
TYPE Technology and Code

PUBLISHED 25 November 2022

DOI 10.3389/fncir.2022.977700

OPEN ACCESS

EDITED BY

Yoshiyuki Kubota,

National Institute for Physiological

Sciences (NIPS), Japan

REVIEWED BY

Mohan Raghavan,

Indian Institute of Technology

Hyderabad, India

Kevin Boergens,

Paradromics, Inc., United States

*CORRESPONDENCE

William Silversmith

ws9@princeton.edu

RECEIVED 24 June 2022

ACCEPTED 09 November 2022

PUBLISHED 25 November 2022

CITATION

Silversmith W, Zlateski A, Bae JA,

Tartavull I, Kemnitz N, Wu J and

Seung HS (2022) Igneous: Distributed

dense 3D segmentation meshing,

neuron skeletonization, and

hierarchical downsampling.

Front. Neural Circuits 16:977700.

doi: 10.3389/fncir.2022.977700

COPYRIGHT

© 2022 Silversmith, Zlateski, Bae,

Tartavull, Kemnitz, Wu and Seung. This

is an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Igneous: Distributed dense 3D
segmentation meshing, neuron
skeletonization, and hierarchical
downsampling

William Silversmith1*, Aleksandar Zlateski1,2,

J. Alexander Bae1,3, Ignacio Tartavull1, Nico Kemnitz1,

Jingpeng Wu1 and H. Sebastian Seung1,4

1Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States, 2Department

of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,

Cambridge, MA, United States, 3Department of Electrical and Computer Engineering, Princeton

University, Princeton, NJ, United States, 4Department of Computer Science, Princeton University,

Princeton, NJ, United States

Three-dimensional electronmicroscopy images of brain tissue and their dense

segmentations are now petascale and growing. These volumes require the

mass production of dense segmentation-derived neuron skeletons, multi-

resolution meshes, image hierarchies (for both modalities) for visualization

and analysis, and tools to manage the large amount of data. However, open

tools for large-scale meshing, skeletonization, and data management have

been missing. Igneous is a Python-based distributed computing framework

that enables economical meshing, skeletonization, image hierarchy creation,

and data management using cloud or cluster computing that has been proven

to scale horizontally. We sketch Igneous’s computing framework, show how

to use it, and characterize its performance and data storage.

KEYWORDS

meshing, skeletonization, neuroscience, connectomics, image processing, cloud

computing, distributed computing, compression

1. Introduction

Over the past decade, advances in the dense reconstruction of microscale neural

circuits, a field known as connectomics, have produced increasingly large stacks of

electron microscopy images derived from thinly sliced plasticized brain tissue (Pfister

et al., 2014). In recent years, several large datasets have appeared, including the whole

brain (Zheng et al., 2018) and hemibrain (Xu et al., 2020) versions of Drosophila

melanogaster. In 2021, a cubic millimeter dataset of mouse primary visual cortex

(MICrONS Consortium et al., 2021) and a petascale fragment of human cerebral cortex

(Shapson-Coe et al., 2021) were made available as pre-prints, the largest datasets to date.

There are even ongoing discussions on imaging a whole mouse brain, a volume hundreds

of times larger than either of those (Abbott et al., 2020; Rose Li and Associates Inc., 2021).

Such volumes are far larger than the capacity of existing single machines and so

require the use of cloud storage or other large networked filesystems. Not only is

Frontiers inNeural Circuits 01 frontiersin.org

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://doi.org/10.3389/fncir.2022.977700
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2022.977700&domain=pdf&date_stamp=2022-11-25
mailto:ws9@princeton.edu
https://doi.org/10.3389/fncir.2022.977700
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncir.2022.977700/full
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

FIGURE 1

Screenshot of an Igneous generated dataset viewed in Neuroglancer. Igneous is designed to produce complete Neuroglancer viewable datasets

from images and segmentations. Above, two cells are selected from an unproofread automatic segmentation of the S1 dataset and displayed in

Neuroglancer. Three zoomed out cross-sectional views (XY, XZ, and YZ planes going clockwise) are shown with overlaid electron microscope

images and segmentation labels. Image pyramids, meshes, and skeletons (in 2D) can be seen in the bottom left panel.

hardware required to store these massive datasets, but also

software to visualize, process, and manage them. Efficiently

producing and managing datasets of this size is a key challenge

for the connectomics field as it scales to acquire the complete

wiring diagram of higher order organisms.

There are many types of data involved in such investigations

(Pfister et al., 2014; Beyer et al., 2022), but at the microscale, they

typically consist of stacks of single-channel electron or multi-

channel confocal microscopy images. Electron micrograph

stacks are processed into (usually dense) per-voxel 32 or 64-

bit labelings (“segmentations”) and intermediate representations

such as three-channel 32-bit floating point voxel affinities.

From the segmentation are derived surface meshes for 3D

visualization and skeletons (Tagliasacchi et al., 2016) (stick figure

centerline representations of geometries) which have analytical,

visualization, and graphical user interface uses. Volumes may be

annotated with points and lines (such as for describing synapses

or other sub-cellular compartments).

Many systems have been published that excel at handling

large-scale image data. To our knowledge, there are no publicly

available systems capable of large-scale dense segmentation

meshing and skeletonization (see Related Work). Our

innovation is the release of fully functional, open source, and

easy-to-use software that mass produces meshes and skeletons

directly from segmentation images and independently of each

other. It is not necessary to produce a set of meshes before

producing skeletons nor vice versa. These two innovations are

embedded within a larger system that produces and manages

Neuroglancer viewable volumes (Maitin-Shepard et al., 2021).

Neuroglancer is a viewer that has been gaining popularity

(see Figure 1). It is a lightweight static web page that is pointed

at storage backends such as local web servers, Google Cloud

Storage, and Amazon S3 (or S3 emulators) to pull in data.

Neuroglancer’s native format, Precomputed, is designed to

make the client-side calculation of the necessary files’ locations

trivial without scanning a filesystem or querying a database.

Precomputed divides the image into a regular grid of chunk files.

It may also store groups of those files in a container “sharded”

format that retains the random read access property (but not

random write access) to reduce the load on the filesystem.

A resolution hierarchy is also defined so that the entire

image can be visualized at low resolution and refined as the

viewer is zoomed in. Neuroglancer also provides specifications

for visualizing 3D meshes, skeletons, and annotations with

multi-resolution formats defined for meshes and annotations.

However useful Neuroglancer is, it nonetheless doesn’t come

with a way to create, manage, or programmatically read the

Precomputed format.

We report Igneous1, an open-source software Python

program that provides a critically needed scalable, low-cost,

and easy-to-use computational pipeline for generating and

managing bulk Precomputed data such as image pyramids,

meshes, and skeletons. Much like its sister software chunkflow

(Wu et al., 2021), which is used for generating segmentations,

Igneous is robust to task failure and can be used with cheap

1 https://github.com/seung-lab/igneous

Frontiers inNeural Circuits 02 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
https://github.com/seung-lab/igneous
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

FIGURE 2

Data flow. The relationship between Igneous, CloudVolume,

CloudFiles, and Neuroglancer. Arrows indicate the direction of

data flow with reading flowing from top to bottom and writes

flowing bottom to top. Neuroglancer is a separate application

that only reads data. Igneous uses CloudVolume for high level

primitives such as images, meshes, and skeletons and uses

CloudFiles for low level file IO. The box “Programmatic Access”

serves to indicate that CloudVolume and CloudFiles also provide

programmatic access to the dataset for many other situations

outside of Igneous.

unreliable cloud instances (sometimes called “preemptible”

or “spot” instances). Igneous can be run completely locally

or massively scaled in the cloud. It requires minimal setup

and no maintenance between runs. As seen in Figure 2,

it is completely independent of Neuroglancer itself, though

it produces datasets that comply with the Neuroglancer

Precomputed specifications.2

In this article, we will sketch Igneous’ computational

framework, show how to use it, describe our innovations

in meshing and skeletonization of dense segmentation, and

characterize the system’s performance.

1.1. Related work

Many labs have developed separate solutions for storing,

visualizing, and annotating datasets of ever-increasing size

as contemporary commercial solutions were not adequately

scalable, were missing features, or both. These tools operate on

many different principles, and most of them have a method for

importing images. However, there is limited support formeshing

and skeletonization of dense segmentation in bulk as we will

describe below.

To give a brief sketch of the landscape, these systems

can be broadly characterized by the maximum data size

2 https://github.com/google/neuroglancer/tree/master/src/

neuroglancer/datasource/precomputed

they support (in-memory, disk, network filesystem / cloud

storage), method of neural representation (skeletons, per-voxel

image segmentation, network representation), their methods of

visualization [single resolution image, image pyramid (Pietzsch

et al., 2015; Sofroniew et al., 2022), precomputed or dynamic

surface meshes, skeletons, volume rendering (Peng et al.,

2010; Maitin-Shepard et al., 2021), or other], method of

data storage [single file, chunks, random-access consolidated

files (“shards”), versioning, and serverlessness], method of

proofreading [skeleton tracing (Saalfeld et al., 2009; Boergens

et al., 2017) and segment merging and splitting (Kim et al., 2014;

Katz and Plaza, 2019; Dorkenwald et al., 2021), with variations

within each category], and openness of access to reconstructions

and proofreading prior to publication (public, semi-public, or

internal only), and the different overlapping communities of

proofreaders, viewers, and software developers centered around

each tool. Proofreading systems for editing the annotations and

segmentation may have additional storage requirements such as

a graph of connected segments (Anderson et al., 2011; Ai-Awami

et al., 2016; Dorkenwald et al., 2021). An excellent overview of

the visualization landscape can be found in a recent survey by

Beyer et al. (2022) and in the VAST paper by Berger et al. (2018).

To place Igneous in relation to these categories, it

produces Neuroglancer Precomputed volumes that are stored

in cloud or network storage. Neurons are represented by

per-voxel annotations, precomputed multi-resolution surface

meshes, and precomputed skeletons. The image data are stored

as versionless chunks or shards (see Consolidating Files).

Igneous is free software that can be used by anyone. See the

Supplementary material for additional information.

1.1.1. Meshing

Meshing is frequently available at the single machine level

for many tools. However, there are few publicly available tools

that provide meshing at scale. This may be because most

available implementations of Marching Cubes (Lorensen and

Cline, 1987) are applicable only to binary images or continuously

valued images, which requires potentially thousands of iterative

evaluations for a cutout of densely labeled segmentation. Despite

the relative efficiency of Marching Cubes and similar algorithms,

this repeated application to a cutout can result in long processing

times as large amounts of redundant computation are incurred

to produce a separate mesh for every label.

Additionally, once a mesh is produced it is too detailed.

Marching Cubes produces one or more triangle faces for every

foreground voxel in a volume. This poses problems for both the

storage and display of objects as the mesh is supposed to be a

lighter-weight representation than the dense labeling.With three

floats per vertex and three integers per triangle face compared

with a single integer per voxel, an unrefined mesh may be larger

than the object’s image representation. A natural solution to this

problem is mesh simplification, but many such algorithms are

Frontiers inNeural Circuits 03 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
https://github.com/google/neuroglancer/tree/master/src/neuroglancer/datasource/precomputed
https://github.com/google/neuroglancer/tree/master/src/neuroglancer/datasource/precomputed
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

prone to change mesh topology and existing implementations

are often hard to use for a variety of reasons including the

availability of language bindings and performance.

However, these problems are not intractable. Several large

scale multi-resolution meshings have been published as pre-

prints by the Google Connectomics team (Xu et al., 2020;

MICrONS Consortium et al., 2021; Shapson-Coe et al., 2021).

At least one sparse segmentation published using WebKnossos

(Boergens et al., 2017) has precomputed meshes (Helmstaedter

et al., 2013) (larger densely labeled volumes appear to rely on on-

demand meshing). However, the meshing engines that created

these datasets are not publicly available.

A distributed meshing tool called mesh-deco3 by Matelsky

works by passing extracted binary images to mesh workers.

This approach is compatible with sparse meshing, but will be

inefficient for dense meshing.

Other tools have found workarounds for the difficulties

of bulk meshing. Some proofreading tools (e.g., CATMAID,

Saalfeld et al., 2009) rely on skeleton tracing and therefore have

a less pressing need for bulk meshing. NeuTu found a creative

method for rapidly visualizing segments by rendering all surface

points of an object as a set of spheres in cases where meshes are

not available (Zhao et al., 2018).

A few projects have built Neuroglancer multi-resolution

mesh generation capabilities that used pre-existing base meshes.

Sidky’s neurogen4 and Ackerman’s Multi-Resolution-Mesh-

Creator5 for DVID (Katz and Plaza, 2019) demonstrated the

viability of using a mesh simplification strategy. Jagannathan’s

pyroglancer6 also has a multi-resolution mesh creation

capability.

Our sister project chunkflow (Wu et al., 2021), which uses

the same meshing library that we use, also has the ability to

densely mesh, but at single resolution without shards.

Thus, it could be said that the access and ability to perform

large-scale meshing of dense segmentation has been very uneven

even though in principle versions of the algorithm and open

source software have been available. We report a method

for efficiently and economically mass producing large, multi-

resolution simplified meshes from dense segmentation that is

publicly available and easy to install.

1.1.2. Skeletonization

Extracting skeletons from segmented neurons have obvious

benefits for neuroanatomical analysis as they are simpler to

manipulate and represent the structural connectivity of the

interior of a neuron rather than of the surface. However,

computing them in quantity has been a challenge for the field.

