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2008). We found that a Gaussian degree distribution gives a good 
quantitative description for statistical properties of the network 
such as the appearance of the giant m-connected component and 
its size as a function of connectivity. The inhibitory component 
was found to be about 30% in hippocampal cultures, and about 
20% in cortex. We furthermore observed that the appearance of a 
fully connected network coincides precisely with the time of birth 
(Soriano et al., 2008).

In this paper we apply our graph theoretic approach to the 
intriguing process of the initiation of a spontaneous population 
spike. On the one hand, a perturbation needs to be created that 
pushes a number of neurons to begin firing. On the other hand, 
the initial firing pattern must propagate to the rest of the neurons 
in the culture. Understanding this recruitment process will give 
insight on the structure of the network, on the interrelation of 
activation in neurons, and on the dynamics of neuronal firing in 
such a complex culture. A simple scenario for initiation that one 
might conceive of is wave-front propagation, in which a localized 
and limited area of initiation is ignited first, and from there sets up 
a spherical traveling front of excitation. However, as we shall see, 
the initiation is a more intricate process.

The experimental situation regarding initiation of activity is 
complex. In quasi one-dimensional (1D) networks we have been 
able to show that activity originates in a single “Burst Initiation 

IntroductIon
Development of connectivity in a neuronal network is strongly 
dependent upon the environment in which the network grows: 
cultures grown in a dish will develop very differently from networks 
formed in the brain. In a dish, the only signals that neurons are 
exposed to are chemicals secreted by neighboring neurons, which 
then must diffuse to other neurons via the large volume of fluid 
that surrounds the culture. The result is a connectivity dominated 
by proximity in a planar geometry, whose input degree follows 
a statistical distribution function that is Gaussian-like (Soriano 
et al., 2008). This is contrasted by the intricate guidance of axons 
during the creation of connectivity in the brain, which is dictated 
by a detailed and very complex “blueprint” for connectivity. As 
a result, the firing pattern of a culture is an all-or-none event, a 
population spike in which practically all the neurons participate 
and are simultaneously active for a brief period of time, spiking 
about three to four times on average.

We have previously shown (Cohen et al., 2010) that graph theory 
and statistical mechanics are useful in unraveling properties of the 
network in a rat hippocampal culture, mostly because of the statisti-
cal nature of the connectivity. With these tools we have been able 
to understand such phenomena as the degree distribution of input 
connections, the ratio of inhibitory to excitatory neurons and the 
input cluster size distribution (Breskin et al., 2006; Soriano et al., 
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Zone” (BIZ), in which a slow recruitment process occurs over 
 several hundreds of milliseconds (Golomb and Ermentrout, 1999, 
2002; Osan and Ermentrout, 2002; Feinerman et al., 2005). From 
this BIZ the activity propagates to the rest of the linear culture 
along an orderly and causal path dictated by the 1D structure 
(Feinerman et al., 2007). In 2D networks such causal propagation 
is not observed (Maeda et al., 1995; Streit et al., 2001), and the 
precise mode of propagation has not been identified. Recently, 
Eytan and Marom (2006) found that a small subgroup of neurons 
were the “first-to-fire,” and that also in this case the initiation 
is long (on the order of hundreds of milliseconds). They also 
observed that the growth rate is exponential in the initial stage 
and then changes to faster than exponential. These neurons were 
later shown to characterize and “lead” the burst, and to recruit the 
neurons in their proximity in the “pre-burst” period (Eckmann 
et al., 2008).

In this paper we address and connect three experimental obser-
vations that are at first sight unrelated. The first and fundamental 
observation is the fact that bursts are initiated by Leaders, or first-
to-fire neurons (Eytan and Marom, 2006). We use the quorum per-
colation model to answer the question – what makes these Leaders 
different from the rest of the network – by showing that one of their 
important characteristics is a high in-degree, i.e., a large number 
of input connections.

We then turn to the second experimental observation, that the 
activity in a burst starts with an exponential growth. We show that 
this can happen only if the distribution of in-degree is a power law 
with exponent of −2. However, this needs to be related with the 
third experimental observation, which is that the distribution of 
in-degrees is Gaussian rather than power law. We reconcile both 
observations by stitching together the two solutions into an in-
degree distribution that has the large majority of neurons in a 
Gaussian centered around an average in-degree of about 75, while 
10% of the population lie on a power law tail that can reach a 
few thousand connections. We show that this reconstructs the full 
experimentally observed burst structure, which is an exponential 
initiation during the pre-burst followed by a super-exponential 
during the burst.

We present several ideas on the origin of these distributions 
in the spatial extent and geometry of the neurons, and show that 
the distribution of in-degrees is proportional to the distribution 
of spatial sizes of the dendritic trees. We thus conjecture that the 
distribution of dendritic trees is mostly Gaussian, but that a few 
neurons must have dendrites that go off very far, with power law 
distribution of this tail. We end by making some additional con-
jectures about 1D cultures and on the importance of the size of 
the culture.

Methods
QuoruM percolatIon Model for dynaMIcs of randoM  
graph network
We describe the neural culture using a simplified model of a net-
work whose nodes are neurons with links that are the axon/den-
drite connections. This picture is further simplified if we consider a 
randomly connected sparse graph (Bollobas, 1998), with a uniform 
strength on all the connections. The structure and topology of the 
graph are determined by specifying a probability  distribution p

k
 

for a node to have k inputs. Percolation on a graph is the process 
by which a property spreads through a sizeable fraction of the 
graph. In our case, this property is the firing of neurons. The addi-
tional characteristic of Quorum Percolation is, as its name implies, 
that a burst of firing activity will propagate throughout the neu-
ronal culture only if a quorum of more than m firing neighbors 
has ignited on the corresponding graph. While this description 
makes a number of assumptions that are not exact in their com-
parison to the experiment, it does, as we have been able to show 
previously, capture the essential behavior of the network (Tlusty 
and Eckmann, 2009; Cohen et al., 2010). The use of such a sim-
ple model for the neuronal network is justified at the end of the 
Section “Methods.”

In particular, in this paper we obtain a theoretical explanation 
for the experimental observation of initiation of activity by a small 
number of neurons from the network and the subsequent gradual 
recruitment of the rest of the network. Within the framework of 
a random graph description, we have previously shown that the 
dynamics of firing in the network is described by a fixed point 
equation for the probability of firing in the network, which also cor-
responds to the experimentally observed fraction of neurons that 
fire. Experimentally, this fraction can be set by applying an external 
voltage (Breskin et al., 2006; Soriano et al., 2008). In the case of 
spontaneous activity, this fraction is determined by the interplay of 
noise and the intrinsic sensitivity of the neurons (Alvarez-Lacalle 
and Moses, 2009).

