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on transfected oocytes and provides very clear empirical fi ndings. In 
that experiment a membrane with a population of sodium channels 
of a single type was clamped at low voltage (−90 mV), then at high 
voltage (−10 mV), for varying lengths of time – from 10 ms to 5 min. 
During the high voltage stimulus, the sodium channels entered inac-
tivation. Since the fraction of inactivated channels determines the 
membrane conductivity, by measuring the membrane current, it was 
possible to observe the dynamics of slow inactivation and recovery 
in the channel population. After stimulating the membrane with 
the high voltage clamp for a duration of t

stim
 seconds, the voltage 

was decreased and clamped back at the low value (−90 mV). At 
this low voltage level the channels recovered from inactivation. For 
short stimulations (t

stim
 < 1 s), the recovery was exponential with 

a single non-history- dependent timescale. After suffi ciently long 
stimulations (t

stim
 > 1 s) the recovery was distinctly exponential and 

history dependent, the timescale of recovery monotonically increas-
ing with the length of the inactivation period, as seen in Toib et al. 
(1998). Interestingly, early experiments on visual receptors already 
displayed similar behavior (Baylor and Hodgkin 1974; in particular 
see Figures 18A,B).

This history-dependence is generally thought to result from the 
large inactivation state space hinted at by the single channel patch 
clamp experiments, as suggested fi rst by Toib et al. (1998). Previous 
modeling approaches, based on this idea, have already been sug-
gested in the literature, but fall short in accurately reproducing this 
behavior. We present a comparative discussion in Section ‘Relation 
to Previous Work’. One diffi culty in modeling channel behavior is 
that the nature of the protein conformation dynamics leading to the 

INTRODUCTION
Many recent experiments have demonstrated that the timescale of 
adaptation of a single neuron in response to periodic stimuli slows 
down as the period of stimulation increases (Fairhall et al., 2001; 
Lundstrom et al., 2008; Wark et al., 2009). At a sub- neuronal level, 
experiments on sodium (Toib et al., 1998; Melamed-Frank and 
Marom, 1999; Ellerkmann et al., 2001) and calcium (Uebachs et al., 
2006) ion channel populations have shown that the timescale of the 
recovery from inactivation following a long duration of membrane 
depolarization increased with the length of the depolarization period. 
We refer to this type of behavior as  history-dependence. Finally, patch 
clamp experiments on single ion channels have hinted at the exist-
ence of a large inactivation state space within a single ion channel 
(Liebovitch and Sullivan, 1987; Millhauser et al., 1988; Marom, 1998 
and the references therein). These multi-level experimental fi ndings 
raise several important questions. How are the behaviors observed 
at the different levels related (e.g., Lowen et al., 1999)? Specifi cally, 
is there a connection between the  history-dependent timescale of 
adaptation in the neuron to the history-dependent behavior of ion 
channels? Does a multitude of inactivation states create the observed 
channel behavior? What is the functional signifi cance of this his-
tory-dependent behavior (e.g., Wark et al., 2009)?

Although we do not address all these questions in this paper, we 
believe that in order to begin addressing them we fi rst need to con-
struct a simple working, and mathematically tractable, model of slow 
inactivation in ion channels. Such a model must reproduce the long 
term behavior in channel population experiments. Our main focus 
here is the experiment in Toib et al. (1998), which was performed 
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we summarize and discuss our results in Section ‘Discussion’, and 
present the mathematical details of the analytical methods used in 
Section ‘Methods’. In the Supplementary Material we address several 
technical issues and provide the simulation code.

RESULTS
THE MODEL
Background
The total conductivity, G(t), of a population of ion channels located 
on a piece of membrane is determined by A(t), the portion of 
channels which are available for conducting, through the equation 
G(t) = G

max
A(t), where G

max
 is the conductivity of the membrane 

when all channels are available. In the limit of many channels which 
are independent given the voltage, the law of large numbers implies 
that A(t) is approximately equal to p(t), the probability of a sin-
gle channel to be available (see Supplementary Material). Thus, in 
order to understand the conductivity dynamics of a population of 
channels, we fi rst calculate the probability of a single channel to be 
available, given the input voltage.

Ion channels are commonly modeled as a continuous-time Markov 
process with a fi nite, possibly large, number of states (Colquhoun and 
Hawkes, 1977). Each state is completely characterized by the prob-
ability density function of its residence time (the time required to 
leave that state) and the probabilities to shift to other states when this 
transition occurs. This division into ‘states’ implies that the dynamics 
of a single channel following a transition from one state to another is 
independent of the history prior to that transition. The term ‘Markov 
process’ implies that this ‘memoryless’ behavior is also maintained 
in each state, namely, the transition out of the state is independent 
of the time the channel already resided in that state. Slightly abusing 
notation, we refer to a state as ‘Markovian’ if the dynamics in that 
state are memoryless. For a Markovian state, the transition rates 
leading out of this state are constant, and the resulting residence time 
probability density function (RTPDF) is exponential.

In these common Markovian models, the states are divided into 
groups of ‘open’, ‘closed’ and ‘inactivated’ states. The channel may 
conduct ions only in an ‘open’ state, thereby actively participating 
in the generation of an action potential. As noted in Marom (1998) 
and Marom (2009), it is possible to lump together into a single 
Markovian ‘available’ state all the states from which the channel may 
change into ‘open’ quickly enough to participate in the creation of a 
single action potential. This is possible because transitions between 
the states that compose the available state are much faster than the 
transitions to and from non-available states (see Supplementary 
Material). In contrast, if we lump together all the remaining slow 
inactivation states into a single state, generally it is not a Markovian 
state. Therefore, we need to switch from the familiar concept of a 
Markov process to the more general ‘semi-Markov process’ in which 
some of the states may be non-Markovian (for exact defi nitions 
and properties, see Cinlar, 1975).

Model description
In view of the above comments, motivated by Liebovitch (1989) 
and Marom (2009), we model the slow inactivation of a chan-
nel as a continuous-time semi-Markov process consisting only of 
two states, the Markovian ‘available’ state, and the non-Markovian 
‘inactivated’ state, as shown in Figure 1.

complex properties of ion channels at long timescales is currently 
ill-understood, precluding the construction of a full bottom-up 
biophysical model of ion channels. In fact, it is unclear whether such 
dauntingly complex low-level models would be useful in explaining 
phenomena at the level of current interest.

In this work we present a simple two-state generic mathematical 
model which requires very few assumptions on the nature of the 
inactivation state space, and which leads to concise explanations 
of observed experimental fi ndings, and to concrete predictions for 
future experiments. We reproduce for the fi rst time, to our knowl-
edge, the main experimental fi nding from Toib et al. (1998), namely 
an exponential recovery process with a history- dependent timescale, 
as demonstrated in Figure 3. Using these results and other similar 
experiments (Ellerkmann et al., 2001; Hering et al., 2004; Uebachs 
et al., 2006), we narrow down the options for the model param-
eters at different voltages for several channel types, and explicitly 
address the issue of long-memory phenomena (Mercik and Weron, 
2001). The model introduced here also provides many predictions. 
Qualitatively, we predict that temporally spaced spiking stimuli 
will have a signifi cantly reduced effect on the timescale of channel 
recovery from inactivation, and that the rate of this recovery must 
be voltage dependent. Quantitatively, we derive a dynamic equation 
that fully defi nes an input–output relation between the membrane 
voltage and channel availability and solve it exactly in many impor-
tant cases. Additionally, we develop expressions that describe all joint 
moments in the single channel and population.

We note that the potential contribution of this model goes 
beyond the specifi c system addressed in this work. As pointed out 
in Marom (2009, 2010), current models of channels and receptors 
(e.g., Faber et al., 2007) tend to suffer from an embarrassment of 
riches. In order to explain behaviors over an ever expanding range of 
timescales, these complex models often include multiple inactiva-
tion states. Since the number of states and their parameters are not 
directly observable, these models tend to be highly specifi c and are 
likely to suffer from over-fi tting. Furthermore, such models always 
have an upper bound on their timescale. In this work, we introduce 
and thoroughly analyze, for the fi rst time to our knowledge, a type 
of model that does not suffer from these limitations. Despite its 
simplicity, it provides a generalization of previous models, is based 
only on measurable quantities, does not possess an upper bound 
on its timescale and exhibits considerable analytical tractability. As 
such, it stands as an appealing alternative to previous approaches, 
and as a basic building block in the construction of higher level 
neuronal models. For example, the work of Lowen et al. (1999) 
clearly demonstrates the strong impact of a similar model at the 
channel level on the long term statistics of neuronal fi ring.

The outline of the article is as follows. We begin in Section ‘The 
Model’ by motivating the model and describing its structure, and 
then present several exact solutions for the channel dynamics for 
different types of voltage inputs in Section ‘Response of Channel 
to Different Types of Voltage Input’. In Section ‘Reproduction of 
Experimental Results’ we demonstrate how to reproduce experimen-
tal results from Toib et al. (1998), then we use these results to narrow 
down the possible parameter values, and make specifi c predictions. 
In Section ‘Temporal Correlations’ we discuss temporal correlations 
and long-memory, and in Section ‘Relation to Previous Work’ we 
explain the relation of this paper to previous theoretical work. Next, 
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FIGURE 1 | Our two state model for slow inactivation and recovery of an 

ion channel is completely described by ψ(t), the residence time 

probability density function (RTPDF) of each state.

The RTPDF of the Markovian available state is exponential with 
parameter γ,

ψ γ γE t t t( ) exp( ), .= − ≥ 0  (1)

The inactivated state is non-Markovian, where we use the power-
law RTPDF:
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(2)

where γ and c are, in general, voltage-dependent, while t
0
 is taken 

to be constant. The way the RTPDFs change with voltage is 
explained in Section ‘General Voltage Input’. From the normaliza-
tion demand imposed on the RTPDF, γ, c and t

0
 must all be strictly 

positive constants.
We comment that although the structure of the model is indeed 

very simple, it gives rise to an unexpected richness of behaviors as 
a function of the underlying parameters. This exact and detailed 
mathematical analysis, covering a broad range of parameter values, 
is presented here for the fi rst time. Moreover, subtle mathematical 
issues arise in correctly characterizing the different regimes. None 
of these complexities appear when dealing with the more standard 
Markovian channel models.

Model motivation
Here we choose to model the, possibly complex, slow inactiva-
tion state space solely through a single non-Markovian state and 
its associated RTPDF. As stated above, the transition structure 
and rates by which the channel proteins change conformations 
between different slow inactivation states are still ill-understood. 
Moreover, the only quantity related to this state space that may 
be directly measured is the RTPDF. Previous single channel patch 
clamp experiments have already measured the RTPDFs of different 
channels. In many cases single channel patch clamp experiments 
have indeed fi tted their measured RTPDF for the closed time with 
a similar power-law function as above. However, those experiments 
were performed on timescales of milliseconds-to-seconds. Thus, 
at this experimental stage, we can only speculate as to whether the 
RTPDF is still a power law on the timescale of seconds-to-minutes, 
which is the relevant timescale in Toib et al. (1998). Our reasons 
for using the particular two-parameter power-law RTPDF in Eq. 2 
are the following.

