt, 2016; Luo, 2020).
The late-twentieth-century advent of molecular genetics then
led to recognition of the truly vast scale of receptor diversity,
now reckoned at well over a thousand different encoding genes.
Now, new single-cell transcriptomic methods are revolutionizing
our abilities to grapple neuronal diversity (Zeng and Sanes,
2017; Tasic, 2018; Cembrowski, 2019; Huang and Paul, 2019).
Building upon single-cell RNA sequencing (scRNA-seq) data
from millions of neurons, transcriptomic neurotaxonomies are
offering powerful new frameworks for systematizing neuron
diversity and thus predicting their morphologies, connectivity,
molecular signaling machinery, and dynamic properties: all
factors are obviously critical to neuronal network function.
Here we focus upon the new transcriptomic/neurotaxonomic
views of modulatory network architectures offered by scRNA-
seq methods with an exploration of scRNA-Seq data from mouse
hippocampal area CA1.

Two main forms of neuron-to-neuron communication
provide the foundation for neuronal network function: (1)
fast and anatomically discrete “synaptic” connections, and
(2) slower and more spatially diffuse “neuromodulatory”
connections that regulate both neuronal membrane excitability
and synaptic function. Both synaptic and neuromodulatory
signals are highly diverse in messenger ligand identity, receptor
selectivity, anatomic architectures, and dynamics. Most synaptic
connections depend upon secretion of one of three amino
acid neurotransmitters (glutamate, GABA or glycine) or
a fourth small molecule, the organic ester acetylcholine,
exerting their fast actions directly upon ligand-activated ion
channels located just tens of nanometers away across a focal
synaptic cleft. Modulatory signaling draws upon a much
larger palette of secreted messenger ligands, which includes
the very same four small-molecule neurotransmitters but also
monoamines such as dopamine, serotonin, norepinephrine,
many other small molecules, and the many neuropeptides.
These modulatory messengers are sometimes secreted in
combination by individual neurons and usually along with
one of the fast neurotransmitters (Bucher and Marder, 2013;

Hökfelt et al., 2013; Granger et al., 2017; Hokfelt et al., 2018).
In contrast to the direct actions of fast synaptic transmitters
upon ion channel gating, neuromodulatory messengers act in
most cases upon receptors that govern ion channel gating
indirectly, via molecular cascades that often involve diffusible
intracellular messengers and covalent channel modification
(Levitan, 1994, 2006; Bucher and Marder, 2013; Levitan and
Kaczmarek, 2015; Huang and Zamponi, 2017; Luo, 2020). As
both presynaptic and postsynaptic ion channels are foundations
of synapse function, modulation of ion channel gating is
preeminent among factors that govern the strength and dynamics
of synaptic transmission.

Among modulatory receptors, the broadest and most well-
studied family are the G protein-coupled receptors (GPCRs,
see Box 1). Comparative genomic evidence suggests that the
slower GPCR-based forms of signaling recognized today as
neuromodulation probably preceded the evolutionary inventions
of neurons and synapses (de Mendoza et al., 2014; Arendt, 2021;
Jekely, 2021). Ancestral, very small animals probably coordinated
their multiple cell types and generated their slow but (back
then) perfectly competitive behaviors by slow GPCR-based forms
of cell-cell signaling resembling today’s modulatory signaling.
Evolutionary pressures that placed a premium on an animal’s
size, speed, and ability to learn then probably drove evolution
of the extended arborized forms of neurons and the focal nature
of fast synaptic transmission (Arendt, 2020; Jekely, 2021). The
very large numbers of ancestral GPCR genes expressed in all
of today’s higher animals (de Mendoza et al., 2014) suggests
that the “ancient” forms of slow signaling remain essential as
contributors to the fine-tuning and adaptability of the “newer”
synaptic networks.

In the present writing, we explore new transcriptomic
neurotaxonomy perspectives on neuromodulatory signaling
architectures, using rodent hippocampus as an illustrative
and particularly well-studied case in point (Cembrowski
et al., 2016a,b; Cembrowski and Menon, 2018; Cembrowski,
2019; Cembrowski and Spruston, 2019). Our treatment will
center upon GPCR transcriptomes but will also touch upon
transcriptomes of ion channels (the primary downstream targets
of GPCR activation), signal transducing G proteins, and genes
encoding precursors to neuropeptides (the largest and most
diverse family of brain GPCR ligands). A more thorough
treatment of neuromodulation in hippocampus or elsewhere
would consider many other classes of receptors (e.g., receptor
tyrosine kinases), other classes of ligands (e.g., neurotrophins
and other cytokines), other effector targets (e.g., synaptic
proteins other than ion channels and regulators of gene
expression) and many other intracellular signaling molecules
(e.g., kinases, phospholipases). We include neurotaxonomic type-
mean signature data for some of these other modulators as
Supplementary Material, but we leave their due exploration and
discussion for another day.

