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What Feynman noted for physics is even more true for biol-
ogy with its confusing zoo of phenomena, namely that a different 
perspective of a phenomenon can lead to novel insights. We have 
recently attempted to find a novel perspective on dendritic function–
structure relationships (Stiefel and Sejnowski, 2007; Torben-Nielsen 
and Stiefel, 2009). Specifically, we are using an inverse approach 
where we pick a computational function and then use computer 
simulations to generate dendrites optimized for the chosen function. 
We thus go in the opposite direction of conventional studies, where 
the neural theorist starts with a known dendritic morphology and 
aims to find out the computational function: we start with the com-
putational function and aim to find the corresponding morphology. 
This inverse approach can be used in two ways (Figure 2).

First, we can choose a computational function of neurobiologi-
cal relevance, and find the optimized dendrites for performing that 
function. Then, by comparing the resultant artificial dendrites to 
the known dendritic morphologies of real neurons, we can gain 
novel hypotheses about the functions of their dendrites: If dendrites 
of a neural type resemble the artificial, optimized, dendrites, then 
they will likely fulfill a similar function. We call this approach the 
“hypothesis generator”.

Second, we can start our reasoning with a real neuron and its 
hypothesized computational function. We then optimize dendrites 
for that hypothesized function, and compare the outcome to the 
original neuron. If the dendrites are similar, this results provides 
additional support for the hypothesis that the neuron in fact per-
forms that function. In addition, if the artificial dendrites have fea-
tures which have not been determined yet in the biological system, 
such as distributions of conductances, these constitute predictions 
about these features in real neurons. We call this second approach 
the “function confirmation”.

DenDrites
Neurons possess two types of cellular appendages, axons and den-
drites. While axons serve to deliver the output of their computations 
to other neurons via synapses, dendrites receive the synaptic inputs 
from other neurons.

The dendrites of neurons are highly diverse, both between 
and within classes of neurons (Soltesz, 2005; and see Figure 1). 
Furthermore, the distributions of voltage sensitive conductances 
(Migliore and Shepherd, 2002) and synapses of different polarity 
(excitatory/inhibitory) and presynaptic origin are distinct between 
different types of neurons (Stuart et al., 2008). What is the function 
of this great cellular diversity?

Dendrites have been shown to support a diversity of physi-
ological and computational processes, such as linear (Cash and 
Yuste, 1999) and location independent (Magee, 1999) synap-
tic integration, several types of dendritic spikes (Schiller et al., 
2000; Harris et al., 2001) and back-propagation of axonal spikes 
(Markram et al., 1995), as well as plasticity of local conductance 
distributions (Hoffman et al., 1997). A multitude of theoretical 
studies have already dealt with the influence of the morpholo-
gies of dendrites on dendritic function (De Schutter and Bower, 
1994; Mainen and Sejnowski, 1996; van Ooyen et al., 2002) and 
functions theoretically performed on dendrites (Koch and Segev, 
2000; Segev and London, 2000). What can we add to this impres-
sive body of work?

As long as physics is incomplete, and we are trying to understand the 
other laws, then the different possible formulations [of physical laws] 
may give clues about what might happen in other circumstances. In 
that case they are no longer equivalent, psychologically, in suggesting 
to us guesses about what the laws might look like in a wider situation. 
Richard Feynman in “The Character of Physical Law”.
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DenDritic “function”
At this point a short excursion on the use of the word “function” is 
warranted. How can we attribute a function, a concept originally 
applied to man-made tools, to a phenomenon in the natural world? 
We consult the theory of evolution. If we assume that an animal 
which does not perform activities necessary to gather nutrients 
and reproduce will fall to natural selection, then these are its func-
tions on the organismic level. Any animal devoid of these func-
tions will not leave offspring, and consequentially such animals 
will be eliminated from the population. The sub-components of 
the animal, such as individual neurons, will then have functions 
to subserve these organismic functions. This line of teleonomic 
reasoning (Mayr, 2004) justifies the concept of functionality in 
animate nature: an arm, wing, eye, or neuron came into existence 
because they fulfill a function for the survival and reproduction of 
an animal. For inanimate physical entities, such as a crystal, volcano, 
or sun-spot, this is not the case.

