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can be done using with statistical tools derived from information 
theory (Shannon, 1948; Shannon and Weaver, 1949; Rieke, 1997). 
Particularly, determining mutual information (Foffani and Priori, 
2007; Maffezzoli et al., 2008; Quian Quiroga and Panzeri, 2009) 
between synaptic activity and specifi c dendritic currents could 
result in a quantitative method to measure the contribution of 
individual dendritic currents on synaptic processing (Stemmler 
and Koch, 1999; London et al., 2002). Furthermore, the calculation 
of the entropy, conditional entropy and mutual information can 
help elucidate how much variability observed in the dendritic cur-
rents is due to the nature of the synaptic input or due to intrinsic 
properties of the dendrite.

We present the results of calculating mutual information 
between the net excitatory input and different dendritic currents 
using a detailed biophysical model of a Purkinje cell (De Schutter 
and Bower, 1994a,b). The model was stimulated with randomly 
distributed excitatory and inhibitory synapses that resembled 
granule cell and interneuron activity. We found that the calcium 
(CaP) and a calcium activated potassium (Kc) currents carried 
the largest amount of information. While the fi ring rate of the 
Purkinje cell remained constant for different combinations of 
synaptic input, mutual information was sensitive to such changes, 
thus disambiguating synaptic activity in dendrites. Our results sug-
gest that dendritic excitability modulated by CaP and Kc chan-
nels is most effective in regulating the mutual information, and 

INTRODUCTION
The contribution of the passive dendritic properties of neurons 
on processing of synaptic activity is well established (Rall, 1962a,b; 
Marr, 1969; Pellionisz and Szentagothai, 1973, 1974); however, 
possibly all central nervous system neurons express voltage sensi-
tive dendritic conductances (Llinas and Yarom, 1981; Hirst and 
McLachlan, 1986; Hockberger et al., 1989; Huguenard et al., 1989; 
Masukawa et al., 1991; Segev and London, 1999). Active conduct-
ances can carry more current than passive conductances and, thus, 
have a stronger contribution to the processing and transfer of syn-
aptic activity in dendritic trees (Gollo et al., 2009). Furthermore, 
the multiple types of conductances found in dendrites could dif-
ferentially fi lter synaptic activity depending on its temporal and 
spatial distribution (Poirazi and Mel, 2001; Migliore and Shepherd, 
2002). Unfortunately, the lack of experimental access to determine 
the distribution and kinetics of active membrane conductances in 
dendrites has not allowed a thorough study of their infl uence on 
processing of synaptic activity.

In order to track the transformation of synaptic activity, and thus 
obtain a representation of the transfer function of the dendrite, it is 
necessary to determine how synaptic activity is distributed over dif-
ferent dendritic currents. In many cases the variability observed in 
dendritic currents is driven by synaptic activity and can be regulated 
by interactions among conductances. Quantifying the amount of 
variability due to synaptic activity or due to internal interactions 
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excitatory and inhibitory synaptic activity that resulted in the same 
fi ring rate at the soma of the Purkinje cell. We ran simulations for 
up to 400 s saving the value of all dendritic and synaptic currents 
every 100 µs. In order to avoid initial condition effects the fi rst 5 s of 
all traces were not used for the analysis. Simulations were run with 
a pre-release version of the new GENESIS 3 software1. Since each 
single simulation required about 25 h to complete we used a high 
performance computing cluster operated by the Computational 
Biology Initiative at UTSA2.

INITIAL ANALYSIS
In order to simplify the analysis we monitored the total value of the 
synaptic or dendritic currents. This approximation to the state of 
dendritic currents has allowed us to analyze this model in detail in 
the past with testable experimental predictions (Jaeger and Bower, 
1999; Santamaria et al., 2007). We also chose to use the total excita-
tory current because then the results of our study could be mapped 
to dynamic current clamp experiments (see Discussion). We also ran 
our analysis under two other conditions. In the fi rst one we added 
all currents over all the dendrites except the thick smooth dendrites 
(primary). The second condition was adding all the current exclu-
sively in the spiny dendrites (tertiary), without the primary and 
secondary. The results were practically the same as the ones reported 
for the summed currents over the entire dendrite, indicating that all 
the integration is done at the level of tertiary dendrites.