We’ll not attempt an expert’s review of new transcriptomic
or neurotaxonomic methods. Rather, we’ll focus on a few key
observations that emerge from examination of a large dataset
published recently with a corresponding neurotaxonomy (Yao
et al., 2021) and highlight findings we believe are likely to
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BOX 1 | Primer on GPCR control of ion channels and synapses.
G protein-coupled receptors play central roles in the homeostasis and modulation of neuronal network function (Gainetdinov et al., 2004). A large part of how they
do so is through powerful regulation of ion channels and thus of membrane excitability (Levitan, 1994) and synaptic transmission (Brown and Sihra, 2008). Though
GPCRs comprise a very large family of membrane receptors, enormously diverse in their ligand selectivities, they share many basic biochemical principles of
operation (Rosenbaum et al., 2009; Hilger et al., 2018). We’ll focus in this primer on GPCR signaling mediated through receptor coupling to ion channels via
heterotrimeric G proteins.
(A) GPCR-G protein activation. Binding of an activating ligand (agonist) to a GPCR promotes or stabilizes an active receptor conformation, which is allosterically
“coupled” to the engagement of specific heterotrimeric G protein(s) (Zachariou et al., 2012; Weis and Kobilka, 2018). Heterotrimeric G proteins are composed of an
α-subunit, which binds guanine nucleotide and largely determines selectivity for coupling with GPCRs, and β and γ subunits which form a stable βγ subcomplex.
GPCR coupling promotes dissociation of GDP from the α subunit followed by binding of GTP. This activates the α subunit and “undocks” the βγ subcomplex
(Mahoney and Sunahara, 2016).
(B) Downstream effector control by G proteins. The GTP-bound G protein α-subunit transduces signaling by regulating enzymes. Heterotrimeric G proteins are
traditionally classified into three major classes–Gq, Gs, and Gi/o–based on the selectivity of their α-subunits for downstream enzyme control (Zachariou et al., 2012).
Activated (GTP-bound) Gq-class α-subunits stimulate phospholipase C enzymes, Gs-class α-subunits stimulate adenylyl cyclase enzymes, and Gi/o-class
α-subunits inhibit adenylyl cyclase enzymes. Phospholipase C catalyzes conversion of the membrane phospholipid PIP2 to the membrane lipid diacylglycerol (DAG)
and soluble inositol trisphosphate (IP3), both of which act as intracellular “second messengers.” Adenylyl cyclase catalyzes conversion of ATP to cyclic AMP, which
also acts as a second messenger. In addition, Gi/o-class heterotrimeric G proteins are major sources of undocked βγ subunits; Gq and Gs can also produce βγ

subunits but generally do so in smaller amounts (Touhara and MacKinnon, 2018).
(C) Second messenger actions. Both DAG and cyclic AMP stimulate protein kinases that phosphorylate and thereby regulate many (and possibly all) types of ion
channels and synaptic proteins. IP3 binds to receptors that amplify the dynamics of intracellular ionic calcium, another potent intracellular messenger that can
stimulate protein kinases to impact channels and synapses.
(D) Membrane phospholipid signaling. Stimulation of phospholipase C by Gq-class α-subunits can cause significant changes in membrane phospholipid
composition, such as depletion of phosphatidylinositol 4,5-bisphosphate (PIP2). This impacts the function of various membrane proteins, including channels and
synaptic effectors directly, independent of other second messenger effects (Hille et al., 2015).
(E) Gβγ signaling. Undocked G protein βγ subcomplexes can exert direct actions upon ion channels, independent of enzyme regulation by α-subunits or the
production of second messengers (Herlitze et al., 1996; Smrcka and Fisher, 2019). Two direct actions of βγ subunits that are particularly important to
neuromodulation are activation of inwardly rectifying potassium channels and inhibition of voltage-gated calcium channels.
(F) Kinetics of cascade activation and deactivation. GPCR impact upon ion channels and synaptic protein signal transduction processes play out over diverse time
courses, ranging from a fraction of a second (direct βγ-to-channel) to many minutes where the dynamics of second messenger production, enzymatic cascades and
protein phosphorylation-dephosphorylation are involved. GPCR activity can be diminished within seconds through receptor phosphorylation and binding of arrestin
proteins (Ahn et al., 2020). G proteins are deactivated by hydrolysis of the bound GTP to GDP by an enzymatic activity that is intrinsic to the α-subunit; this
deactivation rate can range from several seconds to less than a second, depending on binding to the α-subunit of “regulator of G protein signaling” (RGS) proteins
that accelerate hydrolysis (Masuho et al., 2020).
(G) Additional mechanisms of GPCR signaling. We focus in the present discussion on signaling mediated by classical coupling between GPCRs to heterotrimeric G
proteins. This transduction mechanism is sufficient to explain many GPCR-elicited signaling effects, but we note that additional transduction mechanisms may also
contribute to physiological neuromodulation by GPCRs. These include signaling mediated independent of G proteins from GPCR-arrestin complexes, signaling by an
alternate GPCR-G protein complex that also contains arrestin, and signaling through the direct interaction of GPCRs with ion channels (Zamponi, 2015; Sutkeviciute
and Vilardaga, 2020).

generalize. We do so through a series of vignettes, admitting no
attempt at completeness. We encourage the interested reader to
continue the journey and provide links to data and code that may
help the interested reader explore this or similar datasets more
deeply and broadly.

MATERIALS AND METHODS

We focus here on transcriptomic expression patterns of genes
encoding proteins likely to play key roles in neuromodulatory
signaling in area CA1 of mouse hippocampus. Our candidate
neuromodulators include GPCRs, heterotrimeric G proteins, ion
channel subunits, and neuropeptide precursor proteins (NPPs).
We draw solely upon RNA-Seq expression datasets and a
neurotaxonomy described in recently published work (Yao et al.,
2021) and available for download and interactive exploration at
https://portal.brain-map.org/atlases-and-data/rnaseq. Methods
of data collection and development of the deep hierarchical
neurotaxonomy based on profiling ∼1.3 million cells and
comprising 388 neuron types across the entirety of isocortex
and hippocampal formation are described fully in the cited
resource paper (henceforth, “Yao21” for short). Of that work’s

388 types, 124 neuron types represent cells sampled from
the hippocampal formation. For the present analysis we rely
upon a subset of the data (3,305 cells) obtained by the
deepest of the Yao21 scRNA-seq methods (SMART-Seq v4)
from cells of hippocampal region CA1. The present analysis is
restricted to a 42-type subset of the 388-type Yao21 taxonomy,
comprising the 29 GABAergic and 13 glutamatergic neuron
types schematized in Table 1. These 42 types were selected
from the 124 types found across the entire hippocampal
formation based on a requirement that the Yao21 SMART-
Seq dataset include at least 16 cells sampled from hippocampal
area CA1. Further particulars of our sifting down to this
robustly expressed 42-neuron-type CA1 taxonomy are tabulated
in Supplementary Materials.