3 https://github.com/aplbrain/mesh-deco

4 https://github.com/hsidky/neurogen

5 https://github.com/janelia-cosem/multiresolution-mesh-creator

6 https://github.com/SridharJagannathan/pyroglancer

The most popular skeletonization algorithm in connectomics

studies is TEASAR (Sato et al., 2000; Bitter et al., 2001; Zhao and

Plaza, 2014). However, implementations of TEASAR are often

memory hungry and slow. As with meshing, this is partly due

to existing implementations which only accept binary images

and thus need to iteratively evaluate a densely labeled volume.

However, there are other elements of the algorithm that present

problems, such as requiring the construction of large graphs of

connected voxels and then performing operations on this graph.

Thus, usually only a select fraction of objects in a segmentation

can be practically skeletonized, and that volume is usually of

limited size or resolution.

Some existing C++ implementations of TEASAR can be

found in NeuTu7 and Skeletopyze.8 A Python implementation

by Bae is found in Skeletonization.9 A particularly interesting

Julia implementation by Wu et al. (2022) uses bit packing and

sparse graph representations to enable the sparse skeletonization

of large neurons with full context by making it practical to fit the

whole neuron in memory.

In the past few years, some alternative approaches which

extract skeletons from meshes have appeared in tooling. The

approach by Dorkenwald et al. in MeshParty (Dorkenwald et al.,

2020) could be described as “Mesh TEASAR” as it uses the

surface mesh triangle graph instead of a voxel connectivity

graph. Skeletor by Schlegel and Kazimiers (2021) contains

several published algorithms for extracting a skeleton from a

mesh (including a “Mesh TEASAR” implementation). These

approaches are promising and warrant further exploration.

A popular voxel thinning algorithm implementation,

Skeletonize3d10 by Ignacio Arganda-Carrera can be found in

Fiji based on the algorithm by Lee and Kashyap (1994) and an

ITK implementation by Hanno Homann.11 Another innovative

technique by Matejek et al. called SynapseAware (Matejek

et al., 2019) modifies a voxel thinning algorithm to preserve

pathways between synapses specifically to optimize the Neural

Reconstruction Integrity (NRI)metric for the resultant skeletons

(Reilly et al., 2018).

We report a method of mass producing high-quality

skeletons directly from dense segmentation images by

using a fast memory optimized TEASAR implementation

and a novel chunking and stitching strategy. To our

knowledge, no other publicly available tool has demonstrated

this capability.

7 https://github.com/janelia-flyem/NeuTu/blob/

a913db28719e328875f5017019cfcac16517cd5b/neurolabi/gui/

zstackskeletonizer.cpp

8 https://github.com/funkey/skeletopyze/

9 https://github.com/seung-lab/skeletonization/

10 https://imagej.net/plugins/skeletonize3d

11 https://github.com/T4mmi/ITKThickness3D

Frontiers inNeural Circuits 04 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
https://github.com/aplbrain/mesh-deco
https://github.com/hsidky/neurogen
https://github.com/janelia-cosem/multiresolution-mesh-creator
https://github.com/SridharJagannathan/pyroglancer
https://github.com/janelia-flyem/NeuTu/blob/a913db28719e328875f5017019cfcac16517cd5b/neurolabi/gui/zstackskeletonizer.cpp
https://github.com/janelia-flyem/NeuTu/blob/a913db28719e328875f5017019cfcac16517cd5b/neurolabi/gui/zstackskeletonizer.cpp
https://github.com/janelia-flyem/NeuTu/blob/a913db28719e328875f5017019cfcac16517cd5b/neurolabi/gui/zstackskeletonizer.cpp
https://github.com/funkey/skeletopyze/
https://github.com/seung-lab/skeletonization/
https://imagej.net/plugins/skeletonize3d
https://github.com/T4mmi/ITKThickness3D
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

1.1.3. Images

Image handling is so basic to connectomics and other kinds

of investigations that there is a very large amount of prior work

both within and outside of the field. Therefore, we will only

briefly treat the most closely related systems to confine ourselves

to the available space. Again, please consult Berger et al. (2018)

and Beyer et al. (2022) for more information.

Nearly all major connectomics systems support the display

of image pyramids. Neuroglancer, CATMAID (Saalfeld et al.,

2009), NeuTu/DVID (Zhao et al., 2018; Katz and Plaza, 2019),

Knossos (Helmstaedter et al., 2011), WebKnossos (Boergens

et al., 2017), PyKnossos (Wanner et al., 2016), BigDataViewer

(Pietzsch et al., 2015), Vaa3d (Peng et al., 2010), BossDB (Hider

et al., 2019), Omni (Shearer, 2009), VAST (Berger et al., 2018),

RECONSTRUCT (Fiala, 2005), VikingViewer (Anderson et al.,

2011), Dojo (Haehn et al., 2014), Ilastik (Berg et al., 2019), IMOD

(Kremer et al., 1996), TrakEM2 (Cardona et al., 2012), ITK-

SNAP (Yushkevich et al., 2006), and SSECRETT/NeuroTrace

(Jeong et al., 2010) all support the storage and display of image

pyramids of electron micrographs. Most of these also support

the display of segmentation overlays as well. Usually, each level

of the pyramid is chunked so that subsets of an image can be

retrieved efficiently.

Eyewire (Kim et al., 2014) does not support the display of

the entire image at once and displays only small blocks at a time.

It relies on a dynamically updated overview mesh for providing

overall context for each cell. Omni is used in conjunction with

tasks that require large image context.

Many of these tools use a custom file format for storing

the image pyramid. In some cases, the image viewers are

compatible with multiple formats. For example, Neuroglancer

is currently compatible with the following imaging formats12:

BossDB, BrainMaps (Google’s internal format), DVID, N513,

nifti14, Precomputed (Neuroglancer’s native format), Render15,

and zarr (Miles et al., 2022).

Several tools provide guidance or a tool for aiding in the

import and processing of a new image dataset. CATMAID

provides an importer tool16, DVID has a built-in downsampler17

and can be run in clustered fashion. Ingest clients are

provided by BossDB (ingest-client18) and WebKnossos

(wkCuber19).

12 Neuroglancer also supports a few other formats but they are not

precisely image file formats.

13 https://github.com/saalfeldlab/n5

14 https://nifti.nimh.nih.gov/nifti-1/

15 https://github.com/saalfeldlab/render

16 https://catmaid.readthedocs.io/en/stable/importing_data.html

17 https://github.com/janelia-flyem/dvid/wiki/Tile-Generation

18 https://github.com/jhuapl-boss/ingest-client

19 https://github.com/scalableminds/webknossos-libs/tree/master/

wkcuber

FIGURE 3

How Igneous works: task creation and distribution. Task

distribution and execution are robust to failure. (A) Dependency

free tasks are generated as JSON from a lightweight machine

and inserted into a cloud queue (Amazon Web Services’ SQS) or

into a the local file system, which operates similarly (B) workers

from a pre-configured cluster (usually controlled via Kubernetes

or SLURM) continuously attempt to acquire a time-based lease

on tasks. Once the lease expires, the task is again available to be

leased. (C) Once a task lease is acquired, the worker uses the

instructions in the task to fetch data from cloud storage and

executes the task specified procedure against it (D) on finishing

execution, the results are written back into the cloud. (E) The

task is then deleted from the cloud queue to prevent redundant

re-execution. When all tasks are deleted the job is complete.

We report a tool for downsampling and managing cloud

storage hosted Precomputed format images and segmentations

that is proven to scale to hundreds of teravoxels and supports

sharded images (see Condensing Files). To our knowledge,

Igneous (via CloudVolume) is the first publicly available

tool to support the Compresso (Matejek et al., 2017) dense

segmentation compression codec.

2. Methods

Igneous uses a dependency-free task queue in order

to assign and distribute work. A schematic of how this

works can be seen in Figure 3. Dependency freedom is

possible because the production and management of image

pyramids, meshes, and skeletons can be broken down into

either spatially chunked tasks without significant overlap or

into non-overlapping ranges of integer labels which enables

efficient parallelization. Some operations, such as the production

of a small image pyramid can be performed in a single

pass. More complex operations, such as building larger

image pyramids, meshing, or skeletonization, build on top

of previous results either directly or in map and reduce

passes (termed “forging” and “merging,” respectively, within

Igneous).

Frontiers inNeural Circuits 05 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
https://github.com/saalfeldlab/n5
https://nifti.nimh.nih.gov/nifti-1/
https://github.com/saalfeldlab/render
https://catmaid.readthedocs.io/en/stable/importing_data.html
https://github.com/janelia-flyem/dvid/wiki/Tile-Generation
https://github.com/jhuapl-boss/ingest-client
https://github.com/scalableminds/webknossos-libs/tree/master/wkcuber
https://github.com/scalableminds/webknossos-libs/tree/master/wkcuber
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

Igneous’s queue, python-task-queue20, converts annotated

python functions or objects into a lightweight JSON stream that

can be submitted to a cloud queue (such as Amazon SQS) or to

our on-disk emulation of SQS we term FileQueue. These queues

provide a guarantee of durability; a task will either be executed

or recycled upon failure. If a task fails, eventually the time-based

lease will expire and another worker will re-execute the task.

This possibility of re-execution requires tasks to be idempotent.

Dependency-free operation allows for the parallelization of task

generation, insertion, and execution, which becomes convenient

for very large datasets that may require hundreds of thousands

or millions of tasks.

Igneous is highly versatile and easily operates in different

environments. For small jobs, usually running it locally from

the command line is sufficient. For larger jobs, it has been

successfully used with SLURM (Yoo et al., 2003) in Princeton’s

Della cluster21 and Docker22/Kubernetes23 using Google Cloud

Platform.24 As the filesystem and SQS are always available and

reasonably durable, jobs can be stopped and resumed at will.

So long as workers can access the queue and datastore,

they can be located anywhere in the world. This enables hybrid

computing using local resources, university clusters, and cloud

platforms simultaneously. FileQueue enables Igneous to also be

used in limited environments as it only requires a filesystem

that provides POSIX advisory file locking. For example, national

supercomputing centers may restrict internet connectivity on

worker nodes and may not allow the installation of a persistent

queuing service, but nonetheless provide a common filesystem.

Igneous can theoretically work with any Key-Value store. It

uses CloudVolume (Silversmith et al., 2021b) and CloudFiles25

software which provide threaded IO to the filesystem, Google

Cloud Storage, Amazon S3, S3 emulators, and static HTTP

file servers. Thus, data can be stored and shuffled to the most

convenient or cost-efficient location whether that’s local, in the

cloud, or at an on-premises network file system or S3 emulator.

The relationship between Neuroglancer, Igneous,

CloudVolume, and CloudFiles can be seen in Figure 2.

Igneous uses CloudVolume and CloudFiles to read and write

data to cloud storage or a network filesystem in order to

create Neuroglancer readable volumes. CloudVolume, used to

manage higher order primitives like image cutouts, meshes, and

skeletons, uses CloudFiles for file IO. Neuroglancer, a viewer for

3D datasets, is a web page that can independently read Igenous

generated datasets directly from cloud storage or from an HTTP

server. Neuroglancer is a completely separate code base from

20 https://github.com/seung-lab/python-task-queue

21 https://researchcomputing.princeton.edu/systems/della

22 https://www.docker.com/

23 https://kubernetes.io/

24 https://cloud.google.com/

25 https://github.com/seung-lab/cloud-files/

Igenous, CloudVolume, and CloudFiles. The “Programmatic

Access” element indicates that CloudVolume and CloudFiles

provide programmatic access to the dataset outside of their use

in Igneous (beyond the scope of this article).

2.1. Condensing files (“sharding”)

Random read access to large datasets is often achieved by

chunking large images into many smaller files or writing out

each mesh, skeleton, or other derivatives of a label as one or

more files. This results in problems for the filesystem when the

number of files becomes large. Even with cloud storage, as of

this writing, file creation costs between $526 and $6.5027 per a

million files on several cloud providers on active storage (usually

the default tier). When hundreds of millions or billions of files

are created, the initial upload costs can be more than the cost of

the computation.

While it’s difficult to impute the financial cost directly to

the stress put on the storage system, it is notable that object

storage systems often use an erasure coding (Balaji et al., 2018)

or replication scheme that creates multiple copies or parity

fragments to be able to reconstruct each file in the event of bit

flips or damage to machines and hard disks. Frequently, the

metadata used to locate distributed copies or file fragments are

themselves replicated several times. Thus, there is a constant

storage multiplier attached to each file uploaded. Sometimes,

even if a large dataset can be created, deleting it can be difficult

on some systems, incurring delays or additional costs.

As a mitigation, Neuroglancer adopted an approach that

condenses many individual files into random-read (but not

random-write) files called “shards”28 (see Figure 4). Shards

reduce the number of files in a dataset by several orders of

magnitude. This kind of approach is becoming more popular

and implementations are being discussed in prominent projects

like Zarr.29 Techniques similar to sharding can be implemented

by a filesystem to cope with large numbers of small files, so

shards could be viewed as a client-side emulation of a filesystem

feature.

Igneous provides methods for creating shard files for each

data type it supports (images, meshes, and skeletons) and

CloudVolume is capable of reading them. As producing shards

26 https://cloud.google.com/storage/pricing, https://aws.amazon.

com/s3/pricing/

27 https://azure.microsoft.com/en-us/pricing/details/storage/blobs/#

pricing. Azure also has a Premium tier with higher storage costs and

reduced transaction costs.