Any smooth normalizable RTPDF ψ(t) must decay to zero as 
t → ∞. The asymptotic form of ψ(t) as t → ∞ is referred to as the 
‘tail of the distribution’. In experiments done on channels at long 
timescales, such as Toib et al. (1998), this tail dominates the dynam-
ics of the channel. We sought to investigate a simple RTPDF with 
a non-exponential tail behavior, allowing for a non-Markovian 
inactivated state, which may lead to a history-dependent behavior. 
The power-law RTPDF function in Eq. 2 is the simplest possible 
form. Such power-law RTPDFs frequently appear in models of 
disordered systems, e.g., spin-glasses (Bouchaud, 1992). Moreover, 
a similar power-law RTPDF was used in Lowen et al. (1999) to 
successfully simulate long term temporal behaviors at the level of 
a single neuron (in that model a specifi c voltage-dependent choice 
of c was made, and the available state had also a power-law RTPDF, 
rather than exponential).

The parametrization Eq. 2 includes two important elements – c 
as a parameter that determines the tail of the distribution, and t

0
 

as a lower boundary on the temporal resolution. For simplicity, 
we chose it to be constant. It is interesting to note that in limit 
c → ∞ ψ

P
(t) approximates an exponential RTPDF corresponding 

to a Markovian state (see Supplementary Material).

RESPONSE OF CHANNEL TO DIFFERENT TYPES OF VOLTAGE INPUT
In this part we present several results on the behavior of the channel 
in response to different types of voltage input. All of the these results 
are derived and proved using analytical techniques (see Methods) 
and demonstrated numerically.

Relaxation to a steady state under a step voltage
First we investigate what happens to the channel when the voltage 
is maintained fi xed, so that c and γ are constant. By ‘projecting’ 
the single inactivated state onto a continuum of Markovian states, 
we derive in Eq. 16 a dynamic equation for p(t), the probability of 
occupying the available state,

d

dt
p t p t p t t t dtP

t

( ) ( ) .= − + ′( ) − ′( ) ′∫γ γ ψ
0  

(3)

Here we used the initial condition p(0) = 1; an extension to general 
initial conditions is presented in Eq. 16. The intuition behind this 
equation is simple: the fi rst term represents the loss of probability 
from the available state, while the second term represents the prob-
ability current that goes from availability to inactivation and back 
again, where we integrate over all the possible past inactivation 
times. Note that ψ

P
(·) can generally be replaced in this equation 

by any RTPDF of the inactivated state, but we focus in our analysis 
on the case of the power-law RTPDF from Eq. 2.

We solve Eq. 3, and fi nd that p(t) relaxes asymptotically in a 
power-law manner, to a steady state value,

p t p p qt c( ) ,| |= + −( )∞ ∞
− −1 1

 
(4)

where q c t c= sin( )/( )π πγ 0  for 0 < c < 1, q p t c= ∞
−

0
1 for c > 1, and p∞ 

is the steady state value:
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We can express p∞ in the more familiar form of the steady state 
of a simple two-state Markov process, p∞ = +� �δ δ γ/( ) where �δ is, 
as in the Markov scheme, the inverse of the mean inactivation 
time:

�δ ψ=
⎛

⎝⎜
⎞

⎠⎟
=

≤
>

⎧
⎨
⎩

∞ −

−∫t t dt
c

cP c
t

( )
,

.
0

1

1

0 1

1
0

if

if
 (6)

In Figure 2 we compare these asymptotic results with a numeri-
cal simulation. The agreement between the two results in this case 
indicates that the asymptotic results are accurate for a wide range 
of timescales.

Notice that for c ≤ 1, for any choice of the other parameters, 
p(t) → 0. In other words, the channel eventually decays to complete 
inactivation, independently of the value of the other parameters 
(recall that γ > 0). Intuitively, in this case the residence time mean 
is infi nite, and the rate of return to the available state is so slow, 
that ultimately it remains unoccupied. Assuming that real channels 
at rest voltage do not decay to complete inactivation, we conclude 
that c > 1 at rest voltage, namely c(V

rest
) > 1.

History-dependent recovery timescale in response to voltage pulse
In Section ‘Relaxation to a steady state under a step voltage’ we studied 
the channel dynamics during a constant voltage step. The major fea-
ture of the model introduced here is its history-dependent dynamics, 
a notion which cannot be investigated for such a simple input. In 
order to quantify this notion, in the present section we consider a 
voltage pulse of constant amplitude and fi nite duration t, studying 
the recovery process immediately following the termination of the 
pulse (similarly to was done experimentally in Toib et al., 1998).

Consider a single channel at time t (the end of the voltage 
pulse). When the voltage is changed abruptly from one fi xed value 
to another, c and γ also change. If during this voltage change the 

channel is in the available (Markovian) state, it does not ‘remember’ 
its history prior to the voltage change. If the channel is in the inac-
tivated state during the voltage change, the subsequent dynamics 
depends on the prior history of the channel through the variable 
T – the duration of the channel’s sojourn in the inactivated state 
at time t. For the inactivated channel, the probability to recover at 
times between t and t + dt depends on T. This probability, divided 
by dt, is termed the time-dependent rate of recovery, and its inverse 
is the time-dependent timescale of recovery, τ. A simple derivation 
(Eq. 35) shows that τ depends linearly on T,

τ = +T t

c
0 .  (7)

And so, immediately after a voltage change, the timescale 
of recovery is determined by Eq. 7. In this model the variable c 
changes instantly with voltage, while T is a continuous variable 
which retains the same value it had prior to the change. We note 
here that it is possible to model the effect of the voltage change 
on the time-dependent rate of recovery differently (see General 
Voltage Input).

For each channel, T is a random variable, and so in a popula-
tion of channels, T has some distribution of values. We develop 
in Eq. 36 an exact asymptotic expression for this distribution, in 
the voltage pulse setting, where we set the initial condition so that 
all channels are initially available. We defi ne 〈T 〉, the mean dura-
tion of a channel in the inactivated state, and CV TT T� σ / , the 
coeffi cient of variation of the distribution of T, given by the ratio 
between the standard deviation and the mean of the distribution 
of T. The latter variable measures the dispersion of the distribution 
of T around its mean.

To approximate the timescale of recovery of the channel popula-
tion after the voltage pulse, we can substitute T by 〈T 〉 in Eq. 7. If 
CV

T
 << 1 then this approximation is accurate, and the recovery after 

FIGURE 2 | Behavior of A(t) – comparison between numerical simulation 

and the analytical expression of the asymptotic behavior of A(t): (A) c = 0.5, 

(B) c = 1.5. The remaining parameters are: N = 106, γ = 1 Hz, t0 = 1 s and a 

simulation step of Δt = 5 × 10−3 s. The agreement between the analytical and 
numerical results in this case demonstrates that the asymptotic analytical 
results are accurate for a wide range of timescales.
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the pulse will follow an exponential form, to a good approximation. 
If CV

T
 >> 1 this approximation will not be accurate, since then the 

mean provides a poor representation of the distribution. Also, when 
CV

T
 >> 1 the recovery will be distinctly non-exponential.

In Section ‘Renewal Theory Approach’ we compute exactly 
the behavior of 〈T 〉 and CV

T
 at the end of the voltage pulse, at 

time t. This behavior depends in an intricate way on the value 
of the parameter c during the pulse. And as we explained, the 
value of 〈T 〉 and CV

T
 at the end of the pulse determines, through 

Eq. 7, the manner in which the channels recover immediately 
after the pulse:

• c < 1: 〈T 〉 = (1 − c )t, CV c cT = −/( ( )).2 1  The recovery time-
scale increase linearly with t, while maintaining a constant 
dispersion. Also, Since CV

T
 increases monotonically with 

c, the distribution of timescales becomes less dispersed for 
lower values of c, and hence, the recovery following the pulse 
becomes more exponential.

• 1 < c < 3: CV
T
 → ∞. Thus, the distribution of recovery time-

scales broadens constantly, which entails a non-exponential 
recovery (in this case, the mean, 〈T 〉, provides a poor repre-
sentation of the distribution).

• c > 3: 〈T 〉 = t
0
/(c − 2), CV c cT = − −( )/( ).1 3  Since both 〈T 〉 

and CV
T
 converge to a fi xed fi nite value, we get that the reco-

very following the pulse takes place at a single timescale. Higher 
values of c, lead to more exponential recovery. This implies 
that in this case the inactivated state is ‘almost Markovian’.

The (technical) case of integer valued c is discussed in the 
Supplementary Material. Observe that the qualitative change of 
behavior noted above, results from the order of the fi rst infi nite 
moment of the RTPDF ψ

P
, which depends on the value of c. More 

specifi cally, the fi rst moment diverges for c ≤ 1, the second moment 
diverges for c ≤ 2, and so on.

Complex voltage input
So far, we have described the asymptotic channel dynamics when 
the voltage is constant, and also immediately after the voltage 
has jumped from one constant value to another. Here we briefl y 
discuss two other cases in which the channel dynamics may be 
solved analytically, and then discuss the general case of time-
varying voltage.

The fi rst case corresponds to the adiabatic limit, when the volt-
age changes on a timescale which is far slower than the timescales 
of the channel, namely the timescale of inactivation γ−1, and the 
timescale of recovery τ. Notice that the timescales are themselves 
voltage dependent, and τ may even be history dependent, so it is 
not always trivial to determine whether we are indeed in the adi-
abatic limit. In this limit, we may assume that both p(t) and the 
distribution of T follow their steady states.

The second case occurs in the opposite limit, in which the volt-
age oscillates rapidly around some constant value with an effec-
tive period of T

P
. By using the word ‘effective’ here we allow the 

oscillation to be stochastic (noise) with a period which is only 
approximate. In this case, we show in Eqs 55 and 56 that we can 
replace γ and c with the ‘effective parameters’ γ̂  and ĉ  given by the 
time-averaged values of γ and c, respectively,

ˆ ( ( )) ; ˆ ( ( )) ,γ γ= =∫ ∫1 1

0 0
T

V t dt c
T

c V t dt
P

T

P

TP P

 (8)

where V
t
 is the voltage at time t. Then we may again use the results 

derived in the case of constant voltage.
Finally, when none of these approximations is valid, we show in 

Eq. 43 that it is possible to derive a closed form integro-differential 
equation generalizing Eq. 3 to the case of arbitrary input.

REPRODUCTION OF EXPERIMENTAL RESULTS
As observed in Section ‘Response of Channel to Different Types 
of Voltage Input’, the channel dynamics depends intricately on the 
parameter c. In the present section we consider experimental results 
relating to channel dynamics, in order to test the predictions of our 
model, and, importantly, constrain the possible values of c.