To launch the analysis presented here, we compiled an
initial broad list of 1,749 candidate genes that we consider
(somewhat arbitrarily) “modulation-related.” Of these, we
found that messenger RNAs corresponding to 1,111 genes are
represented in the Yao21 SMART-Seq dataset at mean levels
greater than 10 CPM (far above measurement “noise”) in at
least one of the 42 CA1 neuron types. Area CA1 expression
data for all 1,111 genes are tabulated in both graphical and
numeric forms in our Supplementary Materials. Again
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TABLE 1 | A hierarchical neurotaxonomy comprising 2 classes, 6 subclasses, 14 supertypes, and 42 types of neurons found in area CA1 of mouse hippocampus.
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This taxonomy provides a framework for the present analysis: we have extracted just elements relevant to hippocampal area CA1 from the much larger (388-type) mouse
cortex taxonomy developed by Yao et al. (2021) (see also Section “Materials and Methods”).
The table indicates the number of neurons of each type for which SMART-seq v4 transcriptomes were available: only types represented by more than 16 cells are included.
A correspondence of the 14 transcriptomic supertypes tabulated here to traditional anatomic or immunohistochemical “legacy” or “MET” (Gouwens et al., 2019, 2020)
neuron types is suggested tentatively.
Subsequent figures will designate the 42 CA1 neuron types using a compressed version of the type-hierarchy color mosaic introduced here.

somewhat arbitrarily, we selected a more focused subset
of 595 genes we deemed likely to be of greatest interest in
fathoming hippocampal neuromodulation. The 595 comprise
genes encoding 151 GPCRs, 55 proteins involved directly in
GPCR signal transduction, 178 ion channels, 36 NPPs, and
175 other signaling proteins. Here we describe neuron-type
specific expression of key subsets of these genes chosen
to lay outlines of a network-level view of hippocampal
neuromodulation, emphasizing the possible importance
of neuron-type-specificity in vectorial signaling between
functionally distinct neuronal subpopulations.

We developed the (gene) × (neuron type) mean expression
matrices represented in all data figures below by distilling
Yao21 SMART-Seq (cell) × (gene) matrices representing 73,363

single cells and 45,769 mapped genes (19,751 protein-coding),
summing exon and intron reads. These data matrices are
annotated by the Yao21 metadata tables as to the brain region
from which each cell was sampled and the transcriptomic cell
type cluster to which each was assigned. These metadata tables
allowed assignment of 3,305 single-cell samples to hippocampal
area CA1 and each sample to one of the 42 type clusters
represented in Table 1. Figures 1–10 below represent transcript
abundance estimates (normalized as counts per million mapped
reads, CPMs), as mean values for each indicated gene within each
type cluster. We refer in the following to the set of means across
all 42 type clusters for any given gene as that gene’s “type-mean
expression signature” (often shortened to “expression signature”
or simply “signature”).
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FIGURE 1 | Introduction to a neurotaxonomic gene expression matrix display format. (A) Signatures of 15 genes encoding proteins commonly referenced as
molecular markers of neuron type. (B) Signatures of 15 modulatory genes expressed much more ubiquitously. These maps are based on (gene) × (type) matrices
representing row-normalized type-mean CPM values according to the “Mean CPM” color scale at bottom. Each row is flanked by a protein and gene label at left and
at right by values representing log(rowmax) and delta (see Eq. 1) encoded according to the color scales at bottom. Columns are denoted by a compressed version
of the Table 1 taxonomy color mosaic and by colored vertical lines extending from the mosaic through the expression matrices. The signatures of individual genes
are ordered here and in all subsequent figures in descending delta order. Subsequent figures will represent expression signature results using these very same
graphic conventions. For this and all subsequent expression matrix displays, numerical versions are available as downloadable Supplementary Material.

To quantify the neuron-type-specificity reflected in expression
signatures on a gene-by-gene basis, we define a metric delta for
each gene as follows:

delta =
n−

∑n
i=1 µi

/
µmax

(n− 1)
(1)

where µi is mean CPM within each type i and µmax is the
maximum mean value across all n types (n = 42 in this case).
Possible delta values range from 0 (non-type-specific: all type

means equal) to 1.0 (maximally type-specific: all type means but
one= 0, with non-zero expression in just one type).

Several caveats should be mentioned. (1) While our analysis
is based on one of the deepest and most quantitative scRNA-
seq methods presently available, the data is still subject to
known biases and stochastic sampling limitations. The bias of
likely greatest concern for the present work lies in that only
cell somata were sampled, while many important neuronal
transcripts are known to be localized preferentially to dendrites
or axons (Glock et al., 2021) and may thus be greatly
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FIGURE 2 | Neurotaxonomic type-mean signatures for 595 modulator genes expressed at high levels (at least one type-mean CPM > 10) in hippocampal area CA1.
Note that in successive panels (A–B) genes are ordered by continuously descending values of delta, as is evident from the continuous red-to-blue color gradient
extending along the right-hand panel margins. Matrix labels are suppressed here to avoid nil legibility, but a fully annotated and legible version is downloadable as
Supplementary Material.

underestimated. (2) While alternate splicing of mRNA is known
to dramatically transform the functional properties of many
protein products, the dataset we have drawn upon does not
discriminate amongst splice variants. (3) Many of the GABAergic
neurons profiled for the present study were harvested from
hippocampal areas other than CA1, as justified by findings that
GABA cell transcriptomes are generally conserved across areas
(Tasic et al., 2018; Yao et al., 2021). (4) Several type clusters
represented in area CA1 were excluded from consideration
due to low numbers of cells (<16) per cluster. (5) Finally, it
should be emphasized that numbers of cells per type category
reported here and in the Yao21 resource publication and
dataset do not correspond faithfully to actual relative abundance
of neurons in the source tissues. This is a consequence of
both engineered sampling biases and biases resulting from

type-dependent differential recovery during cell soma collection
(Yao et al., 2021).

