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Conductance-based models have played an important role in the development of

modern neuroscience. These mathematical models are powerful “tools” that enable

theoretical explorations in experimentally untenable situations, and can lead to the

development of novel hypotheses and predictions. With advances in cell imaging

and computational power, multi-compartment models with morphological accuracy

are becoming common practice. However, as more biological details are added,

they make extensive explorations and analyses more challenging largely due to

their huge computational expense. Here, we focus on oriens-lacunosum/moleculare

(OLM) cell models. OLM cells can contribute to functionally relevant theta rhythms

in the hippocampus by virtue of their ability to express spiking resonance at theta

frequencies, but what characteristics underlie this is far from clear. We converted a

previously developed detailed multi-compartment OLM cell model into a reduced

single compartment model that retained biophysical fidelity with its underlying ion

currents. We showed that the reduced OLM cell model can capture complex output

that includes spiking resonance in in vivo-like scenarios as previously obtained with

the multi-compartment model. Using the reduced model, we were able to greatly

expand our in vivo-like scenarios. Applying spike-triggered average analyses, we were

able to to determine that it is a combination of hyperpolarization-activated cation and

muscarinic type potassium currents that specifically allow OLM cells to exhibit spiking

resonance at theta frequencies. Further, we developed a robust Kalman Filtering (KF)

method to estimate parameters of the reduced model in real-time. We showed that it

may be possible to directly estimate conductance parameters from experiments since

this KF method can reliably extract parameter values from model voltage recordings.

Overall, our work showcases how the contribution of cellular biophysical current

details could be determined and assessed for spiking resonance. As well, our work

shows that it may be possible to directly extract these parameters from current clamp

voltage recordings.
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hippocampus, interneuron, theta rhythm, h-current, M-current, Kalman Filter, parameter
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1. Introduction

It is challenging not only to classify the multitude of different

cell types, but also to understand their contributions in brain circuits

under normal and pathological states (Zeng and Sanes, 2017; Fishell

and Kepecs, 2020). While it is currently possible to record from

different cell types in vivo, this is technically difficult and laborious

to achieve for identified cell types in large numbers. Moreover,

a cell’s biophysical characteristics necessarily have to be obtained

from in vitro studies. Neuronal modeling can bring in vitro and

in vivo studies together by computationally creating artificial in

vivo states with mathematical models of a given cell type (Destexhe

et al., 2003). These models can be viewed as virtual in vivo brain

circuits. Taking advantage of this approach, we have previously

used our computational models to show specialized contributions

of interneuron-specific inhibitory cell types in the creation of

temporally precise coordination of modulatory pathways (Guet-

McCreight and Skinner, 2021). In this way, computational models

can help us to gain insight into how specific cell types contribute in

different brain states in vivo.

Oriens-lacunosum/moleculare (OLM) cells are inhibitory cell

types in the hippocampus that function to gate sensory and

contextual information in the CA1 (Leão et al., 2012) and support

fear memory acquisition (Lovett-Barron et al., 2014). Their firing is

phase-locked to the prominent theta rhythms of behaving animals

(Klausberger et al., 2003; Varga et al., 2012; Katona et al., 2014). OLM

cells have the ability to spike at theta frequencies (Maccaferri and

McBain, 1996) and to have a spiking preference to theta frequency

sinusoidal inputs (Pike et al., 2000) in vitro, although they exhibit

little if any subthreshold resonance at theta frequencies (Zemankovics

et al., 2010; Kispersky et al., 2012). It is unlikely that OLM cells

play a theta pacemaking role since experiments by Kispersky et al.

(2012) have shown that OLM cells do not fire preferentially at

theta frequencies when injected with artificial synaptic inputs to

mimic in vivo states. However, if frequency-modulated inputs are

presented instead, then there is a theta frequency firing preference.

This suggests that OLM cells could contribute to theta rhythms

by amplifying theta-modulated activity from presynaptic sources

due to their ability to phase-lock with theta-modulated inputs—i.e.,

they exhibit theta frequency spiking resonance. What biophysical

characteristics possessed by OLM cells might be essential to allow

them to exhibit spiking resonance at theta frequencies?

A long-known prominent feature of OLM cells is their “sag”

which is due to the presence of hyperpolarization-activated cation

channels or h-channels (Maccaferri and McBain, 1996). However,

in their experimental work, Kispersky et al. (2012) found that

theta frequency spiking resonance did not depend on h-channel

currents, but it did depend on an after-hyperpolarization (AHP)-like

current. OLM cells have a distinct cholinergic fingerprint (Lawrence,

2008; Pancotti and Topolnik, 2022), possessing muscarinic (M-)

potassium channel currents that can contribute to AHP behaviors

(Lawrence et al., 2006b). Interestingly, muscarinic acetylcholine

receptor (mAChR) activation (which inhibits M-channels) of OLM

cells has been shown to enhance firing reliablility and precision to

theta frequency input (Lawrence et al., 2006a).

Kispersky et al. (2012) generated in vivo-like scenarios in

their slice preparations using dynamic clamp technology which

limited the artificial synaptic inputs to somatic locations. However,

synaptic input mostly occurs in dendritic regions. Given this, Sekulić

and Skinner (2017) used a developed database of detailed multi-

compartment OLM model cells which either had h-channels in their

dendrites or not, and created in vivo-like scenarios but with artificial

synapses that included dendritic regions. They found that OLM

cells could be recruited by high or low theta frequency inputs that

was dependent on whether h-channels were present in the OLM

model cell dendrites or not, respectively (Sekulić and Skinner, 2017).

Following this, tightly integrated experimental and modeling work

demonstrated that h-channels must necessarily be present on OLM

cell dendrites to be able to match experiments (Sekulić et al., 2020).

Moving forward, these OLM cell models were used to produce in

vivo-like (IVL) states, but with consideration of actual presynaptic

cell populations (Guet-McCreight and Skinner, 2020). That is, actual

synapses were modeled with determined characteristics based on

known presynaptic input to OLM cells. Using these IVL states, we

showed that spiking resonance at theta frequencies is possible in

OLM cells (Guet-McCreight and Skinner, 2021). However, we were

limited in the IVL frequencies that our models could express and

the detailed multi-compartment nature of the model with thousands

of presynaptic inputs prevented a full exploration of what OLM

cell biophysical characteristics during IVL states might be critical in

bringing about theta frequency spiking resonances.

To tackle this, we here develop a reduced biophysically faithful

single compartment OLM cell model and consider this model

embedded in a virtual network as represented by IVL states. We

use these IVL virtual networks to determine what biophysical details

of OLM cells matter for them to exhibit theta frequency spiking

resonance. We first “validate” that our reduced model is capable of

capturing complex behaviors by showing that it can match results

expressed by the full multi-compartment models (Guet-McCreight

and Skinner, 2021), and we then examine spiking resonance in IVL

states. From an extensive exploration, we are able to show that a

combination of h- and M-channels produce the controlling currents

for theta frequency spiking resonance. Inspired by Azzalini et al.

(2022), we then move on to adjust a robust Kalman Filter (KF)

algorithm and use it to estimate parameters of the reduced OLM cell

model from membrane potential recordings of the model cells. This

indicates that it should be possible to extract parameter values directly

from experimental recordings in a real-time fashion. Overall, our

work shows that linking in vitro, in vivo experimental, computational,

and engineering techniques can bring about novel ways to obtain

biophysical, cellular understandings of brain circuits.

2. Methods

We used two models in this work. The first model is of

our previously published full multi-compartment OLM cell model

(Sekulić et al., 2020), but with some minor modifications described

below. We refer to this slightly modified model as “FULL.” The

second model is a reduced single compartment model that is

derived from FULL, and is described in detail below. We refer to it

as “SINGLE.”

2.1. Multi-compartment OLM cell model

All of the details of our previously developed multi-compartment

model can be found in Sekulić et al. (2020). This detailed model was
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developed in direct and tight correspondence with experimental data

and we have referred to it as a “neuron-to-model matched” (NMM)

model in our previous work (Guet-McCreight and Skinner, 2021).

Here, we use Cell 1 of the previously developed NMMmodels. There

are nine different currents in this model and we refer to them by

their bracketed acronyms: hyperpolarization-activated cation current

(Ih), transient sodium (INa), fast delayed rectifier (IKdrf), slow

delayed rectifier (IKdrs), A-type potassium (IKa), M-type (IM), T-

type calcium (ICaT), L-type calcium (ICaL), and calcium-dependent

potassium (IKCa).