28 https://github.com/google/neuroglancer/blob/

056a3548ab�c3c76c93c7a906f1603ce02b5fa3/src/neuroglancer/

datasource/precomputed/sharded.md

29 “Add Sharding Support” https://github.com/zarr-developers/zarr-

python/issues/877.

Frontiers inNeural Circuits 06 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
https://github.com/seung-lab/python-task-queue
https://researchcomputing.princeton.edu/systems/della
https://www.docker.com/
https://kubernetes.io/
https://cloud.google.com/
https://github.com/seung-lab/cloud-files/
https://cloud.google.com/storage/pricing
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/#pricing
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/#pricing
https://github.com/google/neuroglancer/blob/056a3548abffc3c76c93c7a906f1603ce02b5fa3/src/neuroglancer/datasource/precomputed/sharded.md
https://github.com/google/neuroglancer/blob/056a3548abffc3c76c93c7a906f1603ce02b5fa3/src/neuroglancer/datasource/precomputed/sharded.md
https://github.com/google/neuroglancer/blob/056a3548abffc3c76c93c7a906f1603ce02b5fa3/src/neuroglancer/datasource/precomputed/sharded.md
https://github.com/zarr-developers/zarr-python/issues/877
https://github.com/zarr-developers/zarr-python/issues/877
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

FIGURE 4

Anatomy of a Shard. A shard condenses many files into a single read-only random access file and thereby relieves strain on filesystems. Integer

labels are mapped to a given shard filename via a hash function. Random read access is achieved via a two level index that maps an integer label

to a corresponding byte range. The index consists of the first fixed size “Shard Index” that then maps to variable size “Minishard Indices” which

contain the label to byte range mappings. In the drawing above, A,B,C,D are integers and are positioned over their corresponding byte ranges. At

the bottom, 0 to bn connote the byte o�set with bn being the end of the file. The roman numerals show the sequence of accesses. Prior to

caching, three requests are needed to fetch label B in byte range b2 to b3. (I) The shard index is accessed, which points to the (II) M1 minishard,

which (III) locates label B between bytes b2 and b3.

is more complicated and removes random access writes, it is

usually hidden behind a flag (e.g., --sharded) or a separate

command (e.g., merge-sharded).

2.2. Supported data encodings

Igneous supports all encoding methods that are currently

supported in Neuroglancer Precomputed.

2.2.1. Microscopy images

Electron microscopy and other natural images are often

represented as single-channel (grayscale) 8-bit or 16-bit

unsigned integers. Igneous supports compressing chunk files

using raw+gzip, raw+brotli (Alakuijala and Szabadka,

2016), png30, and jpeg31 (where rawmeans a serialized array).

We currently use the SIMD32 accelerated deflate33

library (based on libdeflate34) to accelerate gzip,

pyspng-seunglab35 (based on libspng36 and pyspng37)

to accelerate PNG, and SIMD accelerated simplejpeg38

(based on libjpeg-turbo39) to accelerate JPEG codec

performance.

30 http://libpng.org/pub/png/spec/1.2/PNG-Contents.html

31 https://jpeg.org/jpeg/

32 Single Instruction Multiple Data: Instruction level parallelism.

33 https://github.com/dcwatson/deflate

34 https://github.com/ebiggers/libdeflate

35 https://github.com/seung-lab/pyspng-seunglab

36 https://github.com/randy408/libspng

37 https://github.com/nurpax/pyspng/

38 https://gitlab.com/jfolz/simplejpeg/

39 https://libjpeg-turbo.org/

2.2.2. Segmentation images

Connectomics segmentation images have uncommon image

statistics in that they are often 64-bit unsigned integers, densely

labeled so that nearly every voxel is foreground and contain

potentially billions of labels that are densely packed smoothly

varying organic shapes. This creates a densely packed image with

simple statistics where most adjacent voxels are equal which

results in an amusing contradiction. The large data width of the

segmentation means that it is eight times larger than the image it

was derived from but it compresses so excellently, that it is much

smaller on disk.

Igneous and Neuroglancer support three

compression schemes that can be layered with gzip

or brotli compression for segmentation images: raw,

compressed_segmentation40, and compresso. The

latter two codecs were designed specifically with connectomics

segmentations in mind.

compressed_segmentation renumbers and bit packs

small 3D regions within the image (often 8 × 8 × 8 voxels) to

vastly reduce the size of the representation. It works extremely

well with second-stage compression which often results in both

smaller data and faster IO overall. It is also randomly accessible,

and so is used by Neuroglancer in order to pack more image

regions into the GPU. We use a Cython wrapper (Behnel

et al., 2011) around Jeremy Maitin-Shepard’s C++ encoder and

Stephen Plaza’s C++ decoder for our codec.41

Compresso (Matejek et al., 2017) was designed explicitly

for two-stage high compression of connectomics segmentation.

Compresso represents the boundary between segments as a

40 https://github.com/google/neuroglancer/tree/

f411a53f3ebc14172eb20614da2ccf6d14cd4905/src/neuroglancer/

sliceview/compressed_segmentation

41 https://github.com/seung-lab/compressedseg

Frontiers inNeural Circuits 07 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
http://libpng.org/pub/png/spec/1.2/PNG-Contents.html
https://jpeg.org/jpeg/
https://github.com/dcwatson/deflate
https://github.com/ebiggers/libdeflate
https://github.com/seung-lab/pyspng-seunglab
https://github.com/randy408/libspng
https://github.com/nurpax/pyspng/
https://gitlab.com/jfolz/simplejpeg/
https://libjpeg-turbo.org/
https://github.com/google/neuroglancer/tree/f411a53f3ebc14172eb20614da2ccf6d14cd4905/src/neuroglancer/sliceview/compressed_segmentation
https://github.com/google/neuroglancer/tree/f411a53f3ebc14172eb20614da2ccf6d14cd4905/src/neuroglancer/sliceview/compressed_segmentation
https://github.com/google/neuroglancer/tree/f411a53f3ebc14172eb20614da2ccf6d14cd4905/src/neuroglancer/sliceview/compressed_segmentation
https://github.com/seung-lab/compressedseg
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

boolean bit packed field. Long runs of zeros are run-length

encoded. The 4-connected components within that field are

mapped to a corresponding label. Boundary voxels are decoded

with reference to their neighbors, or if the location is ambiguous,

by storing their label. We adapted the Compresso algorithm and

modified pre-existing code to create a Cython/C++ codec.42.

We’ve found that high-resolution images (mips 0 and

1) typically compress better with compresso than with

compressed_segmentation. Lower resolution images,

since they become noisier, do not compress as well and

eventually compressed_segmentation achieves higher

compression. A hybrid strategy of using compresso for

high-resolution layers and compressed_segmentation

for lower resolution layers could be used to achieve higher

compression overall.

2.2.3. Meshes

Meshes generated by Igneous are written in the triangle soup

Precomputed format43. They can be compressed with gzip or

brotli for single-resolution meshes, and with Draco44 for multi-

resolutionmeshes. It is possible to convert meshes to the popular

Wavefront OBJ or PLY formats on demand using CloudVolume.

2.2.4. Skeletons

Skeletons are written in the Precomputed format45 and

can be compressed with gzip or brotli. They are stored as an

undirected vertex graph with vertex attributes. They can be

converted to the widely used tree-based SWC format on demand

using CloudVolume (loops may cause errors).

2.3. Downsampling

Large volumetric images do not fit in RAM and are not

practical to download for visualization. It is also desirable to

perform some types of processing on lower resolution images.

Thus, it is necessary to create an image pyramid of lower

resolution images that can be downloaded selectively (e.g.,

depending on the viewer’s current zoom level). Typically, each

successive resolution level (or “mip”46) is downsampled using

2×2 (2D) or 2×2×2 (3D) voxel pooling. For Neuroglancer, mip

42 https://github.com/seung-lab/compresso

43 https://github.com/google/neuroglancer/blob/

056a3548ab�c3c76c93c7a906f1603ce02b5fa3/src/neuroglancer/

datasource/precomputed/meshes.md

44 https://google.github.io/draco/

45 https://github.com/google/neuroglancer/blob/

b6adee6703db3a7fc4fa35f09a9ace8318ee128b/src/neuroglancer/

datasource/precomputed/skeletons.md

46 Mip is short for the Latin phrase “multum in parvo” or “much in little”.

0 is the highest resolution layer, with higher integers indicating

successively lower resolution layers.

In calculating these mip levels, we use average pooling

for natural (electron microscopy) images and recursive mode

pooling for labeled (segmentation) images. Uncompressed, a

pyramid of 2 × 2 downsamples requires 33% additional storage

over the base image. A pyramid of 2 × 2 × 2 downsamples

will require 14% more. In both cases, mip 1 is the dominant

contributor to the additional storage (25% for 2 × 2, 12.5% for

2× 2× 2).

Multiple mip levels can be generated from a single task

if the task is large enough. This is advantageous because (a)

it takes fewer runs to generate all mip levels (b) fewer tasks

need to be generated and managed (c) the average pooling

algorithm can avoid integer truncation. Nonetheless, it’s often

not possible to generate all mip levels in a single task as each

additional level exponentially multiplies the required memory

by 4–8 times. Therefore, by default, five levels are generated and

another set can be generated on top of them in a process we term

“superdownsampling.”

Integer truncation becomes significant in very large volumes

that may have 10+ mip levels. If it is not accounted for, the

lowest resolution levels are noticeably darker than the base level

as up to 0.75 luminance units can be lost per voxel at each level

in 2 × 2 pooling or 0.875 units in 2 × 2 × 2 pooling. At 10

mips, this amounts to a potential loss of 7.5 units in 2 × 2 and

8.75 for 2 × 2 × 2. Our average pooling implementation in the

tinybrain47 librarymitigates this issue by accumulating sums

for each mip level before dividing.

2 × 2 × 2 downsampling can lead to ghosting around the

edges of a slice as extensions of one slice regions can be averaged

with several zeros from a gap in an adjacent slice. We offer

a sparse downsampling mode that skips counting zero-valued

voxels in the average.

For sharded volumes, due to the large memory requirement

for holding a single shard in memory, Igneous can only generate

a single mip level at a time. Generating additional mip levels

would require holding exponentially larger numbers of shards

in memory for each mip level unless the shards shrink at

each mip level, reducing their utility. This requirement means

that producing a sharded mip incurs integer truncation errors.

However, it is possible to produce unsharded mips from sharded

mips and later condense them.

2.4. Meshing

While visualizing cross sections of 3D segmentation are

informative, it is difficult to understand the overall shape of

a neuron outside of a series of local contexts without a visual

representation of the whole object. Meshing, creating a 3D

47 https://github.com/seung-lab/tinybrain/

Frontiers inNeural Circuits 08 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
https://github.com/seung-lab/compresso
https://github.com/google/neuroglancer/blob/056a3548abffc3c76c93c7a906f1603ce02b5fa3/src/neuroglancer/datasource/precomputed/meshes.md
https://github.com/google/neuroglancer/blob/056a3548abffc3c76c93c7a906f1603ce02b5fa3/src/neuroglancer/datasource/precomputed/meshes.md
https://github.com/google/neuroglancer/blob/056a3548abffc3c76c93c7a906f1603ce02b5fa3/src/neuroglancer/datasource/precomputed/meshes.md
https://google.github.io/draco/
https://github.com/google/neuroglancer/blob/b6adee6703db3a7fc4fa35f09a9ace8318ee128b/src/neuroglancer/datasource/precomputed/skeletons.md
https://github.com/google/neuroglancer/blob/b6adee6703db3a7fc4fa35f09a9ace8318ee128b/src/neuroglancer/datasource/precomputed/skeletons.md
https://github.com/google/neuroglancer/blob/b6adee6703db3a7fc4fa35f09a9ace8318ee128b/src/neuroglancer/datasource/precomputed/skeletons.md
https://github.com/seung-lab/tinybrain/
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

surface representation consisting of vertices and faces from a

segmentation, provides a light-weight method of visualizing

neurons that may span an entire dataset as only the surface of

the object of interest needs to be represented.

Neuroglancer offers three different formats for representing

meshes: single-resolution unsharded, multi-resolution

unsharded, and multi-resolution sharded (single-resolution

sharded is not supported). The single resolution format allows

for multiple mesh fragments for each segmentation label to

be written as separate files and then pointed to by a manifest

JSON file with a well-known filename (“SEGID:0”). The

multi-resolution formats are different in that each mesh data

file must contain the whole mesh and potentially additional

lower resolution meshes addressable in an octree format. In the

unsharded version, each label has a data file and an index file

that gives instructions for reading the data file’s octree. In the

sharded format, a mesh’s index file and data file are concatenated

and grouped with many other labels’s meshes. The benefit of

multi-resolution files is that Neuroglancer can display lower

resolution meshes when the viewer is zoomed out, which can

allow for a higher performance display of large or numerous

meshes.

We produce meshes by applying a specialized variant of

the marching cubes algorithm (Lorensen and Cline, 1987) to

segmentation images and then simplify the results. Two passes

are needed. As it is impossible to produce a mesh spanning

large datasets within the memory of a single machine, the

image must be divided into smaller tasks and then merged. The

first pass produces mesh fragments derived from small spatial

areas and writes them to storage. The second pass aggregates

the mesh fragments to create the final output (and in the

case of multi-resolution meshes, also generates a hierarchy of

simplified meshes).