The scripts and worksheets used to generate all data figures
below from the primary Yao21 resources are provided here as
Supplementary Materials and provide access to all displayed
data (and much more) in numeric form. Supplementary
Materials also offers evidence that the type-mean expression
signatures displayed in Figures 1–10 are statistically robust by
resistance to subsampling.

RESULTS

Table 1 represents the 42-type hippocampal CA1 taxonomy
we sifted from a much larger, cortex-wide taxonomy recently
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published by Yao et al. (2021) (see Section “Materials and
Methods”). The 42 types are partitioned here according to higher-
level categories of the hierarchical Yao21 taxonomy (classes,
subclasses, and supertypes). For all that follows, we relied upon
assignments of each of the 3,305 single-cell CA1 samples to one
of these 42 types by the Yao21 resource. The table also includes
hints at likely correspondences between the Yao21 taxa and other
past and present neuron classification schemes.

Figure 1 introduces the matrix display format we’ll use to
represent type-mean expression signatures derived from the
curated CA1-focused dataset. Mean CPM values for each gene
(rows) and each neuron type (columns) are encoded by the
indicated color keys and displayed in row-normalized matrix
form. The 42 CA1 neuron types are keyed by the taxonomic
color mosaic introduced in Table 1. Figure 1 shows two sets of
15 genes representative of relatively high (1A) and relatively low
(1B) cell type-specificity, as defined by calculated delta values (see
Section “Materials and Methods”) and encoded by the delta color
key. The 15 high-delta gene expression signatures in Figure 1A
clearly exhibit the strongly differential expression patterning that
has led to historical use of proteins encoded by these 15 genes as
molecular markers of cell type (e.g., see Tremblay et al., 2016).
Signatures of the 15 low-delta genes represented in Figure 1B, on
the other hand, exhibit the relatively constant, type-independent
expression patterns expected from genes whose protein products
are generally thought to be ubiquitous as synaptic or intracellular
signaling proteins. Within each panel, genes are sorted to display
those with the highest cell type-specificity of expression (delta
approaching 1) at the top and those with the lowest cell type-
specificity of expression (delta approaching 0) at the bottom. We
follow the same convention in subsequent Figures 2–9.

To see what such visualizations might tell us about
hippocampal neuromodulation, we began with a broad survey of
all 1,749 of our candidate modulation-related genes and found
that 595 were expressed at a high level (type-mean > 10 CPM) in
at least one of the 42 CA1 types. Figure 2 provides an overview of
expression signatures of these 595 genes. Display here is similar
to that introduced by Figure 1, except that display of identifying
gene symbols and taxonomic labels is suppressed here due to
graphics constraints (Fully annotated and numerical versions of
the full 1,749- and 595-gene expression matrices can be found in
Supplementary Material). The entire set is sorted by descending
delta values and displayed in four contiguous segments from
delta = 1.00 at the top of panel A to delta = 0.18 at the
bottom of column D.

Perhaps the simplest conclusion one can draw from the
Figure 2 overview of 595 modulator genes is that the great
majority are expressed in highly type-specific fashions. Type
specificity is clear from visual inspection of columns (A–C)
and the ordering delta values stay well above 0.5 until halfway
down column (D): thus, over 83% of the 595 genes thus exhibit
strong type specificity and correspondingly delta values, >0.5.
In addition, inspection of the highest-delta column (A) shows
that every one of the 42 types is a “hot-spot” of expression for
at least one gene, even in this sparsely filled regime. Note also
that even for genes where expression is detected in relatively large
fractions of the 42 neuron types (columns B–D, delta values below

0.87), clear distinctions between GABAergic and glutamatergic
types (demarcated by vertical magenta boundary lines) are quite
apparent in the gestalt.

We have selected 258 of the 595 genes represented in
Figure 2 for further exploration here, according to our
judgment that certain GPCRs, G proteins, ion channels, and
NPPs are likely to have the greatest presently interpretable
relevance to CA1 neuromodulation. Figures 3–9 display type-
mean matrices depicting expression signatures of these 258
genes grouped in nine major categories: GPCRs selective for
monoamine-selective, other small-molecules and neuropeptides,
NPPs, G protein subunits, subunits of ion channels selective for
sodium, calcium, and potassium and ligand-gated ion channels
(Similar matrix display visualizations of all 595 modulator
genes expressed at high levels in CA1 hippocampus, along
with a still more comprehensive set of 1,111 modulator genes
expressed at any significant level in CA1, can be found in
Supplementary Materials).

Figure 3 (upper panel) displays strikingly type-specific (mean
delta = 0.85) expression signatures for 24 genes encoding
GPCRs selective for norepinephrine, dopamine, histamine and
serotonin, modulatory agonists deeply implicated in research on
mechanisms of learning, human neuropsychiatric disorders and
related therapeutics. These modulators are secreted at varicosities
along axons ramifying extensively from hindbrain, midbrain
and hypothalamic nuclei into the hippocampus and many other
forebrain regions. These GPCRs represent three major classes of
G protein coupling preference, Gi/o, Gs, and Gq/11, as indicated
by the “Transduction Preference” color key.

Figure 3 (lower panel) displays highly type-specific (mean
delta = 0.78) signatures for 17 GPCRs selective for additional
small-molecule modulators endocannabinoids, adenosine, ATP
and the synaptic neurotransmitters GABA, glutamate, and
ACh. These modulators may be locally released or of remote
axonal origin. The synaptic transmitters act via these GPCRs
in slower, modulatory roles distinct from those of the ligand-
gated receptor/channels (characterized below) that support fast
synaptic transmission. Interestingly, these GPCRs represent only
two classes of coupling preference, Gi/o and Gq/11.