For the purposes of comparing the changes due to background 
activity we normalized the value of all currents from 1–100 and 
binned the data in 1000 equally spaced bins. All the analyses 
described in this paper were performed with the normalized cur-
rent values.

Initial characterization of currents was done by calculating 
the histograms under all the different combinations of synap-
tic activity. Further analysis consisted in calculating the cross-
correlation between the excitatory synaptic input (I

Glu
) and 

dendritic currents.

INFORMATION THEORY
Since we wanted to characterize the amount of activity in dendritic 
currents due to synaptic stimulation we used information theory 
measurements. This process required calculating the entropy (H) 
of each current, the conditional entropy between each dendritic 
current and I

Glu
, and fi nally the mutual information (I).

The entropy was calculated as

H x p x p xi i i( ) ( )log ( )= ∑ 2  (1)

where p is the probability of seeing value x
i
.

The conditional entropy is a number that describes the variabil-
ity of a signal given that the value of a second signal is known. This 
is a useful measurement when trying to understand the variability 
of the dendritic currents as a function of the synaptic current. We 
calculated the conditional entropy as

H y x p x y p y xj i i j j i( | ) ( , ) log ( | )= ∑ ∑ 2  
(2)

thus any  possible processing of that information. Conceptually, 
our approach treats each dendritic conductance as an information 
channel that carries a certain amount of information depending on 
each conductance density. Since plasticity of dendritic excitability 
might be an important component of general learning and memory 
mechanisms in neurons (Xu and Kang, 2005; Komendantov and 
Ascoli, 2009), our results provide a method to quantify the effects 
of such changes on synaptic information processing in individual 
dendritic conductances.

MATERIALS AND METHODS
PURKINJE CELL MODEL
We used a previously published Purkinje cell model (De Schutter 
and Bower, 1994b,c) with updated synaptic kinetics (Figure 1A). 
Please refer to the cited work for kinetic details of each conduct-
ance. In brief, there is one excitatory synaptic contact made with 
each dendritic spine and 1,695 inhibitory GABAa-type synaptic 
contacts distributed at random across the dendrites. The model 
contains the following dendritic conductances (Figure 1B): two 
types of Ca channels, a P-type, CaP (Llinas et al., 1989) and a T-type, 
CaT (Kaneda et al., 1990); two types of Ca-activated K+ channels, a 
BK-type (Latorre et al., 1989) referred to here as Kc and a K2-type, 
K2 (Gruol et al., 1991); and a persistent K+ channel or Km-type 
(Yamada et al., 1989). The soma had two types of sodium chan-
nels, a fast current, NaF (Hirano and Hagiwara, 1989) and a slow 
persistent current, NaP (French et al., 1990); one type of calcium 
current T-type; and four types of potassium channels, anomalous 
rectifi er, Ih (Spain et al., 1987); delayed rectifi er, Kdr (Yamada et al., 
1989); persistent potassium, Km; and an A-type potassium chan-
nel, KA (Hirano and Hagiwara, 1989). In depth analysis of the 
model can be found elsewhere (De Schutter and Bower, 1994a,b,c; 
Jaeger et al., 1997; Gundappa-Sulur et al., 1999; Santamaria et al., 
2002, 2007; Santamaria and Bower, 2005; De Schutter and Steuber, 
2009). The updated synaptic properties are described in Santamaria 
et al. (2007).

SIMULATIONS
The simulations consisted in randomly activating all the excita-
tory and inhibitory synapses at constant Poisson fi ring rates. As 
explained in the Results we used four different combinations of 

FIGURE 1 | (A) Morphology of the Purkinje cell model. (B) Schematic 
representation of the channel types incorporated into the Purkinje cell model.

1http://www.genesis-sim.org/
2http://www.cbi.utsa.edu

http://www.genesis-sim.org/
http://www.cbi.utsa.edu
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In our case, x is the input signal (I
Glu

) and y any of the dendritic 
currents. Conditional probability distributions matrices were cal-
culated based on the binned traces. The conditional probability 
distributions did not result in distributions that allocated values 
to every matrix entry. This lack of probability space coverage was 
due to the biophysical restriction of the particular conductances. 
Coupling and long time constants also contributed to having areas 
in the probability density matrix that were densely populated while 
other remained empty.

