
Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 141 | 1

COMPUTATIONAL NEUROSCIENCE
Original research article

published: 23 November 2010
doi: 10.3389/fncom.2010.00141

many brain areas through long range connections (for a review
see Cooper et al., 2002). The functional consequences of the long-
range neuromodulatory projections are very diverse and depend
strongly on the specific neuromodulator, the target area and the
neuromodulatory concentration. For example, the release of ace-
tylcholine from the basal forebrain into the cortex is involved in the
control of attention (Hasselmo and McGaughy, 2004; Herrero et al.,
2008; Deco and Thiele, 2009), and noradrenaline, mainly originat-
ing from the locus coeruleus, is released throughout the central
nervous system facilitating the processing of relevant, or salient,
information (Berridge and Waterhouse, 2003). One neuromodula-
tory function which has evoked high interest in the experimental as
well as the theoretical neuroscience communities is reward learning
on the basis of dopamine released in the striatum from midbrain
areas (Schultz et al., 1997; Reynolds et al., 2001).

An influential hypothesis on the mechanism of neuromodu-
lation is that neuromodulators can be released extrasynaptically
from en passant boutons on neuromodulatory axons and modu-
late the plasticity of synapses that are remote from release sites,
a concept known as volume transmission (Agnati et al., 1995;

1 IntroductIon
It is generally assumed that mammalian learning is implemented
by changes in synaptic efficacy, as it is the case in simpler organisms
(see e.g., Antonov et al., 2003). Historically, attempts to provide a
theoretical explanation of learning have mainly been influenced
by Hebb’s postulate (Hebb, 1949) that the sequential activation
of two neurons strengthens the synapse connecting them. Thus,
theoretical “Hebbian” plasticity rules depend on the pre- and post-
synaptic activity and sometimes also on the weight itself. Although
these rules have been shown to solve some interesting problems
(Gerstner et al., 1996; Song et al., 2000; Song and Abbott, 2001) it
is not clear that such “two factor” rules can be the mechanism that
enables animals to learn complicated tasks, such as those to find
sparse rewards in complex environments.

However, experiments have shown that in some preparations,
synaptic plasticity depends not only on the activity of the pre- and
post-synaptic neurons but also on the presence of neuromodulators
such as acetylcholine, norepinephrine, serotonin, and dopamine.
Neuromodulators are released from neurons that are primarily
located in the brainstem and basal forebrain, but that innervate

Enabling functional neural circuit simulations with distributed
computing of neuromodulated plasticity

Wiebke Potjans1,2,3*, Abigail Morrison2,3,4 and Markus Diesmann2,4,5

1 Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, Research Center Jülich, Jülich, Germany
2 RIKEN Brain Science Institute, Wako City, Saitama, Japan
3 Functional Neural Circuits Group, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
4 Bernstein Center Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
5 RIKEN Computational Science Research Program, Wako City, Saitama, Japan

A major puzzle in the field of computational neuroscience is how to relate system-level learning
in higher organisms to synaptic plasticity. Recently, plasticity rules depending not only on pre-
and post-synaptic activity but also on a third, non-local neuromodulatory signal have emerged
as key candidates to bridge the gap between the macroscopic and the microscopic level of
learning. Crucial insights into this topic are expected to be gained from simulations of neural
systems, as these allow the simultaneous study of the multiple spatial and temporal scales
that are involved in the problem. In particular, synaptic plasticity can be studied during the
whole learning process, i.e., on a time scale of minutes to hours and across multiple brain
areas. Implementing neuromodulated plasticity in large-scale network simulations where the
neuromodulatory signal is dynamically generated by the network itself is challenging, because
the network structure is commonly defined purely by the connectivity graph without explicit
reference to the embedding of the nodes in physical space. Furthermore, the simulation of
networks with realistic connectivity entails the use of distributed computing. A neuromodulated
synapse must therefore be informed in an efficient way about the neuromodulatory signal,
which is typically generated by a population of neurons located on different machines than
either the pre- or post-synaptic neuron. Here, we develop a general framework to solve the
problem of implementing neuromodulated plasticity in a time-driven distributed simulation,
without reference to a particular implementation language, neuromodulator, or neuromodulated
plasticity mechanism. We implement our framework in the simulator NEST and demonstrate
excellent scaling up to 1024 processors for simulations of a recurrent network incorporating
neuromodulated spike-timing dependent plasticity.

Keywords: synaptic plasticity, neuromodulator, computational neuroscience, modeling, large-scale simulations, integrate-
and-fire neurons, distributed computing, spiking networks

Edited by:
Per Jesper Sjöström, University
College London, UK

Reviewed by:
Alfonso Renart, Rutgers University,
USA
Andrew P. Davison, CNRS, France
Wulfram Gerstner, Ecole Polytechnique
Fédérale de Lausanne, Switzerland

*Correspondence:
Wiebke Potjans, Research Center
Jülich, Institute of Neuroscience and
Medicine (INM-6), 52425 Jülich,
Germany.
e-mail: w.potjans@fz-juelich.de

Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 141 | 2

Potjans et al. Distributed computing of neuromodulated plasticity

as an external stimulus), by the generation of a spike or it can be
driven in discrete time steps. The neuromodulatory signal is either
represented as a discrete variable that has a non-zero value only at
the points in time that an update is triggered, or it is represented
as a continuous variable between discontinuous updates. The three
categories and their sub-categories are illustrated in Figure 2.

In the first category (Figure 2A), the plasticity modulating signal
does not depend on the spiking activity of the network at all. The
signal is updated in an event-driven fashion triggered by exter-
nal events, such as entering a reward-related state in a navigation
task or the occurrence of a reward predicting stimulus in classi-
cal conditioning tasks. Both discrete-time (Potjans et al., 2009b;
Vasilaki et al., 2009) and continuous-time (task two in Izhikevich,
2007) representations of the neuromodulatory signal have been
investigated.

In the second category (Figure 2B), the generation of the plas-
ticity modulating signal requires the presence of an all-knowing
external supervisor. The signal depends on the interplay between
information provided externally and internally. Signal updates
are triggered by the occurrence of an external event (task three in
Izhikevich, 2007) or the emission of a spike of a specific output
neuron within the network (XOR task in Florian, 2007; Seung,
2003; Xie and Seung, 2004); alternatively, the signal is generated
in discrete time steps (Baras and Meir, 2007, target firing learn-
ing model in Florian, 2007). In the event-driven model proposed
by Izhikevich (2007) to solve an instrumental conditioning task,
the signal is modeled as a continuous variable where the timing
and magnitude of updates are determined externally. Whether the
update is actually carried out by the synapses is contingent on an
internal condition (i.e., a comparison of firing rates in two pools)
meeting an externally imposed criterion (i.e., the desired ordering
of the firing rates). In the models proposed by Seung (2003), Xie
and Seung (2004), and Florian (2007) to solve a XOR task, updates
are triggered by the spikes of an output neuron; the magnitudes of
the updates are determined by an external supervisor that evalu-
ates the response of the output neuron to the spiking activity of an
input layer representing different combinations of 0 and 1. For an
input of [0,1] or [1,0], every spike of the output neuron results in
a positive value for the neuromodulatory signal, whereas a negative
value is generated for each input spike in response to an input of
[0,0] or [1,1]. Between spikes of the output neuron, the value of
the neuromodulatory signal is zero.

Other models in the second category assume that the signal is
updated in discrete-time steps in n·∆T, where n is an integer; ∆T
can be a small step size or the duration of a certain episode. This
is illustrated in the middle row of Figure 2B. Here the values of
the signal are determined as a function of the spiking activity in
comparison to a desired activity which is provided by an external
supervisor. The signal can either take continuous values, as in the
model proposed by Baras and Meir (2007) to solve a path learning
task and the target firing-rate learning model proposed by Florian
(2007) or discrete values at specific times, as in an alternative variant
of the target firing-rate learning model proposed by Florian (2007)
and the XOR learning model proposed by Baras and Meir (2007).