Figure 4 displays highly type-specific (mean delta = 0.87)
expression signatures for 43 neuropeptide-selective GPCRs (NP-
GPCRs). The endogenous agonists for these receptors are the
neuropeptides, some secreted locally by hippocampal neurons
(see below), and others reaching the hippocampus via axons
projecting from hypothalamus and other distant brain regions.
Exogenous ligands of special interest include the entire opioid
pharmacopeia and many other small molecules or synthetic
peptides in use or under investigation for therapeutic purposes
(Muttenthaler et al., 2021).

Two general lessons emerge from Figures 3, 4. First,
numerous GPCR genes are expressed in each and every neuron
type (A later section will quantify this conclusion at the level
of single cells). Second, most of the 84 GPCR genes analyzed
here are expressed in a very highly type-dependent patterns. In
some cases, patterning appears to reflect mainly class, subclass or
supertype categories, but more commonly patterning is evident
down to the single-type level.
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FIGURE 3 | Neurotaxonomic type-mean signatures for 41 genes encoding small-molecule-selective GPCRs. (Upper panel) Genes that encode 24 GPCRs selective
for the monoamine neuromodulators norepinephrine, dopamine, serotonin, and histamine. (Lower panel) Genes that encode 17 GPCRs selective for the additional
small-molecule modulators endocannabinoids, adenosine, ATP, and the synaptic neurotransmitters GABA, glutamate, and ACh (each displayed according to the
format introduced in Figure 1). With one exception, these GPCR genes all exhibit very high type specificity (mean delta = 0.85 for the monoamines; mean
delta = 0.78 for the others). The one exception is Gabbr1 (delta = 0.34).

Figure 5 displays extremely type-specific (mean delta = 0.92)
expression signatures for 18 genes that encode NPPs. Transcripts
of one or more NPP genes are among the very most
abundant in almost all individual hippocampal neurons, and the
neuropeptide products resulting from NPP proteolysis constitute
the largest and most diverse family of neuromodulatory ligands.
It is noteworthy that genes encoding GPCRs cognate to
neuropeptides encoded by each of the 18 NPP genes listed in
Figure 5 are expressed in hippocampus, as indicated in Figure 4.
Such cognate pairing suggests that hippocampus may harbor
dense peptidergic modulatory networks, as have been suggested
in other brain regions and species (Smith et al., 2019, 2020;
Smith, 2021).

Figure 6 displays expression signatures for 23 heterotrimeric
G protein subunits. As discussed in Box 1, these subunits

compose the most common and well-studied transducers of
GPCR activation. The alpha subunit differences that confer
GPCR preference are indicated here using the same gene symbol
color shading scheme as used in Figures 3–5. Expression of most
of these subunits in CA1 is notably much less type-specific (mean
delta = 0.58) than that of the CA1 GPCRs and NPPs. It may
be, therefore, that GPCRs quite diverse in their ligand selectivity
converge to a much less diverse set of signals within the neuron.
Any such inferences may be subject to change, however, as we
learn more about sub-cellular localization of both GPCRs and
their ion channel targets, and about the diffusion dynamics of
intracellular second messengers.

Figures 7–9 display expression signatures for genes encoding
97 voltage-gated and 41 ligand-gated ion channel subunit
proteins. Display as three separate figures was necessitated by
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FIGURE 4 | Neurotaxonomic type-mean signatures for 43 genes that encode neuropeptide-selective GPCRs (NP-GPCRs). All of these GPCR genes exhibit very
high type specificity (mean delta = 0.87).

the large number of channel subunit genes expressed in CA1,
each with strong and distinctive type specificity, localization, and
probable functional impacts. The protein product labels in these
figures make feeble attempts to capture some alignment between
subunit gene symbols and channel terminologies that have
arisen during many decades of intense interest in ion channel
physiology and molecular biology. More complete discussions of
these alignments can be found elsewhere (Hille, 2001; Levitan and
Kaczmarek, 2015; Luo, 2020; Alexander et al., 2021).

Almost all gated ion channels are composed of multiple
subunits encoded by different genes, with subunit co-assembly
tendencies often indicated by alpha, beta, gamma gene symbol
designations. Major functional properties of the resulting multi-
subunit channel can be influenced by all components and
subunits can assemble in widely varied combinations. The
result is a possible combinatorial explosion in the major

functional channel properties such as gating and permeability
that establish distinctive characteristics of neuronal excitability
and the bidirectional linkage of membrane potential dynamics to
synaptic function.

Figure 7 displays expression signatures for 12 sodium (upper
panel) and 20 calcium (lower panel) channel subunit genes.
Voltage-dependent sodium channels are essential to membrane
excitability (i.e., action potential firing, a.k.a. “spiking”) in
almost all neurons, although voltage-dependent calcium channels
may be evolutionary precursors in this capacity and may
remain predominant in some cases. Voltage-dependent calcium
channels, typically opened in response to a sodium spike, are
absolutely essential to almost all secretion of both synaptic
transmitters and modulatory ligands. Both sodium and calcium
channels are major targets of modulatory signaling (Levitan,
2006; Levitan and Kaczmarek, 2015; Huang and Zamponi, 2017)
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FIGURE 5 | Neurotaxonomic type-mean signatures for 18 genes that encode neuropeptide precursor proteins (NPPs). All of these GPCR genes exhibit extremely
high type specificity (mean delta = 0.92) and all encode peptides cognate to at least one of the NP-GPCR genes profiled in Figure 4.