Now, it is furthermore useful to distinguish between three dis-
tinct uses of the word “function” in our context: a physiological, a 
computational and a sensory/motor coding use. Below we explain 
the three different aspects of “function” and demonstrate the mean-
ing through the fly VS cell; a cell of which morphology, physiol-
ogy, and input/outputs are well described (Borst and Haag, 1996; 
Strausfeld et al., 2006).

In the VS cells of the fly visual system, the physiological function 
of the dendrites is to low-pass filter the incoming synaptic poten-
tials on their path from the synapses to the axon. Additionally, the 
synaptic potentials are conducted to the axon with roughly equal 
delays. Thus, the physiological functions are direct consequences 
of a neuron’s biophysics, its passive and active membrane proper-
ties. They are typically investigated with single neuron recordings 
(often, but not always in vitro) and single neuron model simulation 
(single- or multi-compartmental).

The computational function of the fly VS cell dendrites is to sum 
all synaptic potentials such that the voltage at the axon is propor-
tional to the incoming mean signal. Furthermore, the dendrites 
reduce the voltage standard deviation and the power of the strong-
est frequency band in the input signal. Thus, the computational 
function is the signal processing performed by the dendrites. It 
describes the mathematical transformation the dendrites apply to 
their inputs. The computational function emerges from the sum 
of the physiological functions of a neuron plus the temporal and 
spatial structure of its inputs. The same dendrites, performing the 
same physiological functions, could carry out a different compu-
tational function if receiving different input patterns. Which of the 
many possible computational functions a neuron could carry out 
does it actually perform in ecologically relevant situations? We will 
come back to that question later.
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Figure 1 | Dendritic morphologies exist in all sizes and shapes which are 
believed to parallel dendritic function. However, currently there is not much 
known about the neither synaptic integration in distinct neuronal types, nor the 
different types of integration taking place inside the dendrites (see main text). (A–D) 
Illustrates four different neuronal types, and, what is know about their physiology 

(with respect to synaptic integration), computation and coding function [soma shape 
of the bipolar interneuron modified for display purposes. Scale bar indicates 100 μm. 
The morphologies illustrated are all downloaded from NeuroMorpho.org (Ascoli 
et al., 2007) and originally coming from Borst and Haag, 1996; Contreras et al., 1997; 
Gulyás et al., 1999; Wang et al., 2002, for A–D, respectively).
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(physiological → computational) and the inputs’ sensory/motor 
coding meaning (computational → coding). There is an abundance 
of knowledge about the physiological functions of dendrites, which 
is often ill matched with an understanding of their computational 
and coding functions (Figure 1). With the inverse approach, we 
investigate the computational functions of dendrites, and how they 
emerge from their physiological functions.

the inverse approach
The inverse approach relies on three components: morphology gen-
eration, model construction, and the model optimization. Below 
we outline these components.

Morphology generation
Dendritic morphologies are generated by a recursive algorithm 
(based on Burke’s algorithm; Burke et al., 1992). Starting from 
the soma, this algorithm adds dendritic segments piecewise to the 
neuron (Figure 3). After adding each new segment, the algorithm 
decides whether to terminate the dendritic tree, elongate it, or to 
introduce a bifurcation. It also decides on the new direction of the 
dendrite, on the thinning of the dendritic stems, and on the amount 
of active conductances inserted in that part of the dendrite. The 

The coding function of the fly VS cell dendrites is to calculate the 
direction and speed of the moving visual field based on the signals 
the neuron receives. Again, this function emerges from the previous 
function, the computational function plus the sensory meaning of 
the received signal, which represents small-field visual motion. Note 
that the same VS cell dendrites could calculate a completely differ-
ent coding function, if their inputs would originate, for example, 
in the auditory system. Even with the same input structure, they 
would code for something completely different, like the average 
loudness of the auditory environment. Coding functions are inves-
tigated with in vivo recordings in animals engaged in sensory or 
motor tasks. Interestingly, in some cases (such as monkey visual 
cortical neurons) the coding function is known, while the physi-
ological and computational function it emerges from are unknown. 
Only in a few cases of neurons (mostly in invertebrates; Michelsen 
et al., 1994; Strausfeld et al., 2006), where the cellular physiology 
is understood while the neurons are functioning in their sensory/
motor role in vivo, are all three classes of function and their con-
nections understood.