In examining the multi-compartment model for subsequent

reduction, we first simplified the representation of the calcium

dynamics to obtain a slightly modified multi-compartment model

that we refer to as FULL. The specifics of this modification are

provided in Supplementary material. We note that there is minimal

difference (on average<1.5 ms difference in spike timing, and<0.6%

in the resulting voltage and <0.12% for any of the biophysical

currents in comparing 30, 60, and –120 pA current steps) between

FULL and the previously published Cell 1 NMM model. The set of

equations for all the biophysical currents of FULL are provided in

Supplementary material.

2.2. Single compartment OLM cell model
development

Starting from FULL, we created a single compartment OLM

cell model in which biophysical fidelity was maintained as best as

possible. In examining all the currents in FULL, we noticed that IKdrs

could be removed without much effect. Specifically, we found that

there is <0.35% difference when comparing voltage peaks (30 and

60 pA current steps) and <0.15% for any of the other currents when

the IKdrs conductance was set to zero, and <0.0015% for voltage or

current differences at -120 pA step. Also, we note that in order to be

able to capture any of the calcium dynamics in FULL, at least a two-

compartment model would be required since calcium channels are

only present in the dendrites of FULL—see Supplementary material

for further details.

For practical reasons of: (i) Computational efficiency in

doing extensive spiking resonance explorations, and (ii) Evaluating

parameter estimation techniques for direct use with experimental

OLM cells, we aimed to have a single compartment mathematical

model to use. We thus made the decision to remove consideration

of calcium at this stage to enable these practicalities. Therefore, ICaT,

ICaL and IKCa were not included in the single compartment model.

There are five remaining currents (IKa, IKdrf, IM, Ih, and INa) and

we proceeded with them to create a single compartment model with

biophysical fidelity as follows.

As this Cell 1 NMM model was directly matched with

experimental data in which both Ih characteristics and passive

properties were obtained in the same cell, we created a single

compartment model in which these aspects were maintained.

Specifically, the surface area, passive properties (leak current, IL) and

Ih, as directly obtained in Cell 1 (model and experiment) (Sekulić

et al., 2020), were minimally changed. The resulting input resistance,

time constant and total Ih are comparable to FULL. Further details

are provided in Supplementary material. The conductances of the

other four currents, IKa, IKdrf, IM and INa were optimized using

BluePyOpt (Van Geit et al., 2016) based on comparison with FULL.

Optimization details are provided in Supplementary material. We

refer to this single compartment model with optimized values as

SINGLE, and it constitutes our developed single compartment model

that is used in this work.

The contribution of the different currents to cell firing is shown

in Figure 1 for a 60 pA current step for FULL and SINGLE. As

easily seen using the currentscape visualization tool (Alonso and

Marder, 2019), the relative contribution of the various currents

are similar. Although similar, one can observe that there is some

compensation for the missing IKCa and calcium currents via IM

and IKdrs. These similar balances are apparent at other step currents

as shown in Supplementary Figure S4. We reasonably claim that

SINGLE is a single compartment OLM cell model that maintains

biophysical fidelity.

2.3. SINGLE analyses

2.3.1. Synaptic perturbation model
Previously, Guet-McCreight and Skinner (2021) applied synaptic

perturbations to their detailed multi-compartment model, which

as noted above is essentially the same as FULL and so we will

not distinguish them moving forward. These perturbations were

mostly done using 30 (inhibitory or excitatory) synapses randomly

distributed across the dendritic tree as a reasonable capturing of

experimental observations. Synaptic weights had been optimized

based on experiment (Guet-McCreight and Skinner, 2020). Since

SINGLE only has one compartment, perturbation was set to be 30

times the individual synaptic weight to maintain an approximately

equivalent response in SINGLE relative to FULL. Synaptic equations,

implementation and parameter values are identical to Equation 1 in

Guet-McCreight and Skinner (2020) except for the synaptic weight

values that are 0.006 (excitatory) and 0.0054 (inhibitory) µS here.

2.3.2. Direct comparisons with FULL
2.3.2.1. In vitro setup and phase response curve (PRC)

analyses

2.3.2.1.1. Firing rates

As done for FULL in Guet-McCreight and Skinner (2021),

different firing frequencies in in vitro states were obtained by

injecting constant currents into the cell to produce stable firing

rates and inter-spike intervals (ISIs). Firing rates were determined by

counting spikes over a 10 s interval.

2.3.2.1.2. Phase response curves (PRCs)

This analysis was conducted using inhibitory synaptic

perturbations with the same setup as in Guet-McCreight and

Skinner (2021). That is, we calculated percent phase change in

spiking behavior (1φ) from the length of the ISI before the

perturbation (T0) and with the perturbation (T1):

1φ = T1− T0

T0
× 100 (1)

A positive value indicates shortening of the ISI while a negative

value indicates a prolonging of the ISI. That is, a phase advance or

phase delay respectively. The PRC is generated using perturbations

at the full range of phases. To quantify the contribution of the
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FIGURE 1

Comparison of models-FULL and SINGLE. Currentscapes (Alonso and Marder, 2019) are shown for models of FULL (somatic location) (A) and SINGLE (B).

Their firings are similar and corresponding biophysical currents have similar balances. Simulations were conducted for 4,000 ms, with a holding current of

4 pA throughout. A step current of 60 pA was injected at 1,000 ms for 2,000 ms. Comparisons at other step currents are provided in Supplementary

material.

various currents to the PRCs, we also calculated percent change

in currents (1I) as done in Guet-McCreight and Skinner (2021).

For each current, we obtained its maximum amplitude between the

2nd last spike preceding the perturbation (I0), and its maximum

amplitude between the perturbation and the second spike following

the perturbation (I1). The percent change in maximum amplitude

due to perturbation (1I) was calculated as:

1I = I1− I0

I0
× 100 (2)

A positive value indicates an increase in maximum current

amplitude while a negative value indicates a decrease.

2.3.2.2. Spiking resonance calculations

In Guet-McCreight and Skinner (2021), we computed spiking

resonances for in vitro and in vivo-like (IVL) states. We computed

spiking resonances for SINGLE using the same measure as

described below.

Each voltage trace obtained was converted to a spike train (1

at spike onset and 0 elsewhere), and the power spectral density

(PSD) of each spike train was calculated using the welch function

from the Scipy signal module: signal.welch (signal, fs = 1/dt, scaling

= “density,” nperseg = 20,000). We defined a measure called the

‘baseline ratio’ to quantify how much a perturbation changes the

PSD value from its baseline state. The baseline ratio (δPSD) was

calculated as:

δPSD =
PSDfi perturbed

PSDfi baseline
(3)

Where fi is the frequency of the input perturbation. That is,

PSDfi perturbed is the spectral density value of the fi perturbed state

spike train, while PSDfi baseline is the spectral density value of the

baseline state spike train when there is no perturbation (or a

perturbation of "0"). Thus, δPSD measures the effectiveness of an fi
perturbation frequency entraining the cell to fire at that frequency.

A value of 1 indicates no effect, while higher values suggest more

effective entrainment. The resonant frequency (fr) is defined as the

perturbation frequency that produces the largest δPSD value.

2.3.2.2.1. In vitro state

With holding currents between 25.4 and 156.8 pA, we generated

50 baseline firing rates from 1 to 36 Hz. For each of the firing rates, we

perturbed the voltage using either excitatory or inhibitory synaptic

input. As we were doing a direct comparison, we used the same 15

perturbation frequencies as Guet-McCreight and Skinner (2021) that

ranged from 0.5 to 30 Hz.

2.3.2.2.2. In vivo-like (IVL) state

A much wider range of baseline firing rates in IVL states can be

obtained with SINGLE relative to FULL. For direct comparison with

spiking resonances obtained using themulti-compartment model, we

restricted the baseline frequencies of SINGLE as such and used the

same 15 perturbation frequencies that ranged from 0.5 to 30 Hz.

2.3.3. Expanded explorations with SINGLE
2.3.3.1. In vivo-like (IVL) states with SINGLE

To define an IVL state, we used the same metric as in Guet-

McCreight and Skinner (2020) which was previously developed to

reflect literature statistics of the OLM cell type in an IVL state. That

is:

IVLMetric = (Vm > −70.588mV)+ (σVm > 2.2mV)

+(ISICV > 0.8)+ (3Hz < f < 25Hz) (4)
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in which the average sub-threshold voltage or membrane potential,

Vm, the standard deviation of the sub-threshold membrane potential,

σVm , the coefficient of variation for inter-spike intervals, ISICV , and

the firing rate, f , are computed.