Typically we begin with downsampling the segmentation

image to use a near-isotropic mip level for meshing. While

any mip level can be used, downsampling vastly reduces the

amount of data to be processed, often by 64×, while retaining

a reasonable amount of detail. The selected mip level’s image is

then divided into a regular grid of tasks that each overlap on their

positive axis face by one voxel.

We wrote the free software zmesh48 library to produce

our meshes. zmesh is based on zi_lib49, which was

first used in the Omni (Shearer, 2009) neural reconstruction

proofreading software and then in Eyewire (Kim et al., 2014),

an online crowdsourced proofreading platform. It implements a

specialized version of the marching cubes algorithm (Lorensen

and Cline, 1987) which efficiently handles multi-labeled images.

This allows for all meshes to be generated in a single pass instead

of thousands. The resultant mesh fragments are then simplified

48 https://github.com/seung-lab/zmesh

49 https://github.com/zlateski/zi_lib

using the methods of Garland and Heckbert (1997) and Hoppe

(1999) modified to retain topological integrity by filtering out

unsound simplifications.

The one voxel overlap causes marching cubes to output

mesh fragments that can be trivially stitched. Each fragment

is then simplified before being serialized and compressed with

gzip. Single resolution meshes are serialized in the legacy

Precomputed format. Meshes written to the multi-resolution

format are Draco compressed with integer position attributes

using DracoPy.50 To generate a resolution hierarchy, we

repeatedly apply pyfqmr51 to the base mesh with increasingly

aggressive settings.

2.5. Skeletonization

Skeletons are stick-figure centerline representations of

neurons. They are often represented as trees or graphs with

vertices that are localized in space. They have many uses in

analyzing the anatomy and function of neurons. For example,

they can be used to compute basic properties such as cable

length and wire diameter (when the skeleton is a medial axis

transform). They can also be used to define functional sections

of neurite during analysis such as dendrite and axon or to model

electrical compartments. Skeletons can be used to guide cameras

in 3D renderings and in proofreading neural circuits (as in

CATMAID and WebKnossos).

However, mass-producing large skeletons from dense

segmentation images is difficult due to both performance and

memory requirements. Most image skeletonization algorithms

require holding the entire image in memory, which is impossible

at near petavoxel scale. The most popular skeletonization

algorithm in the connectomics field is the TEASAR algorithm

(Sato et al., 2000; Bitter et al., 2001), due to its flexibility

in skeletonization different shapes with parameterization

(Zhao and Plaza, 2014). However, the previously available

implementations of TEASAR are very slow and require high

memory usage. Furthermore, like meshes, mass production of

skeletons can produce hundreds of millions of files, which

results in difficulties with the filesystem or high cost on cloud

storage. These problems previously made the mass production

of skeletons impractical. However, we have been able to

overcome these limitations and can nowmass produce skeletons

directly from segmentation images and without the need for a

meshing step.

We developed Kimimaro (Silversmith et al., 2021a), a fast

Python, Cython, and C++ based TEASAR-like algorithm that

can process densely labeled segmentation images at hundreds of

kilovoxels per a second with memory usage low enough to use

50 https://github.com/seung-lab/DracoPy

51 https://github.com/Kramer84/pyfqmr-Fast-Quadric-Mesh-

Reduction

Frontiers inNeural Circuits 09 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
https://github.com/seung-lab/zmesh
https://github.com/zlateski/zi_lib
https://github.com/seung-lab/DracoPy
https://github.com/Kramer84/pyfqmr-Fast-Quadric-Mesh-Reduction
https://github.com/Kramer84/pyfqmr-Fast-Quadric-Mesh-Reduction
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

FIGURE 5

Selecting skeletonization border targets. Selection of border targets on one face of a rectangular 3D segmentation cutout. This process is

applied to all six faces. Each face is overlapped by one voxel with the neighboring task to ensure perfect mating of adjacent skeleton traces. (A)

The segmentation on the first slice of a task’s 3D image. (B) Per segment normalized distance transform. Red crosses indicate the peak

transform values and are the border targets.

on consumer hardware with a 5123 voxel cutout. However, even

with improvements in the core algorithm, it was still not feasible

to skeletonize the entire image in one shot due to memory

constraints. Thus, we chunk the image into a regular grid of

5123 voxel tasks and stitch the results together in a second

pass, similar to meshing. For this approach to work, several

conditions must be satisfied (a) the stitching process must be

made reliable (in the sense that the right connection between

tasks is always made) and efficient (b) the tasks must be large

enough to encompass significant morphological features or else

skeletonization may go awry from lack of context (c) stitched

skeletons should be free of loops.

Igneous ensures reliable connections between skeleton

chunks by using single voxel overlap between tasks and ensuring

that skeletons generated on each side of the border will

meet at the same voxel. This property allows them to be

trivially stitched before post-processing. This is accomplished

by changing the TEASAR algorithm to first target borders

before proceeding normally. A border target is defined for

each 2D connected component extracted from the boundary

cross-section of each shape. Each target is defined as the

voxel containing the peak euclidean distance transform of

each connected component (see Figure 5). This metric ensures

that, unlike a centroid, the target voxel resides within

the component.

To break ties between peak voxels, we use topological

features to ensure that the criteria are coordinate-frame

independent as the connecting coordinate frames are mirrored

on each side of the task (top & bottom, left & right, back & front).

The tie-breaking features in order of precedence:

1. Shape Centered: The peak value closest to the centroid of the

current shape.

2. “Centerness”: Between values that are tied for shape

centering, we choose the value closest to the center of the face.

3. “Cornerness”: Between values that are equidistant from both

the shape centroid and the image centroid, choose the values

that are closest to the corners of the image.

4. “Edgeness”: Of the values equidistant from the shape center,

the image center, and corners, pick the one closest to the edge

of the image.

These criteria work well for most shapes but a small number

of shapes such as an annulus, X, square shape, or specially

constructed irregular shapes centered at the image center will

generate up to eight candidate points. We haven’t implemented

a final tie-breaker, but it could be resolved by introducing an

asymmetric criterion (such as selecting the top-left peak). This

can be made to work if it alternates between top-left and top-

right depending on the orientation (e.g., up vs. down) of the face,

otherwise, it will introduce a disconnection.

If a shape contacts the edge or corner of the bounding

box, it will generate two and three targets respectively. The

adjacent tasks will also draw skeletons to each of these target

points, resulting in small loops. These loops are later resolved

during post-processing during which loops are removed, small

extensions are pruned, and components closer together than the

nearest boundary are joined.

By using a fast and memory-efficient library, a chunked

skeletonization strategy, and supporting sharded skeleton

production (see Condensing Files), Igneous makes mass

Frontiers inNeural Circuits 10 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

production of quality skeletons practical. Ensuring that

Kimimaro has appropriate visual context is a somewhat more

difficult problem that doesn’t yet have a perfect solution as

the arbitrary division of the image into a regular grid can

split objects. A reasonable way to manage this problem is to

ensure that the amount of visual context in the image is greater

than the size of the largest objects of interest. Reducing image

resolution and increasing the size of each task can both increase

visual context.

Similar to meshing, we often skeletonize volumes at a near-

isotropic resolution. While our highest resolution segmentation

is usually 4×4×40 or 8×8×40 nm3, ordinarily skeletonization

is processed at 32 × 32 × 40 nm3. At lower resolutions, such as

64× 64× 40 nm3, we find that skeletons become noticeably de-

centered from neurites. At even lower resolutions, thin processes

may become disconnected.

By default, skeletonization tasks are 5123 voxels, which at

32 × 32 × 40 nm3 equates to 16.4 × 16.4 × 20.5 µm3 of

physical context. The interconnection scheme described above

works well for wire-like objects, but more bulbous objects such

as somata, require full context to produce a reasonable skeleton.

It is difficult to guarantee that large objects will have full context

when crudely dividing the image, so future work will be needed

to refine this aspect.

2.6. Contrast correction

Contrast correction via histogram equalization on a per-Z

slice basis is supported for 8 and 16-bit images with optional

right and left tail clipping. This operation is two pass as

statistical information about the histogram of each slice must

be known before the adjustment can be made. The first pass

collects sample data from patches assigned in a regular grid

at a configurable fraction of the image area (default 1%). It

then writes a JSON file for each slice containing the sampled

histogram. A second pass of contrast correction tasks then

performs the histogram equalization on a regular grid of chunks

to avoid downloading an entire slice (which may be dozens of

gigabytes). Downsampling is integrated into the second pass to

enable rapid visualization and save work.

2.7. Dataset management

Managing large datasets is a problem in its own

right. Simply enumerating a billion files can become a

challenge when only thousands or tens of thousands

of filenames can be listed per second. Nonetheless, it

is frequently advantageous to move datasets to share

them with collaborators, to move the data closer to

the site of computation, to use a more economical

storage provider, or to re-encode them with a different

compression algorithm.

Igneous provides convenient commands to transfer, re-

encode, re-chunk, delete, and condense large data for images,

meshes, and skeletons. Transfers and deletions are often more

efficient when working with sharded volumes as fewer files need

to be manipulated.

2.7.1. Transfer, re-chunking, and re-encoding

Image transfers divide the image into a regular grid of

tasks, each of which manages the transfer of its grid space.

Except in special cases, transfers download the image region

and render it into an array internally before constructing

the files to write. This allows images to be downsampled

as they are transferred, which saves future downsampling

work and makes it easier to visualize the transfer in

progress as Neuroglancer can be used even when the transfer

is incomplete.

At the same time, a new chunking scheme and/or encoding

can be applied. For example, a 3D dataset can be converted into

2D slices or vice versa. 3D chunking is better for visualization

and certain IO patterns, while 2D slices are very useful during

the alignment phase. A raw encoding, for example, can be

changed to a higher compression encoding such as jpeg

or compresso.

If no new encoding is applied, no downsamples are

generated, and the chunk size is identical, the transfer

is performed very efficiently without decompressing and

recompressing each file.

Mesh and skeleton transfers are simpler. They divide up the

label or shard file prefix space and assign ranges to each task for

transfer. In most cases this works well, but if the stored labels are

clustered under a long prefix, a custom strategy may be needed.

2.7.2. Deletion

Igneous deletes image data in much the same way it

performs other operations. The dataset is divided into a

rectangular grid with a task assigned to each grid space. The

delete tasks do not require downloading or uploading data, so

each task can bemuch larger. By default, each task will also delete

the five mip levels above it. For very large datasets, it might be

necessary to “superdelete” the higher mip levels in a second or

third pass.

Unsharded skeletons and meshes are handled similarly to

transfers. The prefix space is divided up and a prefix is assigned

to each task. Shards can be deleted using Igneous, but they

are usually few enough in number that an ordinary deletion

command will suffice within a few minutes. For example, 105

shards deleted at a rate of 300 per second will be eliminated

within 6 min.

Frontiers inNeural Circuits 11 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

TABLE 1 Igneous CLI commands and sub-commands.

Command Sub-commands

design bounds, ds-memory, ds-shape

image contrast, downsample, rm, xfer

mesh forge, merge, merge-sharded, rm, spatial-index, xfer

skeleton forge, merge, merge-sharded, rm, spatial-index, xfer

execute

view

license

Some commands, such as spatial-index, have deeper trees.

2.7.3. Sharded transfers

Using a transfer command with the --sharded flag will

automatically create tasks to aggregate unsharded data into

sharded data. As of this writing, unsharded to unsharded,

unsharded to sharded, and sharded to sharded transfers are all

supported. Only sharded to unsharded is not yet supported,

though it may be useful to restore random write access to a

sharded dataset. Downsamples are not automatically generated

for sharded image transfers.

2.8. Using and installing igneous

Igneous can be installed on any systemmeeting the following

requirements (a) runs a supported cPython version (currently

3.7+) (b) runs a recent Linux, MacOS, or Windows operating

system OR can run an Ubuntu Linux based Docker container

(c) all workers can access a common queue via either FileQueue

which requires a filesystemwith consistent advisory file locks OR

via internet access to AWS SQS. Installation with Python pip is

simple: pip install igneous-pipeline.

Igneous can be scripted in Python or run from the command

line. A typical workflow is to first select a dataset and operation,

and then enqueue a set of tasks in either FileQueue or

Amazon SQS from a local workstation. Then, using the execute

command, which may be used on the same workstation or a

cluster, the queue is selected and executed against with one

worker process per an available core. Execution continues until

the queue is empty. Termination can be set to automatic in

the case of FileQueue, but SQS only returns the approximate

number of tasks enqueued and so requires either manual

monitoring or repeated polling to verify the current job is

finished. Examples of Igneous CLI commands can be seen in

Listing 1 and an enumeration of the available commands is

available in Table 1.

Parallel execution can be accomplished by any runner that

can run the command igneous execute $QUEUE where

$QUEUE is a path (such as ./queue or sqs://my-queue).

On a local machine, parallel execution can be triggered by the -p

flag which indicates the number of processes to start. For large

distributed jobs, we have used Docker/Kubernetes and SLURM

as runners, but many other platforms would be suitable. Queue

progress can be monitored and managed via the co-installed

ptq (short for “Python Task Queue”) command line utility.

3. Results

We attempted to characterize the performance of several

aspects of Igneous by fully processing a segmentation of the well-

known S1 dataset, by reporting the computation required by

large historical runs, and reporting the efficacy of compression

algorithms as applied to CREMI data (https://cremi.org/data/).