Finally, the mutual information was calculated with eq. 3:

I y x H y H y x( | ) ( ) ( | )= −  (3)

The mutual information is usually expressed in bits and gives the 
capacity of a neuron to discriminate between different stimuli that 
are part of the stimulus, in this case I

Glu
. For example, if the mutual 

information is equal to 5 bits, this means that a particular dendritic 
current is able to distinguish 25 or 32 different stimuli.

It is well known that the value of I can be biased due to the bin-
ning process and fi nite size of the data being analyzed (Panzeri et al., 
2007). We used a recently developed toolbox in Matlab (Natick, MA, 
USA) that allows the accurate calculation of the different informa-
tion measurements and compensation for potential biases (Magri 
et al., 2009). Independently of using such compensations we deter-
mined that a 400-s simulation was long enough by plotting the value 
of I for any pair of I

Glu
 and dendritic current as a function of the 

time window of observation from 5–400 s. This analysis showed 
that after 300 s the value of I, without bias compensation, reached 
an asymptotic value (Figure S1 in Supplementary Material). In any 
case, the value of I can be biased if the joint probability distribution 
of the two traces being analyzed, for example I

Glu
 and I

CaP
, is scat-

tered and does not fi ll out the joint probability space, in our case 
a matrix of 1000 × 1000 entries. The ratio N/m has been shown to 
determine the strength of such a bias, where N is the number of 
non-zero entries in the joint probability distribution and m number 
of non-zero entries of probability distribution of the stimulus. If 
N/m is less than 1 then the value obtained from calculating the 
mutual information is biased. As shown in the supplementary 
materials all our simulations had an N/m > 1.

RESULTS
The objective of our work was to quantify the contribution of den-
dritic excitability on information processing in dendrites. For this 
purpose we used an available Purkinje cell model since this type of 
cell has extensive dendritic conductances and this particular model 
has been well validated with experimental data (Jaeger and Bower, 
1994, 1999; Jaeger et al., 1997; Santamaria et al., 2007).

CALCIUM AND CALCIUM ACTIVATED POTASSIUM CHANNELS CARRY 
MOST OF THE MUTUAL INFORMATION IN THE PURKINJE CELL DENDRITE
Information in Purkinje cells fl ows from synapses, to dendrites, to 
soma (Santamaria et al., 2007). As opposed to cortical pyramidal 
cells, Purkinje cells have no backpropagating action potentials that 
carry somatic activity into the dendrites (Vetter et al., 2001). Thus, 
Purkinje cells are ideal to quantify the incremental contribution 
of dendritic channels to information processing. Since excitatory 
synapses from parallel fi bers to Purkinje cells carry the activity from 
outside the cerebellum (Bower, 2002) we assumed this stimulus to 

be the input signal. We characterized the input signal as the total 
excitatory current (I

Glu
) because experimental techniques, such as 

dynamic current clamp, could be used to test modeling predictions 
based on this assumption (Suter and Jaeger, 2004). Purkinje cells 
in vivo receive excitatory synaptic activity from parallel fi ber and 
inhibitory activity from interneurons; we simulated these types of 
inputs with random input fi ring rates drawn from a Poissonian 
distribution. Firing rates at the soma can be the result of mul-
tiple combinations of excitation and inhibition in the dendrite 
(Santamaria et al., 2002; Santamaria and Bower, 2005), for that 
reason we selected various pairs of uncorrelated background excita-
tory and inhibitory activity that evoked similar fi ring rates at the 
soma. Using different combinations of excitatory and inhibitory 
input with the same somatic fi ring rate allowed us to determine 
information processing changes in dendrites due to different levels 
of synaptic activity. The background input fi ring rates spanned a 
wide range of rates 12–56 Hz and 0.5–2.0 Hz for excitation and 
inhibition, respectively (Santamaria and Bower, 2005).