In Guet-McCreight and Skinner (2021), several IVL states were

obtained with the multi-compartment model by randomizing the

synaptic locations on the dendrites. This is of course not possible

with SINGLE as it is a single compartment model. Instead, we

followed the approach of Destexhe et al. (2001) that implements

stochastic synapses via an Ornstein-Uhlenbeck process (Uhlenbeck

and Ornstein, 1930). It is formulated as:

Isyn = ge(t)(V − Ee)+ gi(t)(V − Ei) (5)

where ge(t) and gi(t) are excitatory and inhibitory conductance values

as functions of time. Ee and Ei are excitatory and inhibitory reversal

potentials, and ge(t) and gi(t) are given by:

dge(t)

dt
= −1

τe
(ge(t)− ge0)+

√

DeN1(t) (6)

dgi(t)

dt
= −1

τi
(gi(t)− gi0)+

√

DiN2(t) (7)

where τe and τi are decay time constants; ge0 and gi0 are steady state,

or average conductances; N1(t) and N2(t) are Gaussian white noise

following a standard normal distribution;
√
Deand

√
Di are standard

deviations of the noise generated.

2.3.3.1.1. IVL state parameter search

We note that while this stochastic synaptic model would allow

several IVL states to be generated with SINGLE, most of its

parameters are not directly comparable to IVL states generated with

FULL, and as such, we cannot use pre-existing parameter values

obtained for IVL states and instead must search for them. We used

a brute force approach with nested for loops to search for sets of

parameter values for ge0, gi0,
√
De, and

√
Di that would generate

IVL states. For each set of parameter values, a 10 s long simulation

was performed and the resulting voltage trace was evaluated by the

IVL metric.

2.3.3.1.2. Constrained search

After experimenting with several parameter range values, we were

able to narrow values down to smaller ranges that would mostly

output IVL states. The smaller range exploration had ge0 varying from

0.003 to 0.006 with a resolution of 0.0002 µS, gi0 varying from 0.008

to 0.012 µS with resolution of 0.00027 µS,
√
De varying from 0 to

0.0016 µS with resolution of 0.000107 µS, and
√
Di varying from

0 to 0.01 µS with resolution of 0.00067 µS. In addition, we further

constrained our IVL states to be comparable with those obtained

with FULL. From an analysis of voltage traces of IVL states with

FULL fromGuet-McCreight and Skinner (2020), we obtained further

constraints of: 8 < σ 2
Vm

< 10mV2 and –70 < Vm < −67.5mV . This

additional constraint was applied only once to every parameter set to

allow output that was close enough to that obtained with FULL.

2.3.3.1.3. Selecting representative IVL states

For each IVL parameter set, fifty 10 s long simulations were run

with 50 distinct seeds (the same seeds were used for each set). From

these 50 simulations for each IVL parameter set, the minimum and

maximum firing rates were recorded, and each set would be clustered

as a two-dimensional (2D) system when plotted using its minimum

vs. maximum firing rate. From this 2D system, 10 IVL parameter

sets that span the firing rate space were selected as representative

IVL states encompassing the range of firing rate frequencies observed

in vivo for OLM cells. Since 50 distinct seeds were used, we would

have 500 IVL states. For each of these 500 states, we computed firing

rates (f ’s) and resonant frequencies (fr ’s). f ’s were computed as the

number of spikes occurring in the 10 s simulation divided by 10,

and fr ’s were computed as described above. We removed timepoints

occurring at 7 ms on either side of the peak of each spike, and

the mean and standard deviation of the remaining (independent)

timepoints after spike removal were used to obtain Vm and σVm . It is

possible that some of these 500 states may not fully be IVL states (as

defined by the metric) since due to stochasticity the same parameter

set might not always generate a (further constrained) IVL state for

each random seed used. Based on plots of σVm , Vm and ISICV when

using thousands of seeds, the majority of the resulting states remain

as IVL states (see Supplementary Figure S7).

2.3.3.2. Spike Triggering Average (STA) analyses

To extract biophysical contributions of resonant frequencies in

IVL states, we used STA analyses (Schwartz et al., 2006; Ito, 2015).

Oftentimes, a STA analysis (or reverse correlation) is applied using

mean input currents that precede spikes, and in a comparative

fashion with different cells types in experiments to gain insight

(e.g., see Moradi Chameh et al., 2021). Here, because we are using

mathematical models, we are able to consider relative contributions

of the underlying active and passive currents preceding spikes

in a comparative fashion. This is in an analogous vein to when

we considered how the different currents responded with phase-

dependent perturbations in addition to the ‘standard’ PRC obtained

when one considers how much the subsequent spike is advanced

or delayed given phase-dependent perturbations as done in Guet-

McCreight and Skinner (2021).

For spiking resonances, we used 27 different perturbation

frequencies. For direct comparisons of spiking resonances in IVL

states between FULL and SINGLE we had used the same set

of perturbation frequencies (15) as used in Guet-McCreight and

Skinner (2021). However, with a much wider range of baseline

firing rates in IVL states with SINGLE, we could obtain a larger set

of spike resonant frequencies using the larger number of different

perturbation frequencies.

2.3.3.2.1. Generating STA plots

We define a set of frequencies F = {0.5} ∪ {1 ≤ i ≤ 25, i ∈
Z} ∪ {30} Hz. To obtain a spiking resonant frequency, fr , in F, we

ran 10 s long simulations using the 10 representative parameter sets

to find IVL states where the model was resonant to that frequency.

For each representative set, each of the 10 s long simulations

were produced with a different seed. Histogram distributions of the

different fr ’s naturally depend on how many random seeds one uses.

See OSF figure https://osf.io/6twdb/ that show these distributions.

With enough seeds, we were able to obtain fr for all of the different

frequencies in F for each representative parameter set.

We generated STA plots in which we considered up to 200 ms

preceding a spike. To do this, we found as many 200+ ms long ISIs

as possible within each 10 s long simulation. We used new seeds

to run our simulations until there were 50 (200+ ms ISIs) for each
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representative set of fr ’s for all of the 27 frequencies in F. The actual

number of seeds required ranged from 40,000 to 120,000 differing

across the 10 representative sets. For the 200 ms ISIs we obtained,

we preserved sections from 195 to 10 ms before each spike so as

to remove the influence from the last and the next spike on the

underlying currents. As there is ‘curving up’ before a spike in the

STA plots (see Supplementary Figure S8) that could drastically affect

the slope analysis (see below), we chose a timepoint range of 195 ms

to 25 ms before a spike. One hundred and ninety-five milliseconds

is justified to be approximately the furthest back one can push to

avoid the previous spike, and 25 ms is approximately the furthest

forward one can push to not include the curving portion before

slope computation. For computational ease, we used this same range

in doing both the slope and spread analyses described below. With

these ISIs, we generated STA plots to consider the contribution of the

different biophysical currents.

The biophysical currents in the STA plots were produced from a

fr and representative set (set#) perspective. That is, for each current

type Ix, there were 270 different average (of 50) Ix’s for each timepoint

from –195 to –25 ms, each corresponding to a permutation of fr value

(27) and set# (10). The biophysical current value itself represents

the proportion of the total (absolute) current at the given timepoint

where it is assigned as negative (inward current) or positive (outward

current) accordingly.

Referring to these currents as Ix
(fr ,set#), the average current (of 50),

fr ∈ F, and 0 ≤ set# ≤ 9, we took the absolute values of the averages,

and normalized them across the representative sets to keep the values

of each current between 0 and 1. We refer to normalized Ix
(fr ,set#) as

Ĩx
(fr ,set#)

. That is, we now have:

Ĩx
(fr ,set#) = |Ix(fr ,set#)| −min(|(Ix(fr ,set#)|)

max(|Ix(fr ,set#)|)
(8)

In Figure 7A, a selection of Ĩx
(fr ,set#)

’s are shown.

2.3.3.2.2. Slope analysis

For each timepoint of Ĩx
(fr ,set#)

, we calculated the mean across the

10 representative sets. These means can be seen in Figure 7B with the

standard deviations.

For each fr , we did a least squares linear fit line of the mean,

and obtained the slope of the linear fit line. We also considered

a combined slope of IM and Ih where the two currents were first

summed before obtaining the mean and subsequent slope from the

linear fit.