FIGURE 6 | Neurotaxonomic type-mean signatures for 23 genes that encode heterotrimeric G protein subunits. Expression of most of these subunits in CA1 is very
much less type-specific (mean delta = 0.58) than that of the CA1 GPCRs and NPPs. The alpha subunit genes that confer GPCR preference are indicated here using
the same gene symbol and color shading scheme as used in Figures 3–5.
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FIGURE 7 | Neurotaxonomic type-mean signatures for voltage-dependent sodium and calcium channel subunits. Upper panel: 12 genes that encode
voltage-dependent sodium channel subunits. Lower panel: 20 genes that encode voltage-dependent calcium channel subunits (lower panel). Both gene sets exhibit
wide ranges of type-specificity and accordingly modest mean delta values (Sodium mean delta = 0.65; Calcium mean delta = 0.68).

(e.g., via protein phosphorylation and other downstream impacts
of GPCR activation) and such modulation therefore may impact
both membrane excitability and the strength and dynamics of
synaptic transmission in profound ways.

Figure 8 displays expression signatures for 60 voltage-
dependent potassium channel superfamily genes in eight
categories with terminologies that reflect a long history of
physiological and molecular discovery. The many genes and
categories are nonetheless also a true reflection of the depth
and breadth of variations in potassium channel structure and
function. Potassium channels account for the action potential
downstroke, as well as being principal determinants of critical
subthreshold membrane behaviors such as spike-frequency
encoding. In both of these roles, potassium channels loom
as major factors governing synaptic strength and dynamics.
Potassium channels are also major determinants of the
complex, non-linear electrotonus of dendritic arbors, which is
increasingly recognized as a major element in memory formation
and neuronal computation. Finally, some members of this

superfamily, the Ca-activated K channels and cyclic-nucleotide-
gated (HCN) cation channels (the latter being less selective for
potassium over other cations) are gated by intracellular calcium
ions or the cyclic nucleotides, cGMP and cAMP. Since potassium
channels are also major targets of GPCR-based modulation, they
must be reckoned as central factors in all adaptive neuronal
network function.

Figure 9 displays expression signatures for 41 ligand-gated
ion channel genes in five categories denominated by identities
of the principle endogenous agonist, three amino acids and two
small molecule enzyme products, acetylcholine, and serotonin.
Channels assembled from these subunits are gated directly by the
agonist and are therefore well suited to fast postsynaptic potential
generation. They might thus be thought of primarily as targets,
rather than mediators of slow neuromodulatory signaling. This
distinction is imperfect and potentially misleading, however,
especially for the ACh- and serotonin-gated channels, which are
often cast in modulatory as well as strictly synaptic roles (Govind
et al., 2012; Arroyo et al., 2014; Sizemore et al., 2020).
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FIGURE 8 | Neurotaxonomic type-mean signatures for 60 genes that encode voltage-dependent potassium channel subunits, eight categories. Most of the eight
gene sets exhibit wide ranges of specificity and accordingly modest mean delta values: (A) 0.69, (B) 0.72, (C) 0.67, (D) 0.70, (E) 0.66, (F) 0.70, (G) 0.87, (H) 0.56.
The modifier/silencer genes are interesting as consistently high-delta exceptions.
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FIGURE 9 | Neurotaxonomic type-mean signatures for 41 genes that encode ligand-gated channel subunits, divided into five categories based on principal
endogenous agonist. Three of the five gene sets exhibit wide ranges of specificity and accordingly modest mean delta values: (A) 0.67, (B) 0.72, (C) 0.68, (D) 0.80,
(E) 0.91. The consistently higher delta values of ACh and serotonin receptor signatures are intriguing in view of their noteworthy modulatory, as opposed to strictly
synaptic, roles.

Figures 3–9 displayed 258 signatures representing neuron-
type-specific expression of 258 genes encoding GPCRs, G-protein
subunits, ion channel subunits, and NPPs. To generate each
signature, many single-cell CPM values for the given gene were
aggregated as one mean CPM value per neuron type. To offer
a compact glimpse of single-cell CPM variations within types,
prior to such aggregation, we selected 20 genes and two neuron

types per gene as representative. Figure 10A reproduces type-
mean signatures for that set of 20 genes (encoding 8 GPCRs, 2
G-protein subunits, 7 channel subunits, and 3 NPPs). Figure 10A
also highlights the two types chosen for each gene: one type
showing highest mean expression and a second chosen to
represent mid-range expression (approximating 25% of that peak
mean). Figure 10B shows a pair of histograms for each of the
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FIGURE 10 | Within-type transcript count distributions for selected (gene) × (type) subsets. (A) Representative type-mean signatures (drawn from Figures 3–9) for 8
GPCRs, 2 G-protein subunits, 7 channel subunits, and 3 neuropeptide precursor proteins. Small red (GABA types) and blue (Glut types) squares highlight
gene × type subset means selected for single-cell histograms in panel B. One square per gene row highlights highest mean CPM type, a second highlights another
type with a mid-range mean CPM value (∼25% the maximum mean). (B) Histograms representing distributions of single-cell CPM values within highlighted
gene × type subsets (1 indicates gene’s CA1 delta value). Top panel for each gene represents the max-mean type; bottom panels the mid-range type. Arrows and
darkened vertical bars in seven panels indicate distributions suggesting anomalously zero or low CPMs value; stars in five panels indicate evident high-CPM outliers
(see text).
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FIGURE 11 | Single-cell co-expression of modulatory genes from the nine Figures 3–9 gene sets. (A) Histograms of numbers of distinct genes co-expressed at
high levels (each > 10 CPM) from the sets named (gene set size in parentheses). Left: distributions across all 3,305 CA1 neurons; Right: separate distributions for
1,807 GABAergic (red) and 1,498 Glutamatergic neurons (blue). Modes of each distribution indicated numerically within each display panel. (B) Similar
representations aggregating all 84 GPCR genes and all 133 ion channel genes.