We initially quantifi ed the effects of the random excitatory input 
on the histogram of values of each dendritic current. For the differ-
ent combinations of background excitatory and inhibitory input we 
found that while the histogram of I

Glu
 remained practically unchanged 

(Figure 2A) the shape of the distribution of the CaP (I
CaP

, Figure 2B) 
and Kc currents (I

Kc
, Figure 2C) varied. All other dendritic currents 

(I
CaT

, I
Km

, and I
K2

) did not show changes in the shape of their distri-
bution as a function of background levels of synaptic stimulation 
(Figures 2D–F). We did not analyze I

NaF
, I

Kdr
, I

A
, I

NaP
, and I

h
 because 

they are only present in the soma and the thick proximal dendrite. 
The mean fi ring rate (F

M
), calculated as the number of spikes across 

the entire simulation divided by the simulation time (400 s) shows 
that the different combinations of synaptic activity had little infl u-
ence (90.3 ± 2.4 spikes/s), Figure 2G, similarly the distributions 
arising from calculating the inter-spike interval histograms for all 
combinations of synaptic input (Figure 2H) differ in less than 1% 
in the value of their expected value and standard deviation.

The analysis presented in Figure 2 suggests that most of the 
changes in background levels of synaptic activity affect the vari-
ability of I

CaP
 and I

Kc
. Without synaptic activity the Purkinje cell 

model is quiescent, thus, the source of the variability observed in 
the dendritic currents comes from synaptic activity and from inter-
actions among channels. In order to quantify the amount of vari-
ability due to I

Glu
 we made use of information theory (Victor, 2000; 

Nemenman et al., 2004; Paninski et al., 2004; Kennel et al., 2005). 
We initially calculated the entropy of I

Glu
, I

CaP
 and I

Kc
 (Figure 3A). 

In order to quantify the causal relationship between synaptic activ-
ity and dendritic currents we performed the information analysis 
with a small time lag. Thus, the conditional entropy and mutual 
information were calculated between the dendritic currents at time 
t and the glutamate input at a time t−Δt, we assumed Δt to be 1 ms. 
The analyses show that the entropy of dendritic currents depends 
on the combination of background activity. The entropy of I

CaP
 

increases and reaches the same magnitude as the entropy of I
Glu

 as 
a function of the frequency of the background synaptic activity. 
Note that all of our calculations were biased corrected using the 
Panzeri and Treves method (Magri et al., 2009). The conditional 
entropy quantifi es the uncertainty in the value of a variable given 
the known value of another. Calculating the conditional entropy 
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of I
CaP

 and I
Kc

 with respect to I
Glu

 shows that the variability in the 
currents is high (Figure 3B), suggesting that most of the activ-
ity observed is due to intrinsic activity. However, the value of 
mutual information between I

CaP
 and I

Kc
 with respect to I

Glu
 shows 

an increase in information as a function of level of background 
level of stimulation (Figure 3C). The value of mutual informa-
tion for the other calcium channel (I

CaT
) was larger (Figure S2 in 

Supplementary Material) than for I
CaP

 but since must of the cur-
rent fl ows through I

CaP
 (Santamaria et al., 2002) we only analyzed 

this channel (see Discussion). Overall, the analysis presented in 

Figures 2 and 3; Figure S2 in Supplementary Material show that 
most dendritic currents, except for CaP and K

C
, are not sensitive to 

changes in background synaptic activity. The mutual information 
of Kc with respect to I

Glu
 is larger than for the same measurement 

done with CaP. However, the ratio of mutual information of these 
two currents changes as a function of the level of synaptic activity. 
More interestingly, this differential encoding of the background 
excitatory information can take place while the somatic fi ring rate 
remains constant.