In summary, the physiological, computational, and coding 
functions are interrelated and emerge from the previous levels, 
together with the temporal and spatial structure of the inputs 

v
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Figure 2 | Concept of the inverse approach to elucidate dendritic function. 
Finding optimized model neurons for a given computational function 
corresponds to a mapping from function space to structure space. This 
mapping, from function to morphology, can be one-to-many; the mapping 
from morphology to function can be many-to-one. The “hypothesis generator” 
version of the approach starts with a function of general interest, such as 
input-order detection and proceeds to find a neuronal morphology optimized 
for that function. This morphology is then compared to the morphologies of 

real neurons, with similarities hinting at their functions. In the 
“function confirmation” variant of the approach, the cycle starts with a 
real neuron and a hypothesis about its computational function. The 
evolutionary algorithm then finds an optimized model neuron for this 
function, which in turn can be compared to the real neuron. Yet 
unmeasured features of the real neuron, such as conductance distributions, 
can be predicted from the optimized model neuron (neuron reconstruction 
from Furtak et al., 2007).
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the subject of optimization (see below). For a detailed explanation 
of all parameters and how they guide the algorithm, see Torben-
Nielsen and Stiefel (2009). This type of morphology-generation 
algorithm is very powerful and in earlier work we have used it 
to generate neurons that are statistically similar to real neurons 
(Torben-Nielsen et al., 2008). However, the drawback of describing 

algorithm makes this decision based on a set of probability func-
tions. For instance, the termination probability is a cumulative 
gamma function dependent on the path length from the soma. 
These functions are created from parameter sets; each dendritic 
tree has its own parameter set. Thus, the distinct dendritic trees of 
an artificial neuron can look very different. The parameter sets are 

Figure 3 | Components of the inverse approach. (A) Algorithm to 
generate dendritic morphologies. The exact geometry (segment length and 
orientation) are sampled from the model specification. Right side of (A) 
illustrates how a dendritic branch is generated according to the algorithm. The 
numbers in the left panel correspond to the numbered actions in the 

algorithm. (B) A neuron model is constructed by inserting (uniform) passive 
electrical properties, a distribution of voltage-gated ion channels (the shown 
gradient), and synapses at a predetermined location. (C) Optimization by 
means of an evolutionary algorithm (figures are modified from Torben-Nielsen 
and Stiefel, 2009).
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function is expressed in terms of features of the output signal, for 
instance as the amplitude of the membrane potential at the soma. 
Any such function is allowed as long as it can express the perform-
ance of a model in a single value. In the addition to the fitness 
function, we also use heuristics to guide the optimization process in 
finding desired solutions. In an analogy with skiing, the heuristics 
can be seen as the gates the skiers have to pass in a slalom competi-
tion and the fitness function is the finishing time. These heuristics 
reflect biological constraints and do not impose conceptual bias on 
the outcome. For instance, heuristics are used to ensure the neuron 
model receives synaptic inputs, or, that trivial solutions based on 
biologically unrealistic model responses are ruled out.

The advantage of evolutionary algorithms is that they can 
explore large solution spaces with relative ease. Crossover and 
mutation provide an efficient search strategy in a solution space 
where gradients are hard to determine (Schwefel, 1995; Back, 1996). 
A drawback which evolutionary algorithms share with all other 
numerical optimization procedures is that it is impossible to guar-
antee true optimality of a solution: the algorithm can be stuck 
in a local optimum, or, come close to a global optimum without 
actually reaching it. Performing different optimization runs with 
different initial conditions (i.e., random seeds) makes it less likely 
that non-global optima are found. We further elaborate on the 
issue of optimality later.