2.3.3.2.3. Spread analysis

For each timepoint of Ĩx
(fr ,set#)

, we calculated the standard

deviation across the representative sets. We defined the function

Spread(Ĩx
(fr)

) as twice the standard deviation summed over all the

timepoints from 195 to 25 ms before a spike. In Figure 7B, the

precursor to Spread(Ĩx
fr
), the mean and standard deviations of

Ĩx
(fr ,set#)

(t) are shown for a selected set of fr ’s.

We also considered a combined spread of two currents IM and

Ih, Spread( ˜IM
(fr) + Ĩh

(fr)
), where the two currents were first summed,

and then twice the standard deviation of the resulting summation was

summed over all the timepoints. Note that with given current type(s),

the spread is a function of fr only as we sum over the timepoints.

2.4. Direct parameter estimation

2.4.1. Robust adaptive unscented Kalman Filter
(RAUKF)

The mathematical model structure of SINGLE may also be used

in data assimilation methods to estimate parameters based on an

“observation”. Application of the RAUKF method (Azzalini et al.,

2022) here was developed based on the reduced OLM model cell,

and the model parameters were estimated from simulated noisy

observations of SINGLE or FULL. The RAUKF method was adapted

so that the conductance basedmodel used for state prediction was the

same as that used in SINGLE (see details in Supplementary material).

The general formulation of the Kalman Filter (KF) is:

xk = f(xk−1, uk−1)+mx,k−1 (9)

Where the state at k, xk depends upon the previous state xk−1 and

some control input uk−1, i.e., injected current, and mx ∼ N (0,Qx).

The function f is the system’s state model, which in this case are

the set of equations governing model SINGLE. In order to estimate

parameters of the system, additional trivial dynamics were added to

the system for each given parameter θ via a random walk:

θk = θk−1 +mθ ,k−1 (10)

Withmθ ∼ N (0,Qθ ). Combining x and θ wemay produce a new

state X with the dynamics represented by F and noise M, where I is

the identity function:

X =
[
(

x, u
)

θ

]

, F =
[

f

I

]

,M =
[

mx

mθ

]

(11)

Xk = F(Xk−1)+Mk−1 (12)

The observation model used to characterize noisy membrane

voltage measurements is described by

yk = Vk + nV ,k (13)

Where nV ,k denotes measurement noise (in the general case, yk =
g(Xk) + nk, nk ∼ N (0,R)). Here, the direct observation of the

membrane voltage yk mimics experimental recording techniques

(e.g., current-clamp methods). With only a subset of Xk being

measurable, the method presented in this study allows hidden states

to be estimated.

The system’s dynamics model F, an initial estimate of the

state X0, as well as the control input u were used to maximize

the probability of an observation y afforded by the noise profiles

of each.

p(Xk−1 | X0, u1 : k−1, y0 : k−1) = N (X̂k−1|k−1, P̂
xx
k−1|k−1) (14)

p(Xk | X0, u1 : k, y0 : k−1) = N (X̂k|k−1, P̂
xx
k|k−1) (15)

To estimate the next state (15) a set of points (sigmapoints)

were sampled according to (14), described in more detail in Azzalini

et al. (2022). This process also updates the current covariance P of

the process.

Since the precise noise profile Q of the state vector X is not well

known for a given neuronal model, and its respective discrepancies to
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the observation, we employed an adaptive method used in previous

work in order to update Q as well as the estimate of the observation

noise R over time (Azzalini et al., 2022). See Supplementary material

for further details.

The adaptation ofQ and R can be tuned by user defined variables

a, b, λ0, and δ0, Where λ0 and δ0 are the minimum weights used

when updating Q and R, the percent shift from the current to the

new estimated value. To ease computational load these updates to

Q and R were not applied after every sample, instead they were

applied when a fault was detected (see Supplementary material).

The values of λ0 and δ0 were both set to a value of 0.2. The

variables a and b are weights of how much Q and R will be updated

proportional to the magnitude of fault detected. The values of a

and b were set according to explorations done in previous work

when RAUKF was applied to a conductance based model (Azzalini

et al., 2022). a >> b was found to be effective and here we use

a = 10 and b = 1.

2.4.2. Application of RAUKF to OLM cell models
When applying the RAUKF to an observation of either SINGLE

or FULL, θ was set to estimate the same conductance values that were

optimized in the reduced model SINGLE. That is,

θ =











gM
gKdrf
gKa
gNa











(16)

To generate an observation, an input train of step currents

was injected into either SINGLE or FULL models. The input train

consisted of 500 ms of zero current, then a step to 30, 60, 90, 0, –

30, –60, and –90 pA, repeating 4 times. The current was also mixed

with a Gaussian white noise ∼ N (4, 5) pA. The mean of the noisy

stimulation was chosen to match the characterized bias current in

FULL and SINGLE. This input train of multiple positive and negative

pulses is designed to be able to expose a full dynamic range of

spiking, resting and subthreshold activities due to the underlying

biophysical currents, and can be used in real-time to estimate

parameter values.

The initialization of P and Q was derived from the order of

magnitude θ , while x was made constant to 1 × 10−4 and 1 × 10−8,

respectively. For the P of θ the value was set to 2× the magnitude of

the value of θ used in SINGLE, e.g., 340 −→ 1×102 −→ 1×104, and

4× the order of magnitude was used to initializeQ. Two initial states

were used for θ0, one where θ0 = θSINGLE, known as the optimized

initial estimate, and another where θ0 = 10⌊log10(θSINGLE)⌋, known as

the poor initial estimate.

2.5. Computing

The extensive SINGLE simulations with spiking resonance

and STA analyses were done using the Neuroscience Gateway

(NSG) for high-performance computing (Sivagnanam et al., 2013).

Code pertaining to FULL, SINGLE and analyses is available at:

https://github.com/FKSkinnerLab/Reduced_OLM_example_code.

Code pertaining to RAUKF and the respective figures is available at:

https://github.com/nsbspl/RAUKF_OLM.

3. Results

3.1. Reduced model can capture complex
outputs obtained with full, detailed
multi-compartment model

From our detailed multi-compartment OLM cell model (FULL),

we derived a reduced, single compartment model (SINGLE)

as described in the Methods. While SINGLE can reproduce

features of FULL (e.g., see Figure 1), it is not obvious that

SINGLE would produce similar results to those obtained using the

full, detailed multi-compartment model regarding more complex

phenomena such as spiking resonance (Guet-McCreight and Skinner,

2021).

Considering this, we used SINGLE to examine previously

explored phenomena so as to directly compare with observations

obtained using the detailed multi-compartment model. In Figure 2,

we show that SINGLE and FULL have similar frequency-current

(f–I) curves, with the required injected current to obtain about

a 1 Hz firing frequency differing by about 4 pA. As described

in the Methods, the detailed multi-compartment model used

in Guet-McCreight and Skinner (2021) is essentially the

same as FULL. Thus, moving forward we will not specifically

distinguish these multi-compartment models in comparing

our results.

We examined phase response curves (PRCs) and the phase-

dependent contribution of the different biophysical currents at four

different frequencies when inhibitory perturbations were applied, as

previously done in Guet-McCreight and Skinner (2021).We show the

results in Figures 3A–C for the PRCs, Ih and IM which illustrates

that similar results are obtained. That is, inhibitory perturbations

mostly delay spiking and drive up the responses of Ih and IM. Further,

the percent change in maximum Ih increases in magnitude as the

firing rate increases, and its peak initially shifts rightward followed

by a gradual leftward shift. For IM, the magnitude increases and

the negative peak shifts leftward as the firing rate increases. Phase-

dependent changes for all the other currents are shown in an OSF

figure https://osf.io/6twdb/.

We also undertook a full examination of spiking resonance in

an in vitro-like scenario, using the same range of firing frequencies

as used in Guet-McCreight and Skinner (2021). A side-by-side

comparison of spiking resonance results using SINGLE and the

previously published data using a detailed multi-compartment model

is shown in Figure 4. Again, the results are similar. That is, with

inhibitory perturbations, the resonant frequency of both models

increases as the baseline firing rate increases (Figure 4A). However,

with excitatory perturbations, the resonant frequencies mostly lie

within the theta frequency range regardless of the baseline firing rate

(Figure 4B).