20 genes, representing distributions of CPM values for both
high- and mid-expressing types. Arrows and darkened zero-
rank bars in Figure 10B highlight seven histograms suggestive
of anomalously low or zero expression in the peak mean cell

types. Interestingly, genes encoding cell-cell signaling molecules
(six of the eight GPCRs and one of three NPPs) account for
all these possible anomalies. Stars in seven Figure 10B panels
highlight evident high-CPM outliers. It may be relevant that five
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of these seven high-end outliers happen to mark the same genes
marked for low-end anomalies (Supplementary Figure 1 offers
an alternative visualization of outlier samples). It is possible that
technical factors in sequencing or classification might explain
these outliers: it is common for RNA-Seq data to be summarized
by aggregation as trimmed means to eliminate outlier impacts.
We have avoided such trimming here, however, as an unnecessary
complication given the relatively minimal outlier occurrence
evident in Figure 10B.

The expression maps of Figures 3–9 show very substantial
type-specific co-expression of many genes within each of nine
broad categories defined by those maps. To avoid possible
misinterpretation of these aggregated data, we have tallied multi-
gene co-expression at the level of individual neurons. Figure 11A
displays the results as three histograms for each of the nine
gene categories, with the left column representing all 3,305
individual CA1 neurons and the right column displaying results
separately for the GABAergic and glutamatergic neurons. The
right columns in Figure 11A indicate that co-expression patterns
for most gene categories differ somewhat between GABAergic
and glutamatergic neurons: in most cases, a higher degree of co-
expression is apparent for glutamatergic neurons while, on the
other hand, NPP co-expressions appears substantially greater for
GABAergic neurons. Nevertheless, the vast majority of neurons
in area CA1–whether inhibitory or excitatory–express at least
one NPP transcript and often more than one. Figure 11B
shows histograms after merging data from the three GPCR
and four ion channel gene categories and offers a convenient
and rather striking “pocket” summary: modal CA1 neurons co-
express 19 distinct neuromodulatory GPCR genes and 65 distinct
ion channel genes.

DISCUSSION

Several main findings emerge from the present analysis of single
cell transcriptomes in area CA1 of mouse hippocampus. (1)
A transcriptomic neurotaxonomy developed independently by
genome-wide, function-agnostic clustering (Yao et al., 2021)
captures highly diverse type-specific expression signatures of
large numbers of genes encoding GPCRs, ion channel subunits
and NPPs with remarkable precision. (2) Surprisingly large
numbers (dozens) of different GPCR and ion channel genes are
co-expressed at high levels in every CA1 neuron. (3) Abundant
transcripts of one or more NPP genes are evident in nearly
every CA1 neuron, suggesting that nearly every CA1 neuron is
peptidergic as well as either GABAergic or glutamatergic. (4) For
every one of the 18 NPP genes highly expressed in CA1, a cognate
NP-GPCR is also highly expressed in the same area. Such pairing
adds rodent hippocampus to the list of brain regions and species
where RNA-Seq transcriptomics suggests the existence of densely
multiplexed local peptidergic networks (Smith et al., 2019, 2020;
Smith, 2021).

What might these findings have to say about how GPCR-
mediated neuromodulation impacts CA1 network function?
Most obviously, they suggest that the “hardware” is there
to support highly multiplexed, highly vectorial modulatory

signaling in CA1, with numerous specific modulators impacting
numerous specific cells and cell types based on differential
expression of genes encoding numerous receptors of highly
differential ligand selectivity. Modulatory networks may thus
embody highly intricate architectures shaped by diverse neuron-
type-specific patterns of GPCR and NPP expression with diverse
impacts upon membrane excitability and synaptic function
governed by neuron-type-specific expression of ion channel
genes. Some of these modulatory networks must involve ligands
such as the monoamines and neuropeptides secreted by axons
ramifying from distant brain regions, while others involve ligands
such as peptides and endocannabinoids secreted by specific cell
types nearby within CA1.

The large numbers of modulatory GPCRs expressed by every
CA1 neuron (∼20) suggest that individual neurons must be
parts of many overlapping but molecularly and architecturally
distinct modulatory networks. These numbers alone indicate
that a staggering combinatorial convergence of modulatory
information must be accessible to each individual neuron (Smith
et al., 2019; Taylor et al., 2021). To fully appreciate this
potential information “bandwidth”, one must consider not only
the number of GPCR genes in play, but also that modulatory
responses are graded, or “analog,” with each GPCR’s agonist
concentration, that subcellular GPCR localization surely matters,
and that additional signaling diversity can be generated through
physical and/or functional interactions when distinct GPCR
protomers are co-expressed (Ferre et al., 2014; Kenakin, 2019).

Of course, all CA1 neurons are also parts of synaptic
networks. Thus, CA1, must be viewed as a superimposition of
synaptic and modulatory networks of comparable intricacy and
neuron-type-specificity. Synaptic and modulatory connectivity
vectors nonetheless surely differ in their origins, with synaptic
connectivity governed solely by axonal and dendritic “wiring,”
while modulatory connectivity, perhaps no less specifically, is
governed as well by local ligand perfusion architectures, diffusion
metrics and highly neuron-type-specific patterning of ligand and
receptor gene expression. The fact that similar conclusion have
been drawn based on various kinds of evidence from many
other brain regions and species (Marder, 2012; Gjorgjieva et al.,
2016) suggests that superimposition of synaptic and modulatory
networks may be an absolute necessity for the adaptive function
of CA1 hippocampus and perhaps all animal nervous systems.
For instance, there have been suggestions that juxtaposition of
recursively interacting synaptic and modulatory networks may be
essential to nervous system capabilities as fundamental to animal
survival as task learning and memory formation (Dayan, 2012;
Gerstner et al., 2018; Moro et al., 2020; Liu et al., 2021).