Another important issue is the search space the genetic algo-
rithm acts in. The set of neural morphologies the genetic algorithm 
can sample from is smaller than the set of all possible neural mor-
phologies. This is due to the fact that the morphogenetic algo-
rithm we use, like any algorithm, will introduce a bias and will 
exclude the generation of certain morphologies. In the case of our 
algorithm, this, among other things, excludes dendrites with two 
separate domains, like the oblique and apical tuft dendrites of layer 
V pyramidal neurons in the cortex. This issue is an area of ongo-
ing development of our method. While the inherent limitations of 
our (and any other) algorithm have to be kept in mind, the set of 
morphologies our algorithm can generate is nevertheless large; the 
computations we optimized dendrites for were highly satisfactorily 
solved by morphologically complex dendrites.

Now that we have described how we find model neurons opti-
mized for chosen computational functions, we describe two appli-
cations of this method. In the first one, the computational function 
we chose was input-order detection, in the second one wide-field 
motion integration.

application: input-orDer Detection
The first function we applied the inverse approach to is input-order 
detection (Torben-Nielsen and Stiefel, 2009). In this function, a 
neuron should respond as strongly as possible when two groups 
of synapses (red and blue in Figure 4) are activated in one tem-
poral order (blue → red), but as weakly as possible when they are 
activated in the inverse temporal order (red → blue). The time 
between the activation of the red and blue synapses (∆t) was varied 
between 5 and 30 ms. Response was defined as maximal depolariza-
tion measured at the soma. We had no particular type of neuron 
in mind when we started optimizing dendrites for this function, 
thus this study was the “hypothesis generator” version of the inverse 
approach to dendritic function.

dendrites with (unimodal) distributions is that the resultant neuron 
has similar features all over the dendrite. For instance, the branch-
ing angle is sampled from a single distribution and will be similar 
in the dendrite regardless the location in the dendrite. Hence, not 
every type of neuron can be reconstructed using this algorithm 
and the results of the inverse approach have to be interpreted while 
keeping in mind this constraint.

MoDel construction
So far the morphogenetic algorithm has generated a raw morphol-
ogy. To simulate electrophysiological dynamics, a neuron model 
needs to be constructed from this morphology by inserting elec-
trical properties and synapses. The electrical properties consist of 
passive electrical properties (membrane resistance, axial resistance 
and membrane capacitance) and active electric properties (volt-
age-gated conductances). The passive properties are constant and 
inserted uniformly across the whole morphology. The densities of 
the active conductances are specified by the morphogenetic algo-
rithm (see above) and subject to optimization. Their kinetics were 
taken from models of hippocampal pyramidal neurons (Migliore 
and Shepherd, 2002) or fly VS cells (Haag et al., 1997), depending 
on the research question asked. Of course, the inverse approach 
can use a multitude of other channel kinetics.

The synapses are inserted in predetermined spatial areas relative 
to the soma, the “target zones”. The idea behind the target zones is 
to reflect afferent projection zones in the brain. Synapses are then 
inserted when a dendrite passes trough a target zone. One synapse 
is inserted (generally) for each 5 μm of dendrite inside a target 
zone. In this way, the absolute position of the dendrites becomes 
important; a rotation or translation of the whole neuron will move 
dendrites out of, or, into the target zones. The resultant model is 
then simulated in neuron (Carnevale and Hines, 2006).

MoDel optiMization by an evolutionary algorithM
To optimize the constructed neuron models we use an evolution-
ary algorithm. The idea of evolutionary algorithms is inspired 
by biological evolution and the survival of the fittest. Initially, a 
population of individuals, in our case parameter sets specifying 
dendrites, is pseudo-randomly initiated. Subsequently, as described 
above, morphologies are generated from these parameter sets, and 
model neurons from the morphologies. The electrophysiological 
dynamics of the model neuron are then simulated, and, based on 
the outcome, the fitness of the models is judged according to the 
fitness function. The performance of each individual model neuron, 
and corresponding parameter set, is assessed in this way. Afterward, 
based on this performance assessment, a new population is made 
by selecting the best individuals and modifying them in a random 
fashion (by crossover and mutation, or random value changes in 
the parameter sets). Hence, the next-generation population consists 
of descendants of the best individuals of the previous generation. 
By iterating this process over many generations, the performance 
of the model neurons will improve, and, eventually converge to 
an optimal solution.