Specifically, connections are described by the adjacency matrix 
A, produced according to the probability distribution p

k
, with A

ij
 = 1 

if there is a directed link from j to i, and A
ij
 = 0 otherwise and 

A
ii
 = 0.
Our study starts by assuming initial conditions where a fraction 

f of neurons are switched “on” externally at time t = 0. The neurons 
fire, and once they do they stay “on” forever – a neuron will be on 
at time t + 1 if at time t it was on. A neuron is either turned on at 
t = 0 (with probability f ) or, if it is off at time t, then it will it will 
be turned on at time t + 1 if at least m of its upstream (incoming) 
nodes were on at time t:

s t s t s t A s t mi i i ij j
j

( ) ( ) ( ) ( ) ,+ = + −( ) −






∑1 1 Θ

 

(1)

where s
i
(t) describes the state of the neuron at time t (1 for “on” and 

0 for “off”) and Θ is the step function (1 for x ≥ 0, 0 otherwise). 
Note that the second term, which accounts for the neuron’s prob-
ability to fire at time step t, creates a coupling of s

i
(t) to all its inputs 

s
j
(t). Lacking a turning off process, the number of active nodes is 

monotonically increasing and converges into a steady state (a fixed 
point) within a finite time t

f
, which is smaller than the number of 

neurons, t
f
 < N.

To derive the “mean-field” dynamics for the average fraction of 
firing neurons, Φ(t) = 〈s

i
(t)〉 = N−1Σ

i
s

i
(t), one cannot simply aver-

age Eq. 1 directly. This is due to the correlation between s
i
(t) and 

Θ (Σ
j
A

ij
s

j
(t) − m). The correlation exists because if a given neu-

ron fires, s
i
(t) = 1, and it was not externally excited, then at least 

m of its inputs are firing and the step function over its inputs 
must also be 1. In fact, at the fixed point the correlation is strong,  
(1 − s

i
(t)) Θ (Σ

j
A

ij
s

j
(t) − m) = 0, since in the steady state a neuron can 
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At every time step a neuron would fire if it fired the previous step, 
or if more than a threshold number of its input neighbors fired. The 
threshold m and the initial firing component f could be varied, and 
the activity history of all neurons was stored for subsequent analy-
sis. We used a number of different degree distributions, including 
a Gaussian, exponential and power law for the network. We also 
used a tailored Gaussian distribution in which 10% of the high-k 
neurons, which have k higher than a given k

tail
, obey a power law 

distribution function.

ValIdIty of the Model
The use of a random graph for neuronal cultures
The spatial extent and arrangement of connections can be of 
importance to the dynamics of the network. In contrast to spa-
tially embedded (metric) graphs, random graphs allow any two 
nodes to connect, i.e., they are the analog of infinite dimen-
sional networks. The experiment is obviously metric but our 
model employs a random graph. This seeming contradiction was 
resolved in a previous study (Tlusty and Eckmann, 2009), where 
we showed that if the average connectivity is high enough then 
the graph is effectively random (i.e., of very high dimension). 
Why does the random graph picture describe so successfully the 
measurements of a 2D neural culture while it completely neglects 
the notions of space and vicinity? As we explained in Tlusty and 
Eckmann (2009), there is a basic difference in the manner in 
which random and metric graphs are ignited. In metric graphs it 
suffices to initially turn on localized excitation nuclei, which are 
then able to spread an excitation front throughout the spatially 
extended network. In random graphs, there are no such nuclei 
and one has to excite a finite fraction of the neurons to keep the 
ignition going. Still, we showed (Tlusty and Eckmann, 2009) that 
the experimental network, which is obviously an example of a 
metric graph, is effectively random, since its finite size and the 
demand for a large quorum of firing inputs makes the occurrence 
of excitation nuclei very improbable. As explained in that paper, 
this occurs when it becomes impossible to identify causal paths 
in space along which activity propagates, with one neuron acti-
vating its neighbor and so on. In other words, the activity burst 
does not initiate at one specific nucleating site, and has instead 
multiple locations at which activity appears. This is exactly the 
characteristic of a random graph with no spatial correlations. 
Thus a highly connected graph in 2D such as ours has charac-
teristics that are similar to a high dimensional graph with near-
neighbor connectivity.

Approximating neuronal cultures as tree-like graphs
The basic reason why a tree-like graph will describe the experi-
mental network lies in the observation that the percentage of 
connections emanating from a neuron that actually participate 
in a loop is small. Indeed, we have demonstrated in Soriano 
et al. (2008) that the average number of connections per neuron 
is large, about 100. On the other hand, because the network is 
built from dissociated neurons, the connectivity is determined 
by a spatial search process during their growth, which is for all 
practical purposes a random one. We therefore have a random 
network (embedded in a metric space) with about 100 connec-
tions per node.

remain off if and only if less than m of its inputs fire. To avoid the 
 correlations, one utilizes the monotonicity to realize that a neuron 
is on only if it was turned on externally at time t = 0 or, if it was off 
at t = 0 then at some time t at least m of its inputs fired. We can then 
replace s

i
(t) by s

i
(0) and rewrite Eq. 1 as s

i
(t + 1) = s

i
 0) + (1 − s

i
(0)) 

Θ (Σ
j
A

ij
s

j
(t) − m). In the tree approximation, which disregards loop 

feedbacks, the initial firing state of a neuron, s
i
(0), cannot affect its 

inputs, s
j
(t). Inversely, it is obvious that s

i
(0) which is determined 

externally is independent of s
j
(t). Therefore, s

i
(0) and Θ(Σ

j
A

ij
s

j
(t) − m) 

can be averaged independently. The result is the mean-field itera-
tion map:

Φ Φ( ) ( ) ( , ( )),t f f m t+ = + −1 1 Ψ  (2)

where the combinatorial expression for Ψ is the probability 
that at least m inputs are firing and f is the initial firing fraction, 
f = Φ(0) = 〈s

i
(0)〉. The steady state of the network is defined by the 

fixed point Φ∞, which is found by inserting Φ(t + 1) = Φ(t) = Φ∞ 
into Eq. 2, to obtain Φ∞ = f + (1 − f )Ψ(m, Φ∞).

collectIVIty and the crItIcal poInt
The role of Leader neurons in the initiation and the develop-
ment of bursts can be clarified by dividing the neurons into 
classes of in-degree k (“k-class”) and looking at the dynamics 
of each class separately. The total firing probability Φ = Σ

k
p

k
Φ

k
 

is thus composed of the sum over the individual probabilities 
Φ

k
 for each k-class to fire. The mean-field equation for a given 

k-class is

Φ Φk kt f f m t( ) ( ) ( , ( )),+ = + −1 1 Ψ  (3)

where Ψ
k
 is the probability that a neuron with k inputs has at least 

m that are firing. Although all k-classes are coupled through the 
common Φ, the formulation of Eq. 3 allows the tracing of the frac-
tion Φ

k
 of each class and its dynamics during its evolution.