The first two categories demonstrate the importance of three-
factor rules in solving reward related tasks of different complex-
ity, ranging from XOR to navigation tasks. However, in order to

Figure 1 | Volume transmission: a neuromodulator is released from en
passant boutons on neuromodulatory axons and modulates the
plasticity of synapses remote from the release sites as a “third factor.”
The modulatory signal is a composition of the neuromodulator released by
multiple boutons in a certain area (three are shown). For simplicity the figure
shows only one modulated synapse. However, commonly the signal is
assumed to affect multiple synapses within a certain volume (pink area).

Zoli and Agnati, 1996). This is illustrated in Figure 1. For an
 illustration of en passant boutons on a neuromodulatory axon and
a schematic representation of the main sources of volume trans-
mission signals, see Moreau et al. (2010) and Zoli et al. (1999),
respectively. This hypothesis implies a temporal rather than a
spatial selectivity for neuromodulatory action (Arbuthnott and
Wickens, 2007). Pawlak et al. (2010) in this special issue review
the recent experimental in vitro findings concerning the effects
of neuromodulators released from long-range neuromodulatory
systems on STDP. Despite the large range of time scales and the
variety of mechanisms by which the neuromodulators influence
STDP, the review finds that the effects can be divided into two
categories. In the first category, the neuromodulator is essentially
required for the induction of STDP. In the second category, the
neuromodulator alters the threshold for the plasticity induction.
The review argues that the neuromodulatory influence is the cru-
cial mechanism linking synaptic plasticity to behaviorally based
learning, especially when learning depends on a reward signal.
This hypothesis is further supported by a number of spiking neu-
ronal network models that can learn a reward related task, due to
the incorporation of three-factor synaptic plasticity rules (Seung,
2003; Xie and Seung, 2004; Baras and Meir, 2007; Florian, 2007;
Izhikevich, 2007; Legenstein et al., 2008; Potjans et al., 2009b;
Vasilaki et al., 2009).

These spiking neuronal network models of reward learning are
typically formulated in a general way before being tested in concrete
tasks. The generation of the neuromodulatory signal, or third fac-
tor, is determined by the task to be solved. Three categories can be
identified for the generation of the neuromodulatory signal: either
the signal is injected into the spiking network by an external con-
troller, or it is determined by a mixture of an external supervisor
and the spiking activity of the network or it is generated purely
internally. The categories can be further discriminated with respect
to the points in time leading to discontinuous changes in the value
of the signal. An update can be triggered by an external event (such

Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 141 | 3

Potjans et al. Distributed computing of neuromodulated plasticity

model size. The spiking network models implementing three-factor
synaptic plasticity rules discussed above consist only of a small
(of the order of 10 to 102) (Seung, 2003; Xie and Seung, 2004;
Baras and Meir, 2007; Florian, 2007; Potjans et al., 2009b; Vasilaki
et al., 2009) to moderate (of the order of 103) number of neurons
(Izhikevich, 2007; Legenstein et al., 2008). However, to simultane-
ously achieve cortical levels of connectivity (10%) and number of
inputs (104) (Braitenberg and Schüz, 1998), a minimal network
size of 105 neurons is required. Similarly, to investigate brain-scale
circuits involving the interaction of multiple brain areas, large-
scale networks are likely to be necessary. Consequently, distributed
computing techniques are required. Indeed, even the systematic
study of smaller networks demand such techniques as learning
often takes place on a very long time scale compared to the time
scale of synaptic plasticity. The requirement for distributed com-
puting adds to the complexity of the problem of implementing
neuromodulated plasticity via volume transmission. The challenge
can be stated as follows: how can a synapse, which is typically only
accessed through its pre-synaptic neuron, be efficiently informed
about a neuromodulatory signal generated by a population of neu-
rons that are generally located on machines different than those
of either the pre- or the postsynaptic neuron. Whereas efficient

understand how different brain areas interact to produce cognitive
functions these models are not sufficient. This problem requires the
consideration of functionally closed loop models, where the neuro-
modulatory signal is generated by the network itself (Figure 2C).
So far, only two studies have investigated such models. In both
the model proposed by Izhikevich (2007), which learns a shift in
dopamine response from an unconditional stimulus to a reward-
predicting conditional stimulus, and that proposed by Legenstein
et al. (2008) which learns a biofeedback task, each spike of a spe-
cific population of neurons leads to an update of a continuous-
time variable.

The simulation of models in this third category and the spike-
based models of the second category is beset by considerable
technical challenges. Spike-driven updates are intrinsically more
troublesome than updates driven by external events or occurring in
regular intervals, as they do not entail a natural interruption point
for the simulation at which signal information can be calculated and
conveyed to the relevant synapses. This difficulty is compounded
in the context of models where different brain regions interact, as
the neuromodulatory signal is not only likely to be composed of
the activity of a population of neurons, but also affecting synapses
between entirely different populations. A final hurdle comes with

A B C

Figure 2 | Characterization of existing modeling studies with respect
to the generation process of a plasticity modulating signal. From left to
right: interplay between external (E) and internal (N) information in the
generation process of the modulatory signal (n). (A) The signal is generated
purely externally (task two in Izhikevich, 2007; Potjans et al., 2009b; Vasilaki
et al., 2009). (B) The signal combines information from an external supervisor
and internal information (Seung, 2003; Xie and Seung, 2004; Baras and Meir,
2007; Florian, 2007; Izhikevich, 2007, task three). (C) The signal is generated

purely internally (task four in Izhikevich, 2007; Legenstein et al., 2008). From
top to bottom: timing of discontinuous updates to the signal. Top: updates
are triggered by external events, indicated by arrows (event-driven). Middle:
updates occur in discrete time steps dt (time-driven). Bottom: updates
triggered by the arrival of neuromodulatory spikes, indicated by arrows
(spike-driven). Upper and lower rows show a signal that takes continuous
values between updates, or discrete values at the times of updates,
respectively.

Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 141 | 4

Potjans et al. Distributed computing of neuromodulated plasticity

illustrated description, see Morrison et al. (2005). Variants of this
scheme underlie the majority of simulators that are designed for
simulating networks of point neurons, for example NEST (Gewaltig
and Diesmann, 2007), C2 (Ananthanarayanan and Modha, 2007)
and PCSIM (Pecevski et al., 2009), see Brette et al. (2007) for
a review.

2.1.1 Network representation
Our fundamental assumption is that a neural network can be rep-
resented as a directed graph, consisting of nodes and the connec-
tions between them. The class of nodes comprises spiking neurons
(either single- or few-compartment models) and devices, which are
used to stimulate or record from neurons. A connection enables
information to be sent from a sending node to a receiving node.
The definition of a connection typically includes at least a weight
and a delay. The weight determines the strength of a signal and the
delay how long it takes for the signal to travel from the sending to
the receiving node. The simplest synapse model delivers a fixed
connection weight to the post-synaptic node. If the connection is
intended to be plastic, the connection definition must also include
a mechanism that defines the weight dynamics. “Two factor” rules,
such as spike-timing dependent plasticity, can be implemented if
the post-synaptic node maintains a history of its relevant state
variables (e.g., as described in Morrison et al., 2007).

Each neuron is represented on exactly one of the m machines
running the simulation, and synapses are distributed such that they
are represented on the same machine as their post-synaptic target.
Distributing the axon of a sending node in this way has a consider-
able advantage in communication costs compared to distributing
dendrites (Morrison et al., 2005). In contrast to the neurons, each
device is represented on every machine and only interacts with the
local neurons. This reduces the communication load, as measured
data or stimulation signals do not have to be transferred between
machines. The cost of this approach is that m data files are gener-
ated for each recording device.