Crucial in evolutionary algorithms is the fitness function that 
assesses the performance of the individuals. In our inverse approach, 
the fitness function assesses the ability of the neuron model to 
perform the predetermined computational function. The fitness 
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The active currents included in the simulations acted syner-
gistically with the passive membrane properties in modifying the 
EPSP waveforms for the purpose of input-order detection. The 
thin dendrites contained I

CaT
, an inactivating calcium conductance, 

which further broadened the already broad (low-pass filtered) EPSP 
waveform. The thick dendrites contained I

KA
, an inactivating potas-

sium conductance, which further sharpened the (weakly low-pass 
filtered) EPSP waveform. Two things were especially interesting 
about these conductance distributions: Firstly, while I

CaT
 was only 

located at the position of the synapses, I
KA

 was distributed along the 
dendrite in a gradient increasing from the soma outwards. These 
optimized distributions mirror the distributions found in nature, 
with hyperpolarizing conductances distributed along increasing 
gradients and depolarizing currents in “hot spots” (Migliore and 
Shepherd, 2002). Second, the role of the active currents showed 
a discontinuity between the neurons optimized for spike order 

We found optimized neurons with one or more thin dendrites 
bearing the synapses activated first (blue) and a thick dendrite 
bearing the synapses activated second (red). This neural morphol-
ogy lead to maximal summation of EPSPs in the preferred order 
via the following physiological functions: The EPSP originating at 
the synapses activated first were significantly low-pass filtered on 
their way to the soma by the thin dendrite. The waveform of this 
first EPSP thus decayed slowly, and the second EPSP waveform 
started at a voltage close to the peak of the first EPSP, and both 
EPSPs summed maximally (Figure 4E, top panel). If the EPSPs 
were evoked in the inverse order, the EPSP originating on the thick 
dendrite was evoked first. This EPSP was hardly low-pass filtered 
and decayed fast. Thus, the waveform of the EPSP originating on 
the thin dendrite started significantly further away from the peak 
of the first EPSP, and both EPSPs summed poorly (Figure 4E, 
bottom panel).
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Figure 4 | Summary of the result in the input-order detection function. (A) 
Experimental setup. The location of the soma and synapses are fixed. (B) Typical 
passive model optimized for ∆t = 20 ms and having one thick branch and one (or 
here two) thin branch. The blue and red bars correspond to the colors from (A). 
(C) Typical model containing IKA optimized for short ∆t = 10 ms (illustrating both 
the synapses and the IKA distribution). The density of the voltage-gated channel is 
heat-color coded; white represents the maximum allowed density while purple 
means 0. IKA channels were always densely located in the thick branch while no 
IKA channels were inserted in the thin branch. (D) Typical model containing ICaT 

optimized for long ∆t = 25 ms. An ICaT hotspot was always found close to the 
blue synapses. (e) Two electrophysiological mechanisms underlying successful 
input-order detection. In the preferred direction, the second EPSP (red) should 
arrive at the soma at the peak of the first (blue) EPSP. In null-direction, the 
second EPSP (blue) should arrive at the soma when the first EPSP (red) is 
decayed as much as possible. (F) Contribution of IKA to short ∆t. It promotes 
faster decay of the first (red) EPSP in the null-direction. (g) Contribution of ICaT to 
long ∆t. ICaT boosts the first (blue) EPSP in the preferred direction (figures are 
modified from Torben-Nielsen and Stiefel, 2009).
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optimized model neuron’s responses to visual motion and intracel-
lular current injection were very similar to data from real VS cells. 
We also observed the distributions of voltage-dependent conduct-
ances in the optimized model neurons: While voltage-dependent K+ 
conductances were located close to the synapses, the Na+ currents 
were located close to the axon. These conductance distributions 
have not yet been determined in real VS cells, and we predict that 
they will be similar to what we found in the optimized wide-field 
motion detectors.