We also used CREMI data to roughly characterize the quality of

Igneous generated meshes and skeletons.

3.1. Evaluating image compression on
CREMI data

As images generally comprise the bulk of storage for a

given connectomics dataset, we attempted to characterize the

efficacy of different compression technologies supported by

Neuroglancer. We downloaded three pairs of padded test image

and training segmentation datasets. We converted the HDF5

files into uncompressed Neuroglancer Precomputed volumes

using CloudVolume and then re-encoded the raw volume using

the igneous xfer command. For each re-encoding, we

measured the computation time taken and the resultant disk

space used. For decoding, we timed reading each resultant

volume with CloudVolume 8.7.0 five times and reported

the average.

All measurements were taken on a 2021 M1 Macbook Pro

with an SSD using one process. The measurements for CREMI

volumes A+, B+, and C+ were averaged into a point estimate

of computation time in megavoxels per second (MVx/s) and

disk space required for each encoding. All three CREMI image

volumes were 8-bit 3072×3072×200 voxels (1.9 gigavoxels each,

5.7 gigavoxels total). All three CREMI segmentation volumes

were all rendered as 64-bit 1250× 1250× 125 voxels (195 MVx

each, 586 MVx total).

For microscopy images (see Figure 6), raw (uncompressed),

raw+gzip, raw+brotli, jpeg, and png transfer encodings

were evaluated. PNG and gzip were evaluated at compression

level 9, brotli at level 5, and JPEG at 85% quality. For

segmentation images, we evaluated raw (uncompressed),

compresso, and compressed_segmentation encodings

layered in combination with gzip level 9 and brotli level 5.

The best compression and encoding speed for images was

the lossy JPEG encoding (5.98×, 288.6 MVx/s). The best lossless

compression was PNG (1.89×) though it was the slowest (13.7

MVx/s). raw+brotli and raw+gzip had similar encoding

speeds (25.7 and 25.8 MVx/s), but raw+brotli gave a slightly

smaller file size (1.40× gzip and 1.48× brotli).

Frontiers inNeural Circuits 12 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
https://cremi.org/data/
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

1 # Transfer a local dataset to Google Cloud Storage

2 igneous xfer ./my-dataset gs://example-bucket/my-dataset/ \

3 --mip 0 --queue ./queue [--sharded]

4 igneous -p 4 execute ./queue # execute w/ 4 parallel workers

5

6 # Mesh an Existing Segmentation

7 igneous mesh forge gs://example-bucket/my-dataset/ \

8 --mip 2 --queue sqs://my-queue [--sharded]

9 igneous execute sqs://my-queue # can be run on remote workers

10 igneous mesh merge[-sharded] gs://example-bucket/my-dataset \

11 --queue sqs://my-queue

12 igneous execute sqs://my-queue # can be run on remote workers

13

14 # Skeletonize an Existing Segmentation

15 igneous skeleton forge gs://example-bucket/my-dataset \

16 --mip 2 --queue sqs://my-queue [--sharded]

17 igneous execute sqs://my-queue # can be run on remote workers

18 igneous skeleton merge[-sharded] gs://example-bucket/my-dataset \

19 --queue sqs://my-queue

20 igneous execute sqs://my-queue # can be run on remote workers

21

22 # Check or Manage Job Status

23 ptq status ./queue

24 ptq status sqs://my-queue

25 ptq release ./queue # terminate all leases

26 ptq purge ./queue # delete enqueued tasks

Listing 1 Select examples of using igneous on the command line. Square brackets indicate optional arguments.

Decoding was uniformly much faster than encoding for

microscopy images. The fastest decoding time was naturally held

by uncompressed data (753.4 MVx/s). jpeg was second (574.5

MVx/s). Of the lossless compression codecs, raw+gzip (363.0

MVx/s) and raw+brotli (361.8 MVx/s) were similar. png

was the slowest (74.5 MVx/s).

For segmentation (see Figure 7) we evaluated raw,

compressed_segmentation, and compresso each with

no compression, gzip, and brotli second stage compression. The

overall best compression was given by compresso+brotli

(570×, 64.7 MVx/s). compresso+gzip gave a similar

compression ratio, but was slightly slower at encoding.

compressed_segmentation+brotli was slightly faster

(69.4 MVx/s) but only yielded a 333× compression ratio (58%).

The fastest overall method was writing uncompressed raw arrays

(98.5 MVx/s), though it is not suitable for large datasets. Using

compresso+brotli resulted in an 8× speedup and a 4.8×

compression improvement vs. the naïve raw+gzip approach.

Decoding speeds were faster than encoding speeds in all

segmentation trials and showed less variability between codecs.

Encoding and decoding speeds were also closer in magnitude

than with microscopy image compression. compresso was

slowest (96–97 MVx/s). Interestingly, it seemed to yield the

same decoding speed regardless of second layer compression

type (including none). raw compression was slightly faster and

compressed_segmentation was the fastest encoding type

(111–115 MVx/s). raw without any compression was fastest at

122.5 MVx/s.

3.2. Processing mouse primary
somatosensory cortex (S1) segmentation

In order to characterize the computation and disk space

required to process a dataset using Igneous, we processed a

rough automatic segmentation of the well-known mouse S1

dataset (Kasthuri et al., 2015) which is 283.1 gigavoxels (7.4

GB gzipped) and has a resolution of 6 × 6 × 30 nm3 (see

Figure 1). We downloaded the dataset from cloud storage to an

8-core 2021 M1 Macbook Pro with an SSD. The segmentation

was then converted into a sharded compresso+gzip encoded

image (shards do not currently support brotli) with 256 ×

256 × 32 voxel chunks (Compresso is more effective on larger

XY planes, hence the asymmetry). It was then unsharded

downsampled to mip 5 in one step. The downsampled chunks

Frontiers inNeural Circuits 13 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

FIGURE 6

Microscopy image compression performance. We evaluated Neuroglancer compatible compression codecs against CREMI microscopy images

by re-encoding an uncompressed volume with Igneous. Averages across the three images are shown. (Top) Compression factor

(original/compressed bytes), larger is better. The dashed line indicates the level of no compression. (Bottom, left/blue) Encoding speed in

megavoxels per second (MVx/s) (Bottom, right/orange). Decoding speed in MVx/s. Larger is better for all three metrics.

were compresso+brotli compressed. It was then meshed

in Draco compressed sharded format with a single resolution

at image resolution 24 × 24 × 30 nm3, and skeletonized using

parameters intended to capture spines at the same resolution.

The results can be seen in Figure 8.

Table 2 shows the time and disk usage required by each

stage of processing. In total, 36 core-hours were required, which

works out to 7.9 gigavoxels/core-hr. The most computationally

demanding tasks by far were generating mesh and skeleton

fragments (“forging”) at all spatial grid points. However, in our

experience, if parameters are poorly chosen or large mergers are

present, skeleton merging can become demanding as well.

Quite sensibly, segmentation images including

downsamples comprise the bulk of disk storage (5.4 GB),

but thanks to compression, the highest resolution image (2.3

GB) isn’t the single largest consumer of disk space. Instead,

mesh intermediate files (4.6 GB) are the largest single item.

While the intermediate fragments are simplified, they are gzip

compressed while the final meshes will be merged and Draco

compressed. Additionally, while meshes represent only the

surface of many neighboring voxels, they do so by using three

floating point numbers for the vertices plus three integers for

each triangle face. For some geometries, this can inflate the size

of the representation compared with the image, especially when

the image is well-compressed. Skeleton fragments and final files

(both 300 MB) are lightweight as expected.

6.8 GB of final compressed files remained after processing.

An additional 4.6 GB of intermediate mesh fragment files and

300MB of intermediate skeleton fragment files were also present

which can be deleted. If no intermediate files are deleted, the

total size of the finished dataset is 12 GB including the spatial

index (which can be useful for end-users beyond the generation

of meshes and skeletons).

3.3. Historical runs

To help illustrate Igneous’s ability to scale, we provide some

illustrative examples of the performance of several large jobs that

have been run over the years. These jobs were run on Google

Cloud Platform and Google Cloud Storage using preemptible

16-core n1-standard-16 (104 GB RAM), n1-highmem-16 (128

GB RAM), and e2-highmem-16 (128 GB RAM) machine types

with one Igneous process per a core. Igneous’s performance may

have improved since these jobs were run.

Note that while we provide core-hours here, the total cost

of these jobs depended on many factors such as the number of

reads, writes, and bandwidth. Often the most expensive cost was

Frontiers inNeural Circuits 14 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

FIGURE 7

Segmentation image compression performance. We evaluated Neuroglancer compatible compression codecs against CREMI training

segmentation images by re-encoding an uncompressed volume with Igneous. Averages across the three images are shown. (Top) Compression

factor (original/compressed bytes), larger is better. (Bottom, left/blue) Encoding speed in megavoxels per second (MVx/s) (Bottom,

right/orange). Decoding speed in MVx/s. Larger is better for all three metrics. Key | cpso: Compresso; cseg: compressed_segmentation; br:

Brotli; gz: Gzip; raw: Uncompressed.

FIGURE 8

Igneous generated meshes and skeletons in S1. An example of

an Igneous generated mesh and skeleton extracted from the S1

dataset displayed in Neuroglancer. (A) The skeleton is overlaid

on a volumetric image cross section. The colors of an automatic

segmentation can be faintly seen. (B) A close up of a

semi-transparent 3D view of the same segment meshed and

skeletonized. Accurate skeletonization of spines and reasonable

branching behavior can be seen.

writing unsharded meshes or skeletons as this would generate

at least one or two files per a segmentation label resulting in

hundreds of millions or billions of files generated. Hence, for

large datasets we now recommend the sharded format.

Table 3 was compiled retrospectively from

contemporaneous notes. It shows that Igneous scales to

jobs requiring at least 16,000 cores and 1,000 machines

simultaneously for grayscale image downsampling on a 95

TABLE 2 Igneous processing time and disk usage in the S1 dataset.

Job Core-hours Disk usage (GB)

Convert segmentation 1.6 2.3 (one mip)

Downsample segmentation 1.5 5.4 (all mips)

Mesh forging (mip 2) 15.6 4.6 (fragment files)

Mesh merging 1.5 1.1 (shard files)

Skeleton forging (mip 2) 15.5 0.3 (fragment files)

Skeleton merging 0.3 0.3 (shard files)

Totals 36.0 6.8 (final files)

teravoxel volume which was completed in a little over an hour

in wall-clock time. The largest volume processed was 298

teravoxels which was a segmentation downsampling job and

was completed in a little over 3 h wall-clock time.

The most computationally expensive job listed was the

5/4/19 unsharded primary mesh fragment generation step for

an unpublished draft automatic segmentation of the cubic

millimeter dataset (MICrONS Consortium et al., 2021) which

took 99,800 core-hours. By comparison, the following merging

step was much less intensive and took only 2,450 core-hours.

Skeletonization was similarly demanding. The most

computationally expensive job listed was the 1/21/20 sharded

Frontiers inNeural Circuits 15 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

TABLE 3 Historical Igneous run characteristics.

Date Job Res. nm3 TVx Tasks Nodes Cores Core-hrs

3/9/19 Downsample image 16× 16× 40 95 2.5M 1,000 16,000 19,200

4/13/19 Meshing (primary) 32× 32× 40 2.8 50k 250 4,000 12,700

4/19/19 Downsample segmentation 8× 8× 40 298 1.1M 200 3,200 10,400 (est.)

5/4/19 Meshing (primary) 32× 32× 40 74 175k 350 5,600 99,800

5/5/19 Meshing (merging) 32× 32× 40 74 3M 40 640 2,450

1/21/20 Sharded skeletonization (primary) 32× 32× 40 74 143k 35 560 91,000 (est.)

12/29/20 Meshing (primary) 32× 32× 40 11.7 112k 100 1,600 46,400

12/31/20 Meshing (merging) 32× 32× 40 11.7 300k 20 320 <4,800 (est.)

3/24/22 Sharded skeletonization (primary) 32× 32× 40 0.4 4k 20 320 3,700 (est.)

3/24/22 Sharded skeletonization (merging) 32× 32× 40 0.4 32 64 1,024 330 (est.)

All runs are unsharded except where noted. The rows are drawn from four different unpublished versions of datasets. Three are drawn from different datasets generated in the course of

the cubic millimeter project and one from FAFB. The merging step of the corresponding January 2020 skeletonization run was an iteratively developed and so is omitted. The final sharded

skeletonization run had a feature called “fix avocados” enabled that slowed it down. Core-Hours annotated with “(est.)” are upper bound estimates. TVx stands for teravoxels. Core-Hours

additionally annotated with “<” may be a significant overestimate.

FIGURE 9

Large scale skeleton. An example skeleton extracted from an

early automatic segmentation of a large subset of the cubic

millimeter dataset (https://www.microns-explorer.org/cortical-

mm3) displayed in Neuroglancer. This skeleton was mass

produced alongside hundreds of millions more, though only a

fraction of segments represent fairly complete cells. The

semi-transparent silhouette of the cell’s surface mesh can be

seen. (A) A zoomed out view of the cell. (B) A closer view of the

area around the cell body. (C) A close up view of one of its

dendrites.

skeleton fragment generation at an estimated 91,000 core-hours

for the same dataset. The skeletonization parameters were set

to capture dendritic spines. That run produced 397,770,063

skeletons in 524,288 shard files which occupied 747.6 GB of

disk space. An example skeleton can be seen in Figure 9. The

corresponding merging operation is not shown in Table 3 as it

was run almost a year later and at the time required an iterative

development cycle to increase performance over a period of

months making a point estimate unhelpful.