Exponential and history-dependent relaxation in response to long 
depolarizations
Using the model presented, we wish to reproduce the main experi-
mental results in Toib et al. (1998). In this experiment, the mem-
brane is clamped at a high voltage of −10 mV for varying length of 
time, t

stim
, and then clamped at low voltage of −90 mV – in which 

the recovery from inactivation occurred. This recovery was expo-
nential and history dependent for every stimulus longer than 1 s. 
Analyzing these experimental observations using our model, we are 
able to restrict the possible values of the parameter c. We denote by 
c

H
, γ

H
 and c

L
, γ

L
 the model’s parameter values during the high and 

low voltage phases, respectively. Based on the experimental results 
from Toib et al. (1998) we make the following claim.

Claim: During inactivation c = c
H
 < 1, while during 

recovery c = c
L
 > 3.

This claim is based on the characterization of the different regimes 
of c, provided in Section ‘History-dependent recovery timescale in 
response to voltage pulse’. First, we infer that c

L
 > 1. This follows 

from Eqs 4 and 5, since for c
L
 < 1, the availability of the membrane 

declines to zero, a phenomenon which did not occur in the experi-
ment. Second, we argue that c

L
 is not in the range 1 < c

L
 < 3, since 

if it were, the distribution of recovery timescales in the population 
would keep broadening with time, thus causing the recovery of A(t) 
to be non-exponential. Thus, we conclude that c

L
 > 3.

Next, we argue that c
H
 < 1. First, it is clear that c

H
 < 3, since 

from Eq. 7 and the behavior of 〈T 〉 in this case, we know that 
during the inactivation period, 〈T 〉 is bounded by its steady state 
value 〈T 〉 = t

0
/(c

H
 − 2). By substituting this value into Eq. 7, and 

comparing with the result when 〈T 〉 = 0, we learn that in this 
case we should not expect to see large changes in the recovery 
timescales following different stimuli durations, contradicting the 
experimental results. Finally, c

H
 cannot be in the range 1 < c

L
 < 3 

since, if it were, the distribution in the inactive state following the 
high voltage period would be very broad (a high value of CV

T
), 

rendering an exponential relaxation impossible.
We thus conclude that in order to fi t the experimental results, 

we must set c
H
 < 1 during the inactivation period and c

L
 > 3 during 

the recovery phase. In this case, the timescale of recovery increases 
linearly with the stimulus duration, and the recovery is exponential 
as long as:
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1. c
H
 is small enough so that CV

T
 << 1, since CVT =

c cH H/( ( )),2 1−  which is increasing in c
H
.

2. c
L
 is large enough in the low voltage phase so that 〈T 〉 does not 

change considerably during the recovery. More formally, T >> 
τ = (T + t

0
)/c

L
, or more simply, c

L
 is suffi ciently larger than 1.

3. γ
L
 is small enough during the recovery period, so that 

during this period, the timescale of recovery does not 
change by ‘freshly inactivated’ channels; more formally, 
γ τL LT t c− = +1

0� ( )/ .

In this method of reproducing the experimental results the chan-
nel possesses ‘infi nite memory’, since as long as the channel remains 
at the high voltage, 〈τ 〉 continues to increase linearly:

τ =
−( )⋅ +1 0c t t

c
H

L

stim  (9)

We note here that it is possible to modify the model so that t
0
 is 

the voltage-dependent parameter and c is fi xed at some value ( >1). 
In this case, the channel does not possess this ‘infi nite memory’ 
and the timescale of recovery is bounded. Therefore, in order to 
reproduce the experimental results in this modifi ed model, we have 
to assume that the increase in the timescale of recovery has some 
upper boundary, which was not yet reached in the experiment. 
Since it seems unnatural to assume the existence of such upper 
limit, this alternative model was not used.

In an additional experiment the recovery was examined under 
several voltages: −60, −90, −120 mV. The history-dependent behav-
ior remained, as can be seen in Figure 6 in Toib et al. (1998). The 
recovery was similar for −90, −120 mV, indicating that c did not 
change much between these voltages. At −60 mV, the recovery 
was slower, and possibly less exponential, indicating perhaps that 
1 < c

L
 < 3, in that case.

A further experimental observation relates to the emergence of a 
history-dependent relaxation only for t

stim
 ≥ 1 s. From this threshold 

point between the two modes of recovery and the results in Section 
‘History-dependent recovery timescale in response to voltage pulse’ 
we get that in this experiment t

0
 ∼ 1[s].

In any case, the resulting prediction of this model is that the rate 
of recovery from the inactivated state must decrease with voltage 
difference between the two values examined in the experiment. 
This is in accordance with the results of Figure 7 in Fleidervish 
et al. (1996) and Figure 4 in Ellerkmann et al. (2001), where it is 
observed that the timescale of recovery of slow inactivation in 
sodium channels increases monotonically with voltage. Moreover, 
if we assume, in accordance with these results, that c(V ) is continu-
ous for these sodium channels, a further prediction of our model is 
that there exists some range of voltages for which 1 < c

H
 < 3, where 

the  recovery becomes non-exponential.

Channel response to a spiking stimulus
Motivated by the results in Ellerkmann et al. (2001), Toib et al. 
(1998) and Uebachs et al. (2006), we study the model’s dynamics 
when the voltage input is a periodic voltage spike train. As noted 
in Toib et al. (1998), such inputs are similar to fi ring patterns in 
neocortical neurons. This type of input may be important when 
considering the effects of a neuron’s action potential on itself. We 
note that such an input does not present the entire picture, since 
synaptic inputs from other neurons are probably more realisti-
cally described as sums of continuous functions (Gerstner and 
Kistler, 2002). In any event, it is interesting to test the model’s 
prediction in this setting, for which some experimental results 
are available (Toib et al., 1998; Ellerkmann et al., 2001; Uebachs 
et al., 2006). The voltage spikes are modeled here as a square 
wave – for T

H
 seconds the voltage is set high, and for T

L
 seconds 

FIGURE 3 | Simulation of experimental results. (A) Exponential and history-
dependent recovery in response to various stimulus lengths (R 2 > 0.99 for all 
exponential fi ts). Fraction of inactivation is defi ned as in Toib et al. (1998). 
Legend: different stimuli lengths, in seconds. (B) The increase in the timescale 
of recovery with stimulation length, in both the numerical simulation and the 
analytic expression (Eq. 9) (with cH < 1). We see that the two results agree, 

especially for long stimulations. This demonstrates how, in this case, the 
asymptotic analytic result is a good approximation for the relevant timescales. 
The linear relationship is expected, based on the analytic result, to persist for 
arbitrarily long stimuli. The parameters for the simulation were N = 105, 
γL = 10−4 Hz, γH = 1 Hz, cH = 0.2, cL = 15, t0 = 1 s and a simulation step of 
Δt = 10−3 s. 
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the voltage is set low. As before, we denote by c
H
, γ

H
 and c

L
, γ

L
 

the model parameters during high and low voltage, respectively 
(see Figure 4).

Assuming that the input spike frequency is much higher than 
the transition timescales of the model, we use the effective param-
eter approximation. The behavior of the system may be inferred by 
replacing γ and c with the effective parameters, according to Eq. 8:

ˆ ; ˆ .γ γ γ= +
+

= +
+

T T

T T
c

T c T c

T T
H H L L

H L

H H L L

H L

 (10)

It is important to notice in this case that if T
H
 << T

L
 (sparse 

spikes), then γ̂  will be affected by γ
H
 only if γ

H
 >> γ

L
, and similarly 

for ˆ.c  Since we know from the experimental results that c
H
 < c

L
, in 

this case we can approximate, ˆ .c cL≈  Using this approximation we 
address the dependence of γ on the voltage. From Toib et al. (1998) 
it is known that the sodium channel population goes into signifi -
cant inactivation as a result of an action-potential-like stimulus. 
This is also the case in Ellerkmann et al. (2001). Since in this case 
ĉ c L≈  (does not change much), then γ̂  must be signifi cantly larger 
than γ

L
 – so γ

H
 must be signifi cantly higher than γ

L
 (otherwise, the 

experimentally observed inactivation would not be reproduced). 
This means that γ(V) must increase with voltage, at least between 
the two voltage values used in this setup.

The distribution of recovery timescales in the channel population 
is affected mainly by the value of c (the dependence on γ is absent 
from the asymptotic form Eq. 36). If we wish to make the timescale 
of recovery change measurably in response to spike stimulation, 
ĉ  must be signifi cantly different from c

L
. For example, if a neu-

ron is affected solely by its own action potentials, then T
H
 ≈ 1 ms, 

T
H
 + T

L
 > 10 ms, and therefore c c cL L> >ˆ . .0 9  So, in this case it would 

be hard to experimentally detect an increase of the recovery times-
cales due to the input (see Figure 5). This assertion will remain valid 
for any type of stimulus in which T

H
 << T

L
 – the channel may enter 

inactivation, but any history-dependent recovery will be mitigated. 
This complies with the results shown in Figure 5 of Ellerkmann et al. 
(2001), where we can see a relatively weak scaling of the recovery 
timescale with stimulus frequency – even though T

H
/(T

H
 + T

L
) is 

rather high in comparison with typical action potentials.
It is important to note that in the case ˆ ,c > 3  the non-Markovian 

state can be approximated by a simple Markovian state, since 
in this case 〈T 〉 < t

0
, and thus τ = +( )T t 0 /ĉ  does not change 

FIGURE 4 | The voltage and model parameters, during a spiking stimulus. 

(A) Each stimulus period is divided into the time of the spike (TH), and the inter-
spike interval (TL). (B) The parameter γ assumes the values γH during the high 
voltage, and γL during the low voltage. The value ̂γ is the “effective parameter” – 
the average of the parameter – during a single period. As can be seen in the 

fi gure, in the case that TH << TL, then γ̂ can be signifi cantly larger than γL if γH >> 
γL. This implies that the spikes may change the rate of inactivation. (C) Same as 
(B), except that the parameter c is displayed. As can be seen in the graph, in the 
case that TH << TL, then ̂c ≈ cL. This implies that the spikes only marginally affect 
the rate of recovery.
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 drastically due to history-dependent effects. This may happen, for 
example, if c(V

rest
) > 3, and the input to the neuron is suffi ciently 

sparse (so that it does not cause continuous depolarizations for 
long times).