2.1.2 Simulation dynamics
Time-driven network update. The network is evaluated on an
evenly spaced time grid t

i
 = i·∆t. At each grid point the network is

in a well defined state S
i
. The time interval ∆t between two updates

can be maximized by setting it to the minimal propagation delay
d

min
 of the network. This is the largest permissible temporal desyn-

chronization between any two nodes in the network (see Lamport,
1978; Morrison et al., 2005; Plesser et al., 2007). Note that the
computation resolution for the neuron models can be much finer
than the resolution of the global scheduling algorithm, for example
neurons can advance their dynamics with a time step h = 0.1 ms
even if the global algorithm advances in communication intervals
of ∆t = 1 ms. Alternatively, neuron model implementations can
be defined within this framework that advance their dynamics in
an event-driven fashion, i.e., from one incoming spike to the next
(Morrison et al., 2007; Hanuschkin et al., 2010).

During a network update from one time step to the next, i.e., the
interval (t

i − 1
,t

i
], a global state transfer function U(S

i
) propagates

the network from one state S
i
 to the next S

i+1
. As a result of this,

each neuron may generate one or more spike events which are com-
municated to the other machines at the end of the update interval

methods exist to integrate the dynamics of large-scale models by
distributed computing (Hammarlund and Ekeberg, 1998; Harris
et al., 2003; Morrison et al., 2005), so far no solution for the efficient
implementation of neuromodulated plasticity in spiking neuro-
nal networks has been presented. Studies of network models in
which the neuromodulatory signal is internally generated have not
provided any technical details (Izhikevich, 2007; Legenstein et al.,
2008), thus the models cannot be reproduced or extended by the
wider modeling community.

To address this gap and thus open up this fascinating area of
research, we present a framework for the implementation of neu-
romodulated plasticity in time-driven simulators operating in a
distributed environment. The framework is general, in that it is
suitable for all manner of simulations rather than one specific
network model or task. Moreover, we do not focus on a specific
implementation language, neuromodulator or neuromodulated
plasticity mechanism and rely on only a few assumptions about
the infrastructure of the underlying simulator. In the framework
the plasticity modulating signal is generated by a user-defined
population of neurons contained within the network. The neuro-
modulatory signal influences all synapses located in a user-defined
specific volume, modeling the effect of volume transmission (see
Figure 1). Our framework yields excellent scaling for recurrent
networks incorporating neuromodulated STDP in its excitatory
to excitatory connections. In order to analyze the efficiency of the
framework implementation accurately, we develop a general tech-
nique to decompose the total run time into the portion consumed
by communication between machines and the portion consumed
by computation. This separation enables us to distinguish the satu-
ration in run time caused by communication overhead from any
potential saturation caused by a sub-optimal algorithm design. This
technique can be applied to arbitrary network simulations und
will thus aid the future development and analysis of extensions to
distributed simulation tools.

A general scheme for the distributed simulation of neural net-
works is summarized in section 2.1 to clarify terminology and make
explicit the assumptions made about the simulator infrastructure.
In section 3.1 we present an efficient way to implement neuro-
modulated plasticity in this distributed simulation environment.
To illustrate the technique, in section 3.2 we compare the run times
of recurrent networks (104 and 105 neurons) incorporating neu-
romodulated spike-timing dependent plasticity (Izhikevich, 2007)
to those of networks incorporating the corresponding “two factor”
spike-timing dependent plasticity.

The conceptual and algorithmic work described here is a module
in our long-term collaborative project to provide the technology
for neural systems simulations (Gewaltig and Diesmann, 2007).
Preliminary results have been already presented in abstract form
(Potjans et al., 2009a).

2 MaterIals and Methods
2.1 dIstrIbuted neural network sIMulatIon
To clarify the terminology used in the rest of the manuscript and
define the requirements a simulator must fulfill in order to incor-
porate our framework for neuromodulated plasticity, in the follow-
ing we briefly describe a general purpose time-driven simulation
scheme for distributed computation. For a more thorough and

Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 141 | 5

Potjans et al. Distributed computing of neuromodulated plasticity

correctly can be found in Morrison and Diesmann (2008). For the
purposes of this manuscript, we assume that a simulator deliv-
ers events as described above, i.e., spikes have propagation delays,
are communicated between machines at regular intervals and are
buffered at the target neuron until they are due to be incorporated
in the neuronal dynamics.

Synapse update. In contrast to neurons, incoming events are rare
for individual synapses at realistic firing rates. Therefore, to develop
our framework we make the assumption that a simulator uses the
more efficient strategy of updating synapses in an event-driven
fashion only on the arrival of a pre-synaptic spike rather than in a
time-driven fashion as neurons are. This is possible for the class of
synaptic models that only depend on local factors such as the cur-
rent weight of the synapse, the time since the last update and state
information available from the post-synaptic neuron (Morrison
et al., 2008). This class includes synaptic depression (Thomson and
Deuchars, 1994), synaptic redistribution (Markram and Tsodyks,
1996) and spike-timing dependent plasticity (STDP) (Markram
et al., 1997; Bi and Poo, 1998, 2001).

As we measure performance on the example of STDP with a
neuromodulatory third factor (see section 3.2) it is worth discuss-
ing the infrastructure for calculating STDP updates triggered only
on the arrival of pre-synaptic spikes in somewhat more detail. See
Figure 3B for the sequence diagram for the activation of an STDP
synapse; the corresponding pseudo-code is given in Morrison et al.
(2007). All post-synaptic variables, such as the post-synaptic spike
times and the low-pass filtered post-synaptic rate, are stored at the
post-synaptic neuron. On the arrival of a pre-synaptic spike, the
synapse requests these variables from the post-synaptic neuron
for the period between the last and the current pre-synaptic spike
(get_history(s_last,s_pre)). Based on this information the
synapse can integrate its weight dynamics from one spike time to
the next. The post-synaptic variables only have to be stored until
they have been processed by every incoming synapse. After the
weight has been updated an event is sent to the post-synaptic neu-
ron as in the case of the simple synapse model discussed in section
2.1.2 and illustrated in Figure 3A.

2.2 benchMark network Models
To investigate the performance of our proposed framework, we
measure the simulation times of recurrent networks incorporat-
ing neuromodulated spike-timing dependent plasticity at their
excitatory–excitatory connections whilst systematically varying
the number of processors used. The STDP model uses an all-to-
all spike pairing scheme and is based on the model proposed by
Izhikevich (2007):

w c n b

c
c

t t s C

n
n t s
c

n

n

n

= −

= − + −

= − + −

()

() ()

()

/τ
δ

τ
δ

τ

STDP pre post∆ 1

CC2 ,

where c is an eligibility trace, n the neuromodulator concentra-
tion, s

pre/post
 the time of a pre- or post-synaptic spike, s

n
 the time of

a neuromodulatory spike, and C
1
 and C

2
 are constant coefficients.

at t
i
. Before the start of the next network update, i.e., the interval

(t
i
,t

i+1
], the communicated events are delivered to their targets. This

is described in greater detail below. In the following, we will refer
to ∆t as the communication interval. To implement our framework
for neuromodulated plasticity, we therefore assume that the update
cycle of the underlying simulator in a distributed environment can
be expressed as the following algorithm:

1: T ← 0
2: while T < T

stop
 do

3: parallel on all machines do
4: deliver events received at last
 communication to targets
5: call U(s

T
)

6: end parallel
7: communicate new events between machines
8: increment network time: T ← T + ∆t
9: end while

Event delivery. A neuron’s spike events must be delivered to its
target nodes with a propagation delay determined by the connecting
synapse. After the communication of events that takes place after
each ∆t interval, the simulation algorithm activates the outgoing
synapses of the neurons that spiked during the previous interval.
The sequence diagram for a simple synapse model is shown in
Figure 3A. The synapse generates an event of weight w and delay d.
The delay is determined by subtracting the lag between spike gen-
eration and communication from the propagation delay associated
with the synapse: for a spike generated at s

pre
 and communicated at

t
i
 with a total synaptic propagation delay d

syn
, the remaining delay

d is equal to d
syn

 − (t
i
 − s

pre
). The event is sent to the synapse’s target

node, which writes the event to its incoming event buffer such that
it becomes visible to the update dynamics of the target neuron at the
correct time step, s

pre
 + d

syn
. A description of the ordering of buffer

reading and writing operations to ensure that events are integrated

A

B

Figure 3 | Sequence diagram for static (A) and STDP (B) synapses. The
object Synapse (j,i) denotes a synapse from source neuron i to target neuron j;
neuron i emits a spike at time spre.

Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 141 | 6

Potjans et al. Distributed computing of neuromodulated plasticity

Voltaire ISR9024D-M); the MPI implementation is OpenMPI 1.3.1.
The simulations for the 105 neuron networks are performed on a
Bluegene/P (JUGENE1).

3 results
3.1 IMpleMentIng neuroModulated plastIcIty In a dIstrIbuted
envIronMent
In this section we present a novel and general framework to imple-
ment neuromodulated plasticity efficiently for a distributed time-
driven simulator as described in section 2.1. The neuromodulator
concentration available in a certain volume is the superposition
of the neuromodulator concentration released by a population
of neurons projecting into the same volume. We assume, in
agreement with experimental findings (e.g., Garris et al., 1994;
Montague et al., 2004), that each spike of the neuromodulator
releasing neurons contributes to the extracellular neuromodula-
tor concentration and thus the concentration can be given as a
function of spike times.

3.1.1 A distributed volume transmitter
The major challenge is to provide an efficient mechanism to inform
a set of synapses about a non-local neuromodulatory signal in a
manner that respects the temporal ordering of spikes and signal
changes, without making the assumption that the neurons gener-
ating the signal are identical with the modulated synapses’ pre- or
post-synaptic neurons or even that they are represented on the same
machines as the pre- or post-synaptic neurons. Our solution is to
introduce a new category of node, which we will refer to as a “vol-
ume transmitter.” The volume transmitter collects all spikes from
a neuromodulator releasing population of neurons and transmits
the spikes to a user-specified subset of synapses (see Figure 4A). As
the subset of synapses is typically distributed over all machines, we
define the volume transmitter to be duplicated on each machine. It
provides the spikes to the synapses local to its machine, in common
with the “device” category of nodes (see section 2.1.1). However,
as the population of neurons releasing the neuromodulator into
a given volume is also typically distributed over all machines, the
volume transmitter must receive spikes from a globally defined
population, in common with the “neuron” category of nodes. The
volume transmitter, therefore, represents a third category of nodes,
duplicated on each machine and transmitting information locally
like a device, but receiving events from all machines like a neuron.
The distribution of the volume transmitter, the transmission of the
spikes to the local synapses and the global collection of the spikes
from the neuromodulator releasing neurons are depicted for an
example network distributed over two machines in Figure 4B.

Note that the dynamics of the neuromodulator concentration is
calculated by the synapses rather than the volume transmitter. This
enables the same framework to be used for a variety of neuromodu-
latory dynamics as long as they depend only on the spike history.
Moreover, the association of a volume transmitter with a specific
population of neuromodulator releasing neurons and a specific subset
of synapses allows multiple volume transmitters to be defined in the
same network model. Thus a network model can represent multiple
projection volumes and multiple neuromodulatory interactions.

δ(t) is the Dirac delta function; τ
c
 and τ

n
 are the time constants of

the eligibility trace and the neuromodulator concentration, respec-
tively. Unlike the networks investigated by Izhikevich (2007), the
neuromodulator concentration is always present, so we subtract a
baseline b from the neuromodulator concentration. STDP(∆t) is
the window function of additive STDP:

STDP
e if

e if
() ,

| |/

| |/
∆

∆
∆

∆

∆t
A t

A t

t

t
=

>
≤

+
−

−
−

+

−

τ

τ

0

0

where ∆t = s
post

 − s
pre

 is the temporal difference between a post-
synaptic and a pre-synaptic spike, A+ and A− are the amplitudes of
the weight change and τ+ and τ− are time constants. As a control,
we also measure the simulation times of networks in which the
neuromodulated STDP is exchanged for STDP without neuro-
modulation according to the model of Song and Abbott (2001),
i.e., w t t s= −STDP pre/post() ()∆ δ . In the neuromodulated and the
unmodulated networks the synaptic weights are bounded between
0 and a maximal synaptic weight w

max
.

We investigate the performance for networks of two different
sizes: 1.125 × 104 and 1.125 × 105, referred to in the rest of the
manuscript as the 104 and 105 networks, respectively. Both networks
consist of 80% excitatory and 20% inhibitory current based inte-
grate-and-fire neurons. In the subthreshold range the membrane
potential V is determined by the following dynamics:

dV

dt
V

C
I t= − +1 1

τm m

(),

where τ
m

 is the membrane time constant, C
m

 the membrane capac-
ity and I(t) the input current to the neuron, which is the sum of
any external currents and the synaptic currents. The synaptic cur-
rent I

syn
 due to an incoming spike is represented by an exponential

function:

I t w
t

syn e syn() ,
/= − τ

where w is the weight of the corresponding synapse and τ
syn

 the rise
time. If the membrane potential passes the threshold V

th
 a spike is

emitted and the neuron is clamped to the reset potential V
reset

 for
the duration of the refractory period τ

ref
.

The excitatory–excitatory connections are plastic, as described
above; all other connections are static. All neurons receive addi-
tional Poissonian background noise. The network firing rate due to
the Poissonian background noise of both networks is approximately
10 Hz in the asynchronous irregular regime. We arbitrarily choose
the first N

nm
 excitatory neurons to be the neuromodulator releasing

neurons. A tabular description of the benchmark network models
and a specification of the parameters used can be found in Tables 1
and 2 of Appendix.

The simulations are carried out using the simulation tool NEST
(Gewaltig and Diesmann, 2007) with a computation time step
of 0.1 ms and a communication interval equal to the minimal
propagation delay d

min
. The simulations of the 104 neuron net-

works are performed on a cluster of SUN X86 consisting of 23
compute nodes equipped with two AMD Opteron 2834 quad core
processors with 2.7 GHz clock speed running Ubuntu Linux. The
nodes are connected via InfiniBand (24 ports InfiniBand switch, 1http://www.fz-juelich.de/jsc/jugene/

Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 141 | 7

Potjans et al. Distributed computing of neuromodulated plasticity

the spike times are discarded once all incoming synapses have
accessed them. This is an inappropriate strategy for managing
the neuromodulatory spikes, as they are typically generated by
a population of neurons and so have a substantially higher total
rate than the pre-synaptic spike rate. Having a large number of
spikes in the history entails proportionally higher computational
costs for the algorithm that determines which spikes can be dis-
carded. We propose a novel alternative approach: in addition
to delivering a spike history “on demand” when a pre-synaptic
spike arrives (Figure 5A), the volume transmitter also delivers

3.1.2 Managing the spike history
In order to calculate its weight update, a neuromodulated syn-
apse must have access to all the spikes from the neuromodulator
releasing neuron population that occurred since the last pre-
synaptic spike. This is similar to the requirement of an STDP
synapse, which needs access to the post-synaptic spike history
since the last pre-synaptic spike (see section 2.1.2). For STDP,
this requirement can be met if the post-synaptic neuron stores
its spike times (Morrison et al., 2007). To prevent a continual
growth in memory requirements as a simulation progresses,

A B

Figure 4 | A distributed volume transmitter object. (A) The volume transmitter (VT) collects all spikes from the neurons releasing the neuromodulator into a given
volume and delivers them to any associated synapses. (B) An example network is distributed over two machines. The volume transmitter (VT) is duplicated on each
machine. It collects globally the spikes of the neuromodulator releasing neurons (red) and delivers them locally to the neuromodulated synapses (blue).

Figure 5 | Sequence diagram for neuromodulated synapses in the event-driven (A) and the time-driven (B) mode.

Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 141 | 8

Potjans et al. Distributed computing of neuromodulated plasticity

could still receive events at later event delivery phases. At this point,
the volume transmitter copies the contents of the ring buffer in the
range [0,∆t/h − 1] to a separate spike history buffer of length ∆t/h,
see Figure 6C. It then resets those counters to zero and rotates the
’front’ of the ring buffer by ∆t/h segments as shown in the right
side of Figure 6B. Thus the spike history buffer contains all the
neuromodulatory spikes that are due to arrive in the projected
volume in the interval (t

i
,t

i+1
], and the ring buffer is prepared to

receive the events communicated at time t
i+1

.
We now turn to the delivery of the neuromodulatory spikes to

the synapses. Let us assume that a synapse associated with a given
volume transmitter has received and processed all the neuromodula-
tory spikes with arrival times up to and including t

i
. Therefore the

last update time of the synapse s
last

 is equal to the last neuromodu-
latory spike time ≤t

i
. At time t

i+1
 the machines exchange all events

generated in the interval (t
i
,t

i+1
]. If the synapse’s pre-synaptic neuron

emits a spike at time s
pre

 within this interval, all neuromodulatory
spikes with t

i
 < (s

n
 + d

n
) < s

pre
 still need to be taken into account to

calculate the weight dynamics of the synapse up to s
pre

. Conversely,

its spike history to all associated synapses at regular intervals
(Figure 5B). Not only does this combination of an event- and
time-driven approach allows us to dispense with an algorithm to
discard spikes from the history, it also has the major advantage
of enabling the spike history to be stored in a static data struc-
ture, rather than a computationally more expensive dynamic
data structure.

Let us first consider the collection and storing of the spikes of the
neuromodulator releasing neurons (Figure 4). A suitable structure
to store the spikes is a traditional ring buffer which stores data in
a contiguous series of segments as shown in Figure 6, where each
segment of the buffer corresponds to one integration time step h
(see also Morrison et al., 2005; Morrison and Diesmann, 2006).
However, unlike the standard usage of a ring buffer in neuronal net-
work simulations, where only one object reads from it and exactly
one read operation from one segment is carried out in each time
step, in this situation multiple objects depend on the data and
read operations are carried out at unpredictable times and require
information from a range of segments at once. Consequently, a new
approach to writing to and reading from a ring buffer is necessary,
as we describe in the following.

When a neuromodulator releasing neuron n emits a spike at
time s

n
, a certain propagation delay d

n
 is required for the spike

to arrive at the projection volume, as illustrated in Figure 6A.
Following the description in section 2.1.2, events are communi-
cated after each communication interval of length ∆t. Assuming s

n

is in the interval (t
i−1

,t
i
] where t

i
 = i∆t, the neuromodulatory spike

event is communicated between machines at time t
i
 along with

all the other spike events generated in that interval (see Morrison
and Diesmann, 2006 for an in depth discussion of the interval
 borders). Neuromodulatory spike events generated in that interval
are delivered to the volume transmitter and sorted into the ring
buffer according to their propagation delays. Assigning the “front”
of the ring buffer the index 0, for a spike emitted at s

n
 with a delay

d
n
, the counter at position (s

n
 + d

n
 − t

i
)/h − 1 is incremented. This is

depicted in the left side of Figure 6B. Setting the ring buffer size to
d

max
/h, where d

max
 is the maximal propagation delay, allows the cor-

rect order of spikes to be maintained for all possible configurations
of spike generation time, communication time, and propagation
delay. The communication interval ∆t can be set to any integer
multiple of h up to d

min
, the minimum synaptic propagation delay.

A communication interval of ∆t = h, where events are communi-
cated in every time step, is the most obvious, naive approach and
is probably implemented in at least the first version of almost all
simulators. As mentioned in section 2.1.2, a choice of ∆t = d

min
 is

the largest possible communication interval that still maintains the
correct ordering of events. Maximizing ∆t has two advantages: it
reduces the communication overhead (see Morrison et al., 2005),
and each neuron can perform d

min
/h integration time steps as an

uninterrupted sequence, improving the cache efficacy considerably
(Plesser et al., 2007).

As a result of the sorting, right before the event delivery phase
at time t

i+1
, the counters for positions in the range [0,∆t/h − 1]

give the total number of neuromodulatory spikes that are due to
arrive at the synapses in each time step from t

i
 + h to t

i+1
. Counters

at positions greater than ∆t/h do not necessarily contain the total
number of spikes for their respective time steps, as these positions

Figure 6 | Writing to and reading from the ring buffer of the volume
transmitter for event communication in intervals of ∆t. In this example,
∆t = 3h, where h is the computation time step. (A) Short black bars indicate
the grid h imposes on the temporal axis. At time step ti = i∆t all spikes
generated by the neuromodulator releasing neurons in the time interval (ti−1,ti]
are delivered to the volume transmitter (here: the spike times s1,s2,s3 (brown
bars) with propagation delays d1,d2,d3). Blue bars indicate the arrival of the
spikes in the projection volume. (B) Ring buffer. Left: at time ti during event
delivery. The neuromodulatory spikes generated in (ti−1,ti] (blue bars, labeled by
the event id for illustration only) increment the counters at the positions
(sx + dx − ti)/h − 1 for x = [1,2,3] from the “front” of the ring buffer (indicated by
the red 0). At the end of the event delivery phase, the first ∆t/h elements
(gray) contain the neuromodulatory spikes due to arrive in the projection
volume during (ti,ti+1]. Right: at ti+1 during event delivery. The ’front’ of the buffer
has been rotated ∆t/h segments clockwise with respect to the buffer at time
ti. Neuromodulatory spikes generated in the time interval (ti,ti+1] by the
neuromodulator releasing neurons (generation times not shown) are written
to the buffer (orange bars), the first ∆t/h elements (gray) contain the
neuromodulatory spikes due to arrive in the projection volume during (ti+1,ti+2].
(C) The spike history buffer. Left: at ti+1 before the event delivery phase the
contents of the top ∆t/h elements of the ring buffer at ti (gray) are copied to
the spike history buffer and the counters are reset. Right: at ti+2 before the
event delivery phase the contents of the top ∆t/h elements of the ring buffer
at ti+1 are copied to the spike history buffer and the counters are reset.

Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 141 | 9

Potjans et al. Distributed computing of neuromodulated plasticity

1 neuron1=nest.Create("iaf_neuron")
2 neuron2=nest.Create("iaf_neuron")
3 vt=nest.Create("volume_transmitter")
4 nest.SetDefaults("neuromodulated_
 synapse",{"vt": vt[0]})
5 nest.Connect(neuron1, neuron2,
 model="neuromodulated_synapse")

Here we are using NEST’s interface to the Python2 program-
ming language PyNEST (Eppler et al., 2009). The population of
neurons releasing the neuromodulator are connected to the vol-
ume transmitter with standard synaptic connections specifying the
propagation delays. For example, in NEST:

6 nest.ConvergentConnect(neuromodulator_neurons,
 vt, delay=d, model="static_synapse")

These operations can be performed in either order.

3.2 perforMance
To investigate the efficiency and scalability of our framework, we
simulated networks of 104 and 105 neurons incorporating STDP
with and without neuromodulation at their excitatory–excitatory
synapses as a function of the number of processors used (see sec-
tion 2.2). The results are illustrated in Figure 7. Figure 7A shows
the simulation times for one biological second of the 104 neuron
network and Figure 7B shows the corresponding speed-up curves,
i.e., how much faster a simulation runs with m machines than with
1 machine (Wilkinson and Allen, 2004). When neuromodulatory
spikes are transferred in intervals of ∆t = d

min
, a supralinear scal-

ing can be observed up to 32 machines, beyond which the scaling
is approximately linear. Simulation times are on average 17 times
slower than those for the corresponding network incorporating
unmodulated STDP. If neuromodulatory spikes are transmitted
less often, in intervals of 70·d

min
, the reduced number of operations

results in a supralinear scaling up to 184 machines. As the number
of machines grows, the disparity in simulation times between the
neuromodulated and unmodulated networks decreases. The supra-
linear scaling in all simulations of the 104 neuron network is due
to cache effects.

Figures 7C and D show the simulation times for one bio-
logical second of the 105 neuron network and the correspond-
ing speed-up curves. The neuromodulated network (transfer
interval: 100·d

min
) and the unmodulated control network both

scale approximately linearly up to 1024 machines. On aver-
age the neuromodulated network is 3.2 times slower than the
unmodulated network.