The skeletonization run on 3/24/22 was conducted on an

unpublished dataset with spine capture and “avocado fixing”

enabled. This caused the primary skeletonization phase to be

FIGURE 10

Neuroglancer screenshot of scikit-image and Igneous versions

of a mesh. Unsimplified meshes produced by (left) scikit-image

and (right) Igneous.

slower than would otherwise be expected. The merging run had

the somewhat expensive “remove ticks” feature disabled, and

thus preserved small extensions.

3.4. Characterizing mesh quality

Though they are primarily for visualization, meshes

may be used to derive scientific insights. Therefore,

we endeavored to provide some basic characterization

of mesh quality. Using the same CREMI A padded

segmentation used in our image compression experiments,

we compared Igneous/zmesh generated and stitched

meshes to meshes generated by scikit-image52 using

skimage.measure.marching_cubes version 0.18.1

using the lewiner algorithm. An example object that was meshed

using both methods can be seen in Figure 10.

There are 37,366 unique labels and 37,828 26-connected

components in the segmentation. Of these labels, 36,902

52 https://scikit-image.org/

Frontiers inNeural Circuits 16 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
https://www.microns-explorer.org/cortical-mm3
https://www.microns-explorer.org/cortical-mm3
https://scikit-image.org/
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

(98.76%) are smaller than 1,000 voxels while 464 (1.24%) are

greater than or equal to 1,000 voxels. We generated all meshes

using zmesh as both unsimplified and simplified versions from

the base resolution segmentation. Simplification was performed

using zmesh’s built in algorithm using a triangle reduction

target factor of 100 and a maximum error tolerance of 40

nanometers. scikit-image had a limitation where only

objects 2× 2× 2 or larger could be meshed, so only 586 meshes

could be generated.

We then used Trimesh53 version 3.10.8 to check the resultant

meshes for topological integrity using the mesh.is_volume

property. According to their documentation, this checks

watertightness (every edge is included in two faces), having

consistent winding (each shared edge going in an opposite

direction), and outward facing normals. All Igneous/zmesh

meshes passed this check. scikit-image meshes failed this

check. It is possible that they contained degenerate triangles

as they failed a convexity test. Visually, spot checks of the

unsimplified zmesh and scikit-imagemeshes were almost

indistinguishable and overlapped almost exactly in space.

In order to quantify the degree to which the zmeshmeshes

fairly represented the underlying segmentation, we computed

the volume and centroids of all labels and plotted histograms

of the ratio of mesh volume (computed with Trimesh) to voxel

volume for both simplified and unsimplified meshes as seen in

Supplementary Figure 1.

In this figure, it can be seen that small label volumes are

often grossly underestimated by the mesh while large labels are

usually underestimated within 5 or 10% of the voxel volume

for unsimplified and simplified meshes respectively. Marching

Cubes cuts voxel corners to create a reasonable manifold, so it

is sensible that small meshes will show larger deviations while

larger meshes will show smaller deviations. In the bottom right

of the figure, it can be seen that many very small objects get

simplified to near or actually zero volume.

In Supplementary Figure 2, we computed the difference

in voxels between mesh centroids and image label centroids

for zmesh unsimplified and simplified and scikit-image

meshes for all labels that were valid for scikit-image.

We then evaluated the labels using connected-components-3d

(Silversmith, 2021) and the Trimesh centroid method (which

does not rely on correct manifold topology). The maximum

error for zmesh was 53.1 voxels, while for scikit-image

it was 417.9 voxels. The mean error for zmesh is 4.9 with a

standard deviation of 6.7 for both unsimplified and simplified

meshes. For scikit-image, the mean is 8.4 and the standard

deviation is 27.3. In the figure, it can be seen that all three

groups are fairly similar, but scikit-image has a long tail

of large errors.

53 https://trimsh.org/trimesh.html

3.5. Characterizing skeleton quality

Characterizing skeleton quality is somewhat more difficult

than with meshes due to the different skeletonizations that can

be proposed for a given object depending on the needs of the

user. Therefore, skeletons are somewhat more subjective though

there are proposed definitions for canonical skeletons based on

a grass-fire analogy, the centers of maximally inscribed spheres,

and other representations (Tagliasacchi et al., 2016).

We attempted to characterize Igneous produced skeletons

by coarsely comparing them with other automatically traced

skeletons on a well-known dataset. Unfortunately, datasets with

manually traced skeletons generally do not have a per-voxel

segmentation and vice-versa. Therefore, we decided to compare

automatic skeletonizations of CREMI A as was done for meshes.

We attempted to locate a TEASAR implementation that was able

to be installed on our available hardware, that we were able to

operate properly, and was not written by one of this article’s

authors. However, we were unable to do so. Therefore, we made

our comparisons to skeletons generated by the popular binary

image skeletonization procedure in Fiji (Schindelin et al., 2012),

which implements the 1994 voxel thinning algorithm by Lee and

Kashyap (1994).

We used Igneous to process CREMI A at 16 × 16 × 40

nm3 resolution using the parameters const 50,

scale 3, soma-accept 3500, soma-detect 1100,

soma-const 300, and soma-scale 1 on all segments

with greater than or equal to 1,000 voxels. We did not use the

short extension (“tick”) elimination feature (though it may

have slightly improved some skeletons). For Fiji, we processed

the segmentation using the same size threshold at the same

resolution into a series of binary TIFF files and then batch

processed them. The resultant thinned binary images were

processed into SWC files and then converted into Neuroglancer

Precomputed skeletons that were correctly offset into the same

space as the Igneous skeletons. We visually confirmed via spot

checks that both sets of skeletons appeared in Neuroglancer and

seemed on-balance reasonable in their topology and location

in space.

We then made several comparisons between these skeletons

to characterize them. First, we used the Trimesh 3.10.8 library to

check the number of points that lay outside of their enclosing

(zmesh unsimplified) mesh. Nine skeletons were unable to

be compared due to Trimesh repeatedly crashing during the

computation. In total, 332 segments were able to be compared

out of 341. 0.3% of all vertices for both Fiji and Igneous skeletons

lay outside the mesh. The existence of this small quantity may be

due to small differences between the 16×16×40 nm3 resolution

and the meshes created at 4× 4× 40 nm3.

In Supplementary Figure 3, we compared the difference in

centroids, ratio of cable lengths, and difference in number of

terminal points (vertices with only one connecting edge) for each

set of skeletons. It can be seen that the maximum difference

Frontiers inNeural Circuits 17 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
https://trimsh.org/trimesh.html
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

FIGURE 11

Comparing a similar voxel thinning and Igneous skeleton. Above

is pictured a Neuroglancer screenshot of a meshed object in

silhouette and its skeleton visualized as a bright line produced

by (cyan) Igneous and (purple) voxel thinning via Fiji’s

Skeletonize3d routine.

between centroids is 2,172 nm, though most are much less than

that. The average distance between centroids is 188 nm with a

standard deviation of 244 nm. We visually inspected the twelve

segments more than 676 nm (two standard deviations larger)

than the mean to determine their issues. In four cases, the

thinning algorithm only skeletonized one of multiple connected

components, leading to a much shorter cable length. In six cases,

the thinning algorithm created a complex structure we referred

to as a “beehive” (see Supplementary Figure 4) that added

extraneous path length. Three cases were more ambiguous as

to which was the better skeleton, but the thinning algorithm

preserved more branches and holes. A more typical case where

both thinning and Igneous created reasonable skeletons can be

seen in Figure 11.

The mean cable length was 4778.7 nm (stddev 3358.5 nm)

for Igneous skeletons and 6613.5 nm (stddev 5584.4 nm) for

thinned skeletons. 281 (85.49%) Igneous skeletons were shorter

than their thinned skeleton counterpart and 51 (15.41%) were

larger. The outlier on the right hand side of the middle subplot

of Supplementary Figure 3 is a near spherical object that was

skeletonized across the diameter by Igneous but was reduced to

almost a point by thinning.

As can be seen in the last panel, the voxel thinning skeletons

hadmanymore terminal points. A terminal point is a vertex that

has only one edge connecting it to the rest of the skeleton. In

total, the thinned skeletons had 3541 terminal points while the

Igneous skeletons had 1169 (or a 303% difference). The average

Igneous skeleton had 3.46 terminal points (stddev 9.65), while

thinned skeletons had on average 10.67 points (stddev 3.71).

4. Discussion

Igneous is a tool for processing large 3D images using a

dependency-free distributed approach that scales to at least

tens of thousands of cores operating simultaneously. While

many labs may produce their data sets through one-off

scripts, Igneous provides a proven, clean, efficient, scalable, and

documented method for contrast correction, image pyramid

construction, multi-resolution meshing, skeletonization, and

data management.

Igneous has been developed since 2017 and used within our

lab to process a near petascale cubic millimeter of brain tissue.

We have shown in practice this software processes millions of

tasks and hundreds of teravoxels successfully. Our historical

log shows that Igneous scales on cloud infrastructure very well,

demonstrating the use of sixteen thousand cores on a thousand

preemptible machines simultaneously to rapidly complete a

large job. It has also been an important tool for moving and

deleting copies of datasets. Large datasets often need to be

moved to secure cheaper storage or to locate them closer to their

next job’s cluster.

To provide some confidence in the output of Igneous, we

compared its outputs to popular packages. For meshes, we

compared Igneous to the scikit-image package. We found

that the distribution of centroids appeared similar for both

unsimplified and simplified Igneous meshes compared with

scikit-image. Igneous’s zmesh package was able to handle

small meshes that scikit-image was not able to handle. We

also checked the meshes and found that they were all watertight

and reasonably volumetric objects, but some scikit-image

meshes failed these tests. zmesh also had a smaller maximum

centroid error than scikit-image when compared with

image centroids.

For skeletons, we compared Igneous to Fiji’s Skeletonize3d

routine, which is a voxel thinning type algorithm. It is more

subjective to say one skeleton is better than another since

that determination depends on what elements of a shape one

is interested in. However, we can say broadly that Igneous

produced simpler skeletons than Skeletonize3d and handled

disconnected components. There were also fewer skeletons

that appeared obviously wrong (e.g., no Igneous skeletons had

a “beehive” failure mode). On the other hand, the thinning

algorithm preserved certain topological features that Igneous is

unable to represent, such as holes, and more frequently found

small extensions. However, Igneous’s settings can be adjusted to

find more extensions. Igenous skeletons could have been further

simplified by using the short extension elimination feature.

Igneous’ output has already been used by neuroscientists.

They have already made several scientific discoveries by both

visualization and quantitative analysis (Wilson et al., 2019;

Turner et al., 2022), with a few more uses documented in pre-

prints (Schneider-Mizell et al., 2020; Buchanan et al., 2021).

More papers are expected to be published in the future.

In particular, to our knowledge, no other published

connectomics tool is capable ofmass producingmulti-resolution

meshes or skeletons economically at the scale of hundreds

of millions or billions of objects (some non-public tools

have been shown to scale, but their economy is unknown).

Accomplishing this required optimizing both in-core operations

(with zmesh for meshing and kimimaro for skeletonization)

Frontiers inNeural Circuits 18 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

and out-of-core operations. A major advantage these in-core

libraries have over other implementations is that they are

natively multi-label and are able to process entire segmentation

cutouts in a single pass of the algorithm. To this are added

out-of-core improvements with the provision of dependency-

free parallelism, reliable stitching, and resolution of issues at

task boundaries. As meshes and skeletons are both produced

directly from segmentation images, there exists no dependency

between them and they can be produced independently of

each other.

It’s a bit odd that quality multi-label versions of these

algorithms have not previously appeared. However, this is less

mysterious when it is considered that multi-label segmentation

data only began appearing in bulk with the advent of the

large-scale application of convolutional neural networks in

the last decade. Connectomics segmentations are probably

unique in both the size of the datasets and the density of

labeled objects within each volume. Thus, it was previously

possible to get sufficient performance out of binary versions of

these algorithms.

Igneous’s focus on computational efficiency is important for

not only visualizing the largest connectomics projects but also

for making it possible for smaller labs to perform investigations

that would otherwise be out of reach. Our experiments showed

that the S1 dataset’s segmentation can be fully processed in

only 36 core-hours on a single machine. Igneous’s unique ability

to use compresso for segmentation compression makes it

much easier to store and transmit segmentations. Its ability to

condense datasets into a much smaller number of shard files

for images, meshes, and skeletons means that many different

filesystems will be able to cope with big data. The techniques

utilized are general and thus they can be incorporated into

other systems or allow Igneous to be extended to work with

other systems.

Nonetheless, there are areas that we wish to improve.

Igneous does not yet support all Neuroglancer features. In

particular, Igneous does not yet support annotations (though

we intend to). Another problem concerns the import of raw

data into Neuroglancer. As each initial dataset is often boutique

in its organization and formatting, we have not yet found a

standardized way to assist users in importing their raw data

before Igneous can be used. However, by studying existing

software, we hope to implement a method that will neatly fit into

the connectomics ecosystem.

While our skeletons are of mostly high quality in thin

processes, in bulbous regions such as somata, they are less

organized, especially if the region was not skeletonized with

full context. Parallel traces can also occur along wires that run

parallel to the edges of the task grid. We hope to address these

issues with future refinements.