Because passive neuron models could also perform the task 
fairly well, we set to investigate the role of the active conduct-
ances in wide-field motion integration. First, we established that 
the blueprint distribution of active conductances found by the 
inverse approach was significant by testing the optimized models 
without the active conductances, and, by inserting “random but 
plausible” distributions of the same active conductances. Both 
controls indicated that the particular distribution has a role in 
the performance of wide-field motion detection. Subsequently, 
we hypothesized that active conductances are required to balance 
for an inequality of the input strength. We tested this newly pro-
posed hypothesis by optimizing dendrites for motion detection in 
which a much stronger response should be given to null-direction 
motion. We found that while model neurons with active con-
ductances could perform this task, the purely passively optimized 
model could not. Therefore, we not only predict the distribution 
of the active conductances in VS cells, but also predict their role, 
namely balancing the output signal upon preferred- and null-
direction motion.

optiMality
A recurring theme in the inverse approach described here is opti-
mality. Do we obtain truly optimal or at least sufficiently close-
to-optimal solutions? What assumptions regarding optimality are 
we making, and are they justified? Finally, what can optimality 
teach us?

With a numerical optimization algorithm it is in principle 
impossible to know if the determined solutions are in fact truly 
optimal. As mentioned earlier, the algorithm could be stuck in a 
local optimum, or be close, but not at the global optimum. In the 
absence of knowledge of the global optimum, it is not possible to 
rule out these cases. But how can we be at least reasonably sure that 
this is not the case? Evolutionary algorithms, by means of their 
jumps in parameter space, are some of the best optimization algo-
rithms to tackle this problem. When optimizing neurons for input-
order detection, we also determined the exact fitness landscapes 
(the performance of a model plotted against its parameters) for a 
simplified neuron model. This model only had two unbranched 
dendrites, which made it sufficiently simple so that its fitness can 
be expressed in a closed form (Torben-Nielsen and Stiefel, 2009). 
While the fitness landscape for this simplified model is not com-
pletely identical to the fitness landscape for the full model, we can 
expect a significant overlap. We thus plotted the optimized full 
models (found by the evolutionary algorithm) on the fitness land-
scapes, and found that they are in the vicinity of the global optima 
(Figure S1 in Supplementary Material). These numerical results, 
superimposed on the fitness landscapes, are indeed close to the 
global optima.

detection for fast (∆t = 5–15 ms) and slow (∆t = 20–30 ms) time 
intervals between EPSPs. While in the neurons optimized for fast 
intervals I

KA
 was prominent, in the neurons optimized for slow 

intervals, a high density of I
CaT

 was found. Thus for performing 
the same computational function, with a quantitatively different 
parameter, different neurons were optimal.

In summary, by combining differential active and passive filter-
ing with the geometry of summing waveforms, the artificial neurons 
our algorithm found were competent input-order detectors. We 
would like to note that even though a knowledgeable neuroscientist 
could have found this solution, they were completely emergent 
from our algorithm. No specification of any of the morphological 
features and current distributions described above was included in 
the fitness function. We only asked the optimization algorithm to 
produce model neurons optimized for input-order detection.