TEMPORAL INTEGRATION REGULATED BY SYNAPTIC ACTIVITY AND 
DENDRITIC EXCITABILITY
The time constants of activation and inactivation of dendritic con-
ductances imply that information content at one point in time is 
infl uenced by past synaptic activity. We characterized these time 
dependent changes by calculating the cross-correlation of I

Glu
 with 

I
CaP

 and I
Kc

 for all different combinations of excitatory and inhibi-
tory input (Figure 4). This analysis shows that as the excitatory 
input frequency increases the value of I

CaP
 (green) becomes more 

tightly coupled with I
Glu

 (blue, auto-correlation), while the coupling 
of the I

Cap 
and I

Kc
 also increases as we have previously reported using 

FIGURE 2 | Probability distribution of synaptic and dendritic currents. (A) 
The Purkinje cell model was stimulated with pairs of excitatory and inhibitory 
synaptic activity. The total excitatory synaptic current (IGlu) remained practically 
constant for all the combinations of excitatory and inhibitory activity (activity in 
Hz). (B) Probability distribution of the ICaP in response to the different 
combinations of excitatory and inhibitory activity in (A). (C) Probability 
distribution of IKc for the same simulations in (B). (D–F) The probability 
distribution of the other dendritic currents remained practically independent of 
level of synaptic activity. (G) The average fi ring rate at the soma remains 
constant for all combination of synaptic activity. (H) The Purkinje cell inter-spike 
distributions for each combination of synaptic activity in (A) have the same 
mean and standard deviation.

FIGURE 3 | Calculating the amount of excitatory synaptic information 

being carried by dendritic currents. (A) Entropy of the IGlu, ICaP, and IKc. (B) 
Conditional entropy of H(ICaP|IGlu) and H(IKc|IGlu). (C) Mutual information for 
I(ICaP,IGlu) and I(IKc, IGlu) calculated from (A) and (B); e.g. I(ICaP,IGlu) = H(ICaP)
−H(ICaP|IGlu). B and C were calculated with a 1 ms time difference between IGlu 
and the dendritic currents. All calculations were bias corrected using the 
Panzeri and Treves method.



Frontiers in Computational Neuroscience www.frontiersin.org March 2010 | Volume 4 | Article 6 | 5

Coop et al. Dendritic conductances as information channels

phase plane analysis (Santamaria et al., 2002). The amplitude of 
lag 0 is indicative of the amount of correlation with previous activ-
ity. The half-time auto-correlation time between I

Glu
–I

CaP
 extracted 

from these plots ranges between 3–70 ms.
We determined how the value of mutual information between 

I
Glu

 and I
CaP

 and I
Kc 

varied as an effect of previous activity. We 
calculated the mutual information between I

CaP
 and I

Kc
 with I

Glu
 

for lag times up to 1 s. Similar to what we did in Figure 3, at a 
given time lag of Δt we computed the mutual information of the 
value of I

CaP
 or I

Kc
 at time t with the value of I

Glu
 at time t−Δt. This 

analysis shows that the mutual information between I
CaP

 and I
Glu

 
decays as a function of time lag (Figure 5A). This decay is due 
to the leaky nature of the conductance and membrane system. 
However, as opposed to the cross-correlation analysis the mutual 
information only shows one secondary peak at around 20 ms. 
Similarly, the time lag analysis of I

Glu
 and I

Kc
 show an initial decay 

of the mutual information and a peak at around 20 ms (Figure 
5B). Channel kinetics and level of synaptic activity generate strong 
correlations at lag 0 which refl ect the average level of activity in 

the dendrite, while the second peak is the mutual information in 
each channel from the instantaneous value of I

Glu
. As is known 

from functional and anatomical studies of the cerebellar cortex, 
excitatory inputs to Purkinje cells are divided in two groups. The 
fi rst group comes from parallel fi bers, which are being studied in 
this work; the second group is the ascending segment synapses 
(Llinas, 1982). The ascending segment synapses deliver a more 
synchronous input that forces the Purkinje cell to fi re robustly 
(Santamaria et al., 2007). The information analysis presented in 
Figure 5 suggests that paired stimulus stimulation from ascending 
segment synapses would then be infl uenced in a window of around 
20 ms by previous activity. This prediction is consistent with our 
previous analysis of ascending segment processing in the Purkinje 
cell model (Santamaria and Bower, 2005).