These results demonstrate that the framework scales well, up
to at least 184 or 1024 machines, depending on the network size.
However, they also raise a number of questions. Firstly, in Figures
7A and B we observe that the unmodulated network shows a supra-
linear scaling up to 64 processors, but then the simulation time
saturates at 0.65 s. This suggests that an increase in communication
overhead is masking the decrease in computation time. How do
the scaling properties of the neuromodulated and unmodulated
networks compare if the communication overhead is factored out?
Secondly, the neuromodulated network simulations take longer

 neuromodulatory spikes that have already been generated and com-
municated between machines, but are due to arrive at the projection
volume after s

pre
, i.e., (s

n
 + d

n
) ≥ s

pre
, should not be taken into account.

When the synapse is activated during the event delivery phase at t
i+1

, it
therefore requests the spike history buffer from the volume transmit-
ter, which contains those neuromodulatory spikes for which (s

n
 + d

n
)

is in the range (t
i
,t

i+1
], as described above. Depending on its dynam-

ics, it may also need additional information from the post-synap-
tic neuron; this is illustrated for the case of dopamine-modulated
STDP (Izhikevich, 2007) in Figure 5A, where the post-synaptic spikes
between s

last
 and s

pre
 must also be requested. At the end of its weight

update, the synapse emits an event of the appropriate weight and delay
to its post-synaptic target, and sets its variable s

last
 to the value of s

pre
.

Directly after the event delivery phase at t
i+1

, the volume trans-
mitter sends its spike history buffer to every associated synapse
(see Figure 5B: send_history()). This triggers a weight update
for every synapse in which the synapse’s last update time s

last
 is

earlier than the latest spike in the spike history buffer, s
VT

. In the
dopamine-modulated STDP synapse shown in Figure 5B, calculat-
ing the weight update involves requesting all post-synaptic spikes
between s

last
 and s

VT
. After calculating the weight update, the synapse

sets its variable s
last

 to the value of s
VT

. Thus at the event delivery
phase at time t

i+2
, each synapse associated with the volume trans-

mitter has received and processed all neuromodulatory spikes with
arrival times up to and including t

i+1
.

In the above we have described how the synapse can be informed of
the spikes necessary for calculating its weight updates without requir-
ing dynamic memory structures or an algorithm to discard spikes that
are no longer necessary. The key insight is that event-driven requests
for the volume transmitter’s spike history triggered by the arrival
of pre-synaptic spikes can be complemented by delivering the spike
history at regular intervals in a time-driven fashion. This combined
approach does not entail any additional computational costs for the
synapse. It must process every neuromodulatory spike, so it makes no
difference when the processing takes place, as long as all the informa-
tion required to calculate a weight update is available when an event
is generated. On a global level there are additional costs, as accessing
every synapse every ∆t interval involves more operations than access-
ing synapses only on the arrival of pre-synaptic spikes. However, these
additional costs can be reduced by transferring the neuromodulatory
spikes not in intervals of ∆t, but in intervals of n·∆t, where n is an
integer. We leave n as a parameter that can be chosen by the user;
the consequences of the choice of transfer interval are discussed in
section 3.2.3. The only alterations that need to be made to the above
description to accommodate this improvement is that the spike his-
tory buffer must be correspondingly longer (i.e., n·∆t/h), and spikes
must be copied from the ring buffer to the correct section of it.

3.1.3 Establishing a neuromodulated connection
The interaction between the volume transmitter and the synapses
requires a bidirectional link. This link from synapse to volume
transmitter can be realized by passing the volume transmitter as a
parameter when a neuromodulated synapse is defined. The synapse
stores a pointer to the volume transmitter and passes its own pointer
to the volume transmitter, which maintains a list of associated
synapse pointers. For the simulation tool NEST (Gewaltig and
Diesmann, 2007) this can be expressed as follows: 2http://www.python.org

Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 141 | 10

Potjans et al. Distributed computing of neuromodulated plasticity

 communication buffers containing spike entries are communicated
between machines in time steps of d

min
. The number of spikes that

each machine sends can be approximated as (/)N m dλ min, where
N is the total number of neurons, m the number of machines and
λ the average firing rate. If the spikes of successive time steps of
length h are separated in the communication buffers by markers,
the total number of bytes in each communication buffer is:

b m
N

m
d b

d

h
b() = +λ min spike

min
marker

where b
spike

 is the number of bytes to represent the global identi-
fier of a neuron and b

marker
 is the number of bytes taken up by a

marker. In our implementation in NEST, b
spike

 = b
marker

 = 8. For
a given network simulation we can calculate b(m) and thus the
communication time as:

T m
T

d
T m b mex

min

Ex() , ()= ()1

than the unmodulated network simulations. Is this due to the
overhead of the volume transmitter infrastructure or due to the
increased complexity of the neuromodulated STDP update rule?
Finally, faster simulation times are observed when the transfer inter-
val of the volume transmitter is increased. What is the relationship
between the performance and the choice of transfer interval? We
address these questions in the following three sections.

3.2.1 Saturation due to communication overhead
Let us assume that the simulation time T

sim
(m) for m machines is

composed of two components: the computing time T
c
(m) required

to perform the parallel simulation operations such as calculating
the neuronal and synaptic dynamics, and the communication time
T

ex
(m) required to exchange events between machines:

T
sim

(m) = T
c
(m) + T

ex
(m)

The communication time T
ex

(m) is a characteristic of the com-
puting architecture used for simulation and typically depends on
the number of communicated bytes. As described in section 2.1.2

Figure 7 | Performance of simulations of networks incorporating STDP
with and without neuromodulation. (A) Time to simulate 1 biological second
of the 104 neuron network as a function of the number of machines in double
logarithmic representation. Neuromodulated STDP with transference of
neuromodulatory spikes from the volume transmitter in intervals of dmin (red),
70·dmin (green), unmodulated STDP (blue). (B) Speed-up factor for the simulation

times shown in (A). (C) Time to simulate 1 biological second of the 105 neuron
network as a function of the number of machines in double logarithmic
representation. Neuromodulated STDP with transference of neuromodulatory
spikes from the volume transmitter in intervals of 100·dmin (green), unmodulated
STDP (blue). (D) Speed-up factor for the simulation times shown in (C). Gray
lines indicate linear predictions.

Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 141 | 11

Potjans et al. Distributed computing of neuromodulated plasticity

with the number of machines. This representation underlines the
fact that the communication overhead plays a proportionally bigger
role for computationally less expensive applications: the proportion
of the total time consumed by data exchange increases more quickly
for the unmodulated network simulation than for the neuromodu-
lated cases, rising to more than 40% for the unmodulated network at
184 machines and to 25 and 5% for the neuromodulated networks
with transfer intervals of 70·d

min
 and d

min
 respectively.

To obtain the pure computation time T
c
(m), we substract the

communication time T
ex

(m) from the total run time T
sim

(m). The
result is shown in Figure 9A and the corresponding speed-up curves
in Figure 9B.

The effect on the scaling of the neuromodulated network simu-
lations is small. However, the saturation of simulation time for the
unmodulated network observed in Figures 7A and B is no longer
visible, demonstrating that the saturation was due to communication
overhead rather than suboptimal simulation algorithms. All network
simulations exhibit linear scaling or better up to 184 machines.

where T m bEx
1 (,) is the time taken to perform one exchange between

m machines of b bytes per machine and T is the biological time
simulated. The single exchange time T m bEx

1 (,) can be determined
empirically by measuring the time taken for n calls of the exchange
routine for a packet of size b and dividing the total time by n. We
measured the single exchange time T m bEx

1 (,) on our X86 computing
cluster by averaging over 1000 function calls exchanging packets of
sizes determined by the 104 neuron network simulation (see section
2.2). Figure 8A shows the total communication time T

ex
 as a function

of the number of machines for the 104 neuron network simulation.
The communication time increases with the number of machines
in proportion to m ln(m), which is to be expected for the algorithm
underlying the MPI_Allgather() routine from the MPI library3
used in our implementation. Figure 8B shows the communication
time as a percentage of the total simulation time T

sim
. The proportion

of the simulation time taken up by data exchange increases rapidly

Figure 8 | Communication overhead in a distributed simulation of the 104
neuron network. (A) Time required for all necessary data exchanges for a
simulation of one biological second as a function of the number of machines.
The gray curve is a fit of m·ln(m) to the data. (B) Communication time as a

percentage of the total simulation time as a function of the number of machines.
Neuromodulated STDP with transference of neuromodulatory spikes from the
volume transmitter in intervals of dmin (red), 70·dmin (green), unmodulated
STDP (blue).