As described in the Methods, we can generate in vivo-like (IVL)

states in our reduced model. Restricting the baseline frequencies

to those used in Guet-McCreight and Skinner (2021), similar

spiking resonance results in IVL scenarios are also obtained as

shown in Supplementary Figure S6. That is, excitatory perturbations

mostly do not evoke spiking resonance at theta frequencies whereas

inhibitory perturbations do. Thus, our reduced model, SINGLE, is

not diminished in being able to reproduce complex results found

in FULL.
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FIGURE 2

Firing rates of SINGLE and FULL. The red and green dots and lines refer to the frequency vs current (f-I) curves for SINGLE and FULL, respectively.

Correspondingly, the red and green dashed lines signify the amount of injected current needed to obtain a firing rate of 1 Hz in SINGLE and FULL. 25.5 pA

for SINGLE and 29.7 pA for FULL.

FIGURE 3

Phase response curves (PRCs) using di�erent firing frequencies of SINGLE. (A) Shows PRCs at 4 di�erent frequencies and the corresponding

phase-dependent changes of Ih (B) and IM (C) when inhibitory perturbations are applied to SINGLE firing at 1, 4, 7.25, and 15 Hz, due to injected currents

of 25.5, 35.1, 47.4, and 75.7 pA, respectively. Responses are similar to those obtained by Guet-McCreight and Skinner (2021).

3.2. Expanded virtual network explorations
with reduced model

3.2.1. A wide range of in vivo-like (IVL) states is
possible with SINGLE

In vivo recordings of OLM cells exhibit a range of baseline

firing frequencies that span ≈ 3 − 25 Hz (Varga et al., 2012;

Katona et al., 2014) (depending on behavioral state of movement,

sleep etc.). However, our previous spiking resonance explorations

in IVL states using full, detailed multi-compartment models were

technically constrained to a small range of baseline firing frequencies,

specifically ≈ 12 − 16 Hz (Guet-McCreight and Skinner, 2021),

due to how different IVL states could be generated. As such, we

were limited in being able to extract biophysical underpinnings of

different spike frequency resonances that include theta frequencies.

Here, with SINGLE, our reduced model that maintains biophysical

balances for the 5 different currents it contains (see Figure 1), we

are able to obtain a wide range of baseline firing rates and thus
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FIGURE 4

In vitro spiking resonance pattern in SINGLE is comparable to FULL. (A) Resonant frequency (fr) of inhibitory perturbations at di�erent baseline firing rates

(fB). Blue is from single compartment model, green is from full model. (B) Resonant frequency (fr) of excitatory perturbations at di�erent baseline firing

rates (fB). Blue is from single compartment model, green is from full model.

can greatly expand our explorations in IVL states. This puts us in a

position to determine what the biophysical determinants underlying

theta frequency spiking resonance might be.

We obtained a wide range of baseline firing rates with SINGLE

by altering the parameters for the “noisy” excitatory and inhibitory

currents it receives (see Section 2). From our parameter search, 414

different sets of parameters that can generate valid IVL states were

found. Within these sets, the excitatory conductance and variance

were generally smaller than their inhibitory counterparts, suggesting

that inputs received by OLM cells in vivo may be inhibitory

dominant. From these 414 sets, we chose 10 that could span the full

range of in vivo firing frequencies of OLM cells, and refer to them

as 10 representative parameter sets. Each representative set has a

minimum andmaximum baseline firing rate as given in Table 1 along

with its parameter set values.

For each representative set, we generated fifty 10 s long IVL states

(via 50 random seeds) to obtain 500 IVL states. In Figure 5, we plot

the minimum and maximum firing rates of these 500 IVL states.

To illustrate what the OLM cell firings in IVL states look like, one

example of an IVL state from each of the 10 chosen representative

sets is also shown in Figure 5.

We can generate as many IVL states as we desire simply by using

>50 random seeds. This was also the case in our previous work using

a full multi-compartment model, but the randomness was in regard

to synapse placement and presynaptic spike times from specified

presynaptic cell types, resulting in a limited baseline firing frequency

range (Guet-McCreight and Skinner, 2021). Here, the randomness

is less restrictive because of the single compartment model nature

of SINGLE and is able to exhibit the needed full range of baseline

firing frequencies.
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TABLE 1 Representative parameter set characteristics.

Set # Min f Max f ge0 gi0
√
De

√
Di

0 3.1 4.6 0.00321429 0.01085714 0.00068571 0.00214286

1 4.6 6.8 0.00342857 0.01028571 0.00057143 0.00214286

2 6.5 9.3 0.00342857 0.01114286 0 0.00428571

3 8.3 10.9 0.00385714 0.01171429 0 0.00428571

4 10.4 13 0.00428571 0.01171429 0.00045714 0.00357143

5 11.8 15.2 0.00385714 0.01142857 0.00011429 0.00571429

6 13.3 16.8 0.00428571 0.01114286 0 0.00428571

7 15.2 18.6 0.00407143 0.01 0 0.00428571

8 16.7 19.9 0.00364286 0.00828571 0 0.00428571

9 18.5 22.6 0.0045 0.01085714 0.00011429 0.00571429

FIGURE 5

SINGLE yields a wide range of in vivo-like (IVL) firing frequencies as exists in experiment. A total of 414 sets of parameters were identified by a constrained

search. The red dots indicate the 10 representative sets selected for further analyses. From bottom left to top right: Set # 0–9, respectively. The green

arrows connect each representative set to a 1 s voltage trace example produced using the respective representative set.

3.2.2. Spiking resonances with SINGLE
We are not limited in how many random seeds we can use. We

already know that we can capture the full extent of in vivo firing

ranges, and we aimed to generate a large data set of spike frequency

resonances. With a large data set, we anticipated that we could

determine whether there are any particular biophysical determinants

underlying theta frequency spiking resonance specifically. We

generated 50,000 IVL states from the 10 representative sets using
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FIGURE 6

Spike resonances using SINGLE. 500 IVL states generated from the 10 representative sets are used to plot resonant frequencies (fr ’s) as a function of

(average) baseline firing rates (fB ’s). Plots are shown for inhibitory perturbations (A) or excitatory perturbations (B). Diagonal line is where fr = fB. Red

dashed lines delineate a theta frequency (3–12 Hz) range for the fr ’s.

5,000 random seeds. In Figure 6A, we show the computed spiking

resonance (fr) as a function of the baseline firing frequency (fB) when

we used inhibitory perturbations. The analogous plot for excitatory

perturbations is shown in Figure 6B. To ensure that the individual

dots are visible, we only used the first 50 seeds (500 IVL states) in

creating the plots shown in Figure 6. As can be seen, fB spans the

range, unlike the case with FULL (see Supplementary Figure S6). In

Supplementary Figure S7, we plot the mean (Vm) and variance (σ 2
Vm

)

of the sub-threshold membrane potential, and the ISICV to show that

these aspects of IVL states are not determining factors of the resulting

fr ’s. That is, for any given fr , there are a range of Vm, σ
2
Vm

and ISICV

values. Equivalently, resonant frequencies are distributed across the

ranges of Vm, σ
2
Vm

and ISICV values.

Not surprisingly, one can see some dependence of fr on fB. That is,

with a higher frequency fB, there is an increase in the density of higher

frequency fr ’s. This can be seen in Figure 6, as well as in the density

of colored dots representing fB in Supplementary Figure S7. That is,

IVL states with a higher fB are more likely to have higher fr , even

though due to stochasticity of the IVL states, it is possible for some

higher fB IVL states to be resonant at low frequencies. However, this

observation holds true on average. In essence, we have fr ’s at many

different frequencies.

Using FULL, we had previously noted that inhibitory

perturbations, and not excitatory perturbations, generated fr ’s

that include theta frequencies during IVL states (Guet-McCreight

and Skinner, 2021). Here, with SINGLE, this observation can

be more clearly seen, as shown in Figure 6 where dashed red

lines to delineate the theta frequency range (3–12 Hz) are drawn.

With our greatly extended dataset, we can easily see that the

full theta frequency range of fr with inhibitory perturbations

is exhibited. However, with excitatory perturbations, this is

not the case—only minimally and at the upper end of theta

frequency range are fr ’s obtained. We note that the limited baseline

frequencies available with FULL prevented us from being able to fully

observe this.

3.2.3. STA analyses
As we would like to understand what underlies the ability of

OLM cells to exhibit spiking resonance at theta frequencies, we now

focus on just the inhibitory perturbations as it is inhibitory, but not

excitatory, that encompass the full range of theta frequency spiking

resonances (see Figure 6).