DENDRITIC EXCITABILITY MODULATES INFORMATION 
CONTENT IN THE DENDRITE
Plastic changes in the expression of active conductances affect 
the signal processing properties of dendritic trees (Segev and 
London, 1999; Stuart and Hausser, 2001). Each dendritic chan-
nel contributes to the encoding and transformation of synaptic 
input depending on channel kinetics and expression. Thus, we 
decided to quantify the dependence of the value of mutual infor-
mation between I

Glu 
with I

CaP
 and I

Kc
 as a function of dendritic 

channel density.
We varied the excitability of the dendrite by changing the con-

ductance of the CaP (g
CaP

) or Kc (g
Kc

). The value of g
CaP

 was varied 
from 25–70 S/m2, while keeping g

Kc
 at its control value (800 S/m2), 

and g
Kc

 ranged from 550–1000 S/m2, while keeping g
CaP

 at the origi-
nal value of 45 S/m2. This wide range of conductances resulted in 
changes in the somatic fi ring rate (Figure 6). In the case when we 
varied g

CaP
 the fi ring rate approached zero when g

CaP
 < 40 S/m2. 

Varying g
Kc

 resulted in an almost linear dependence of the fi ring 
rate with the fi ring rate at each conductance level less than 10% 
from the collective average (Figure 6B).

The information analysis of the conductance manipulations 
shown in Figure 6 result in that the entropy of I

CaP
 as a function 

of g
CaP

 decreases as g
CaP

 increased (Figure 7A left). This depend-
ence is robust to changes in the value of the fi ring rate (Figure 
6A). The conditional entropy between I

CaP
 and I

Glu
 had a slightly 

different dependence of g
CaP

 (center). The combination of entropy 
and conditional entropy resulted in a relatively constant value 

FIGURE 4 | Cross-correlation analysis of total synaptic excitatory input 

and dendritic currents. The fi gures show the auto-correlation of the synaptic 
current (IGlu, blue), and the cross-correlation of IGlu with ICaP (green), and IKc (red). 
We repeated this analysis for all the combinations of synaptic activity (A–D).

FIGURE 5 | Dependence of mutual information to previous activity. (A) 
I[ICaP(t),IGlu(t−Δt)] for Δt between 0–1 s. (B) I[IKc(t),IGlu(t−Δt)] for Δt between 
0–1 s. The different traces correspond to different combinations of synaptic 
activity. Mutual information was bias corrected using the Panzeri and Treves 
method.

FIGURE 6 | Somatic fi ring rate varies as a function of dendritic 

excitability. (A) Firing rate as a function of homogenously changing the 
conductance of CaP (gCaP). (B) Similar to A changing the conductance of Kc 
(gKc). The vertical lines correspond to the values of the control simulation.
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of the mutual information that then increased as a function 
of background activity for increasing values of g

CaP
 (right). We 

repeated the same analysis to calculate information transmis-
sion of I

Glu 
through I

Kc
 as a function of g

CaP
 (Figure 7B). The 

functional dependence of the mutual information plots shown in 
Figures 7A,B showed a similar dependence. Note that the mutual 
information did not refl ect the fi ring rate behavior. Similarly, we 
calculated mutual information from I

Glu
 to I

CaP
 and I

Kc
 as a func-

tion of g
Kc

 (Figures 7C,D). In these cases the mutual information 
increases as the g

Kc
 decreased, and the fi ring rate increased. This 

is due to the lower inhibitory effect of Kc over CaP. In practically 
all cases the ratio N/m was larger than 1 (Figures S3 and S4 in 
Supplementary Material).

We further quantifi ed the effect of time lags and dendritic excit-
ability on information processing of I

Glu
 in the dendrite. We calcu-

lated the mutual information of I
CaP

 with I
Glu

 as a function of g
CaP

 and 
time lags up to 1 s (Figure 8A), for all levels of background activity. 
This analysis shows that for high values of g

CaP
 and low levels of 

background activity mutual information is maximized (Figure 8A 
right). The decay of the mutual information increases as a function 
of the value of g

CaP
. A similar set of results is obtained when calculat-

ing mutual information content of I
Glu

–I
Kc

 (Figure 8B). However, 
in this case, the effect of the background level of stimulation is not 
as strong as in I