In Uebachs et al. (2006), a related stimulation experiment was 
performed on three types of calcium channels, each of which pos-
sesses different inactivation properties (which may be described 
in our model using different values of γ, c and t

0
). A slow-down 

of the timescale of recovery after a long −55 mV depolarizations 
was observed, similar to what was measured in sodium channels 
(referred to as ‘continuous’ in Figure 8 in Uebachs et al., 2006). In 
contrast, after a spiking stimulus at a maximal voltage of 25 mV 
with T

H
/(T

H
 + T

L
) ≈ 0.056 (‘mock APs’ in Figure 8 in Uebachs 

et al., 2006), there was no observed increase in the timescale of 
recovery with the length of stimulation, in agreement with our 
model. Also, when the spiking stimulus was superimposed on 
the (continuous) step depolarization, the history- dependence of 
the timescale diminished (‘continuous + mock APs’ in Figure 8 
in Uebachs et al., 2006). This may imply that c(V) is not mono-
tone in calcium channels – if c(V) decreases between −95 and 
−55 mV and then increases between −55 and 25 mV, ĉ  should 
change less during the stimulus, and therefore the recovery times-
cale should also change less. This result might explain why Hering 
et al. (2004) did not observe any change in the recovery timescale 
after different lengths of depolarizations, given at the higher volt-
age of −20 mV.

FIGURE 5 | (A) Entry into inactivation for different stimulation frequencies. 
(B) A closer look at the fi rst 0.5 s of the entry into inactivation, on a logarithmic 
y-scale: each jump is caused by a single spike, while the overall trend displays 
an exponential relaxation, with a timescale linear in the frequency of 
stimulation (through ˆ ,γ  which is determined by Eq. 10) (C) Recovery timescales 
at different lengths of spiking stimulation and for different frequencies. 
(D) Recovery timescales at different frequencies for different lengths of 
spiking stimulations. Parameters: TH = 2 ms, N = 105, γH = 2 Hz, γL = 10−4 Hz, 

cH = 0.2, cL = 5, t0 = 3 s and a time step of Δt = 10−3 s. Notice that for 
f = 500 Hz we have a continuous stimulation, and the timescale of recovery 
increases linearly with stimulation length, as seen in Figure 3. For spiking 
stimuli we observe a weak scaling with frequency (as in Ellerkmann et al., 
2001), but observe no long term scaling with stimulation time for spiking 
stimuli. In graphs (C) and (D) we omitted some of the continuous stimulation 
data points (where the increase in timescale is very large) in order to facilitate 
a comparison between the other data points.
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TEMPORAL CORRELATIONS
In Section ‘The Joint Probability Distribution of the Availability’, 
we present a simple approach to calculating the joint moments 
and distributions to be in the available state at different times. 
Specifi cally, we derive Eq. 57, the asymptotic behavior of the sta-
tionary auto-covariance of a single channel, for c > 1:

k t p p t tc c( ) .= −( )⎡⎣ ⎤⎦∞ ∞
− − +2

0
1 11  (11)

For 0 < c < 1, k(t) is not defi ned since in that case the channel 
is not stationary and decays to complete inactivation. Also, in the 
Supplementary Material we show that the auto-covariance function 
of the population availability under voltage clamp is simply k(t)/N, 
where N is the size of the channel population.

Notice that for 1 < c < 2, we get that ∫ = ∞∞
0 k t dt( ) . This implies 

that the process is characterized by a long-memory (see defi nition 
on page 42 of Beran, 1994). This result complies with the results of 
Mercik and Weron (2001) for potassium channels (on timescales 
<1 s), as also pointed out by Goychuk and Hanggi (2004).

RELATION TO PREVIOUS WORK
Several previous studies have attempted to construct a mathemati-
cal modeling framework which can account for long term tem-
poral correlations, power-law behavior, and history-dependence 
of responses related to ion channels. The initial work along these 
lines was motivated by single channel experiments on time scales 
of  milliseconds-to-seconds (see Liebovitch and Sullivan, 1987; 
Millhauser et al., 1988; Marom, 1998 and the references therein), 
and therefore does not directly imply the tail behavior of the RTPDF 
on the timescale of seconds-to-minutes, which was explored in 
Toib et al. (1998). In this brief comparative discussion we focus 
on models addressing channel dynamics.

As far as we are aware, the paper by Millhauser et al. (1988) 
was the fi rst to propose a microscopic framework for generating 
RTPDFs with power-law temporal dependence, based on a large set 
of inactivation Markovian states. This work considered RTPDFs of 
the form t−α for 1/2 ≤ α ≤ 3/2 which correspond to −1/2 ≤ c ≤ 1/2 
in our model. As was mentioned in that work, α ≤ 1 (or c ≤ 0) 
contradicts the normalization of the RTPDF, and therefore can-
not be correct for long timescales. However, for intermediate time 
scales, similar to those observed in single channel experiments, such 
behavior may be possible. A main focus of that work was proving 
that when the transitions between these inactivation states resem-
ble a diffusion process, it leads to a RTPDF of the form t−3/2, which 
corresponds to c = 1/2. As stated in Section ‘Relaxation to a steady 
state under a step voltage’, such a value of c always leads to complete 
inactivation of the channel in the long run, and therefore cannot 
be correct for longer timescales. All later models based on this 
diffusion model suffer from the same type of diffi culty. A related 
line of work was pursued around the same time in Liebovitch 
and Sullivan (1987). This approach, as well as that of Lowen and 
Teich (1995), proposed several types of RTPDF, which reduce to a 
power law in special cases. However, we note that the main concern 
of Liebovitch and Sullivan (1987), Lowen and Teich (1995) and 
Millhauser et al. (1988) was the establishment of RTPDFs con-
sistent with single channel experimental fi ndings, rather than on 
providing an analysis of the long term channel dynamics that is 
the main focus of this paper.

A more recent line of work (Goychuk and Hanggi, 2004), leaning 
on earlier work in the statistical physics community, formulated 
channel dynamics in the form of the so-called generalized Master 
equation. This work allows for general asymptotic power-law 
dependence of the RTPDF, and was shown to lead to experimen-
tally measured (Mercik and Weron, 2001) power-law decay of single 
channel correlations, as we obtain in Eq. 11. However, this work 
does not directly address the main experimental fi nding from Toib 
et al. (1998), namely an exponential recovery process with a history-
dependent time scale. Conceptually, two main features distinguish 
this work from ours. First, input (voltage) dependent parameters, 
an essential feature of our work, cannot be dealt with through 
an approach based on the kernels used in Goychuk and Hanggi 
(2004) (defi ned through their Laplace transforms). Second, our 
methods additionally enable the explicit calculation of the channel 
probability to be available, and of its history-dependence and joint 
moments (to any order), in many important cases.

The model of Millhauser et al. (1988) was recently used in Gilboa 
et al. (2005) in order to directly explain the experimental results 
in Toib et al. (1998). They were able to show, through numerical 
simulation and approximate analytic solutions of an equivalent dif-
fusion model, that multiple time scales history-dependent behavior 
(of the type described in Results) is indeed reproduced within the 
diffusion model. However, the exponential nature of the recovery 
was not addressed. More recently Friedlander and Brenner (2009) 
analyzed history-dependent phenomena in the case of RTPDFs 
with power-law behavior corresponding to 0 < c < 1 in our model, 
using the framework developed in Goychuk and Hanggi (2004). 
Specifi cally, they focused on the mapping between the input (volt-
age) and the output (availability) for step inputs, demonstrating 
power-law recovery. Our work corroborates these results, and pro-
vides exact analytic expressions for the recovery rates. Moreover, the 
input–output view is extended to include arbitrary time-dependent 
inputs and input dependent recovery.

A different line of work was recently suggested in Marom 
(2009), whereby the complex history-dependent channel dynam-
ics is reduced to a single local in time logistic like equation, where 
the recovery rate depends on the level of activation in a power-law 
fashion. This approach can be viewed as a zero order approximation 
of the full dynamics given in Eq. 43, whereby the entire history is 
replaced by a single reporter, which is a function of the current 
availability. More generally, one can envisage replacing the com-
plete dynamics by a fi nite set of differential equations containing 
a truncated list of moments of the distribution of recovery time 
scales. Such an approach, while introducing a further approxima-
tion step, falls within the widely studied fi eld of Markovian popula-
tion dynamics, and offers, due to its mathematical simplicity, the 
potential of being smoothly incorporated into higher level models 
of single neurons, viewed as a population of channels.

Along similar lines, the work of Lowen et al. (1999) uses a 
population of semi-Markovian with power-law RTPDF, coupled 
to an equation describing the voltage dynamics, to numerically 
reproduce many of the long term behaviors of single neurons. 
It is quite reasonable to assume that the long-range correlations 
reported in Lowen et al. (1999) are the direct result of the power-
law RTPDF with 1 < c < 2, which was used for the ion channels 
in that paper.
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DISCUSSION
In this work we have thoroughly analyzed the dynamics of a generic 
two-state model of an ion channel consisting of a Markovian state 
and a non-Markovian state. We derived a general dynamic equa-
tion for the probability of the channel to be available, or equiva-
lently, the fraction of available channels in a voltage clamped 
population. This dynamic equation, which is derived for both 
constant (Eq. 3) and time-dependent (Eq. 43) voltage, defi nes a 
direct input (voltage) to output (availability) relation. We derived 
explicit solutions to this equation in many important cases, and 
studied their properties. Specifi cally, we considered the asymp-
totic power-law approach of the channels to steady state under 
constant voltage (Eq. 4), the distribution of recovery timescales 
in the population following an abrupt change in voltage (Eq. 36), 
and the time-averaging of rapid fl uctuations in the voltage (Eq. 8). 
Also, we derived simple expressions for all joint moments of the 
availability and specifi cally, for the auto-covariance function of 
the channel (Eq. 11). An interesting conclusion of this analysis 
is that the channel is characterized by four different ‘modes’ in 
which its behavior is rather different, depending on the value 
of c (see Table 1).

The main experimental fi nding from Toib et al. (1998), an expo-
nential recovery process with a history-dependent timescale, was 
fully reproduced. We constrained, for several channel types and 
different voltages, the model parameter space (voltage-dependent 
c and γ and constant t

0
) by using Toib et al. (1998) as well as other 

channel population experiments (Ellerkmann et al., 2001; Hering 
et al., 2004; Uebachs et al., 2006). Also, we addressed the issue of 
long-memory phenomena (Mercik and Weron, 2001).

Our model presents many quantitative predictions on the 
dynamics of ion channel populations, for different kinds of volt-
age inputs, especially for long times. These predictions can be 
confi rmed by experiments similar to Toib et al. (1998), but in 
which voltage stimuli are more variable – in both voltage values 
and temporal shape. Some of the specifi c qualitative predictions 
are the following. The value of the parameter c at rest obeys 
c(V

rest
) > 1 in all healthy channels (see Relaxation to a steady 

state under a step voltage). From Section ‘History-dependent 
recovery timescale in response to voltage pulse’ we conclude that 
the recovery from slow inactivation of NaII and NaIIA channels 

is voltage  dependent, and for these channels, there exists some 
range of voltages for which 1 < c < 3, where the recovery becomes 
non-exponential. Finally, we predict that sparse spiking stimuli 
(e.g., the neuron’s own action potentials) can induce slow inacti-
vation but only minor changes in the timescale of recovery from 
inactivation (see Channel response to a spiking stimulus).