To consider this, we undertake a spike-triggered average (STA)

analysis from the perspective of all of the underlying biophysical

currents. Specifically, 10 different firing rates are chosen (set # 0–

9 as shown in Figure 5). As noted in the Methods, since we have

a mathematical model in hand, we are able to examine how the

biophysical currents preceding spiking contribute for a range of

baseline firing rates and spiking resonant frequencies. By performing

STA analyses up to 200 ms prior to spiking, particular contributions

by the various biophysical currents that influence theta frequency

spiking (i.e., approximately 200 ms period) could be exposed. We

examined each current type’s contribution to spiking in IVL states for

all of the different fr ’s (27 in total from 0.5 to 30 Hz). In Figure 7A, we

show STA plots for six different fr ’s from these 27. For each fr , we show

normalized values in the STA plots for the five different biophysical

currents (and leak) for each of the 10 representative sets (seeMethods

for details).

From STA plots using un-normalized values, the proportions of

currents are directly comparable and it is clear, for example, that

the relative proportion of Ih (to the total current) is much smaller

than that of IM. From a thorough examination of STA plots of the

un-normalized current values (proportion of the total current), we

find that the larger the fr , the more negative is the Ih and the less

positive is the IM. In addition, STA plots with higher fr frequencies

show obvious fluctuations. These fluctuations would seem to be due

to the presence of more perturbations, with the peaks and valleys of

the fluctuations matching the timing of the perturbations. However,

IM appears the least sensitive to the perturbations, with negligible

fluctuations (see Figure 7A). Of particular note is that STA plots of IM

and Ih show minimum overlap between the different representative
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FIGURE 7

Examples of normalized STA and spread analysis. (A) Examples of normalized STA plots, with di�erent colors representing di�erent representative sets. Set

numbering is the same as in Figure 5. (B) Blue lines in the middle of the plots are the means of normalized currents from (A). The dashed lines are ± 1

standard deviation of the normalized currents from the mean. Spread is defined as the mean di�erence between the dashed lines.

sets relative to the other currents. This is more obviously the case for

IM whose overlap is visually separable (see Figure 7A). In general,

overlap is likely the result of stochasticity in the OU process which

makes the currents variable and intersecting with each other. The

minimal overlap in IM and Ih indicates an insensitivity to local

changes, which could be attributed to them having slower time

constants relative to the others. This is especially true for IM which

has the slowest time constant (see equations and plots for the

biophysical currents in Supplementary material). This would also

explain why it does not show fluctuations for larger fr whereas

Ih does. A general interpretation of this minimal overlap is that

regardless of what the in vivo firing rate of the OLM cell might be,

IM and Ih can “tailor” their response accordingly. That is, they can

perceive “global changes” and so the different firing rates are in the

“history” of IM and Ih more than the other current types with faster

time constants. Therefore, we now reasonably assume that if there

is going to be any frequency specificity in the OLM cell’s spiking

resonance, Ih and IM would be the currents that could potentially

control this. We now focus on Ih and IM to determine whether

there are any particularities associated with theta frequency spiking

resonance. To do this, we use an analysis that involves slopes and

spreads. See Methods for computation details.

Let us first consider our slope analyses. We found that as fr
increased, the slope of IM’s STA plot became less negative, and
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FIGURE 8

Spread and slope analysis. (A) Slope analysis. The lines are linear fit lines for Ih alone (blue dots), IM alone (orange dots) or IM and Ih combined (green

dots). The orange dashed line is where the slope is zero. (B, C) Spread analysis. The curves are parabolic fits for Ih alone (blue dots), IM alone (orange dots)

or IM and Ih combined (green dots) in (C). The red dashed lines show where the local minima of the parabolic fits are with the minimum shown with a red

dot. The theta frequency range (3–12 Hz) is delineated with vertical green dashed lines in all of the plots.

the slope of Ih’s became less positive. Linear fits are statistically

significant. In considering a combination of IM and Ih slopes, we

again obtained a statistically significant linear fit, but now the slope

crossed zero within the theta frequency range. This is all shown in

Figure 8A where the 3–12 Hz theta frequency range is delineated by

dashed green lines.

In our spread analysis, we found that as fr increased, the spread in

both IM and Ih STA plots increased as shown in Figure 8B. However,

when we examined a combination of Ih and IM, the spread was

more variable as shown in Figure 8C. Parabolic fits to each of IM, Ih

and their combination were performed and the curve fits are shown

in Figures 8B, C. From these fits, it is clear that the combined IM

and Ih exhibits a tendency to have a minimal value in the theta

frequency range, unlike IM or Ih alone, although none of these

parabolic fits were found to be statistically significant. However, one

can obtain a statistically significant linear fit to Ih (R2 = 83.1%).While

the parabolic fits were not statistically significant, a nonlinear local

polynomial regression can yield a statistically significant fit with a

minimal value for the combined IM and Ih, but neither IM nor Ih

alone. Overall, the findings of our spread and slope analyses imply

that to specifically have spiking resonance at theta frequencies, we

need to have a balance. That is, our analyses indicate that there is

a "balanced sweet spot" during which the combination of Ih and

IM minimally change approaching spiking (zero slope and minimal

spread), regardless of the baseline firing frequency of the OLM cell

in vivo. This suggests that the slow time constants of IM and Ih act

in concert to allow a theta frequency spiking resonance to emerge

despite variability in OLM baseline firing rates. That is, IM decreases

and Ih increases prior to spiking in such a way to favor a response

to incoming theta frequency perturbations. The combination of their

biophysical characteristics is what allows this, and not either current

on its own.

3.3. Parameter estimation with RAUKF

Having now determined that particular biophysical currents

contribute to theta frequency spiking resonance, we move to

consideration of parameter estimation directly from experimental

data. That is, we examine whether we could directly estimate

parameter values from experimental recordings using Kalman

Filtering (KF) techniques. If so, then it may be possible to bypass

the development of the detailed, multi-compartment cell models to

get insights into relative differences of biophysical characteristics

in various cell types under various conditions. For example,

conductance or time constant values of various biophysical channels

in a given cell type would vary during different neuromodulatory

states to affect spiking output. To be able to do this, we first

need a mathematical model structure and a set of parameters

whose values are to be estimated. Using a single compartment

model is ideal, but not required, in applying KF parameter

estimation techniques.

For the OLM cell, we have models of SINGLE and FULL

and use them as a proof of concept in doing direct parameter

estimations. We carry out two sets of parameter estimations in

which we assume that the experimental output is represented

by the membrane potential of the model cell generated from

SINGLE or FULL. That is, we use either SINGLE or FULL

to generate observation data for parameter estimation. In both

cases, we focus on estimating parameter values for the same four

conductances that were optimized in creating the reduced single

compartment model (see Methods). We use SINGLE’s mathematical

model structure (see Supplementary material for equations) and

estimate parameter values for gM , gKdrf , gKa, gNa via RAUKF (see

Methods for details). The protocol we use is shown in Figure 9,

and we use initial conditions that are either optimal (i.e., the

optimized conductance values from SINGLE) or poor (just the order

of magnitude).

Parameter estimates obtained using the RAUFK algorithm are

given in Tables 2, 3. If the RAUKF algorithm is working well, then

the conductance estimates obtained using SINGLE should be very

close to their actual values since in this case the mathematical model

structure is the same as what is being used to create the observation

data. As shown in Table 2, this is clearly the case regardless of

the initial conditions used. The parameter estimates are mostly

<1 percent different from the actual values. How the algorithm

approaches these values is shown in Figure 10A.

Table 3 shows the estimated parameters when FULL is used

for the observation data (akin to actual experimental data), and

how the algorithm approaches these estimated values is shown

in Figure 10B. The percent differences shown in Table 3 are

relative to the SINGLE parameter values. This essentially ends

up being a comparison with parameter values obtained via the
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FIGURE 9

RAUKF input protocol. (A) Noisy input protocol applied to mathematical model to obtain parameter estimates. It is a noisy step current (σ = ±5 pA), with a

mean step of 30, 60, 90, 0, −30, −60, −90 pA, for 196 ms each repeated four times beginning with 250 ms of noisy current. (B) Gray trace is observation

used in filter, black trace is the real membrane potential, FULL. Red and green traces are RAUKF model estimated behavior initialized with parameters

determined with optimal and poor initial estimates respectively processed observing the FULL model. Blue trace is model SINGLE, parameters determined

by BluePyOpt.

TABLE 2 Using SINGLE for experimental observations.