CaP
. A more subtle infl uence is shown by a similar 

analysis of the effects on the mutual information of I
Glu

 with I
CaP

 
and I

Kc
 while varying g

Kc
 (Figures 8C,D, respectively). Overall, this 

FIGURE 7 | Excitatory synaptic current information content in dendritic currents as a function of dendritic excitability. (A) Calculations H(ICaP), H(ICaP|IGlu) and 
I(ICaP,IGlu) as a function of gCaP. (B) Similar to (A) but with respect to IKc. (C,D) Identical calculations as (A) and (B) but varying gKc. Mutual information was bas corrected 
using the Panzeri and Treves method.
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before delivering it to the soma and provide a more sophisticated 
function than to compensate for the electrotonic decay of synaptic 
signals (Segev and London, 2000; Bekkers and Hausser, 2007).

INFORMATION CHANNELS IN DENDRITES
Neuronal response to synaptic activity is an analog-to-digital trans-
formation that requires the integration and processing of a large 
number of synaptic inputs distributed across a dendrite (Segev 
and London, 2000). Traditionally, information theory has been 
applied to determine how much of the input stimulus can be recon-
structed from observing the spiking activity of a neuron (Rieke, 
1997). Under this approach, the neuron is lumped into a point 
source function in which dendritic processing is lost (Harris and 
Stark, 1972; Sherry and Klemm, 1980; Yamada et al., 1996; Borst 
and Theunissen, 1999; Levy and Baxter, 2002; Schultz et al., 2009). 
In this study we refi ned the use of mutual information and linked it 
to a biophysical property of dendrites. In this framework, each con-
ductance is treated as an information channel that  communicates 

analysis shows that the window of dendritic integration is directly 
modulated not only by the excitability provided by active conduct-
ances but also by the level of synaptic stimulation, especially in the 
case of I

Kc
. Since both of these properties are dynamic and plastic, 

they allow the cell to regulate synaptic information processing.

DISCUSSION
Using a Purkinje cell model we presented a statistical analysis that 
shows that most of the information encoded in the background 
excitatory input is carried by the CaP and Kc currents. We have 
shown that the excitability of the dendritic tree represented by the 
density of active dendritic conductances modulates the information 
content of the total excitatory input in conjunction with the amount 
of synaptic activity. Consequently, the time window of integration of 
synaptic activity is in itself dependent on the level of synaptic activity 
which is not necessarily refl ected in the spiking activity at the soma. 
This dynamical range of information processing consolidates the 
view that Purkinje cell dendrites processes synaptic activity locally 

FIGURE 8 | Excitatory synaptic current information content in dendritic 

currents as a function of dendritic excitability and time lags. (A) I[ICaP(t),IGlu

(t–Δt)] for Δt from 0–1 s and varying gCaP. (B) As in (A) for IKc. (C,D) Identical 

calculations as in (A–B) but varying gKc. The different panels correspond to 
different combinations of synaptic activity. Mutual information was bias 
corrected using the Panzeri and Treves method.
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data. These algorithms change the density of dendritic conductances 
(Achard and De Schutter, 2008). Then models could be classifi ed due 
to their value of mutual information between the stimulus and each 
dendritic current. Using this approach we could test the hypothesis 
that by matching the spiking activity at the soma the information 
content of the synaptic activity in dendritic currents is maximized.

The simulation analysis presented in this work can be used to 
design experiments based on dynamic clamp technique (Sharp 
et al., 1993; Kreiner and Jaeger, 2004). A challenging experiment 
would consist in patching a Purkinje cell while blocking spiking 
activity with tetrodotoxin. The pipette could deliver artifi cial syn-
aptic conductances while monitoring the resulting current in the 
soma. The mutual information between the synaptic input and the 
total dendritic current value could be calculated from this experi-
ment. Pharmacological manipulation blocking dendritic calcium or 
calcium activated potassium channels in the dendrite would then 
uncover the contribution to information processing. Other similar 
experiments could be to electrically or photochemically stimulate 
a group of synapses while recording at the soma (Korkotian and 
Segal, 2006) or to use the recently developed targeted dendrotomy 
technique (Bekkers and Hausser, 2007).