One of the more interesting questions pertains to the relation 
between the history-dependent channel dynamics and the gen-
eration of action potentials in the cell, and, more concretely, the 
possible functionality of such behavior (Lundstrom et al., 2008; 
Wark et al., 2009). In order address this issue clearly and fully, two 
further steps must be taken.

Experimentally, it is necessary to fi nd the correct model param-
eters (voltage-dependent c and γ and constant t

0
) for different volt-

ages and different types of channels. In particular, the value of c at 
V

rest
 and its average value during physiologically realistic cellular 

stimuli are critical for determining whether history-dependent 
relaxation and long term temporal correlations actually occur dur-
ing normal cell activity. If, for example, c > 3 effectively for all chan-
nels in the cell, then we should not expect that these phenomena 
affect action potential generation – since in this case the inactivated 
state is approximately Markovian.

Theoretically, it is necessary to construct a model of a neuron 
that incorporates the type of channel studied here, as well as other 
types of channels which occur in the cell membrane. Using such 
a model we could determine the nature of the feedback inter-
action between channel activity and the membrane voltage, and 
the impact of this interaction on the action potential generation 
probability (e.g., Lowen et al., 1999; Gilboa et al., 2005). For exam-
ple, it is quite reasonable to assume that the history-dependent 
relaxation exhibited at the single neuron level (Fairhall et al., 2001; 
Lundstrom et al., 2008; Wark et al., 2009) may be caused by the 
channel mechanism discussed here – especially since slow inac-
tivation in sodium channels is known to have a strong effect on 
neuronal adaptation at these timescales (Fleidervish et al., 1996; 
Powers et al., 1999). If this is indeed the same mechanism described 
by our model, then replacing the continuous stimulation by spike 
stimulation should greatly reduce such behavior. The persistence 
of history-dependent relaxation in this setting, would imply that 
other processes (e.g., multiple interacting channel types) are in 
place. Another issue that can be explored using this method, is 
whether possible long term temporal correlations in the channel 
are the cause of similar long-memory phenomena at the cellular 
level (Soen and Braun, 2000). In fact, the work of Lowen et al. 
(1999) argues persuasively along these lines, as many of the long-
range temporal behaviors of neurons are well replicated within 
a simple model for the membrane potential incorporating non-
Markovian channel dynamics. Indeed, extending the mathematical 
tractability of the present approach to the higher level of a neuron 
is a major theoretical challenge.

Finally, it is important to observe that most of the mathemati-
cal results presented in this work are general, and can be extended 
to other models in which the RTPDF of the unavailable state is 
not a power law. The mathematical framework that was developed 
here to model ion channels is quite fl exible, and may be used to 
describe other systems in which one can similarly defi ne separate 
available and unavailable states so that the transitions between 

Table 1 | Modes of behavior for different ranges of c.

c Range Mode of behavior

(0, 1)  The channel is non-stationary and decays to complete 

inactivation. Recovery timescales increase linearly with a 

constant dispersion.

(1, 2)  The channel has a stationary steady state in which it is partially 

available, and recovery is non-exponential. The channel auto-

correlation function possesses long memory.

(2, 3)  The channel has a stationary steady state in which it is partially 

available and recovery is non-exponential.

(3, ∞)  The channel has a stationary steady state in which it is partially 

available, the recovery timescale distribution has a fi nite mean 

and dispersion and is near-exponential. The inactivated state is 

‘almost Markovian’.
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these states are random and depend only on the residence time 
of the state and the external input (e.g., voltage or ligand con-
centration). For example, inactivation of cellular receptors could 
be modeled similarly, as pointed out by Friedlander and Brenner 
(2009). The method for mapping a general Markov model to our 
two-state non-Markov model is described in detail in Section 
‘How to create a two-state non-Markov model from a general 
Markov model’.

METHODS
In this section we establish several general analytical methods, 
which can be used in any two-state model in which one state is 
Markovian while the other state is non-Markovian, namely ψ

E
(t) 

is still exponential as in Eq. 1, but ψ
P
(t) may be replaced by some 

other general RTPDF, which we denote by ψ
I
(t). When establish-

ing general results we use ψ
I
(t), and when specializing them to the 

power-law RTPDF we use ψ
P
(t).

We present two different formalisms – the Markovian-process 
based ‘projection method’ in Section ‘‘Projection’ of the Inactivated 
State’ and the ‘Renewal Theory’ approach in Section ‘Renewal 
Theory Approach’. This was done in order to explore different 
aspects of the channel dynamics in the case of constant voltage 
input. Moreover, we show how to map an existing Markov model to 
a two-state non-Markov model. In Section ‘General Voltage Input’ 
we use the presented methods to derive the dynamics in the case 
of general input. In Section ‘Oscillating Voltage Input’ we consider 
the case of rapidly oscillating input. Finally, in Section ‘The Joint 
Probability Distribution of the Availability’ we calculate the joint 
distributions of the channel.

‘PROJECTION’ OF THE INACTIVATED STATE
In this section we assume that the voltage input is constant, so 
that all the model parameters are also constant. We wish to make 
use of the well-established formalism of Markov processes to 
derive the dynamics of our non-Markovian model. To do so we 
needed to fi nd a way to replace the non-Markovian inactivated 
state with an equivalent Markov inactivation state space. For 
example, in the context of the specifi c channel model with the 
power-law RTPDF ψ

P
(t), there are many possible state spaces that 

may be used to produce it (Liebovitch, 1989). Some of them may 
be physiologically more accurate than others, but, mathemati-
cally, this is inconsequential to the channel dynamics. And so, 
we chose the simplest state space, in which all inactivation states 
are parallel – each state being connected only to the available 
state, as seen in Figure 6. Though the fi gure depicts a fi nite set 
of states, in the actual model we use a continuum of states, so 
that the equivalence between the models is exact. We use as the 
continuous ‘index’ of each activation state its recovery rate, δ. 
Since it is Markovian, the RTPDF function of each inactivation 
state δ is exponential,

ψ δ δ δδ( ) exp( ), ( ).t t t= − ≥ ≤ < ∞0 0

Each time the channel is inactivated, it goes into one of the inac-
tivation states. We denote by f(δ) the probability density function 
to go from the available state into a specifi c inactivation state δ. 
This means that the inactivation rate from the available state into 

the inactivated states (δ,δ + dδ) is γf(δ)dδ, and so the total rate 
of inactivation is ∫ =∞

0 γ δ δ γf d( ) , as required. With this condition 
fulfi lled this multiple-state Markovian model is equivalent to our 
two state non-Markovian model if we ensure that the RTPDF of 
the aggregation of all the inactivated states is ψ

I
(t).To fulfi ll this 

condition, we use law of total probability and demand that:

ψ δ ψ δδI t f t d( ) ( ) ( ) .=
∞

∫
0

 (12)

Dynamic equations
In order to derive the dynamical equations of the non-Markovian 
model, we begin with the Markovian model described in 
Figure 6, present its underlying equations, and then take the 
continuum limit.

We denote π π π= ( , , , ),p N1 …  where p is probability of being in 
the available state, and π

k
 is the probability of being in the inac-

tivated state I
k
. The dynamic equation for the probability of this 

homogeneous Markov process is

d

dt
t tπ π( ) ( ) ,= Q

where

FIGURE 6 | Approximation of a semi-Markovian channel by a number of 

Markovian inactivation states. 
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is the rate matrix.
Writing this explicitly, we get

d

dt
 π

k
(t) = γ

k
p(t) − δ

k
π

k
(t), k = 1,2,…,N 

d

dt
p t p t tk

k

N

k k
k

N

( ) ( ) ( )= − +
= =

∑ ∑γ π δ
1 1

In the exact continuum limit we substitute 
γ γ δ δ π π δδk k k

Nf d t t d→ → ∑ → ∫=
∞

( ) , ( ) ( ) , ,1 0  yielding:

d

dt
t d p t f d t dπ δ γ δ δ δπ δδ δ( ) ( ) ( ) ( ) ,= −

d

dt
p t p t t d( ) ( ) ( ) .= − +

∞

∫γ π δ δδ
0

 (13)

Dividing the fi rst equation by dδ we obtain:

d

dt
t f p t tπ γ δ δπδ δ( ) ( ) ( ) ( )= −  (14)

with solution

π π γ δδ δ
δ δ( ) ( ) ( )t e f p t e dtt t t

t

= + ′( ) ′− − − ′( )∫0
0

 (15)

Inserting this into Eq. 13 and switching the order of integra-
tion we get:

d

dt
p t p t d dt p t f dt

t
t t( ) ( ) ( ) ( )= − + + ′ ′( )−

∞
− − ′( )∫ ∫γ π δ γ δ δ δδ

δ δ0
0 0

e e
00

∞

∫

Using Eq. 12, the expression can be re-written as:

d

dt
p t p t p t t t dt t dI

t

( ) ( ) ( ) ( )= − + ′( ) − ′( ) ′ +∫ ∫
∞

γ γ ψ π ψ δδ δ
0 0

0  (16)

This result is quite intuitive:

1. The term −γp(t) represents the probability current out of the 
available state.

2. The term γ ψ∫ ′ − ′ ′0

t

Ip t t t dt( ) ( )  represents the probability 
current that goes from availability to inactivation and back 
again – where we sum over all the possibilities to inactivate at 
time t′ and then recover at time t.

3. The term ∫∞
0 0π ψ δδ δ( ) ( )t d  represents the probability current 

from the initial inactivation states – the probability to be at 
each inactivation state at time t = 0, times the probability 
density to recover exactly at time t.

Such equations are commonly dealt with in the Laplace domain. 
Using a Laplace transform on Eq. 16, we get:

sp s p p s p s s
s

dI
� � � �( ) ( ) ( ) ( ) ( )

( )
,− = − + +

+

∞

∫0
0

0

γ γ ψ δπ
δ

δδ

�
�p s

p

s s

s

I

( )
( )

( )
,=

+

+ −( )
( )

+

∞

∫0

1

0

0

δπ
δ

δ

γ ψ

dδ
 (17)

where the tilde denotes the Laplace transform. The fi nal term in 
the numerator results from the initial probability distribution in 
the inactivated states. If at t = 0 the channel is in the available state, 
namely p(0) = 1, then this term vanishes.

Projection of a power-law RTPDF
By using an inverse Laplace transform on the t variable in Eq. 12, 
we can easily show that in the case where ψ

I
(t) = ψ

P
(t), f(δ) is dis-

tributed according to the gamma distribution,

f
t

c
t

c
c( )

( )
exp , ,δ δ δ δ= −( ) >−0 1

0 0
Γ

 (18)

where Γ(·) is the gamma function. Thus, the aggregation of all the 
inactivation states has the RTPDF:

f t d
t

c
t t d

c
c( ) ( )

( )
expδ ψ δ δ δ δδ

0

0
0

0

∞ ∞

∫ ∫= − +( )( )Γ

which equals ψ
P
(t) as required.