This article also adds useful guidance for tuning both

image and segmentation compression for datasets similar to

CREMI. We found that for lossless compression, PNG was

somewhat surprisingly better for image compression than the

simple application of gzip or brotli though it was much

slower for both encoding and decoding. For connectomics

segmentation, we found that the overall best choice was

compresso+brotli compression which to the extent of

our knowledge has very low actual usage due in part to the

relatively recent appearance of a practical implementation of

the codec. compresso+brotli was slightly slower than

compressed_segmentation+brotli at decoding but

had a significantly higher compression ratio.

Igneous provides a foundational tool for reliably scaling,

visualizing, analyzing, and managing connectomics datasets. It

provides unique publicly accessible capabilities for large-scale

meshing and skeletonization and for segmentation compression.

We expect it to be an indispensable tool as connectomics

datasets, such as the whole mouse brain, attain exascale.

Data availability statement

The code for Igneous and required libraries can be

found on PyPI (https://pypi.org/project/igneous-pipeline/)

and GitHub (https://github.com/seung-lab/igneous) under

GPL3+ licensure. A pre-built docker image can be found on

DockerHub (https://hub.docker.com/repository/docker/seungl

ab/igneous). zmesh can be found at https://github.com/seung-

lab/zmesh. Image data used for image compression, meshing,

and skeletonization experiments can be found at https://cremi.

org/data/. The S1 processing experiment was performed on

an unpublished automatic segmentation of https://neurodata.

io/data/kasthuri15/. The large scale skeletonization run was

performed on an unpublished automatic segmentation of

the “minnie65” subset of https://www.microns-explorer.org/

cortical-mm3.

Author contributions

WS is the primary developer of Igneous and wrote the

manuscript. AZ is the author of the C++ core algorithms

and Cython wrapper that were further developed by WS, NK,

AZ, and JW to become zmesh. WS and JB developed the

skeletonization pipeline. IT and WS initiated the project in

2017. NK contributed improvements to the meshing code. JW

contributed the design for task distribution via a dependency-

free cloud queue. HS and JW contributed to the study

design. All authors contributed to the article and approved the

submitted version.

Funding

This research was supported by the Intelligence Advanced

Research Projects Activity (IARPA) via Department of

Interior/ Interior Business Center (DoI/IBC) contract number

D16PC0005, NIH/NIMH (U01MH114824, U01MH117072,

Frontiers inNeural Circuits 19 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
https://pypi.org/project/igneous-pipeline/
https://github.com/seung-lab/igneous
https://hub.docker.com/repository/docker/seunglab/igneous
https://github.com/seung-lab/zmesh
https://github.com/seung-lab/zmesh
https://cremi.org/data/
https://cremi.org/data/
https://neurodata.io/data/kasthuri15/
https://neurodata.io/data/kasthuri15/
https://www.microns-explorer.org/cortical-mm3
https://www.microns-explorer.org/cortical-mm3
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

and RF1MH117815), NIH/NINDS (U19NS104648 and

R01NS104926), NIH/NEI (R01EY027036), and ARO

(W911NF-12-1-0594). The U.S. Government is authorized

to reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright annotation thereon.

Acknowledgments

The authors are pleased to acknowledge that the work

reported on in this paper was substantially performed using

the Princeton Research Computing resources at Princeton

University which is consortium of groups led by the Princeton

Institute for Computational Science and Engineering (PICSciE)

and Office of Information Technology’s Research Computing.

Forrest Collman and Sven Dorkenwald helped test early

versions of the skeletonization pipeline and contributed helpful

discussions. Sergiy Popovych articulated the need for FileQueue

and collaborated on testing it. Manuel Castro wrote the original

version of DracoPy and added Draco mesh compression to

Igneous. We graciously thank everyone that has previously (or

will have in the future) contributed code to Igneous. We are

grateful for assistance from Google, Amazon, and Intel.

Conflict of interest

NK is employed by Zetta AI L.L.C. HS has financial interests

in Zetta AI L.L.C. This study received assistance from Google,

Amazon, and Intel. These companies were not involved in the

study design, collection, analysis, interpretation of data, the

writing of this article, or the decision to submit it for publication.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Author disclaimer

The views and conclusions contained herein are

those of the authors and should not be interpreted as

necessarily representing the official policies or endorsements,

either expressed or implied, of IARPA, DoI/IBC, or the

U.S. Government.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fncir.

2022.977700/full#supplementary-material We include three

supplements to this text.

1. A three part video tutorial on getting started with Igneous.

2. A tabular non-comprehensive landscape overview of

selected viewers, proofreading tools, and computational

pipelines.

3. Supplementary figures that provide additional quantitative

information comparing Igneous meshes and skeletons to

scikit-image and Fiji’s Skeletonize3d respectively.

Video tutorial

We show how to take sample HDF5 electron microscopy

images and segmentations from https://cremi.org/data/

and fully process them into multi-resolution, meshed, and

skeletonized Neuroglancer Precomputed layers. This tutorial

covers the simplest processing pathway and does not cover

producing sharded versions of these data types, parameter

selection, nor distributed processing.

The tutorial consists of three parts:

1. Creating a base Neuroglancer Precomputed image and

installing Igneous.

2. Creating multi-resolution image layers with Igneous

(“downsampling”).

3. Creating meshes and skeletons.

Selected visualization, proofreading, and
computational landscape overview

To better help the reader understand Igneous’ relationship

to other tools, we compiled a table of selected visualization,

proofreading, and computational tools and evaluated them

along dimensions mentioned in the Related Work section.

Though it includes many entries, this table should not be

considered comprehensive.

A few tools mentioned in this table were not previously

mentioned in this article, so we will give their citations here:

SABER54, SharkViewer55, and Paintera.56

For more information about the visualization

landscape, please consult Beyer et al. (2013,

54 https://github.com/aplbrain/saber

55 https://github.com/JaneliaSciComp/SharkViewer

56 https://github.com/saalfeldlab/paintera

Frontiers inNeural Circuits 20 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
https://www.frontiersin.org/articles/10.3389/fncir.2022.977700/full#supplementary-material
https://cremi.org/data/
https://github.com/aplbrain/saber
https://github.com/JaneliaSciComp/SharkViewer
https://github.com/saalfeldlab/paintera
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

2022) and Berger et al. (2018) which contain

additional descriptions.

Supplementary figures

We include additional figures comparing meshes and

skeleton quality to established libraries.

1. Ratio of mesh volume to voxel volume for zmesh meshes

(both simplified and unsimplified).

2. Comparison of zmesh mesh centroids to label

centroids.

3. Comparison of voxel thinning and Igneous skeleton

properties.

4. Example of a “beehive” skeleton.

References

Abbott, L. F., Bock, D. D., Callaway, E. M., Denk, W., Dulac, C.,
Fairhall, A. L., et al. (2020). The mind of a mouse. Cell 182, 1372–1376.
doi: 10.1016/j.cell.2020.08.010

Ai-Awami, A. K., Beyer, J., Haehn, D., Kasthuri, N., Lichtman, J. W., Pfister,
H., et al. (2016). NeuroBlocks–visual tracking of segmentation and proofreading
for large connectomics projects. IEEE Trans. Visual. Comput. Graph. 22, 738–746.
doi: 10.1109/TVCG.2015.2467441

Alakuijala, J., and Szabadka, Z. (2016). Brotli Compressed Data Format. Internet
Engineering Task Force. doi: 10.17487/rfc.7932

Anderson, J., Mohammed, S., Grimm, B., Jones, B., Koshevoy, P., Tasdizen,
T., et al. (2011). The Viking viewer for connectomics: scalable multi-user
annotation and summarization of large volume data sets. J. Microsc. 241, 13–28.
doi: 10.1111/j.1365-2818.2010.03402.x

Balaji, S. B., Krishnan, M. N., Vajha, M., Ramkumar, V., Sasidharan, B., and
Kumar, P. V. (2018). Erasure coding for distributed storage: an overview. Sci. China
Inform. Sci. 61, 100301. doi: 10.1007/s11432-018-9482-6

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., and Smith,
K. (2011). Cython: the best of both worlds. Comput. Sci. Eng. 13, 31–39.
doi: 10.1109/MCSE.2010.118

Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., et al.
(2019). Ilastik: Interactive machine learning for (bio)image analysis. Nat. Methods
16, 1226–1232. doi: 10.1038/s41592-019-0582-9

Berger, D. R., Seung, H. S., and Lichtman, J. W. (2018). VAST (volume
annotation and segmentation tool): efficient manual and semi-automatic labeling
of large 3D image stacks. Front. Neural Circ 12, 88. doi: 10.3389/fncir.2018.
00088

Beyer, J., Al-Awami, A., Kasthuri, N., Lichtman, J. W., Pfister, H., and
Hadwiger, M. (2013). ConnectomeExplorer: query-guided visual analysis of large
volumetric neuroscience data. IEEE Trans. Visual. Comput. Graph. 19, 2868–2877.
doi: 10.1109/TVCG.2013.142

Beyer, J., Troidl, J., Boorboor, S., Hadwiger, M., Kaufman, A., and Pfister, H.
(2022). “A survey of visualization and analysis in high-resolution connectomics,”
in Computer Graphics Forum, Vol. 41 (Rome). doi: 10.1111/cgf.14574

Bitter, I., Kaufman, A., and Sato, M. (2001). Penalized-distance volumetric
skeleton algorithm. IEEE Trans. Visual. Comput. Graph. 7, 195–206.
doi: 10.1109/2945.942688

Boergens, K. M., Berning, M., Bocklisch, T., Bräunlein, D., Drawitsch, F.,
Frohnhofen, J., et al. (2017). webKnossos: efficient online 3D data annotation for
connectomics. Nat. Methods 14, 691–694. doi: 10.1038/nmeth.4331

Buchanan, J., Elabbady, L., Collman, F., Jorstad, N. L., Bakken, T. E., Ott, C.,
et al. (2021). Oligodendrocyte precursor cells prune axons in the mouse neocortex.
bioRxiv. doi: 10.21203/rs.3.rs-581121/v1

Cardona, A., Saalfeld, S., Schindelin, J., Arganda-Carreras, I., Preibisch, S.,
Longair, M., et al. (2012). TrakEM2 software for neural circuit reconstruction. PLoS
ONE 7, e38011. doi: 10.1371/journal.pone.0038011

Dorkenwald, S., McKellar, C. E., Macrina, T., Kemnitz, N., Lee, K., Lu, R., et al.
(2021). FlyWire: Online community for whole-brain connectomics. Nat. Methods
19, 1–10. doi: 10.1101/2020.08.30.274225

Dorkenwald, S., Schneider-Mizell, C., and Collman, F. (2020).
Sdorkenw/MeshParty: V1.9.0. Zenodo.

Fiala, J. C. (2005). Reconstruct: a free editor for serial section microscopy. J.
Microsc. 218, 52–61. doi: 10.1111/j.1365-2818.2005.01466.x

Garland, M., and Heckbert, P. S. (1997). “Surface simplification using quadric
error metrics,” in Proceedings of the 24th Annual Conference on Computer Graphics

and Interactive Techniques - SIGGRAPH ’97 (Los Angelas, CA: ACM Press),
209–216. doi: 10.1145/258734.258849

Haehn, D., Knowles-Barley, S., Roberts, M., Beyer, J., Kasthuri, N., Lichtman,
J. W., et al. (2014). Design and evaluation of interactive proofreading tools
for connectomics. IEEE Trans. Visual. Comput. Graph. 20(12):2466–2475.
doi: 10.1109/TVCG.2014.2346371

Helmstaedter, M., Briggman, K. L., and Denk, W. (2011). High-accuracy neurite
reconstruction for high-throughput neuroanatomy. Nat. Neurosci. 14, 1081–1088.
doi: 10.1038/nn.2868

Helmstaedter,M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S., andDenk,
W. (2013). Connectomic reconstruction of the inner plexiform layer in the mouse
retina. Nature 500, 168–174. doi: 10.1038/nature12346

Hider, R., Kleissas, D. M., Pryor, D., Gion, T., Rodriguez, L., Matelsky, J., et al.
(2019). The block object storage service (bossDB): a cloud-native approach for
petascale neuroscience discovery. bioRxiv.

Hoppe, H. (1999). “New quadric metric for simplifying meshes with appearance
attributes,” in Proceedings Visualization ’99 (San Francisco, CA: IEEE), 59–510.
doi: 10.1109/VISUAL.1999.809869

Jeong, W. K., Beyer, J., Hadwiger, M., Blue, R., Law, C., Vazquez-Reina, A.,
et al. (2010). Ssecrett and NeuroTrace: interactive visualization and analysis tools
for large-scale neuroscience data sets. IEEE Comput. Graph. Appl. 30, 58–70.
doi: 10.1109/MCG.2010.56

Kasthuri, N., Hayworth, K. J., Berger, D. R., Schalek, R. L., Conchello, J. A.,
Knowles-Barley, S., et al. (2015). Saturated reconstruction of a volume of neocortex.
Cell 162, 648–661. doi: 10.1016/j.cell.2015.06.054

Katz, W. T., and Plaza, S. M. (2019). DVID: distributed versioned
image-oriented dataservice. Front. Neural Circ. 13, 5. doi: 10.3389/fncir.2019.
00005

Kim, J. S., Greene, M. J., Zlateski, A., Lee, K., Richardson, M., Turaga, S. C., et al.
(2014). Space-time wiring specificity supports direction selectivity in the retina.
Nature 509, 331–336. doi: 10.1038/nature13240

Kremer, J. R., Mastronarde, D. N., and McIntosh, J. R. (1996). Computer
visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116,
71–76. doi: 10.1006/jsbi.1996.0013

Lee, T.-C., and Kashyap, R. L. (1994). “Building skeleton models via 3-
D medial surface/axis thinning algorithms,” in CVGIP: Graphical Models
and Image Processing (Orlando, FL: Academic Press, Inc.), 462–478.
doi: 10.1006/cgip.1994.1042

Lorensen, W. E., and Cline, H. E. (1987). Marching cubes: a high-resolution
3D surface construction algorithm. ACM SIGGRAPH Comput. Graph. 21, 7.
doi: 10.1145/37402.37422

Maitin-Shepard, J., Baden, A., Silversmith,W., Perlman, E., Collman, F., Blakely,
T., et al. (2021). Google/Neuroglancer. Zenodo.