BIOPHYSICAL INTERPRETATION
Dendritic excitability, in Purkinje and other cell types, is the conse-
quence of the different concentration and distribution of active con-
ductances over a dendritic tree (Gunay et al., 2008; Komendantov 
and Ascoli, 2009). Neuronal stimulation and development change 
the excitability of the cell and could be a mechanism for storing 
memories (Womack and Khodakhah, 2003; Kim and Linden, 
2007). Similarly, excitability is affected by aging and illnesses that 
could reduce the information capacity of the dendrite (Landfi eld 
and Pitler, 1984; Chan et al., 2007; Kabaso et al., 2009). It is well 
established that hippocampal pyramidal cells fi ring rate remains 
constant through aging (Barnes et al., 1983; Wilson et al., 2005) 
but not in Purkinje cells (Rogers et al., 1980), however the contri-
bution of dendritic excitability and afferent stimulation on these 
changes is not well understood. In any case, our analyses have shown 
that changes in g

CaP
 or g

Kc
 can regulate the amount of information 

encoded and the time synaptic activity affects neuronal activity. 
As the hyperpolarizing Kc current decreases, the information con-
tained in I

CaP
 and I

Kc
 increases potentially allowing more informa-

tion to be transmitted by the neuron (Steuber et al., 2007).
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and interacts with other information channels in the dendrite. We 
found that the mutual information between excitatory synaptic 
input and dendritic currents varies as a function of dendritic excit-
ability and the level of synaptic activity.

Although the activity of dendritic currents is dependent on I
Glu

 
stimulation in the past our analysis shows strong mutual informa-
tion at lag 0. This ‘background’ information stems from the overall 
level of activity in the dendrite as also shown by the cross-correlation 
analysis. These results are dependent on the properties of the stimulus 
that were meant to replicate the continuous activity arriving from 
parallel fi bers and inhibitory synapses. This stimulation resulted in an 
overall level of activity of dendritic channels that is refl ected at zero 
lag time. However, the second peak shown in the cross-correlation 
and mutual information is more indicative of the internal dynamics 
of the dendritic currents and the information content of the instan-
taneous value of I

Glu
. The differential encoding of synaptic activity 

underscores the modulatory property of the parallel fi ber system on 
Purkinje cell activity (Santamaria et al., 2007; Walter et al., 2009).

Purkinje cells also receive synaptic activity from the ascending 
segment part of the granule cell axon and climbing fi bers (Llinas, 
1982). Both of these synaptic inputs deliver a more instantaneous 
stimulus lasting a few milliseconds. Under such types of stimuli and 
in the absence of background parallel fi ber stimulation the instan-
taneous mutual information would be zero and would increase to 
reach a maximum, possibly at 20 ms, as indicated by our cross-
 correlation and mutual information analyses. Thus, mutual infor-
mation from different systems could be encoded differently in the 
Purkinje cell dendritic tree.

The time window in which we defi ne our stimulus affects the 
value of the mutual information. For example, our window of 
analysis (1 ms) would be too slow to study information at the some 
where fast channels are present. However, other types of cells could 
have fast dendritic channels (Regehr and Tank, 1992). Thus, caution 
should be taken when applying information theory to analyzing 
dendritic activity.

USE OF MUTUAL INFORMATION TO TUNE BIOPHYSICAL MODELS AND 
EXPERIMENTAL DESIGN
Bounding the kinetic and density parameters of dendritic current 
models has been diffi cult since present experimental techniques are 
limited in resolving the spatial distribution of dendritic conductances 
(Achard and De Schutter, 2008; Van Geit et al., 2008). We propose that 
by treating each dendritic conductance as an information channel it 
is possible to constrain the value and distribution of dendritic cur-
rents in encoding synaptic information. Although here we have pre-
sented data regarding encoding the total excitatory current, the same 
technique can be extended to total inhibitory, total synaptic current, 
or it can be subdivided into the different parts of the dendritic tree 
(primary, secondary, and tertiary dendrites). At a fi rst iteration, tra-
ditional template matching algorithms could be used to fi t a model to 
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