Asymptotic solution of the dynamic equations for power-law RTPDF
In this section we demonstrate how to derive an asymptotic solution 
of Eq. 17 in the case where ψ

I
(t) = ψ

P
(t). We assume throughout this 

section that c is non-integer; the limiting case where c is an integer is 
discussed in the Supplementary Material. In order to understand the 
behavior of p(t) for large values of t, we need to consider the small s 
limit of �p s( ). To do so, we fi rst calculate �ψP s( ). In the Supplementary 
Material we prove that for non-integer values of c,

�ψP
st c

k

k

s ce c t s
st

k k c
( ) ( )

!
= − ⋅( ) −

−( )
−( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

∞

∑0

0
0

0

Γ  (19)

Retaining the leading order in s, we have (see Supplementary 
Material):

�ψP
c cs

t

c
s

t

c c
s c c t s O s( )

( )( )
( ) min ,= +

−
⎛
⎝⎜

⎞
⎠⎟ +

− −
+ − ⋅ +1

1 2 1
0 0

2
2

0
3Γ cc +( )( )1

 (20)

and substituting Eq. 20 into Eq. 17, we fi nd:

�p s
s s c c t s st

c
c c c

( )
( )

.
min ,

=
− − − + ( )−

+( )
1

0

1 0
2 1γ γΓ O

If c < 1,

�p s
c c t

s O s
c

c c( )
( )

.= −
−

+ ( )− −1

0

1 2

γΓ  (21)
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while if c > 1,

�p s p s c c p t s Oc c( ) ( ) ( )= ⋅ + − +∞
−

∞
−1 2

0
2 1γΓ  (22)

where we have introduced

p
c

c

c
t c

∞

−
+ −=

≥
< <

⎧
⎨
⎩

1
10

1

0 0 1
γ if

if

,

,
 (23)

denoting the steady state value of p(t) – a result that can be con-
fi rmed by using the fi nal value theorem on �p s( ). Also, Notice that in 
Eq. 22 we deliberately retained the sc−2 term, even though sc−2 = O(1) 
for c > 2. The reason for this will become clear soon.

We wish to fi nd the asymptotic behavior of p t p s( ) [ ( )]= −L 1 �  as 
t → ∞. To do this we use a Tauberian theorem (Theorem 4 on 
page 446 in Feller, 1971), stating that f(t) ∼ [K/Γ(α)]tα−1 as t → ∞ 
if, and only if, L[f(t)](s) ∼ Ks−α as s → 0, where K is some constant 
and α > 0.

For 0 < c < 1, a direct application of the theorem to Eq. 21 gives:

p t
c c c t

t
c

t
t

c
c

c
c( )

( ) ( )

sin( )
,= −

−
=− −1

0

1

0

1

γ
π

γπΓ Γ

where we used the result Γ(c)Γ(−c) = −π/c sin(πc) (page 3 in Erdeyi, 
1953, vol. I).

For 1 < c < 2, we fi rst subtract from Eq. 22 the Laplace transform 
of the steady state value, p∞s−1, and then use the Tauberian theorem. 
From the linearity of the Laplace transform we get:

p t p c
c

c
p t t

p p t t

c c

c c

( )
( )

( )
,− = −

−
= −( )

∞
−

∞ ∞
− −

∗ γ Γ
Γ 2

1

2
0

1

0
1 1

where we used the result Γ(−c)/Γ(2 − c) = −1/(c(1 − c)) (page 3 in 
Erdeyi, 1953, vol. I), and Eq. 23.

For c > 2, we can again subtract the steady state term p∞s−1 from 
Eq. 22, but now we are left with only positive powers of s, and there-
fore we cannot directly apply the Tauberian theorem. To circumvent 
this problem, we defi ne m = ⎡c − 2⎤, the upper integer part of c − 2, 
and differentiate m times:

d

ds
p s p s c c p t

c

c m
s O

m

m
c c m�( ) ( )

( )

( )
( )−( ) = − −

− −
+∞

−
∞

− −1 2
0

21

1
1γΓ Γ

Γ

Since that all the integer order terms with degree lower than m 
vanish after we differentiate for m time. Using the fact that:

L Lt f t
d

ds
f tm m

m

m
( ) ( ) [ ( )],⎡⎣ ⎤⎦ = −1

the linearity of the Laplace transform and the above Tauberian 
theorem, we get:

( ) ( )
( ) ( )

( ) ( )
− ⋅ −( ) = − −

− − + −∞ ∞
− +1

1

1 2
2

0
1m m c ct p t p c p

c c

c m m c
t tγ Γ Γ

Γ Γ
mm

m
c cp t p p p

c m

c
t t

p

,

( )
( ) sin ( )

sin( )
− = −( ) − − −( )

= −

∞ ∞ ∞
− −

∞

1
1 2

1

0
1 1π

π
(( ) ∞

− −p t tc c
0

1 1

where we used similar identities for Γ(·) as used previously, Eq. 23 
and the fact that m is an integer. Notice that we can use this method 
to fi nd higher orders of the asymptotic behavior of p(t) from the 
higher fractional order terms in s.

An interesting implication of the above derivation is that the 
asymptotic behavior of f(t) is completely determined by the mini-
mal fractional power of s in L[f(t)] (assuming that L[f(t)] can be 
uniquely represented as a countable sum of integer and fractional 
powers of s). Because of this, any (minimal) linear time invariant 
system will behave asymptotically as a power law if it contains some 
component with a power-law kernel – which always introduces 
a fractional power of s into the system’s transfer function in the 
Laplace domain.

In conclusion, we found the asymptotic behavior of p(t) as 
t → ∞, for all c,

p t
p p p t t c

t c

c c

c

t

c
c

( ) sin( )=
+ −( ) <

< <
⎧
⎨
⎪

⎩⎪

∞ ∞ ∞
− −

−

1 1

0 1
0

1 1

1

0

if

ifπ
πγ

 (24)

We derived this result for the case p(0) = 1, but it remains 
valid also when p(0) ≠ 1 if the expression ∫ +∞

0 0[ ( )/( )]δπ δ δδ s d  
is analytic at the origin. For example, this always is true if for 
all δ < δ

0
, πδ(0) = 0 for some δ

0
 > 0 – meaning that there exists 

a fi nite supremum to the recovery timescales of all the inactiva-
tion states in the initial distribution. There is another way to see 
that the asymptotic solution in Eq. 24 is not too sensitive to the 
initial conditions. Suppose we set p(t

i
) = 1 for some t

i
, instead of 

p(0) = 1. The asymptotic solution is p(t − t
i
). Since

t t t
t

t
t

at

t
O t

t O t

i

a a i

a

a i

a a

−( ) = −⎛
⎝⎜

⎞
⎠⎟ = − + ( )⎛

⎝⎜
⎞
⎠⎟

= + ( )

−

−

1 1 2

1 ,

and therefore Eq. 24 is changed by the addition of an asymptoti-
cally negligible term. This asymptotic insensitivity to initial condi-
tions stands in contrast with the case where the inactivated state is 
Markovian, and the solution is exponential,

p t p p p at( ) ( ) .= + −( )∞ ∞
−0 e

In this case when we set the initial condition to t
i
, instead of 0, 

we get,

p t p p t p

p p p

i
a t t

at at

i

i

( )

.

= + ( ) −( )
= + ( ) −( )

∞ ∞
− −( )

∞ ∞
−

e

e e0

Therefore, the solution is changed by a pre-factor, which is not 
asymptotically negligible as in the power-law case.

How to create a two-state non-Markov model from a general 
Markov model
So far, we used the Markov process formalism to fi nd a dynamic 
equation for a non-Markov two state model. Now consider the 
converse problem: suppose we have an existing Markov model 
for an ion channel, how can we transform it to a two-state 
non-Markov model?
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To answer this question we use a method based on the ideas pre-
sented in Colquhoun and Hawkes (1977). Recall that the dynamics 
of a homogeneous Markov process are governed by the equation 
d t dt tπ π( )/ ( ) ,= Q  where π( )t  is the probability vector to be at each 
state, and Q is the rate Matrix. We divide the Markov state space 
into two disjoint sets of states, according to their conductivity – A, 
the available states and I, the inactivated states. These two sets will 
the two states in the non-Markov model. We divide the probability 
vector into two vectors according to these sets π π π( ) ( ( ), ( )).t t tA I=  
Similarly, we divide the rate matrix Q into block matrices corre-
sponding to these sets of states:

Q
Q Q

Q Q
=

⎛
⎝⎜

⎞
⎠⎟

AA AI

IA II

.

In order to calculate the RTPDFs of the inactivated states, we 
introduce a modifi ed Markov process with probability vector 
� � �π π π( ) ( ( ), ( )),t t tA I=  and the rate matrix:

�Q
Q Q

=
⎛
⎝⎜

⎞
⎠⎟

0 0

IA II

.

The dynamics of the modifi ed process are similar to the origi-
nal process, except that now the available states have become 
 absorbing – each time the process reaches these states, it remains 
there forever. From d t dt t� � �π π( )/ ( )= Q we get,

d

dt
t tI I II

� �π π( ) ( )= Q  (25)

d

dt
t tA I IA

� �π π( ) ( )= Q  (26)

The solution of Eq. 25 can be written in the form,

� �π πI I IIt t t( ) ( )exp , ,= ( ) ≥0 0Q  (27)

where the exponent of a matrix A is defi ned as 
exp( ) / !.A A= ∑ =

∞
k

k k0

Now assume that π π π( ) ( ) ( , ( )),0 0 0 0= =�
I  meaning that both 

processes at t = 0 are distributed identically, over the inactivated 
states. The probability that the original process has jumped to some 
available state before time t is equal to probability that the modifi ed 
process is in some available state at time t. This probability can be 
written as �πA A

Tt u( ) , where we defi ned uA
T T= ( , , , ) ,1 1 1…  a column 

vector of ones with the same number of components as πA t( ). 
Differentiating this expression, we get the RTPDF of the inactivated 
state, assuming that the channel has inactivated at t = 0:

ψ π πI A A
T

I II IA A
Tt

d

dt
t u t u t( ) ( ) ( )exp( ) , ,= ( ) = ≥� 0 0Q Q  (28)

where we used Eqs 26 and 27, and πI ( )0  represents the probability 
distribution in the inactivated states immediately after the inactiva-
tion. Similarly, the RTPDF of the available state is

ψ πA A AA AI I
Tt t u t( ) ( )exp , .= ( ) ≥0 0Q Q  (29)

where uI
T  is defi ned similarly to uA

T .