It follows from Eq. 3 that at the fixed point Φ
k,∞ = f + (1 − f )

Ψ
k
(m, Φ∞). Given the time dependence of Φ(t), one can extract 

the fraction of firing neurons in each k-class, Ψ
k
, by plugging Φ(t) 

into Eq. 3.
The combinatorial expressions for Ψ and Ψ

k
 are:

Ψ Ψ Ψk
l m

k
l k l

k k
k

m
k

l
m p m( , ) ( ) ; ( , ) ( , ).Φ Φ Φ Φ Φ=







− =
=

−

=

∞

∑ ∑1
0  

(4)

There is a particular critical initial firing f* where the solu-
tion jumps from Φ ≈ f (i.e., practically all activation is externally 
driven and there is almost no collectivity, Ψ = 1) to Φ ≈ 1 where 
most firing is due to inputs (and Ψ  1). It is both convenient 
and instructive to treat and simulate the network near this tran-
sition point, since the dynamics there is slow. This allows the 
different steps in the recruitment process to be easily identified 
and distinguished.

sIMulatIon of the QuoruM percolatIon Model
The model was numerically investigated by performing a simula-
tion, employing N = 500,000 neurons. This number was chosen to 
match as close as possible the number of neurons typically in an 
experiment, which is on the order of one million. An initial fraction 
f of the neurons were randomly selected and set to “on” (i.e., fired). 



Frontiers in Computational Neuroscience www.frontiersin.org September 2010 | Volume 4 | Article 132 | 4

Eckmann et al. Leaders in neural quorum percolation

is termed “self-averaging,” and means that, in the limit of large 
graphs, one single configuration represents the average behavior 
of the ensemble.

The similar ensemble of the classic Hopfield (spin-glass) model 
for neural networks is known to be self-averaging in the limit of an 
infinite sized graph (van Hemmen, 1982; Provost and Vallee, 1983; 
Amit et al., 1985). This occurs because the dynamics is performed 
over a huge number of single neuron excitations.

In practice, our model differs from the neural network model 
of Amit et al. (1985) in that the neurons of our model change 
only from “off” to “on,” and cannot flip in both directions as 
the equivalent “spins” do. We therefore tested numerically the 
self-averaging property of the graph, and found that it indeed 
exists for the random graphs we considered, i.e., the fluctuations 
between specific different realizations of the graph are negligible 
(see Figure 4 below).

The model describes initial growth of activity
The possibility of turning a neuron “off” is not incorporated in 
the model because we only consider short times. The whole proc-
ess described by the simulation occurs over a very brief period 
of time, and therefore a firing neuron keeps its effect on other 
neurons during the whole process. To be concrete, the unit of time 
in the model and in the numerical simulations is the firing of one 
spike, equivalent in the experiment to about 1 ms. The simulation 
extends to about 50 units, i.e., describes a process that occurs typi-
cally for 50 ms.

In our model a neuron has no internal structure, so that whether 
it is “on” or “off” impacts only the neurons that are its neighbors. 
The relevant issue is therefore – how long is the effect of a neuron’s 
activity felt by its “typical” neighbor. The experimental facts are that 
a neuron fires on average 4–5 spikes per burst, each lasting a mil-
lisecond, with about 4–5 ms between the spikes (Jacobi and Moses, 
2007) so that its total active time spans typically 20 ms.

The post-synaptic neuron retains the input from these spikes 
over a time scale set by the membrane decay constant, which is on 
the order of 20–30 ms. Therefore, after a firing period of about 
20 ms, there is a retention period of comparable duration. We can 
conclude that the effect of a neuron that has fired can be felt by 
its neighbors for the total build-up time of the burst, about 50 ms. 
We therefore describe by “on” the long term, averaged effect of 
the neuron once it has begun firing. One caveat to this is that the 
strength of that effect may vary with time, and such an effect is not 
described within the model.

We also assume, for simplicity, that all the neurons are available 
and can participate in the burst (no refractive neurons). In the 
experiment this is equivalent to looking at those bursts that have 
quiescent periods before them, which is often the case.

The role of inhibitory neurons
In this model all neurons are excitatory; within the “0” or “1” struc-
ture of the model, the contribution of an inhibitory neuron would 
be “−1.” Thus adding inhibitory neurons amounts to increasing m, 
the number of inputs that must fire before a neuron will fire. This 
is a small accommodation of the model, and does not change the 
dynamics of burst initiation.

Such networks do indeed have some loops, and thus we need 
to study the effect of such loops on the general argument of Eq. 2. 
For this, it suffices to study the case of 2-loops (which in fact cause 
the strongest correlations). Assume neuron A and neuron B are 
linked in a 2-loop.

If neuron A fires at time t then it does not change any more, and 
therefore the state of B at time t + 1 does not matter for the state of 
A at any later time. If A is not firing at time t then it decreases the 
probability of B to fire at time t + 1, and this in turn reduces its own 
probability to fire at time t + 2. Clearly, this effectively decreases 
the probability of A to fire. We shall now show that this effect is 1/
(k2N) where k is the mean degree (100) and N is the total number 
of neurons that B can connect to.

To see this, we note that if A is off then the number of available 
inputs that can fire into B reduces by one, from k to k − 1. We show 
below that this corresponds changing the ignition level Φ from 
m/k to m/(k − 1). The overall effect of a 2-loop on the probability 
of B to fire therefore scales like m/(k − 1) − m/k  m/k2. The back-
propagated effect on A will be of order m2/k4.

To estimate the total number of 2-loops that include neuron 
A we first look at all trajectories of length 2 that emanate from 
A. There are kout

2  such trajectories. Of these a fraction of k
in

/N will 
return to A. The total number of 2-loops that start at A is thus 
k k Nout in

2 / . The fraction of inputs of A that participate in a 2-loop 
is therefore k Nout

2 / .
Assuming that for a typical neuron k

in
 is equal to k

out
, the total 

effect of 2-loops on Φ calculated at neuron A is therefore m2k2/N/
k 4 = m2/(k2N).

Below we show the applicability of the tree-like random graph 
model by comparing its results directly to the simulation that uses 
N = 500,000 neurons. The correspondence between model and 
simulations (Figures 4 and 5) is satisfactory.