Figure 9 | Computation time for a distributed simulation of one biological second of the 104 neuron network. (A) Computation time as a function of number
of machines in double logarithmic representation. Neuromodulated STDP with transference of neuromodulatory spikes from the volume transmitter in intervals of
dmin (red), 70·dmin (green), unmodulated STDP (blue). (B) Speed-up factor for the simulation times shown in (A). Gray lines indicate linear predictions.

3http://www.open-mpi.org/

Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 141 | 12

Potjans et al. Distributed computing of neuromodulated plasticity

The alternative approach, to store spikes in a dynamically sized
buffer and update synapses only on demand, requires the use of an
algorithm to discard spikes that have already been processed. The
complexity of such an algorithm is linear in the number of spikes
in the buffer, therefore such a scheme would entail proportionally
higher costs with increased neuromodulatory spike rate, whereas
the cost for our framework is approximately constant.

3.2.3 Dependence of performance on the transfer interval
Figures 7 and 10 show that faster simulation times are achieved
with a transfer time of 70·d

min
 than with a transfer time of d

min

for all numbers of machines and all neuromodulatory rates. This
is unsurprising, as the longer transfer time entails proportion-
ally fewer transfer operations: the number of transfer operations
is given by T/(n·d

min
), where T is the biological time simulated.

However, a longer transfer time also requires a larger data struc-
ture to hold all the buffered spikes. As increasing the memory
used by an application will generally decrease its speed, optimiz-
ing performance may require a trade-off to be found between
reducing the number of operations and limiting the memory
requirements.

To obtain the dependence of the simulation time on the transfer
time, we carried out simulations of the 104 neuron network whilst
varying the parameter n, where n·d

min
 is the transfer interval for

communicating spikes in a time-driven fashion from the volume
transmitter to the synapses (see section 3.1.2). The results are shown
in Figure 11A. By plotting the simulation time as a function of
1/n in Figure 11B, we can see that the simulation time is indeed
proportional to 1/n for n>2. For smaller values of n the neuro-
modulator spike buffers are sometimes empty, in which case the
transfer operation is omitted, leading to a faster simulation time
than the linear prediction. These results demonstrate that increas-
ing the memory requirements of the volume transmitter does not
result in a decrease in performance, so in practice a large value of
n should be selected.

dIscussIon
Neuromodulated plasticity has recently become a hot topic in com-
putational as well as experimental neuroscience. There is evidence
for neuromodulator involvement in many cognitive functions, such
as attention or reward learning (Reynolds et al., 2001; Hasselmo and
McGaughy, 2004). On the cellular level it has been shown that long-
range neuromodulatory systems strongly influence the induction
of spike-timing dependent plasticity (see Pawlak et al., 2010 in this
special issue). Neuromodulated plasticity is a strong candidate for
a mechanism that links synaptic plasticity to system level learning
(Seung, 2003; Xie and Seung, 2004; Baras and Meir, 2007; Florian,
2007; Izhikevich, 2007; Legenstein et al., 2008; Potjans et al., 2009b,
2010; Vasilaki et al., 2009; Pawlak et al., 2010, this special issue).
However, so far in most spiking neural networks models imple-
menting neuromodulated synaptic plasticity, the signal is injected
externally into the network rather than being generated by the
network itself (but see Izhikevich, 2007 and Legenstein et al., 2008).
Furthermore, technical details about the implementation of neu-
romodulated plasticity in spiking neural networks have not been
provided. Due to this lack models cannot be easily reproduced or
extended by the wider modeling community.

3.2.2 Dependence of performance on the neuromodulatory firing rate
Figures 7 and 9 show that the simulation times for the neuromodu-
lated network simulations are much longer than for the unmodu-
lated network simulations. This could be due to the computational
cost of the volume transmitter overhead, or to the increased com-
plexity of the neuromodulated STDP update rule, which depends
not only on the pre- and post-synaptic rate but also on the rate
of the population of neuromodulator releasing neurons (see sec-
tion 2.2). For the curves shown in Figures 7 and 9, the size of the
neuromodulator releasing population N

nm
 was set to 50, resulting

in a neuromodulatory firing rate of ≈500 Hz.
Figure 10 shows the dependence of the simulation time for the

104 neuron network on 184 processors as a function of the firing
rate of the neuromodulatory population. The different firing rates
are realized by varying the number of neuromodulator releasing
neuron N

nm
 from 0 to 60 in steps of 5. Note that the network activ-

ity is not affected by the choice of N
nm

 on the time scale of one
second, so the pre- and post-synaptic firing rates are constant for
all values of N

nm
. A linear increase of simulation time with neuro-

modulatory firing rate can be observed, with a greater slope for a
transfer interval of d

min
 than for 70·d

min
. For a neuromodulatory

spike rate of 0 Hz, the simulation times for the neuromodulated
networks are only slightly larger than for the unmodulated network.
These results demonstrate that the large disparity in simulation
times observed between the neuromodulated and unmodulated
simulations is not due to overheads related to the volume transmit-
ter infrastructure but to the increased computational complexity
of the neuromodulated STDP update rule. As a further test, we
carried out an experiment for a neuromodulatory firing rate of
500 Hz in which the volume transmitter infrastructure transfers the
neuromodulatory spikes to the synapse, but the synapse performs
the unmodulated STDP update rule, i.e., the synapse ignores the
transferred spikes. In this case the simulation times are reduced to
those of the unmodulated STDP control case (data not shown).

These results confirm the decision to store the neuromodula-
tory spikes in a fixed-size buffer and ensure all spikes are taken
into consideration by regular updates of the associated synapses.

Figure 10 | Simulation time for one biological second of the 104 neuron
network for 184 machines as a function of the neuromodulatory firing
rate. Neuromodulated STDP with transference of neuromodulatory spikes
from the volume transmitter in intervals of dmin (red squares), 70·dmin (green
squares). The blue line indicates the simulation time for the unmodulated
network; the gray lines are linear fits to the data.

Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 141 | 13

Potjans et al. Distributed computing of neuromodulated plasticity

exhibits supralinear scaling up to 184 machines on simulations of
a balanced random network of 104 neurons incorporating neuro-
modulated STDP in its excitatory to excitatory connections. Further,
linear scaling can be observed up to 1024 machines on simulations of
a network containing 105 neurons with a biologically realistic number
of inputs to each neuron (104) and connectivity (10%), correspond-
ing to 1 mm3 of mammalian cortex. The scaling properties of the
neuromodulated network simulations are comparable to, or bet-
ter than, that of an unmodulated network simulation. Additionally,
our framework does not incur any additional costs with increased
firing rate of the neuromodulatory neuron population other than
those necessarily imposed by the complexity of the neuromodulated
synaptic update rules. Although our motivation was to provide a
framework capable of meeting the demands of very large distributed
neuronal network simulations, it can be used without adaptation for
the serial simulation of smaller-scale networks in which the neuro-
modulatory signal is generated within the network.

In the context of analyzing the benchmark simulations we devel-
oped a technique to determine what proportion of the run time of
a simulation is taken up by communication between machines. This
generally applicable technique enables a developer of distributed
software to distinguish a saturation due to communication over-
heads from one due to a suboptimally implemented algorithm.