Note that ψ
I
(t), ψ

A
(t) are always a sum of exponents, but after 

the transformation to the two state model is complete, we can 
approximate them by some simpler functional form. The form 
of these RTPDFs (in Eqs 28 and 29) pose a problem, through 
their dependence on πA( )0  and πI ( ).0  Assume that the channel 
inactivated at time t

1
, and recovered at time t

2
. Generally, πI t( )1  

may depend on the time that the channel was available before t
1
, 

and t
2
 − t

1
 may depend on πI t( ).1  Therefore, the time the channel 

spends in inactivation may depend on the previous duration of 
the channel in the available state, which may depend on the previ-
ous duration the channel in the inactivated state, and so on. This 
would prevent us from constructing a model with two independent 
non-Markov states.

There are some specifi c cases when this problem vanishes. One 
of them is when A can be approximated as single Markov state. This 
happens, as we mentioned in Section ‘Background’, when the rates 
between the available states are much larger than the rates of inac-
tivation. In this case, as we show in the Supplementary Material,

ψ ψ γ γA Et t t t( ) ( ) exp( ), ,= = − ≥ 0  (30)

ψ πI A
s

AI II IA A
Tt t u t( ) exp , ,= ( ) ≥G Q Q 0  (31)

where we defi ned γ π= A
s

AI I
TuQ , ( ) ( ) /[ ( ) ]G Q QAI mn AI mn l

L
AI ml= ∑ =1  

and πA
s  is the stationary distribution in the available set of states, 

when all the transitions to inactivation are forbidden. This is the 
two-state model which we aimed for: a Markovian available state, 
and a non-Markovian inactivated state.

RENEWAL THEORY APPROACH
Despite its merits, the use of the projection method may be limited 
in certain cases. The problem lies in the use of πδ(t), the probability 
distribution in the inactivation states. Knowledge of the probability 
to be in an ‘inactivation state’ implies that we have some additional 
information about the future recovery time of the channel. But, 
when a channel is inactivated, we know only for how long it has been 
inactivated, and not to which ‘inactivation state’ it has arrived. Since 
these inactivation states are not observable, this approach restricts 
the practical use of the initial conditions πδ(0) in Eq. 16. And so, in 
order to quantify the history-dependent behavior of the channel 
in terms of observable quantities, we turn to a different formalism 
that uses only the observable T, which is the time during which the 
channel has already been inactivated. In this section, as the in the 
last section, we again assume that the voltage input is constant, so 
all the model parameters are also constant.

For a channel that has been inactivated for time T, the prob-
ability of recovery in the next time interval Δt is

P t T t t T
P T t T t

P t T

T t O t

z dz

R R
R

R

I

I

< + >{ } =
< < +{ }

>( )

=
+ ( )

Δ
Δ

Δ Δ

| ,

( )

( )

ψ

ψ

2

TT

∞

∫
,

 (32)

where t
R
 denotes the time it takes the channel to recover since its 

last inactivation.
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Therefore, the rate of recovery immediately after time T is

λ

ψ

= < + >( )

= −
⎛
⎝⎜

⎞
⎠⎟

≥

→

∞

∫

Δ

Δ Δ
Δlim |

log ( ) , ( )

t
R R

I

T

t
P t T t t T

d

dT
z dz T

0

1

0

 (33)

and the time-dependent timescale of recovery is its inverse τ λ=Δ 1/ .
Next, we compute f

t
(T), the probability density function of T at 

time t, for a single channel, which well approximates the distribu-
tion of T throughout a suffi ciently large population. We did so 
using a ‘Renewal Theory’ formalism, which is described in Cox 
(1962). In renewal theory language T is called the ‘backward-recur-
rence time’ until the last inactivation event.

First, we denote by k
n
(t) the probability density function of the 

time of the n-th inactivation event, assuming that at t = 0 the chan-
nel was available (p(0) = 1). Clearly k

n
(t) is the probability density 

function of a random variable which is the sum of 2n − 1 independ-
ent random variables – corresponding to all the residence times 
in the available state, { } ,Xm m

n
=1  and in the inactivated state, { } ,Ym m

n
=
−

1
1  

that occurred until the n-th inactivation event. Since the RTPDF 
of X

m
, Y

m
 are, respectively ψ

E
(t) and ψ

I
(t), and the probability 

density function of a sum of independent random variables is a 
convolution of the probability density functions of all the random 
variables, we get,

k t t t t t tn E I E I E( ) ( )* ( )* ( ) * ( )* ( ) *= ( ) ( ) …
−

ψ ψ ψ ψ ψ
n times1

� 	





 �








In the Laplace domain, this translates to,

� � �k s k t
s

s
sn n I

n

( ) ( ) ( ) .L[ ] =
+

⎛
⎝⎜

⎞
⎠⎟

⋅
+

⎛
⎝⎜

⎞
⎠⎟

−
γ

γ
ψ γ

γ

1

 (34)

Defi ning the rate of inactivation events:

h t
t

P t t t
t

( ) lim ( ( , )),�
Δ Δ

Δ
→

+
0

1
some inactivation event occured in

we have h t k tn n( ) ( )= ∑ =
∞

1  and in the Laplace domain:

� �
�h s k s

s sn
n I

( ) ( )
( )

= =
+ −( )=

∞

∑
1 1

γ
γ ψ

where we used the geometric series summation formula. Notice 
that � �h s p s( ) ( )= γ  and so h(t) = γp(t), which is not surprising, since 
the rate of inactivation events is expected to be the probability to 
be in the available state, times the rate of inactivation in that state. 
We can now write an expression for f

t
(T), conditioned on the fact 

that the channel is inactivated at time t. For a channel at time t to 
be inactivated for the last T seconds, there must be an inactivation 
event at time t − T and since that time the channel must not recover. 
Dividing this by (1 − p(t)), the probability that the channel is indeed 
inactivated, we get,

f T p t h t T u du T t

p t p t T

t I

T

( ) ( ( )) ( ) ( ) , ( )

( ( )) ( )

= − − ≤ ≤

= − −

−
∞

−

∫1 0

1

1

1

ψ

γ ψψ I

T

u du T t( ) , ( )
∞

∫ ≤ ≤0

The case of power-law RTPDF
In the context of the specifi c model with power-law RTPDF the 
rate of recovery immediately after time T is

λ ψ= −
⎛
⎝⎜

⎞
⎠⎟

=
+

≥
∞

∫d

dT
u du

c

T t
TP

T

log ( ) , ( )
0

0

and the time-dependent timescale of recovery is its inverse:

τ
λ

= = + ≥Δ 1
00T t

c
T, ( ).  (35)

The distribution of T in this case ψ
I
(t) = ψ

P
(t) is f

t
(T) = 

(1 – 9(t))–1γp(t – T)(1 + T/t
0
)–c), (0 ≤ T ≤ t).

Because of the multiplication in the last expression, it is generally 
diffi cult to write an expression for f

t
(T) in the Laplace domain. We 

therefore examine f
t
(T) in the limit t → ∞. We get, by using the same 

asymptotic derivation we used in deriving Eq. 24, that:

f T
c

t T c
t

c
t

T
t

c

c

t

c T
t

c

c

( )
( )sin( )

=
+( ) <

− +( ) <

−
−

− −

1

1

0 0

0 0

1 1

1 0

if

ifπ
π

<<

⎧
⎨
⎪

⎩⎪
≤ ≤

1
0, ( )T t  (36)

Note that for 0 < c < 1, for any fi xed value of T, the function 
f
t
(T) vanishes for large values of t. This implies that the probability 

distribution shifts to infi nity as t increases; see Figure 7.
Calculating the fi rst two moments of T in each case, defi ning 

〈T 〉 as the mean of T and σ
T
 its standard deviation we obtain the fol-

lowing results by series expansion (see Supplementary Material).

0 1
1 1

11
2

< <
= − +

= +

⎧
⎨
⎪

⎩⎪
−

c
T c t O

t OT
c c

:
( ) ( )

( )( )σ
 (37)

1 2
11

2 0
1 2

1
3 0

1 2 3 2
< <

〈 〉 = +

= +

−
−

− −

−
−

−( ) −( )c
T t t O

t t O

c
c

c c

T
c

c
c c

:
( )

/ /σ tt c2−( )
⎧
⎨
⎪

⎩⎪
 (38)

2 3
1

0

2
2

1
3 0

1 2 3 2
< <

〈 〉 = + ( )
= ⋅ +

⎧
⎨
⎪ −

−

−
−

−( ) −( )
c

T O t

t t O

t
c

c

T
c

c
c c

:
( )/ /σ⎩⎩⎪

 (39)

3

0

0

2
2

2
1
3

3 2
<

〈 〉 = + ( )
= + ( )

⎧
⎨
⎪

⎩⎪

−
−

−
−
−

−( )
c

T O t

O t

t
c

c

T
t

c
c
c

c
:

/σ  (40)

We verifi ed numerically that all of the results for these moments 
and for f

t
(T) itself are valid for the relevant timescales, as is demon-

strated in Figures S1 and S2 and in Supplementary Material.

GENERAL VOLTAGE INPUT
In the previous sections we used two different formalisms to 
analyze our model. One was the Projection Method, and in the 
other was the formalism of Renewal Theory. So far, these two 
approaches may seem unrelated, and dealt only with the case of 
constant parameters. In this section we shall use elements from 
both formalisms to derive a dynamic equation for p(t) for any 
time-varying parameters. For example, in the context of the spe-
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cifi c channel model with power-law RTPDF, recall that the voltage 
input infl uences the channel through the variables c and γ, which 
are functions of the voltage.

Generalization of the time-dependent rate
One way to derive the general dynamic equation, is to generalize 
the defi nition of the time-dependent rate so that it also depends 
on the ‘global time’ t,

λ t u
t

P t t t t t u
t

S S| lim | ,( ) ≤ + ≥ ≥( )
→

�
Δ Δ

Δ
0

1

where t is the current time, u is the time of the last transition 
between states, and t

S
 is the time of the next switch in channel states. 

The probability that the channel will switch back to the other state 
in the time interval (t, t′) can be calculated by dividing (t, t′) into 
n smaller time segments (t

i
, t

i
 + Δt),i = 1,2,…,n. Breaking up the 

interval (t, t′) into these segments, we have,

P t t t t u

t u t O t u t
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t
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where we have defi ned Πk= =1
0 1, Σk= =1

0 0. The last equality can eas-
ily be established by taking the derivative of the fi nal term with 
respect to t’.

We have thus shown that:

P t t t t u z u dzS S

t

t

≤ ′ ≥ ≥( ) = − − ( )⎛

⎝⎜
⎞
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′

∫| exp |1 λ  (41)

Next we introduce a ‘time-dependent RTPDF’, which can be 
thought of as an extension of the RTPDF of the type introduced 
in Section ‘The Model’. This function is the probability density to 
switch back into the other state at time x:

ψ

λ λ

x y
d

dx
P t x t t u y

z y dz x y

S S

y

x

| |

exp | |

( ) ≥ ≥ = =( )⎡⎣ ⎤⎦
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�

..