In the experimental case, spatial proximity may lead to more 
connections than in a random graph. The effect of space is to change 
the relevant number of neurons N from the total number to those 
that are actually accessible in 2D. That number N is on the order 
of N

space
 = 3,000 as compared to N

total
 = 500,000. However, 1/k2N 

is still a small number.
In a separate work, a simulation that takes space into account 

was performed (Zbinden, 2010), and the number of loops could 
be evaluated directly. Indeed we found that the number of loops is 
enhanced over the random graph estimation by a factor of N

space
/

N
total

, but still remains small.

Applicability of the averaged equation (mean-field) approach
In a physical model one must be sure that the ensemble of random 
examples chosen to average over a given quantity does indeed rep-
resent well the statistics of the system that is being treated. In our 
model, the connectivity of the graph is fixed (“quenched” disorder), 
and the ensemble is that of the random graphs that can be gener-
ated with the particular choice of input connection distribution 
function. In reality, the experiment and the simulation measure the 
bursts inside one particular realization. However, the mean-field 
equation averages over a whole ensemble of such random graphs. 
The question is whether the averages obtained using one real graph 
are representative of the whole ensemble. This is a behavior which 
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meaning that under this approximation the whole k-class fires 
once Φ(t) exceeds m/k. In other words, the k-classes are ignited 
in steps where in each step the classes whose k is in the range 
m/Φ(t) < k < m/Φ(t − 1) are ignited. Obviously, the first nodes to 
be ignited are those with the high k. By summation, one finds the 
iterative equation:

Below we also model the dynamics of burst activation observed 
in the experiments of Eytan and Marom (2006), which measured 
an exponential recruitment at the initial stage of the burst. These 
experiments clearly show that the dynamics are essentially the 
same for cultures both with and without inhibition. Both display 
an initial exponential growth followed by a super-exponent. One 
small difference lies in the value of the growth, which is larger 
for dis-inhibited than for untreated cultures. But the main dif-
ference is seen only after the burst reaches its peak, in the decay 
of the burst.

The role of noise in burst initiation
We assume the existence of spontaneous sporadic activity of sin-
gle neurons in the culture. In principle, this can be treated as a 
background noise (Alvarez-Lacalle and Moses, 2009). In our case 
we require that a minimal amount f of the culture spontaneously 
fires, and we look at the ability of this fraction of initially firing 
neurons to initiate a burst. It is possible to initiate the activity with 
an external voltage V, using bath electrodes, as we reported in pre-
vious work (Breskin et al., 2006; Soriano et al., 2008). In that case 
f(V) is determined by the percentage of neurons that are sensitive 
enough to fire at a voltage V.

results
fIrst-to-fIre neurons lead bursts and haVe large  
Input degree
We use the simulation for an initial look at the recruitment proc-
ess and to identify those neurons that fire first. We use a Gaussian 
distribution to describe the experimental situation as closely as 
possible, and put the system near criticality, i.e., with f barely above 
f∗,to observe a large range of changes in activity. Figure 1 shows 
the degree values k of the neurons as a function of the time step 
at which they first fire. It is evident that the neurons that fire first 
are either the ones that were ignited externally or those with high 
k. This is verified in the lower part of Figure 1, in which we plot, 
for each neuron, its time of ignition as a function of its in-degree 
k. It is obvious that the high-k neurons totally dominate the initial 
stages of the activity.

Further information on the distribution of ignition times for 
different neurons with different in-degree k is given in the colored 
map format of Figure 2. The huge majority of neurons has a low 
k and ignites very late in the burst. The first-to-fire neurons, or 
Leaders, are few and have a wider distribution of in-degree k at a 
given time step t. The distribution sharpens as the burst advances 
in time.

To understand this from the model, we concentrate on the neu-
rons within a given k-class, i.e., the group of neurons with k inputs, 
and examine the probability of a neuron within this group to fire, 
Φ

k
. If the average number of inputs k

−
 and the threshold value m 

are large numbers, then we can neglect the width of the binomial 
distribution and approximate the error function Ψ

k
(m, Φ) by its 

limit Θ(k − m/Φ). This simplifies the dynamics Eq. 3 into:
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Figure 1 | Top: Average k of all neurons ignited at each time step t from 
one particular realization of the simulation. Bottom: Times of ignition for all 
500,000 individual neurons. It is evident that highly connected neurons are the 
first-to-fire. For clarity we plot time only from t = 1 and do not show the 
∼1,000 neurons that were initially ignited at t = 0. We used here f = 0.0033 
and pk which for k < ktail is a Gaussian centered on k = 75 with width σ = 31 
and is a power law pk ∼ k−2 for k > ktail. We checked that a simple Gaussian pk 
gives the same qualitative results.
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Figure 2 | The logarithmic color coding of the number of neurons with 
in-degree k that ignited at time step t. The data are the same as 
in Figure 1.
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are clear arguments why some neurons may change their threshold 
in response to the activity of other neurons, either reducing the 
sensitivity (adaptation) or increasing it (facilitation). In Section 
“Excitation-Dependent Threshold” we discuss such a possibility, 
giving a demonstration of how such a scenario could evolve.

deducIng the connectIon dIstrIbutIon froM the InItIal 
growth rates
The experimentally relevant case of an exponential pre-burst
If the firing order of the neurons is determined by their connec-
tivity, then by observing and analyzing the evolution of the burst 
we may learn about the connectivity of the neurons. We focus on 
the experimental fact that the growth rate of the very first firing is 
exponential, which leads us in the next sections to analyze a par-
ticular form of the degree distribution that can lead to exponential 
growth dynamics.

Our observation that the initial growth of the burst is totally 
dependent on nodes at the very high-k side of the degree distribu-
tion gives an opportunity to find the origin of the initial expo-
nential growth A(t) = eαt observed by Eytan and Marom (2006). 
This regime appears at the very beginning of the burst (i.e., at the 
pre-burst defined in Eckmann et al., 2008), and ends when the 
majority of the network begins to be active and the actual burst 
(also defined in Eckmann et al., 2008) occurs. During this period 
the amplitude of activity A(t) grows by a factor of about 30, and 
the value of α is about 0.04 − 0.05 kHz (α depends on the time 
step chosen, which is taken to be a millisecond in the experiment, 
Eytan and Marom, 2006). After the exponential regime comes a 
phase of faster growth rate, during which the amplitude increases 
by another factor of about 10. The errors on these factors, taken 
from Eytan and Marom (2006), are estimated to be no more than 
10%. We note that the same exponential growth rate is observed 
in the experimental data of Jacobi and Moses (2007).