Single-cell transcriptomes offer very useful hints as to what
proteins may or may not be found in a given cell or cell type,
but no simple proportionality between transcript and protein
abundance can be assumed. Transcript abundance probably
makes a loose prediction of a corresponding protein’s synthesis
rate, but the actual abundance of that protein will still depend
heavily upon the protein’s lifetime, which is known to vary
quite widely amongst different proteins and cellular contexts,
and on possible modulations of translation rate (Liu et al., 2016;
Buccitelli and Selbach, 2020). Cell-level transcriptomes moreover
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offer no guidance at all as to subcellular protein localization.
Subcellular localization of each must be critical to signaling
from GPCRs to ion channels and therefore to neuromodulation.
A substantial literature speaks to the likelihood that most or
all GPCR and ion channel proteins are in fact localized to
very specific subcellular regions (Lohse and Hofmann, 2015;
Trimmer, 2015; Mykytyn and Askwith, 2017; Weinberg et al.,
2019; Jullie et al., 2021), but particulars are lacking for most of
these membrane proteins on most neurons. It is to be hoped that
single-cell transcriptomes will help guide future investigations of
both abundance and localization of neuromodulatory proteins.

Clearly scRNA-seq data in themselves provide no direct
information about the morphology, electrophysiology or synaptic
connectivity of a cell profiled, though such factors are
obviously critical to understanding neuronal network structure
and function. Molecular classifications nonetheless have a
long history of neurobiological usefulness (Petilla Interneuron
Nomenclature Group et al., 2008; DeFelipe et al., 2013; Fishell
and Heintz, 2013; Kepecs and Fishell, 2014; Tremblay et al.,
2016; Zeng and Sanes, 2017; Ibrahim et al., 2020). Transcriptomic
neurotaxonomy currently offers the most promising “Rosetta
Stone” to unite nominally disjunct information modalities and
neuronal characteristics and many efforts to do so are well
under way. Spatial transcriptomics are poised to soon provide
accurate information about cell-type abundance (Zhuang, 2021).
Type-specific transgenic animals and patch-seq experiments are
already beginning to enable alignment of morphologies and
electrophysiology with transcriptomic types (Gouwens et al.,
2019, 2020; Lipovsek et al., 2021). Meanwhile, rabies tracing
(Wall et al., 2016) and ambitious large-scale microscopy methods
(Kleinfeld et al., 2011) promise to soon begin the integration of
synaptic connectivity and cell type data. Synthesis of results from
these disparate sources will no doubt be promoted strongly by
emerging computational embedding methods (Gala et al., 2021).

Though very high-dimensional data such as those
considered here often resist full interpretation from simple
2D visualizations like the present figures, there are indications
that deeper exploration might reveal further interesting
regularities. For example, we have already noted that some
single-cell CPM distribution show outliers as marked in
Figure 10B by arrows at low-CPM and by stars at high-
CPM limits. Such outliers are most evident for genes
encoding cell-cell signaling molecules and, interestingly,
the arrows and stars coincide in most cases to mark the
same histograms. Perhaps expression of these cell-cell
signaling genes is driven by variable factors that do not
impact expression of ion channel or G protein genes.
Alternatively, still finer distinctions among stable cell types
may be necessary to systematize such variations. Here, we’ll
simply suggest the possibility that further analysis based on
sophisticated dimensionality reduction methods may eventually
prove rewarding.

Any ideas about nervous system function emerging from
transcriptomic data can be taken only as hypothetical until
subject to physiological test. Fortunately, the last decade has
seen the growth of a truly remarkable new toolkit–heavy with
fluorescence sensors of modulatory signaling and light-activated

effectors applicable to live cells and behaving animals–that are
rapidly transforming our capacities to test and refine hypotheses
about cellular and networks impacts of neuromodulatory
signaling. This new toolkit comprises sensors selective for
modulatory ligands, reporters of GPCR and G protein activation,
abilities to eavesdrop on numerous second-messenger systems
and measure ion channel function. Here we can cite just a
small sampling of an impressive decade’s landmarks and reviews
(Banghart and Sabatini, 2012; Irannejad et al., 2013, 2014;
Tsvetanova and von Zastrow, 2014; Spangler and Bruchas, 2017;
Banghart et al., 2018; Patriarchi et al., 2019; Zeng et al., 2019;
Ravotto et al., 2020; Sabatini and Tian, 2020; Smith et al., 2020;
Stoeber et al., 2020; Unger et al., 2020; Jullie et al., 2021; Labouesse
and Patriarchi, 2021; Redolfi et al., 2021; Tjahjono et al., 2021),
while offering also a small sampling of progress emerging just at
the time of this writing (Condon et al., 2021; Copits et al., 2021;
Melzer et al., 2021; Wan et al., 2021; Duffet et al., 2022; Qian et al.,
2022; Wu et al., 2022).

Many of the particulars of neuromodulatory transcriptomes
we have outlined here for mouse hippocampus will certainly
not apply directly to every other brain region in mouse and
probably not in any exact way to hippocampus across other
mammalian species. Even so, there are already indications of
that many of the broad strokes we have painted here will
generalize to other brain regions (Smith et al., 2019; Smith,
2021), other mammals including humans and even to non-
mammalian tetrapods (Hodge et al., 2019; Bakken et al., 2021;
Smith, 2021). We suggest here that the very high cell type
specificity, multiplicity and diversity of GPCR, ion channel
and NPP gene expression and co-expression we have just
described will continue to surface as transcriptomes from
more brain regions and species are similarly and even more
deeply explored.

Finally, we’ll note that many of the neuromodulators we
have focused upon here have drawn major drug development
efforts. Several are targets of neuropsychiatric pharmaceuticals
already in wide use and abuse (Wootten et al., 2013) and
are often used in combination. It therefore seems reasonable
to imagine that the coming of new information on the cell-
type-specificity, multiplicity and diversity of modulator gene
expression in human, like that we have portrayed for mouse, may
contribute to meeting the clear and urgent need to define new
molecular targets and therapeutic strategies (Hyman, 2012).
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