 (42)

Now that we have defi ned the time-dependent RTPDFs in Eq. 
42, we can generalize the dynamic equation developed in Eq. 16 
(through the projection method). Setting p(0) = 1 for simplicity, 
we get,

d

dt
p t t p t u p u t u duI

t

( ) ( ) ( ) ( ) ( ) | ,= − + ( )∫γ γ ψ
0

 (43)

which allows us to calculate the behavior of p(t) for any time-
 varying input. Notice that the term ∫∞

0 0π ψ δδ δ( ) ( )t d  that appeared 
in Eq. 16, has been removed because we chose p(0) = 1. Since the 
input voltage is now general, choosing p(0) = 1 is less of a constraint 
than before, as we can simply choose t = 0 to be some time at which 
the channel was available. By doing so we got rid of the initial 
conditions defi ned by πδ(0), which are unobservable.

FIGURE 7 | A sample of f
t
(T) at different values of t and c: (A) c = 0.5, 

(B) c = 1.5. The circles represent results of the numerical simulation, while 
the lines are the analytical asymptotic expressions (Eq. 36). The numerical 
results are based on the same simulation as in Figure 2. Since T is 

proportional to the recovery timescale, through Eq. 7, ft(T ) is equivalent to 
the distribution of recovery timescales. Note that for c = 0.5 the 
distribution shifts rightward as a function of time, as explained 
following Eq. 36.
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The case of power-law RTPDF
For a constant rate λ(t|u) = γ we get, as expected, the Markovian 
exponential RTPDF,

ψ γ γE t u t u t u| exp ( ) ( ),( ) = − −( ) >

while for a varying rate γ(t) we get,

ψ γ γE

u

t

t u t z dz t u| ( )exp ( ) ( ).( ) = −
⎛

⎝⎜
⎞

⎠⎟
>∫  (44)

For the the non-Markovian state with a constant input 
λ(t |u) = c/(t − u + t

0
), we get as expected,
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while for general input, if we assume that
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we obtain
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For example, if c(t) = c
1
 for t < t

1
 and c(t) = c

2
 for t ≥ t

1,
 then we 

can write, for all t ≥ t
1
,
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and so we get the following dynamic equation,

d

dt
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 (47)

where we denoted ψP
ct c t t t( ) ( / )( / ) .= + − −

2 0 0
11 2

And so, the initial conditions for the evolution of p(t) from time 
t

1
 onward, are completely determined by the last term in Eq. 47. 

Also, it is important to note that the expression on Eq. 47 is easier 
to calculate numerically than Eq. 43, since all the integrals can be 
written in a convolution form.

Direct generalization of the RTPDF
Another way to generalize the channel model to include varying 
input is to directly generalize the defi nition of the RTPDF, instead 
of going through the time-dependent rate. This could be done if 
we assume that the two-state non-Markov model is based on some 
underlying many-states Markov model, as explained in Section 
‘How to create a two-state non-Markov model from a general 
Markov model’. In the case of time-varying rates, it is straightfor-
ward to generalize Eqs 30 and 31 and get

ψ γ γA

u

t

t u t z dz t| ( )exp ( ) , ,( ) = −
⎛

⎝⎜
⎞

⎠⎟
≥∫ 0  (48)
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≥∫G Q Q 0  (49)

where we defi ned γ π( ) ( ) ( ) ,t t t uA
s

AI I
T= Q  ( ( )) ( ( )) /G QAI mn AI mnt t=  

( ( ( )) )∑ =l
L

AI mlt1 Q  and πA
s t( ) is the stationary distribution in the avail-

able set of states at time t : when all the transitions to inactivation are 
forbidden, and we assume that the input changes slower than time 
it takes to reach the stationary distribution over the available states. 
We can substitute Eq. 49 into Eq. 43 to get the dynamic equation for 
p(t), and derive an expression for the generalized time-dependent 
rate (similarly to the derivation in Eqs 32 and 33), yielding

λ
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It
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− ( )∞

∫ ∫1
 (50)

where the rightmost expression allows to calculate λ
I
(t|u) in a causal 

way, without knowing future inputs. Notice that here λ
I
(t|u) may 

generally depend on the entire history of the input since time u.
For example, suppose we use this method on the same state 

space described in the case of projection method (see ‘Projection’ 
of the Inactivated State) and assume that only the rates of inactiva-
tion change with voltage. Taking the continuum limit of Eq. 49, it 
is straightforward to get the following generalization of Eq. 12, in 
the power-law case:

ψ δ δ δ δP ut u f t u d| ( ) exp( ( ))( ) = − −
∞

∫
0

               
=

− +

c u t

t c u

( )/

( / ) ( )
0

0
11 + ( )t u

 (51)

where f t c u tu
c u c u( ) ( / ( ( ))) exp( ),( ) ( )δ δ δ δ= − >−
0

1 0Γ  is obvious gen-
eralization of Eq. 18. Using Eq. 50 we get,

λP t u
c u

t u t
|

( )( ) =
− + 0

 (52)

Notice that Eq. 52 differs from Eq. 45, and also that Eq. 51 differs 
from Eq. 46. Recall that Eq. 45. was an assumption, which we used 
to derive the RTPDF in 46. In contrast, Eq. 52 was derived from 
the RTPDF at Eq. 51, which was itself derived from the assumed 
Markovian model of the projection method. The different assump-
tions led to different results. Specifi cally, this shows that when we 



Frontiers in Computational Neuroscience www.frontiersin.org April 2010 | Volume 4 | Article 3 | 18

Soudry and Meir History-dependent dynamics

take into account time-varying inputs, the Markov model used in 
the projection method is no longer equivalent to all other models. In 
this work we chose to model the channel behavior through Eq. 45, 
which is easier to implement numerically. Using Eq. 52 instead 
should not signifi cantly change the results for the various inputs 
examined in this work (constant input, step input, oscillating input 
and slowly changing input) though it should have an effect for 
other types of inputs. The fi nal choice between Eqs 45 and 52 or 
some other, more complicated expression, should be made through 
carefully designed experiments on channels.

OSCILLATING VOLTAGE INPUT
We examine the case where the input to the model oscillates with 
period T

P
. These oscillations may arise, for example, from peri-

odic stimulation or some noise process (in which case T
P
 is only 

approximate). For example, in the context of the specifi c channel 
model with power-law RTPDF the parameters γ, c may generally 
be voltage-dependent and vary with time, while t

0
 is maintained 

constant. Intuitively, if T
P
 is suffi ciently small in comparison with 

the transition timescales, then on suffi ciently large timescales we 
should not notice these fl uctuations in the parameters (even though 
they may be large in magnitude), and expect them to ‘average-out’. 
Here we prove this claim rigorously, and fi nd the exact conditions 
for this to happen.

For any time-dependent variable X
S
 defi ne the mean over a 

period T
P
,

ˆ .X
T

X dzt
P

z

t

t TP

� 1
+

∫
 (53)

Again, t denotes the current time, u is the time of the last transi-
tion between states, and t

s
 is the time of the next switch in channel 

states. Using Eq. 41, we can write, for all θ > 0,
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where, in order to obtain the fi nal line, we replaced λ(z|u) by 
ˆ ( | ) ( ( | ) ˆ ( | ))λ λ λt u z u t u+ −  in the penultimate line. From the 

above derivation, if we can choose θ so that ˆ ( | ) ,λ θt u �1  and 
∫ +

t

t
z u

θ λ| −( )| ˆ ( | ) ˆ ( | ) ,λ λ θt u du t u| �  we can safely approximate,

P t t t t uS S≤ + ≥ ≥( ) ≈θ | ˆ ( | ) .λ θt u  (54)

Then, for every timescale above θ we can replace λ(t|u) by 
ˆ ( | ).λ t u

The case of power-law RTPDF
In the context of our model, this means that if, for all t, T

P
 << γ−1(t), 

we can approximate,

P t t t t uI I≤ + ≥ ≥( )θ | ≈ ˆ ,γ θ  (55)

where t
I
 is the time of inactivation, and the index t was suppressed 

in ˆ ,γ t  since it is assumed to be, at least approximately, constant.
Also, if T

P
 << min

s
[t

0
/c(s)] and T

P
 << t

0
 then we can approximate, 

using Eq. 45,

P t t t t uR R≤ + ≥ ≥( ) ≈θ | ˆ
,

c

t u t+ − +θ
θ

0
 (56)

where again, t
R
 is the time of recovery, and the t index was sup-

pressed in ˆ .ct

In conclusion, for rapidly oscillating input, we can replace γ, c 
by their time-averaged expressions ˆ , ˆγ c .

THE JOINT PROBABILITY DISTRIBUTION OF THE AVAILABILITY
So far we have dealt only with the marginal probability to be in the 
available state – p(t). To complete the description of the process, 
we discuss here joint probability distributions.

The available state is Markovian, which makes it is easy to derive 
p(t

1
,t

2
,…,t

k
), the joint probability distribution to be in the available 

state at some arbitrary times t
1
,…,t

k
,

p t t t p t p t t p t tk k k1 2 1 2 1 1, , , | | ,… �( ) = ( ) ( ) ( )−

where we denoted p(t
i
|t

j
) as the probability of the channel to be 

in the available state at time t
i
 assuming that at t

j
 the channel was 

also in the available state. For arbitrary voltage input, each p(t
i
|t

j
) 

term in this product is the solution of Eq. 43, with the initial con-
dition p(t

j
)  = 1 (notice also that the lower limit of integration in 

Eq. 43 must be set to t
j
). In the case that the voltage is constant, 

p(t
i
|t

j
) = p(t

i
 − t

j
), where p(t) is the solution of Eq. 16 with the 

initial condition p(0) = 1. If we assume also, for simplicity, that 
p(0) = 1, we get,

p t t t p t p t t p t tk k k1 2 1 2 1 1, , ,… �( ) = ( ) −( ) −( )−

where p(t) is the solution of Eq. 16.
Next, we compute the joint moments and the auto-covariance 

function. Defi ne S(t) to be the channel state at time t and introduce 
the indicator function I(t) to equal 1 if, and only if, S(t) = A, and 
zero otherwise, then,

〈 ( ) ( ) ( )〉 = ( )I I It t t p t t tk k1 2 1 2� …, , , ,

where the angular brackets indicate an average. Thus the joint dis-
tributions are equal to the joint moments of the available state.

Using the above results, we can easily calculate k(t
1
, t

2
), the 

availability auto-covariance function, where we assume that 
t

2
 > t

1
,

k t t t t t t

p t p t t p t

1 2 1 2 1 2

1 2 1 2

, ,

|

( ) 〈 ( )〉〈 ( )〉 − 〈 ( )〉〈 ( )〉
= ( ) ( ) − (
� I I I I

))( ).

The case of power-law RTPDF
For example, in the context of our channel model, and for constant 
voltage input, we use Eq. 4 and asymptotically obtain, for c > 1,
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k t p p t tc c( ) | |= −( ) ⋅∞ ∞
− − −2

0
1 11  (57)

where k(t
2
 − t

1
) = k(t

1
, t

2
) is the stationary auto-covariance.
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