If Φ(t) is known then one can, in principle, extract the in-degree 
distribution p

k
, since in the random graph scenario nodes with 

higher k ignite the next lower level, of k − 1-nodes. In particular, 
as we shall now show, an exponential growth rate is obtained for 
the power law distribution p

k
 = Bk−2. We begin by plugging into 

the approximate dynamics (Eq. 7) an exponential time dependence 
Φ(t) = feαt, where f is the initially lit fraction, and get:
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Introducing q = m/Φ(t),
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where P k pk k( ) = ∑∞  is the cumulative distribution. The dynamics of 
the approach to the fixed point can be graphically described as the 
iterations between the curves Φ and f + (1 − f )P(m/Φ(t)).

The time continuous version of the iteration equation is
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which can be integrated, at least numerically, to obtain the dynamics 
of the system. Within this approximation, the k-class firing is given 
by the step function Eq. 5. For simple collectivity functions, Ψ, and 
simple degree distribution p

k
 Eq. 7 can be integrated analytically. In 

more complicated cases, an iterative scheme, as detailed in Section 
“Excitation-Dependent Threshold” below, is needed.

Since these neurons are highly connected, they will statistically 
be connected to each other as well. For the experimentally relevant 
case of a Gaussian distribution peaked at 78 connections with a 
width of 25 (Breskin et al., 2006; Soriano et al., 2008), more than 
10% of the neurons have over 100 connections, while about 1% of 
the neurons have 120 connections or more. Since high-k neurons 
have more inputs and hence a larger probability to receive inputs 
from other high-k neurons, these highly connected neurons form 
an interconnected subgraph. We summarize our understanding 
by stating that Leaders are highly interconnected, homogeneously 
distributed and form a sparse sub-network.

In the Multi Electrode Array experiment about 60 neurons 
were monitored, and a burst was observed to begin with one or 
two of these neurons. From these initial sites the activity spread. 
Identifying these neurons as Leaders, we reach the conclusion that 
in every experimentally accessible patch of the network that we 
monitor there is a small number of neurons that lead the other 
neurons in activation. We therefore deduce from the theory that 
they are part of this highly interconnected, sparse sub-network. 
In the initial pre-burst period nearby neurons are recruited by 
inputs from the Leaders, while in the burst itself all the neurons fire 
together. During the pre-burst a spatial correlation to the Leader 
exists in its near vicinity, which vanishes as the activity transits to 
the burst.

We remark here that within our model a node that fires early 
is highly connected. However, the number of connections k and 
the threshold for firing m are two factors with the same effect, and 
they could in fact interplay to cause a more complex behavior than 
we are describing (Zbinden, 2010). One alternative model could 
hold the number of connections fixed for all neurons, and only 
allow a variation in the number of inputs needed for a neuron to 
fire m. This would clearly bring about a variety of response times 
of neurons, and could create a subgroup of nodes that fire early. 
If we allow a few neurons to have a low threshold m then those 
neurons will qualify as our Leaders. While there is no evidence to 
point to a wide variability in the threshold of the neurons, there 
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In the experiment the large dynamic range and high precision 
are obtained by averaging over a large number of bursts, and can 
be reproduced in the simulation only if there is a very large range 
of available k values, or else the cascade during which successive 
k-nodes ignite each other does not last for long enough. To be 
concrete, we find that we need Φ to start from about f = 0.003 in 
order to see the amplitude increase by a factor of 300 in total. For 
the growth to be extended in time and to allow sufficient resolution 
in the simulation, we demand also to be near criticality, i.e., f f ∗. 
This slows the process by adding only a few neurons that ignite 
at every time step. To obtain such a very long growth time at any 
other point, away from criticality, would require a larger range of 
k, so by staying near criticality we are actually limiting the range 
of k to the minimum necessary to reconstruct the experimentally 
determined dynamics.

To ensure that during the exponential regime Φ increases by 
a factor of 30 while during the faster growth it grows by a factor 
of 10, the transition from exponential growth to the faster, full 
blown firing of the network is designed to occur at Φ = 0.1 and f 
is set at 0.0033.

Since the entry of the k-degree node occurs at a Φ = Φ
k
  m/k, at 

the transition from pre-burst to burst we have k
tail

  m/Φ. Inserting 
Φ = 0.1 and m = 15 gives a characteristic value of k

tail
  150. This 

is a considerable distance from the peak of the Gaussian, so 
that it is justified to describe the majority of the nodes by the 
Gaussian distribution.

The highest cutoff of the degree distribution is in turn deter-
mined by the constraint on the integral over the distribution from 
k

tail
 to k

max
, which should yield a total fraction of 0.1, since that is 

the part of the network that will ignite in the initial, exponential 
regime, P(k

tail
) = Φ

tail
 = 0.1. This condition allows us to normalize 

the cumulative function:
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Plugging this P(k) into Eq. 9 yields,
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where we used k
tail

 = m/Φ
tail

. At k = k
tail

 Eq. 14 yields,

Φ tail =
+
f

fα
.

 (15)

Since we have seen that Φ
tail

 = 0.1, this sets consistency demands 
on α and on f. For Φ(0) = f, we find after some algebra:

k m
fmax .= ⋅ +1 α

 
(16)

Since the experimentally relevant values of both f and of α 
(measured in the appropriate time step) are known and obey 
f = α = 1, the approximate relations are Φ

tail
  f/α and k

max
  m/f. 

This then sets the pre-factor of the distribution B = m·((1 + α)/
(1 − f ))  m. We end up with the probability distribution function 
shown in Figure 3, in which a power law tail from k

tail
 all the way 

to k
max

 is glued onto a Gaussian curve centered on k
cen

 = 75.

This sets the value for B = m·((1 + α)/(1 − f )) in terms of the 
growth rate α. We find empirically below that the data are best 
reproduced for α = 0.04, impressively close to the experimental 
value α = 0.045. This indicates that the time steps used in the 
simulation and in the experiment are similar, i.e., the firing time of 
a neuron (simulation time) is very close to a millisecond (experi-
mental time).

The full degree distribution pk

However, the distribution obtained above would give an expo-
nential growth at all times until the whole network is ignited and 
Φ(t) = 1. That is not the experimental situation. In the data of Eytan 
and Marom (2006) and in that of Jacobi and Moses (Eckmann et al., 
2008) the exponential regime includes a small fraction of the nodes 
(about 10%). It is followed by a faster growth rate, during which 
the remaining nodes fire. We furthermore have measured with 
the percolation experiments (Breskin et al., 2006; Soriano et al., 
2008) that the distribution in a typical culture is well described by 
a Gaussian, centered on k

cen
  78 and with a width of about σ = 25. 