Matejek, B., Haehn, D., Lekschas, F., Mitzenmacher, M., and Pfister, H.
(2017). “Compresso: efficient compression of segmentation data for connectomics,”
in Medical Image Computing and Computer Assisted Intervention – MICCAI
2017, eds M. Descoteaux, L. Maier-Hein, A. Franz, P. Jannin, D. L.
Collins, and S. Duchesne (Cham: Springer International Publishing), 781–788.
doi: 10.1007/978-3-319-66182-7_89

Matejek, B., Wei, D., Wang, X., Zhao, J., Palágyi, K., and Pfister, H.
(2019). “Synapse-aware skeleton generation for neural circuits,” in Medical Image
Computing and Computer Assisted Intervention?MICCAI 2019, eds D. Shen, T.
Liu, T. M. Peters, L. H. Staib, C. Essert, S. Zhou, P. T. Yap, and A. Khan
(Cham: Springer International Publishing), 227–235. doi: 10.1007/978-3-030-
32239-7_26

Frontiers inNeural Circuits 21 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
https://doi.org/10.1016/j.cell.2020.08.010
https://doi.org/10.1109/TVCG.2015.2467441
https://doi.org/10.17487/rfc.7932
https://doi.org/10.1111/j.1365-2818.2010.03402.x
https://doi.org/10.1007/s11432-018-9482-6
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1038/s41592-019-0582-9
https://doi.org/10.3389/fncir.2018.00088
https://doi.org/10.1109/TVCG.2013.142
https://doi.org/10.1111/cgf.14574
https://doi.org/10.1109/2945.942688
https://doi.org/10.1038/nmeth.4331
https://doi.org/10.21203/rs.3.rs-581121/v1
https://doi.org/10.1371/journal.pone.0038011
https://doi.org/10.1101/2020.08.30.274225
https://doi.org/10.1111/j.1365-2818.2005.01466.x
https://doi.org/10.1145/258734.258849
https://doi.org/10.1109/TVCG.2014.2346371
https://doi.org/10.1038/nn.2868
https://doi.org/10.1038/nature12346
https://doi.org/10.1109/VISUAL.1999.809869
https://doi.org/10.1109/MCG.2010.56
https://doi.org/10.1016/j.cell.2015.06.054
https://doi.org/10.3389/fncir.2019.00005
https://doi.org/10.1038/nature13240
https://doi.org/10.1006/jsbi.1996.0013
https://doi.org/10.1006/cgip.1994.1042
https://doi.org/10.1145/37402.37422
https://doi.org/10.1007/978-3-319-66182-7_89
https://doi.org/10.1007/978-3-030-32239-7_26
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Silversmith et al. 10.3389/fncir.2022.977700

MICrONS Consortium, Bae, J. A., Baptiste, M., Bodor, A. L., Brittain, D.,
Buchanan, J., et al. (2021). Functional connectomics spanning multiple areas of
mouse visual cortex. bioRxiv. doi: 10.1101/2021.07.28.454025

Miles, A., Bussonnier, M., Moore, J., Fulton, A., Bourbeau, J., Onalan, T., et al.
(2022). Zarr-Developers/Zarr-Python: None. Zenodo.

Peng, H., Ruan, Z., Long, F., Simpson, J. H., and Myers, E. W. (2010).
V3D enables real-time 3D visualization and quantitative analysis of large-
scale biological image data sets. Nat. Biotechnol. 28, 348–353. doi: 10.1038/nbt.
1612

Pfister, H., Kaynig, V., Botha, C. P., Bruckner, S., Dercksen, V. J., Hege,
H.-C., et al. (2014). “Visualization in connectomics,” in Scientific Visualization:
Uncertainty, Multifield, Biomedical, and Scalable Visualization, eds C. D. Hansen,
M. Chen, C. R. Johnson, A. E. Kaufman, and H. Hagen (London: Springer),
221–245. doi: 10.1007/978-1-4471-6497-5_21

Pietzsch, T., Saalfeld, S., Preibisch, S., and Tomancak, P. (2015). BigDataViewer:
visualization and processing for large image data sets. Nat. Methods 12, 481–483.
doi: 10.1038/nmeth.3392

Reilly, E. P., Garretson, J. S., Gray Roncal, W. R., Kleissas, D. M., Wester, B. A.,
Chevillet, M. A., et al. (2018). Neural reconstruction integrity: a metric for assessing
the connectivity accuracy of reconstructed neural networks. Front. Neuroinform.
12, 74. doi: 10.3389/fninf.2018.00074

Rose Li and Associates Inc. (2021). Brain Connectivity Workshop Series Report.
Technical report, USDOE Office of Science (SC) (United States).

Saalfeld, S., Cardona, A., Hartenstein, V., and Tomančák, P. (2009). CATMAID:
collaborative annotation toolkit for massive amounts of image data. Bioinformatics
25, 1984–1986. doi: 10.1093/bioinformatics/btp266

Sato, M., Bitter, I., Bender, M., Kaufman, A., and Nakajima, M. (2000).
“TEASAR: tree-structure extraction algorithm for accurate and robust skeletons,”
in Proceedings the Eighth Pacific Conference on Computer Graphics and Applications
(Hong Kong: IEEE), 281–449. doi: 10.1109/PCCGA.2000.883951

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch,
T., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat.
Methods 9, 676–682. doi: 10.1038/nmeth.2019

Schlegel, P., and Kazimiers, T. (2021). Schlegelp/Skeletor: Version 1.1.0. Zenodo.

Schneider-Mizell, C. M., Bodor, A. L., Collman, F., Brittain, D., Bleckert,
A. A., Dorkenwald, S., et al. (2020). Chandelier cell anatomy and function
reveal a variably distributed but common signal. bioRxiv. doi: 10.1101/2020.03.31.
018952

Shapson-Coe, A., Januszewski, M., Berger, D. R., Pope, A., Wu, Y., Blakely,
T., et al. (2021). A connectomic study of a petascale fragment of human cerebral
cortex. bioRxiv. doi: 10.1101/2021.05.29.446289

Shearer, R. W. (2009). Omni: visualizing and editing large-scale volume
segmentations of neuronal tissue (thesis). Massachusetts Institute of Technology,
Cambridge, MA, United States.

Silversmith, W. (2021). Seung-Lab/Connected-Components-3D: Zenodo Release
v1. Zenodo.

Silversmith, W., Bae, J. A., Li, P. H., and Wilson, A. M. (2021a). Seung-
Lab/Kimimaro: Zenodo Release v1. Zenodo.

Silversmith, W., Collman, F., Kemnitz, N., Wu, J., Castro, M., Falk, B., et al.
(2021b). Seung-Lab/Cloud-Volume: Zenodo Release v1. Zenodo.

Sofroniew, N., Lambert, T., Evans, K., Nunez-Iglesias, J., Bokota, G., Winston,
P., et al. (2022). Napari: A Multi-Dimensional Image Viewer for Python. Zenodo.

Tagliasacchi, A., Delame, T., Spagnuolo, M., Amenta, N., and Telea, A. (2016).
3D skeletons: a state-of-the-art report. Comput. Graph. Forum 35, 573–597.
doi: 10.1111/cgf.12865

Turner, N. L., Macrina, T., Bae, J. A., Yang, R., Wilson, A. M., Schneider-Mizell,
C., et al. (2022). Reconstruction of neocortex: organelles, compartments, cells,
circuits, and activity. Cell. 185, 1082–1100.e24. doi: 10.1016/j.cell.2022.01.023

Wanner, A. A., Genoud, C., Masudi, T., Siksou, L., and Friedrich, R. W. (2016).
Dense EM-based reconstruction of the interglomerular projectome in the zebrafish
olfactory bulb. Nat. Neurosci. 19, 816–825. doi: 10.1038/nn.4290

Wilson, A. M., Schalek, R., Suissa-Peleg, A., Jones, T. R., Knowles-Barley, S.,
Pfister, H., et al. (2019). Developmental rewiring between cerebellar climbing fibers
and Purkinje cells begins with positive feedback synapse addition. Cell Rep. 29,
2849–2861. doi: 10.1016/j.celrep.2019.10.081

Wu, J., Silversmith, W. M., Lee, K., and Seung, H. S. (2021). Chunkflow: hybrid
cloud processing of large 3D images by convolutional nets. Nat. Methods 18,
328–330. doi: 10.1038/s41592-021-01088-5

Wu, J., Turner, N., Bae, J. A., Vishwanathan, A., and Seung,
H. S. (2022). RealNeuralNetworks.jl: an integrated julia package for
skeletonization, morphological analysis, and synaptic connectivity analysis
of terabyte-scale 3D neural segmentations. Front. Neuroinform. 16, 828169.
doi: 10.3389/fninf.2022.828169

Xu, C. S., Januszewski, M., Lu, Z., Takemura, S.-Y., Hayworth, K. J., Huang,
G., et al. (2020). A connectome of the adult Drosophila central brain. Elife
9:e57443.doi: 10.7554/eLife.57443

Yoo, A. B., Jette, M. A., and Grondona, M. (2003). “SLURM: simple linux utility
for resource management,” in Job Scheduling Strategies for Parallel Processing, eds
D. Feitelson, L. Rudolph, and U. Schwiegelshohn (Berlin; Heidelberg: Springer),
44–60. doi: 10.1007/10968987_3

Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C.,
et al. (2006). User-guided 3D active contour segmentation of anatomical structures:
significantly improved efficiency and reliability. Neuroimage 31, 1116–1128.
doi: 10.1016/j.neuroimage.2006.01.015

Zhao, T., Olbris, D. J., Yu, Y., and Plaza, S. M. (2018). NeuTu: software for
collaborative, large-scale, segmentation-based connectome reconstruction. Front.
Neural Circ. 12, 101. doi: 10.3389/fncir.2018.00101

Zhao, T., and Plaza, S. M. (2014). Automatic neuron type identification by
neurite localization in the Drosophila medulla. arXiv preprint arXiv:1409.1892.

Zheng, Z., Lauritzen, J. S., Perlman, E., Robinson, C. G., Nichols, M., Milkie,
D., et al. (2018). A complete electron microscopy volume of the brain of adult
Drosophila melanogaster. Cell 174, 730–743. doi: 10.1016/j.cell.2018.06.019

Frontiers inNeural Circuits 22 frontiersin.org

https://doi.org/10.3389/fncir.2022.977700
https://doi.org/10.1101/2021.07.28.454025
https://doi.org/10.1038/nbt.1612
https://doi.org/10.1007/978-1-4471-6497-5_21
https://doi.org/10.1038/nmeth.3392
https://doi.org/10.3389/fninf.2018.00074
https://doi.org/10.1093/bioinformatics/btp266
https://doi.org/10.1109/PCCGA.2000.883951
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1101/2020.03.31.018952
https://doi.org/10.1101/2021.05.29.446289
https://doi.org/10.1111/cgf.12865
https://doi.org/10.1016/j.cell.2022.01.023
https://doi.org/10.1038/nn.4290
https://doi.org/10.1016/j.celrep.2019.10.081
https://doi.org/10.1038/s41592-021-01088-5
https://doi.org/10.3389/fninf.2022.828169
https://doi.org/10.7554/eLife.57443
https://doi.org/10.1007/10968987_3
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.3389/fncir.2018.00101
https://doi.org/10.1016/j.cell.2018.06.019
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

	Igneous: Distributed dense 3D segmentation meshing, neuron skeletonization, and hierarchical downsampling
	1. Introduction
	1.1. Related work
	1.1.1. Meshing
	1.1.2. Skeletonization
	1.1.3. Images

	2. Methods
	2.1. Condensing files (``sharding'')
	2.2. Supported data encodings
	2.2.1. Microscopy images
	2.2.2. Segmentation images
	2.2.3. Meshes
	2.2.4. Skeletons

	2.3. Downsampling
	2.4. Meshing
	2.5. Skeletonization
	2.6. Contrast correction
	2.7. Dataset management
	2.7.1. Transfer, re-chunking, and re-encoding
	2.7.2. Deletion
	2.7.3. Sharded transfers

	2.8. Using and installing igneous

	3. Results
	3.1. Evaluating image compression on CREMI data
	3.2. Processing mouse primary somatosensory cortex (S1) segmentation
	3.3. Historical runs
	3.4. Characterizing mesh quality
	3.5. Characterizing skeleton quality

	4. Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Author disclaimer
	Supplementary material
	Video tutorial
	Selected visualization, proofreading, and computational landscape overview
	Supplementary figures

	References