Finally, did the optimized artificial model neurons resemble 
real neurons? Yes, they resembled cortical bipolar interneurons in 
several important respects. Both the optimized input-order detec-
tors as well as the bipolar interneurons have a thick and a thin 
primary dendrite and a similar number of end points (Furtak et al., 
2007). As a result of our optimization studies we thus predict that 
cortical bipolar interneurons are input-order detectors and con-
tain depolarizing conductances on their thin, and hyperpolarizing 
conductances on their thick dendrites – a testable consequence 
of the inverse approach not yet suggested as the function of the 
neurons in question.

application: WiDe-fielD Motion Detection
Another function we applied the inverse approach to is wide-field 
motion integration (Torben-Nielsen and Stiefel, 2010). In this 
study, our starting point was the VS cell of the fly visual system. 
This was thus a use of the “function confirmation” variant of the 
inverse approach to investigate dendritic function. The VS cells are 
large neurons in the lobular plate, a central (downstream) structure 
in the fly visual system responsible for encoding visual motion. 
There are roughly 10 VS cells in each hemisphere of the fly brain, 
and they are specialized for detecting vertical motion (Haag et al., 
1999; Egelhaaf, 2006). Each VS cell receives inputs from a series of 
small-field motion detectors (“Reichardt” detectors, covering ±4° 
of the visual field; Haag et al., 1999). It is generally believed that 
the VS cells act on these inputs to compute the global direction 
the visual field is moving relative to the fly, an operation termed 
“wide-field motion integration” (Franz and Krapp, 2000; Strausfeld 
et al., 2006).

We thus used our inverse approach to test the hypothesis that 
fly VS cells are wide-field motion integrators. In order to achieve 
this goal, we constructed a fitness function that capture the input–
output transformation of VS cells in a phenomenological way. An 
existing model of fly wide-field motion detection (Haag et al., 1999) 
was used to provide the artificial dendrites with biologically plau-
sible inputs. Then, we optimized the embedded model neurons to 
perform wide-field motion integration as formalized in our fitness 
function (Torben-Nielsen and Stiefel, 2010). Finally, we analyzed 
the resultant, optimized dendrites and found a morphological 
blueprint that shares crucial morphological features with real VS 
cells. Moreover, no optimized model neurons were found that did 
not comply with the found blueprint (Figure 5). In addition, the 
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Given the large variability of real neurons to which we aim to com-
pare the artificial optimized neurons, we argue that solutions close to the 
global optimum serve the purpose of comparison sufficiently well.

Having established that the optimized model neurons we obtain 
for different computational functions are most likely close to the 
optima for these functions, we next ask what conceptual assump-
tions go into these optimization procedures.

The main assumption we are making is that neuronal mor-
phologies are determined to a large degree by their computational 
functions. Other possible determinants of neural morphologies are 

Another result which indicates that the optima found by our 
numerical optimization algorithm are close to the global optimum 
is that successive optimization runs lead to similar results. While 
the values of morphological parameters of the optimized dendrites, 
such as the path length, the number of branch points, or the area 
covered by dendrites varied, the basic blueprint of the dendrites 
remained the same. For the functions tested so far, the degree of 
freedom is large enough so that when certain morphological con-
straints are met (dendrites of different diameter in the input-order 
detection task), other morphological features can vary.

Figure 5 | Summary of the result of the wide-field motion integration 
task. (A) Experimental setup depicting the stimulus, small-field motion 
detection by Reichardt detectors and the corresponding synaptic target zones 
where the optimized model receives the inputs. The real setup has 20 target 
zones instead of the 4 zones depicted here. (B) Morphology of a VS cell. (C,D) 
Morphology of optimized passive model neuron and active model neuron, 
respectively. (e) Blueprint for the distribution of the voltage-gated K, Na, and K 

(Na) channels. (F) Membrane potential measured at the initial axon segment of a 
VS cell (time-averaged over 10 runs). The stimulation protocol consist of the 
sequence: no motion, preferred-direction motion, no motion, null-direction 
motion and no motion. (g,H) Responses of the optimized passive and active 
model when stimulated with a similar protocol as in (F) (with thanks to H. Cuntz 
for providing the data displayed in F. Figures are modified from Torben-Nielsen 
and Stiefel, 2010).
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as a model of it, both processes give rise to optimized struc-
tures. In biological evolution, a structure will be optimized for 
the function it actually carries out; an argument that a certain 
neuron is performing a certain computational function is thus 
much stronger if it shows that the neuron is optimized for that 
function, not that it merely can compute it. Along this line of 
reasoning the inverse approach to dendritic function described 
here can contribute significantly to the understanding of neural 
function–structure relationships.

future Directions
There are a multitude of possible uses for the inverse approach to 
studying dendritic function described here.