The average connectivity, as measured by the mean of the Gaussian, 
was shown to increase with the density of plating of the neurons 
(Soriano et al., 2008). We note that these percolation experiments 
measure the fixed point of the firing dynamics and are therefore 
insensitive to any fat tail of the degree distribution, which governs 
the pre-burst.

This leads us to the following tailored solution, which com-
bines both these experimental inputs and solves the growth 
rate problem. We keep the Gaussian distribution for p

k
 over a 

large proportion of the nodes. We have some intuition on why 
the input degree distribution of nodes should be Gaussian: it 
is essentially determined by the area of the dendritic tree times 
the density of the axons that cross that area (see Discussion). 
Both the area and the density are expected to be random vari-
ables in a culture grown on a dish. These random values form a 
Gaussian distribution with a mean and variance that are set by 
biological processes.

For simplicity and conformity with the experimental situation, 
we also demand that no node has in-degree less than a minimal 
k

min
 > m, where m is the number of inputs that need to fire for a 

node to be excited. We therefore begin with the following distribu-
tion for small k (k

min
 < k < k

tail
):

p
k k

k ∼ − −





exp
( )

.cen
2

22σ
 

(12)

At high k we need to change to a power law distribution p
k
 = Bk−2, 

and we do this from a degree k
tail

. The value of k
tail

, among other 
parameters, is determined by external considerations along with 
consistency constraints, as detailed below.

Quantitative comparison of model and experiment – setting the 
parameters
An impressive experimental fact is the large dynamic range observed 
in the amplitude of the burst, about two and a half decades in total. 
In the experiment, the amplitude grows in the exponential pre-
burst phase by a factor of about 30, and in the burst itself by a 
further factor of about 10.
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ignites. The majority has in-degree defined by the Gaussian distri-
bution and therefore they fire practically simultaneously. Since we 
tailored Φ(t), the growth during the exponential phase is indeed 
by a factor of 30, similar to the experimental one. However, the 
experimental graphs describe the momentary activity while Φ is 
the total fraction of active neurons and these do not turn off. The 
experiment is therefore probably better described by the deriva-
tive of Φ, shown in red. It can be clearly seen that in fact Φ and 
Φ behave very similarly.

We can also compare the simulations of the network with the 
numerical solution of the model. For this we use the iterative scheme 
defined by Eq. 2 to propagate the activity of the network. This is 
shown (in dashed lines) in Figure 4. The excellent congruence of 
the simulation and the mean-field equation gives verification for 
the use of our mean-field model. The success relies on the absence 
of large deviations and insignificance of fluctuations, which is true 
in our model and experiment, due to the benign behavior of the 
degree distribution and the large number of participating neurons. 
The only deviation from this agreement is at the initial steps, where 
only a small number of leaders are firing.

In summary, from the quantitative comparison we find that the 
model has an exponential initial transient if the in-degree distribu-
tion is mostly Gaussian, with 10% of the neurons in the power law 
tail, and that the highest k can be in the thousands.

When comparing these results with the experiment, we should 
remember that only 60 electrodes are being monitored. The expo-
nential behavior that is observed over a large dynamic range, can 
be resolved since multiple firings at the same electrode are observed 
with a resolution better than 1 ms. In the simulation, in contrast, 
this is modeled by going to high numbers of neurons, each of which 
can only fire once.

excItatIon-dependent threshold
At the end of Section “First-to-Fire Neurons Lead Bursts and Have 
Large Input Degree” we noted that the sensitivity of neurons can 
be changed either by varying the number of their inputs, or by 
varying their threshold. Up to now, we have assumed that the firing 
threshold in the neural network m is a constant that does not change 
as the burst develops, and varied the degree distribution instead. 
In this section, we examine the impact of keeping the connectivity 
distribution static, while “loading” the recruitment dynamics onto 
m by making it a dynamical variable that depends on the history 
of neuronal activation. Since varying either parameter (m or p

k
) 

will lead to the same results, in principle one could then have any 
distribution p

k
 of input degree, and compensate by varying m. One 

would then have to verify that the necessary variations in m are 
biologically reasonable and feasible. In the experiment this happens 
via the competing processes of adaptation and facilitation. Since 
adaptation would work opposite the trend observed in the experi-
ment, we discuss only the possibility of facilitation.

Facilitation of activity can occur if neurons that are already 
excited several times are easier to excite at the next time. By syn-
aptic facilitation we mean the property of a synapse increasing its 
transmission efficacy as a result of a series of high frequency spikes. 
We examine here some of these effects by introducing, for the sake 
of simplicity, a threshold which is a function of the average firing 
state, m(Φ).

Figure 4 shows our main result, in which an exponential growth 
rate is reproduced in a simulation employing the in-degree dis-
tribution of Figure 3. This exponential phase is followed by a 
super-exponential phase, in which the majority of the network 
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Figure 3 | The in-degree distribution, pk, plotted in both linear (main 
plot) and in log-log (inset) coordinates. Parameters used for the Gaussian 
are: kcen = 75, σ = 31, kmin = 20 while the power law tail p ∼ B·k−2 goes from 
ktail = 150 to kmax = 4,680 and its pre-factor is B = 15.65. This normalizes the 
distribution to integral 1. The log-log scale in the inset highlights the power law 
tail, while the linear scale of the main plot accentuates the Gaussian that 
dominates the majority of the population.
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Figure 4 | growth rate of burst for tailored distribution from both 
numerical simulation using 500,000 neurons (solid lines) and iteration of 
eq. 2 (dashed lines). Blue lines show overall firing fraction Φ for each time 
step. The red curves show the numerical derivative, Φ. The initial slowing 
down (the dip in the derivative) is due to a clearly evident “bottleneck” in the 
simulation, during which the firing almost ceases to propagate. The 
parameters used are f = 0.0033, α = 0.03, and kmin = round (m(1 + α)) = 16, 
kmax = round (m(1 + α)/f) = 4,680.
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The k-degree values needed to describe the data reach a 
 maximum value that is many tens of standard deviations from 
the mean. Although the average value of the degree distribution 
remains in the region of 100, a few neurons (in a network of a 
million nodes) can have thousands of connections.

We remain with the question of how significant is the need for 
an exponent −2 in the power law distribution, and whether small 
deviations will change the exponential growth rate. Is there any 
logical or biological reason for this power law to be built up?