Optimal initial Final % Di� Poor initial Final % Di� Actual value

gM 1.91e-05 1.89e-05 1.17 1.00e-05 1.88e-05 1.31 1.91e-05

gKdrf 4.33e-03 4.31e-03 0.50 1.00e-03 4.31e-03 0.63 4.33e-03

gKa 7.31e-03 7.35e-03 0.59 1.00e-03 7.35e-03 0.60 7.31e-03

gNa 4.85e-03 4.84e-03 0.15 1.00e-03 4.84e-03 0.15 4.85e-03

TABLE 3 Using FULL for experimental observations.

Optimal initial Final % Di� Poor initial Final % Di� SINGLE value

gM 1.91e-05 1.84e-05 3.70 1.00e-05 1.66e-05 12.79 1.91e-05

gKdrf 4.33e-03 5.25e-03 21.07 1.00e-03 5.53e-03 27.54 4.33e-03

gKa 7.31e-03 7.17e-03 1.87 1.00e-03 7.15e-03 2.19 7.31e-03

gNa 4.85e-03 4.55e-03 6.06 1.00e-03 4.56e-03 5.90 4.85e-03

BluePyOpt optimization in the reduced model development (see

Section 2). In the BluePyOpt case, the optimized parameter

values are obtained using metrics that include spike height,

frequency etc. considering three different step current values,

whereas in the RAUKF case, a noisy input protocol (Figure 9)

is used to obtain parameter estimates. As shown in Figure 11

for a 60 pA input, while they are not identical, they are very

similar. Comparisons for 30 and 90 pA step inputs are shown

in Supplementary Figures S10, S11.

4. Discussion

In this work, we produced a reduced, single compartment model

of an OLM cell that has similar biophysical current balances to a

previously developed full, multi-compartment OLM cell model that

was produced in a “neuron-to-model” matched fashion (Sekulić et al.,

2020). Using this reduced model, we showed that it produced similar

behaviors to the multi-compartment one regarding phase-dependent

contributions of biophysical currents and spiking resonances in in
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FIGURE 10

Parameter estimates over time via RAUKF algorithm. Estimate of conductance values over time, shaded region depicts the standard error of the estimate

derived from the process covariance P. For each conductance, two traces are made, one transparent the other not. The transparent trace of each

conductance represents the RAUKF estimates over time when initialized with a poor estimate, the opaque trace depicts conductance estimates with

initial values set to the same values as in SINGLE (optimized values). The conductance estimate of gM is presented in a zoomed frame as the order of

magnitude of gM is 10
−3 less than the other values. (A) RAUKF estimates applied to an observation using SINGLE. (B) RAUKF estimates applied to

observation using FULL.

Frontiers inNeural Circuits 15 frontiersin.org

https://doi.org/10.3389/fncir.2023.1076761
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org


Sun et al. 10.3389/fncir.2023.1076761

FIGURE 11

RAUKF parameter comparison. Traces of FULL (black), SINGLE (blue) and RAUKF model poor and optimal estimates (green and red) to a step 60 pA step

current for 1 s, similar to as shown in Figure 1. The traces of SINGLE and RAUKF are overlayed atop the FULL’s in the top left. The remaining corners are

the traces of SINGLE and RAUKF separated for comparison.

vitro and in vivo-like states (Guet-McCreight and Skinner, 2021).

Due to its reduced nature, we were able to produce a much wider

range of firing frequencies for in vivo-like states to encompass OLM

cell firing ranges observed experimentally. In turn, this allowed us to

produce a large dataset of a wider and larger range of spike frequency

resonances that could be subsequently explored from underlying

biophysical perspectives. Using spike-triggered analyses, we were able

to show that characteristics from a combination of M- and h-currents

are what allow spiking resonances at theta frequencies specifically to

be present.

Given the slower time constants of h- and M-currents relative to

the other current types, it makes sense that they could play larger roles

for theta frequencies in particular. It is further interesting that these

channel types could be playing an oversized role in generating theta

frequency spiking resonances with their distinct cholinergic profiles

and prominent h-channels with location-dependent characteristics

(Maccaferri, 2005; Lawrence, 2008; Hilscher et al., 2019). That is,

there may be particular ways by which modulatory influences on

M- and h-currents of OLM cells could control theta rhythmic

activities. It is particularly interesting that we found that it is

a combination of these two current types that is important, and

not just one of them alone, suggesting that modulatory balances

need to be in play for the existence of theta frequency spiking

resonances. It could be that the IM and Ih of a given OLM

cell are tuned and balanced to specifically allow expression of

theta frequency spiking resonance. A possible next step to obtain

mechanistic insight is to theoretically distill what this balance is

by using an approach that separates the many parameters in the

IM and Ih mathematical equations into structural and kinetic ones,

potentially uncovering homeostatic control mechanisms (Ori et al.,

2018).

Using our full, multi-compartment OLM cell model as an

experimental proxy, we showed that it is possible to directly

estimate parameter values from voltage recordings using a noisy

input protocol that used multiple current steps. We limited our

examination to estimating parameters of maximal conductances of

four channel types but this is not a restriction of the RAUKF

algorithm itself (Azzalini et al., 2022). Rather, we sought a proof of

principle for the approach since we had both full, detailed multi-

compartment OLM cell models and reduced single compartment

models, the latter’s mathematical model structure that was used

with the RAUKF algorithm. Our choice to focus on extracting

conductances gM , gKdrf , gKa and gNa also allowed us to directly

compare these extracted parameter values with those obtained

in developing the reduced model using a genetic optimization

technique (BluePyOpt) to match feature values. Although the

resulting parameter values were not identical, they were very similar

with the most difference being in gKdrf . The RAUKF estimate was

larger which would explain why the spike height is a bit less (see

Figure 11). The spike height match using BluePyOpt is expected

since spike height was a specific feature that was included during

the optimization.

The successful demonstration of the RAUKF algorithm here is

strong encouragement to expand its usage to estimate additional
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parameter values in the OLM cell model and to consider

application to other cell types. Indeed, these KF techniques

have already been applied in various ways that include single

neuron dynamics (Schiff, 2009; Ullah and Schiff, 2009; Lankarany

et al., 2013, 2014). A major advantage of using the RAUKF

algorithm over other optimization techniques is its speed and

possibility for real-time usage. This could be particularly exciting

as the modulatory nature of these h- and M-currents could be

monitored in real time and changes under different conditions could

be assessed.

Obtaining in vivo recordings of identified cells are highly non-

trivial and it is important to point out how our work has built on

and gone beyond previous studies. In earlier studies, artificial in vivo

firing rates of OLM cells were restricted to 2.5 Hz (Kispersky et al.,

2012; Sekulić and Skinner, 2017), but they can be much higher (Varga

et al., 2012; Katona et al., 2014). Our recent modeling study that

included OLM cells during IVL states produced a restricted range of

firing rates using previously optimized synaptic characteristics (Guet-

McCreight and Skinner, 2020). Here, with our developed reduced

model, we were less restricted as we focused on having valid in

vivo characteristics and not on optimized synaptic characteristics

based on defined presynaptic cell types. The fact that our reduced

single compartment model was able to capture complex behaviors

to those seen with the full, multi-compartment model suggests that

including dendritic OLM cell details are not overly critical for the

consideration of spiking resonances, possibly due to the compact

nature of OLM cells. Of course, this does not mean that dendritic

details and channel distributions are not relevant. Rather, it suggests

that a consideration of somatic biophysical balances of h- and M-

currents is sufficient to gain insight into theta frequency spiking

resonances. Further, all the different channel types present in the

multi-compartment model were not retained in the reduced single

compartment one. Specifically, calcium channels types were not

included as we knew that they could not be biophysically balanced in

a single compartment model. One can consider developing a reduced

two-compartment model to include these additional biophysical

currents in future studies.

In closing, we would like to heartily agree with statements

that “diversity is beneficial” to have an “immense impact on our

understanding of the brain,” as stated in an excellent, recent review on

neural modeling that pushes for combinations and not fragmentation

(Eriksson et al., 2022). Our work has used developed biophysically

detailed mathematical models based on in vitro data, created artificial

in vivo states with reduced biophysical models to capture the range

of firing frequencies in vivo, and directly extracted parameter values

from voltage recordings of an experimental proxy (i.e., detailed,

multi-compartment models). In doing this, we now have an approach

and a focus to directly examine and gain insight into theta rhythms

in the hippocampus from the perspective of h- and M-currents in

OLM cells’ control of theta frequency spiking resonances. Diversity

is beneficial!