One interesting question is how different levels of input stochas-
ticity will influence the dendritic morphologies and conductance 
distributions of neurons. How will the dendrites optimized for a 
certain computation change if they have to cope with an increasing 
amount of input variability? A second question is how the dendrites 
of neurons look which are optimized to perform more than one 
computational function. What compromises must be made, and 
which functions are more compatible with each other? Another 
interesting question is whether there exist “Gödel functions” for 
single neurons? We are referring to the insight by the mathemati-
cian Kurt Gödel (1906–1978), who found that for every axiomatic 
system in the realm of natural numbers there is a statement which 
is true, but can not be proven (computed). We do not pose this 
question in a strict mathematical sense, but we ask if there are 
functions which can not, or only very poorly, be computed by single 
neurons? Are there computational functions which necessitate a 
network of neurons?

We want to encourage the reader to think of interesting func-
tions to optimize dendrites for. The code (in Python) for the inverse 
approach described here is freely available from us upon request.
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wiring efficiency and evolutionary history. We will now explain 
how these additional determinants are or can be accommodated 
by our inverse approach.

Brains have evolved to carry out their function while using 
the least amount of biological resources (cellular material used to 
assemble axons and dendrites) possible. Thus, wiring efficiency is 
a major constraint in brain architecture (Chen et al., 2006; Cuntz 
et al., 2007) and will partially determine dendritic architecture. For 
the whole brain, wiring schemes which minimize the total wiring 
length will be preferable. For individual neurons this means that 
the locations of their synapses will be at positions which are not 
only determined by necessities related to synaptic integration, but 
by axonal wiring efficiency. Furthermore, neurons with the small-
est possible dendritic tree will be preferred. In our optimizations, 
we insert synapses on dendrites in spatial zones at predetermined 
positions relative to the soma (see above). These zones can be seen 
as axonal projection zones, which, when wisely chosen, will repro-
duce the axonal wiring efficiency constraints of the brains. We also 
include a heuristic selecting for small dendritic trees into our fitness 
functions (see above), which accommodates the dendritic wiring 
efficiency constraints. Hence, we believe that wiring efficiency con-
straints can be, and, are taken into account in our inverse approach 
to dendritic function. We argue that it is the interplay between wir-
ing efficiency and necessities stemming from synaptic integration 
which shape dendritic function, and that both are accounted for 
in our optimizations.

In nature, neurons are not generated de novo at the beginning 
of the optimization like in our simulations, but are the products 
of long evolutionary histories. Thus, their structures will be the 
products of both current and past functional constraints. Just as a 
dolphin’s fin still reflects its past as a land mammal’s leg (Thewissen 
et al., 2009), a neuron’s dendrites will bear witness to computational 
functions it carried out in an ancestral brain. This aspect of neural 
function could be included in the inverse approach to dendritic 
function by starting not from a random population of dendritic 
morphologies, like now, but from a population believed to represent 
the neuron’s ancestral population.

Evolution can be seen as an optimization process constantly 
chasing a changing optimal setpoint. While the evolutionary 
algorithm used for optimization in our approach is infinitely 
less complex than the real evolutionary process, and not meant 
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Figure S1 | Optimality of the model neurons generated by the inverse 
approach. (A) A simplified ball-and-stick model of which the closed-form can 
be computed. The (constant) diameters and lengths of both stretches of 
dendritic are the only parameters in the simplified model. (B) Fitness 
landscapes computed for the closed-form solution of (A) and different ∆ts from 

5 to 30 ms. The different overlaid symbols indicate solutions found by our 
inverse approach (•: passive model. ×: model with IKA. ∆: model with ICaT. 
∇: model with both IKA and ICaT). The optimized models are close to the global 
optima computed for the simplified model from (A) (reproduced from 
Torben-Nielsen and Stiefel,2009).