On the experimental side, the search for a few highly connected 
neurons would be needed. One possibility is that Leaders are neu-
rons of a different species then that of the majority. Identifying 
them, investigating their properties and potentially intervening by 
disrupting their function are all important experimental goals.

dIscussIon
fIrst-to-fIre neurons and leaders
In Eckmann et al. (2008) and Zbinden (2010, submitted) Leaders 
were defined through an intricate mathematical procedure. In par-
ticular, this definition allowed for exactly one Leader per burst, 
which ignites a pre-burst, and then a burst. In the present paper, a 
simpler definition is used, which amounts to taking into account 
basically all neurons which fire at the beginning of activity right 
after the initial fraction f. Since in the initial period of the burst 
there are only very few neurons active, the development of the burst 
depends critically on those neurons.

Within the Quorum Percolation model, high-k neurons activate 
the low k neurons. So the highest k neurons are the ones that trigger 
the burst. It follows that some of the highest k (in-degree) neurons 
are both first-to-fire and Leaders.

Given the time series of the firing fraction Φ(t) and a presumed 
degree distribution p

k
, one can invert Eq. 6 or Eq. 7 to obtain:

m t t K
t t f
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where K(P) is the inverse to the cumulative function P k pk k
k

k( ) max= ∑ ′= ′ 
(such an inverse function exists since P is monotonic).

It is particularly interesting to ask if the power law degree distri-
bution p

k
 ∼ k−2, supports a biologically feasible form of m(Φ), fol-

lowing the initial exponential regime where m should be constant. 
In this case the cumulative function is
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where k
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 and k
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 are the limits of the distribution. The inverse 
function is
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To further advance we need to model the burst itself, which 
grows exponentially at first, then grows even faster, at a super-
exponential rate and finally saturates when all the network has 
fired. This behavior can be described by the function:
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e e
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with t * a parameter to be determined from comparison to 
the experiment. This kind of burst function starts as an 
exponential Φ(t) ∼ eαt and begins to diverge after t * time 
steps, but reaches Φ(t) = 1 slightly before fully diverging, at 
t t f t ft t

1
1 1 1= − + − − ⋅−

* *
* *α αα αlog[ ( )] ( / ) .e e

For this profile Φ Φ Φ= + −α α[ /( ( ))].1 1f e t*  Plugging into Eq. 
17 yields,
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(21)

We see that m(Φ) starts from m(f )  k
min

/(1 + α) and ends at 
m k f t( ) /[ /( ( ))].min1 1 1 + −α αe *  Therefore, m decreases by a ratio 
of m m f f t( )/ ( ) [ /( ( ))] ,1 1 1 1

 + − −α αe *  which for the experimental 
parameters is around 5, i.e., from m(f)  15 to m(1)  3, a bio-
logically reasonable variation. The actual value of m that we 
use in the simulation is that of the nearest integer obtained by 
rounding Eq. 17. Figure 5 shows the behavior of the burst as 
a function of time for the power law distribution p

k
 ∼ k−2 with 

variable m(Φ).

suMMary of results
In summary, we have shown here that the experimental situa-
tion of an exponential transient followed by super-exponential 
growth can be well described in our model of an in-degree dis-
tribution that is k−2 at high k but is Gaussian for the majority 
of the neurons. The initial transient of an exponential is deter-
mined directly by the power law tail of the degree distribution 
of Leaders.
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Figure 5 | growth rate of burst for k−2 power law distribution and 
variable m(Φ(t)) using eq. 17. The curve is calculated from numerical solution 
of the iteration Eq. 2. Blue line shows overall firing fraction Φ for each time 
step. The red curve shows the numerical derivative, Φ. The parameter t* used 
is t* = 40 time steps, and all other parameters are as in Figures 3 and 4. Inset: 
The threshold m(Φ(t)) decreases during the simulation as Φ increases 
according to Eq. 21. The value of m used in the simulation is the integer part of 
Eq. 21 hence the discrete jumps in its value. Until about t = 18 the value m is 
unchanged and the Φ(t) and Φ( )t  profiles are exponential. Then m starts to 
decrease sharply and induces super-exponential growth of Φ(t).
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(Figure 6A). The  dendrites have no a priori preferred direction, and 
the dendritic tree is  typically isotropic and characterized by a length 
scale r. Axons, on the other hand, go off in one direction, and their 
length determines the number of output connections the neuron 
will have. The dendritic tree is “presented” to axons of other neurons 
(Figure 6B). If the axon of a neuron happens to cross the dendritic 
tree of another neuron then, with some fixed probability (which we 
take for simplicity to be unity), a connection is made between the 
two neurons. The number of in-connections is therefore related 
to the size of the dendritic tree and to the number of axons cross-
ing it, i.e., the density of axons. The number of out-connections 
of a neuron is determined by the length of its axon, the size of the 
dendritic tree of other neurons and the density of neurons.

There are two corresponding length distributions p(l) and 
p(r) and a density n that determine the number of connections. 
p(l) and p(r) are the probability distribution of the axon and 
dendrite lengths respectively, while n is the density of neurons 
per unit area.

The number of in-connections of a neuron is obtained by cal-
culating the probability of an axon emitted from another neuron 
located a distance l away to cross its dendritic tree (Figure 6B). To 
get the number of connections k

in
 for a neuron with dendritic tree 

of size r we look for the axons that will cross one of its dendrites:

k r n d
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Here P p d( ) ( )l l l

l

= ∫ ′ ′∞  is the cumulative sum of probability that 
the length of an axon exceeds l (since it would then cross the den-
dritic tree). We ignore the slight r dependence of the lower limit 
of the integral. n is the density of neurons per unit area (about 500 
neurons per mm2), and 2r/l the angle extended by the dendritic 
tree as seen from the axon’s neuron of origin.

We now insert for p(l) the Gaussian with power law tail:
p A( ) ( ) /
l

l l= ⋅ − −e 0
2 22σ  if l < l

tail
 and p(l) = B·l−2 for l

tail
 < l ≤ l

max
, 

with A  B normalization factors.
For l < l

tail
 we get,

P A d

B d A

( )
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( )

l l

l l l

l l

l

l

l

= ′

+ ′ ′ = − ⋅

− ′−

−

∫ e

const. erf

tail

t

0
2

22

2

σ
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(23)

while for l
tail

 < l < l
max

:

P B d B( ) .
max

max

l l l

l l

l

l

= ′ ′ = −






−∫ 2 1 1

 

(24)

The integral over P(l) gives one constant term and one that goes 
as log(l

max
). Since the maximal length l

max
 is determined by the size 

L of the culture dish, we remain with a term of log(L).
We get that the number of in-connections is

k r n r Lin( ) log( ). ⋅ ⋅  (25)

We are now in a position to ask where the tail of high connections 
arises. In principle, it could arise from fluctuations in the density n. 
The neural density is theoretically determined by throwing down a 

Looking only at in-degree is only part of picture. Indeed, 
high-k-classes are ignited first. However, their contribution 
to the firing propagation depends on the out-degree. Nodes 
with no outputs may fire early but contribute nothing to the 
ignition of others. Nevertheless, since we assumed that the in- 
and out-degree are uncorrelated, Leaders are among the early 
igniting nodes.