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

ZS performed model simulations and all related analyses. DC

performed KF analyses and usage. ZS, DC, and FS wrote the first draft

of the manuscript. All authors contributed to conception and design

of the study. All authors contributed to manuscript revision, read,

and approved the submitted version.

Funding

This research was supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC) Discovery Grants

(RGPIN-2016-06182 to FS and RGPIN-2020-05868 to ML) and an

NSERC USRA to ZS.

Acknowledgments

We thank Miguel Barreto for statistical analyses and Alexandre

Guet-McCreight for sharing original data points for comparisons,

earlier technical assistance and manuscript feedback.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers.

Any product that may be evaluated in this article, or claim that may

be made by its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fncir.2023.

1076761/full#supplementary-material

References

Alonso, L. M., and Marder, E. (2019). Visualization of currents in neural
models with similar behavior and different conductance densities. Elife 8, e42722.
doi: 10.7554/eLife.42722.026

Azzalini, L. J., Crompton, D., D’Eleuterio, G. M. T., Skinner, F., and Lankarany, M.
(2022). Adaptive unscented kalman filter for neuronal state and parameter estimation.
bioRxiv 2022.06.29.497821 doi: 10.1101/2022.06.29.497821

Frontiers inNeural Circuits 17 frontiersin.org

https://doi.org/10.3389/fncir.2023.1076761
https://www.frontiersin.org/articles/10.3389/fncir.2023.1076761/full#supplementary-material
https://doi.org/10.7554/eLife.42722.026
https://doi.org/10.1101/2022.06.29.497821
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org


Sun et al. 10.3389/fncir.2023.1076761

Destexhe, A., Rudolph, M., Fellous, J.-M., and Sejnowski, T. J. (2001). Fluctuating
synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience
107, 13–24. doi: 10.1016/S0306-4522(01)00344-X

Destexhe, A., Rudolph, M., and Paré, D. (2003). The high-conductance state of
neocortical neurons in vivo. Nat. Rev. Neurosci. 4, 739–751. doi: 10.1038/nrn1198

Eriksson, O., Bhalla, U. S., Blackwell, K. T., Crook, S. M., Keller, D., Kramer, A.,
et al. (2022). Combining hypothesis- and data-driven neuroscience modeling in FAIR
workflows. eLife 11, e69013. doi: 10.7554/eLife.69013

Fishell, G., and Kepecs, A. (2020). Interneuron types as attractors and controllers. Ann.
Rev. Neurosci. 43, 1–30. doi: 10.1146/annurev-neuro-070918-050421

Guet-McCreight, A., and Skinner, F. K. (2020). Computationally going where
experiments cannot: a dynamical assessment of dendritic ion channel currents during
in vivo-like states. F1000Res. 9, 180. doi: 10.12688/f1000research.22584.2

Guet-McCreight, A., and Skinner, F. K. (2021). Deciphering how interneuron specific
3 cells control oriens lacunosum-moleculare cells to contribute to circuit function. J.
Neurophysiol. 126, 997–1014. doi: 10.1152/jn.00204.2021

Hilscher, M. M., Nogueira, I., Mikulovic, S., Kullander, K., Leão, R. N., and Leão,
K. E. (2019). Chrna2-OLM interneurons display different membrane properties and h-
current magnitude depending on dorsoventral location. Hippocampus 29, 1224–1237.
doi: 10.1002/hipo.23134

Ito, J. (2015). “Spike triggered average,” in Encyclopedia of Computational Neuroscience,
eds D. Jaeger and R. Jung (New York, NY: Springer New York), 2832–2835.

Katona, L., Lapray, D., Viney, T. J., Oulhaj, A., Borhegyi, Z., Micklem, B.
R., et al. (2014). Sleep and movement differentiates actions of two types of
somatostatin-expressing GABAergic interneuron in rat hippocampus. Neuron 82,
872–886. doi: 10.1016/j.neuron.2014.04.007

Kispersky, T. J., Fernandez, F. R., Economo, M. N., and White, J. A. (2012). Spike
Resonance properties in hippocampal O-LM cells are dependent on refractory dynamics.
J. Neurosci. 32, 3637–3651. doi: 10.1523/JNEUROSCI.1361-11.2012

Klausberger, T., Magill, P. J., Márton, L. F., Roberts, J. D. B., Cobden, P. M., Buzsáki,
G., et al. (2003). Brain-state- and cell-type-specific firing of hippocampal interneurons in
vivo. Nature 421, 844–848. doi: 10.1038/nature01374

Lankarany, M., Zhu, W.-P., Swamy, M. N. S., and Toyoizumi, T. (2013). “Blind
deconvolution of hodgkin-huxley neuronal model,” in 2013 35th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Osaka:
IEEE), 3941–3944.

Lankarany, M., Zhu, W. P., and Swamy, M. N. S. (2014). Joint estimation of states and
parameters of Hodgkin-Huxley neuronal model using Kalman filtering. Neurocomputing
136, 289–299. doi: 10.1016/j.neucom.2014.01.003

Lawrence, J. J. (2008). Cholinergic control of GABA release: emerging
parallels between neocortex and hippocampus. Trends Neurosci. 31, 317–327.
doi: 10.1016/j.tins.2008.03.008

Lawrence, J. J., Grinspan, Z. M., Statland, J. M., and McBain, C. J. (2006a). Muscarinic
receptor activation tunes mouse stratum oriens interneurones to amplify spike reliability.
J. Physiol. 571(Pt 3), 555–562. doi: 10.1113/jphysiol.2005.103218

Lawrence, J. J., Statland, J. M., Grinspan, Z. M., and McBain, C. J. (2006b). Cell
type-specific dependence of muscarinic signalling in mouse hippocampal stratum oriens
interneurones. J. Physiol. 570(Pt 3), 595–610. doi: 10.1113/jphysiol.2005.100875

Leão, R. N., Mikulovic, S., Leão, K. E., Munguba, H., Gezelius, H., Enjin, A.,
et al. (2012). OLM interneurons differentially modulate CA3 and entorhinal inputs to
hippocampal CA1 neurons. Nat. Neurosci. 15, 1524–1530. doi: 10.1038/nn.3235

Lovett-Barron, M., Kaifosh, P., Kheirbek, M. A., Danielson, N., Zaremba, J. D.,
Reardon, T. R., et al. (2014). Dendritic inhibition in the hippocampus supports fear
learning. Science 343, 857–863. doi: 10.1126/science.1247485

Maccaferri, G. (2005). Stratum oriens horizontal interneurone diversity
and hippocampal network dynamics. J. Physiol. 562(Pt 1), 73–80.
doi: 10.1113/jphysiol.2004.077081

Maccaferri, G., and McBain, C. J. (1996). The hyperpolarization-activated current (Ih)
and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens-alveus
interneurones. J. Physiol. 497(Pt 1), 119–130. doi: 10.1113/jphysiol.1996.sp021754

Moradi Chameh, H., Rich, S., Wang, L., Chen, F.-D., Zhang, L., Carlen, P.
L., et al. (2021). Diversity amongst human cortical pyramidal neurons revealed
via their sag currents and frequency preferences. Nat. Commun. 12, 2497.
doi: 10.1038/s41467-021-22741-9

Ori, H., Marder, E., andMarom, S. (2018). Cellular function given parametric variation
in the Hodgkin and Huxley model of excitability. Proc. Natl. Acad. Sci. U.S.A. 115,
E8211-E8218. doi: 10.1073/pnas.1808552115

Pancotti, L., and Topolnik, L. (2022). Cholinergic modulation of dendritic
signaling in hippocampal GABAergic inhibitory interneurons. Neuroscience 489, 44–56.
doi: 10.1016/j.neuroscience.2021.06.011

Pike, F. G., Goddard, R. S., Suckling, J. M., Ganter, P., Kasthuri, N., and Paulsen,
O. (2000). Distinct frequency preferences of different types of rat hippocampal
neurones in response to oscillatory input currents. J. Physiol. 529, 205–213.
doi: 10.1111/j.1469-7793.2000.00205.x

Schiff, S. J. (2009). Kalman meets neuron: the emerging intersection of control
theory with neuroscience. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2009, 3318–3321.
doi: 10.1109/IEMBS.2009.5333752

Schwartz, O., Pillow, J. W., Rust, N. C., and Simoncelli, E. P. (2006). Spike-triggered
neural characterization. J. Vis. 6, 13. doi: 10.1167/6.4.13
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