How can we get a distribution of in-degree wHicH is gaussian 
witH a k −2 tail?
An interesting question is what kind of growth and development 
process would lead to a distribution of in-degree that is essentially 
a Gaussian centered on a value of about k

cen
 = 75, but has a tail 

that goes like k
in

 ∼ k−2, and can reach in-degree in the thousands, 
k

max
 ∼ 4,700.

We propose the following simplified and intuitive geometrical 
picture for how k

in
 and k

out
 are determined (see Figure 6). Each 

neuron in the culture has a spatial extent that is accessed by its 
dendrites (the “dendritic tree”) and characterized by a length scale l 

A

B

Figure 6 | Schematic picture of the relation between axon and dendrite 
lengths l and r to the number of connections kin and kout. (A) Two lengths 
characterize the connections of each neuron: its axonal length l and the typical 
size of its dendritic tree r. While the dendritic tree is in general expected to be 
homogenous, it can have dendrites that go off much farther than the others. 
(B) A connection from Neuron A to Neuron B will be made if the trajectory of 
the axon extending from Neuron A will intersect the dendritic tree of Neuron 
B. The probability for that to happen depends on the probability P(l) for A to 
have an axon of length longer than l and on the probability p(r) for B to present 
a dendritic tree of cross section r.
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One explanation for the difference in behavior of BIZ and 
Leaders is in the dimensionality. However, the basic argument 
we presented for the number of input connections relates it to 
the multiplication of the area of the dendritic tree by the density 
of the axons that cross through this area. Since both the radius 
of the dendritic tree and the width of the line are on the order of 
100 μm, there should be no difference in the first factor. As for 
the density of axons, there is no direct information, but also no 
compelling argument why 1D cultures should differ in this from 
2D cultures.

A different possibility, and the one we believe to be correct, 
is just that there are too few neurons in the culture (Tlusty and 
Eckmann, 2009). That would impact on any small culture, both 2D 
and 1D. Changing the number of neurons has the largest effect on 
the realization of the tail of the probability distribution p

k
, since 

high-k values have a low probability and will not be obtained. This 
can completely disrupt the form of the degree distribution. In turn, 
it also affects the value of f* , the fraction of initial firing needed for 
ignition of the full culture.

The results of simulating excitation in varying numbers of neu-
rons are given in Table 1.

We immediately see that indeed f* depends strongly on N. A 
power law fit indicates that f N* ∼ −1 2/ . At about N = 200,000 the 
curve flattens out, and reaches the theoretical (N = ∞) value. The 
reason for this originates in the constraints imposed between f* 
and k

max
, f m k*  / .max  In any realization of finite size N, any k with 

p
k
 < 1/N is very unlikely to be observed. Since p

k
 ∼ k−2 both k

max
 

and f* are constrained by the N−1/2. We can conclude that within 
the Quorum Percolation model smaller cultures require a much 
larger fraction of initial activity to sustain a burst.
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random set of points on the plane. In the experiment, the neuronal 
cultures do not exhibit clustering to such a degree that would induce 
so strong a fluctuation with such high density. To get the necessary 
range of a factor of 10 − 30 in k values that the theoretical explana-
tion of the experimental data point to, we would need the density 
to change in a similar manner. This seems unrealistic. A further 
strong argument against fluctuations in density is that these would 
lead, in our picture, to a high number of input connections in one 
single neighborhood. In particular, this would lead to many more 
high-k neurons than the distribution allows for.

Thus we are led to the conclusion that the power law tail of k
in

 has 
its origin in the distribution of dendritic trees p(r). While the typical 
dendritic tree is probably a circle of with radius r = 100 − 200 μm, 
it may have outgrowths in one or more directions that reach as far 
as l = 1 − 2 mm but can, with small probability, go as far as the 
dish size L.

tradIng off statIc connectIVIty dIstrIbutIon for dynaMIcal 
threshold
While the possibility of exchanging between elementary dynamics 
and connectivity statics does not come as a surprise, the lesson we 
take from the results of Section “Excitation-Dependent Threshold” 
is important indeed: One cannot distinguish, by observing network 
dynamics in and by itself, between a static connectivity-based mech-
anism and a mechanism that employs dynamics at the elementary 
level. While we tend to believe it is the connectivity that is dominant, 
one cannot rule out the neuron’s internal processes as a possible 
explanation for the dynamics.

When only a small fraction Φ of the network is active, the 
chances that a given neuron is activated at a high frequency are 
low. Hence, chances of changes in threshold as a result of synaptic 
or membrane dynamics are low. However, as the active fraction Φ 
of the network grows, the chances of a neuron to be bombarded 
at high frequency become higher; we could then get a dependence 
m(Φ), since changes in threshold (i.e., membrane dynamics) or 
synaptic efficacy (e.g., facilitation) are expected.

In many studies of biological networks, this ambiguity is some-
what neglected in favor of a more static view, largely due to lack 
of access to elementary level dynamics. In the case of neuronal 
excitability, single element dynamics is experimentally accessible, 
and the existence of dynamical-thresholds are well documented. 
Our results in Section “Excitation-Dependent Threshold” indicate 
that this is a sufficient explanation to the phenomenon of an early 
exponential recruitment rate followed by faster growth process.

the effect of lIMItIng sIze: one-dIMensIonal cultures
Initiation of activity in 1D cultures seems to be very differ-
ent from the Leaders scenario. In 1D cultures, we (Feinerman 
et al., 2007) have shown that the activity originates locally, at 
well defined “Burst Initiation Zones” (BIZs) that have a limited 
spatial extent. There are usually a small number of such BIZs, 
typically 1 or 2 per centimeter, that operate independently of each 
other. The BIZs are characterized by a high density of excitatory 
neurons and a low density of inhibitory ones. Firing activity that 
originates in a BIZ will propagate out as a wave-like front with 
a constant velocity, and invade the rest of the culture until all 
neurons have fired.

Table 1 | Study of finite size networks: for small N networks, f* needs to 

be larger and the experimentally accessible kmax does not reach the 

theoretical prediction. This shows that the ignition process is less efficient 

for small N.

f* N kmax Theory kmax realized

0.05 500 312 237

0.022 5,000 709 615

0.0076 50,000 2,053 1,795

0.0051 100,000 2,836 2,512

0.0038 500,000 4,680 4,680
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