Although our hybrid communication strategy was developed in
the context of the particular challenges of neuromodulated plas-
ticity, it could well enable a more efficient formulation of algo-
rithms to model unmodulated plasticity such as STDP. Combining
event-driven weight updates triggered by pre-synaptic spikes with
time-driven updates at regular intervals would permit also the post-
synaptic spike history to be stored in a static data structure and
remove the need for an algorithm to discard spikes that are no longer
relevant. However, as one spike history structure is required for each
post-synaptic neuron (rather than one for an entire neuromodula-
tory population), the memory requirements of the simulation will
depend more strongly on the choice of transfer interval. In future
work, we will investigate the trade-off between reducing the number
of transfer operations and increasing the memory requirements.

We have formulated the neuromodulator dynamics as a dynamics
on a graph where the interaction is mediated by point events. This
integrates well into the representation of spiking neuronal networks

Here, we present for the first time a general framework for the
efficient implementation of neuromodulated plasticity in time-
driven distributed simulations where the neuromodulatory signal
is generated within the network. The presented framework paves
the way for the investigation of a wide range of neural circuits
which generate and exploit a neuromodulatory signal to carry
out cognitive functions, such as dopamine-driven learning and
noradrenaline-mediated stress response. The framework is general
in the sense that it does not rely on a particular implementation lan-
guage, neuromodulator, or neuromodulated plasticity and makes
few and easily fulfilled assumptions about the data structures and
algorithms of the underlying simulation tool. The main difficulty
in the implementation of neuromodulated plasticity in distributed
simulations is how to inform the neuromodulated synapses effi-
ciently about the non-local neuromodulatory signal, which is typi-
cally generated by a population of neurons on different machines
than either the pre- or the post-synaptic neuron. We solved this
problem by introducing a new object called “volume transmitter,”
which represents the neuromodulatory signal available in a cer-
tain volume by globally collecting all the spikes from neurons in
a specified neuromodulator releasing population and transferring
the spikes to a user-specified subset of local synapses. We propose a
hybrid algorithm for the transfer of spikes from the volume trans-
mitter to the neuromodulated synapses. In addition to the delivery
triggered by every pre-synaptic spike, the neuromodulatory spike
history is delivered in discrete time intervals of n·∆t, where n is an
integer and ∆t the communication interval of the network. This
has three advantages over a purely event-based transfer: first, the
neuromodulatory spikes can be stored in a static data structure; sec-
ond, no additional algorithm is required to determine which spikes
can be cleared from the history; and third, the memory require-
ments are known and fixed regardless of the network activity. The
technology is fully implemented and available in NEST including
an example and can be controlled through the application interface
to the Python programming language (Eppler et al., 2009).

Our results show that simulation time is proportional to 1/n for
n>2; this is due to the decrease in the number of operations per-
formed. As no deterioration in performance can be observed for
large n as a result of the larger memory structure, in practice a large
n should be selected. For a suitably large choice of n, our framework

Figure 11 | Simulation time for one biological second of the 104 neuron network for 184 machines with respect to n, where n·dmin is the transfer interval of
the volume transmitter. (A) Simulation time as a function of n. (B) Simulation time as a function of 1/n. The gray line shows the linear fit for n>2.

Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 141 | 14

Potjans et al. Distributed computing of neuromodulated plasticity

references
Agnati, L., Zoli, M., Strömberg, I., and Fuxe,

K. (1995). Intercellular communication
in the brain: wiring versus volume trans-
mission. Neuroscience 69, 711–726.

Ananthanarayanan, R., and Modha, D. S.
(2007). “Anatomy of a cortical simula-
tor,” in Supercomputing 2007: Proceedings
of the ACM/IEEE SC2007 Conference
on High Performance Networking and
Computing (New York, NY: Association
for Computing Machinery).

Antonov, I., Antonova, I., Kandel, E.
R., and Hawkins, R. D. (2003).
 Activity-dependent presynaptic

facilitation and hebbian LTP are both
required and interact during classical
conditioning in aplysia. Neuron 37,
135–147.

Arbuthnott, G., and Wickens, J. (2007).
Space, time and dopamine. Trends
Neuroscience 30, 62–69.

Baras, D., and Meir, R. (2007).
Reinforcement learning, spike-
time-dependent plasticity, and
the BCM rule. Neural Comput. 19,
2245–2279.

Berridge, C. W., and Waterhouse, B.
D. (2003). The locus coeruleus-
 noradrenergic system: modulation of

behavioral state and state-dependent
cognitive processes. Brain Res. Brain
Res. Rev. 42, 33–84.

Bi, G., and Poo, M. (2001). Synaptic
modification by correlated activity:
Hebb’s postulate revisited. Annu. Rev.
Neurosci. 24, 139–66.

Bi, G.-Q., and Poo, M.-M. (1998).
Synaptic modifications in cultured
hippocampal neurons: dependence
on spike timing, synaptic strength, and
postsynaptic cell type. J. Neurosci. 18,
10464–10472.

Braitenberg, V., and Schüz, A. (1998).
Cortex: Statistics and Geometry of

Neuronal Connectivity, 2nd Edn.
Berlin: Springer-Verlag.

Brette, R., Rudolph, M., Carnevale, T.,
Hines, M., Beeman, D., Bower, J.
M., Diesmann, M., Morrison, A.,
Goodman, P. H., Harris, F. C. Jr.,
Zirpe, M., Natschläger, T., Pecevski,
D., Ermentrout, B., Djurfeldt, M.,
Lansner, A., Rochel, O., Vieville,
T., Muller, E., Davison, A. P., El
Boustani, S., and Destexhe, A.
(2007). Simulation of networks of
spiking neurons: a review of tools
and strategies. J. Comput. Neurosci.
23, 349–398.

used for large-scale simulation. In addition we have decided to place
the dynamics of the neuromodulatory signal at the site of the indi-
vidual synapse. An alternative approach would be to low-pass filter
the neuromodulatory spikes on each machine and then exchange
and add the filtered signals between machines. As the global signal
is mostly likely to be slow, this exchange could perhaps be per-
formed less often than the communication of spikes in intervals
of ∆t. However, this alternative approach has several disadvantages
with respect to our proposal. First, whereas the alternative proposal
would require additional communication to exchange the filtered
signals among machines, our framework causes no additional com-
munication costs, as spikes have to be exchanged anyway in the dis-
tributed framework. Therefore, an approximate solution is unlikely
to be more efficient. Second, our approach has the advantage that
neuromodulated synaptic dynamics where changes of the synaptic
state depend on the instantaneous value of the neuromodulator
level can be implemented exactly. Therefore, even in the case that an
approximate solution is more efficient for a particular application,
it would be useful to have the exact implementation at hand for a
verification of the results. Third, in our proposal the same frame-
work can be used for a variety of different neuromodulators with
different neuromodulatory dynamics, assuming the neuromodula-
tor level can be calculated solely on the basis of the spike train of
the releasing population. However, this generality comes at a price.
The time course of a neuromodulator, which is probably essentially
identical within a certain volume of cortex, is recomputed in every
synapse, resulting in redundant operations. Moreover, we assumed
that each spike of the neuromodulator releasing population con-
tributes the same amount to the neuromodulator concentration.
If necessary, these disadvantages can be remedied in the context of
a specific scientific question by developing more specialized ver-
sions of the volume transmitter that calculate the dynamics of the
neuromodulator under investigation and then deliver the results of
this calculation to the synapses.

Our solution is based on the assumption that it is sufficiently
accurate to represent the times of the neuromodulatory spikes on
the grid defined by the computation step size. The framework can
be modified to process “off-grid” spike times, but at the cost of
maintaining dynamic data structures in the volume transmitter
which would result in a deterioration of performance. A further
limitation of our framework is that it has no capacity to repre-
sent spatial variations in neuromodulator concentration within
the population of synapses such as diffusion processes. Recently,

a simulation tool has been presented which considers diffusion
processes by explicitly modeling the extracellular space (Zubler
and Douglas, 2009).

As our solution enables networks to be simulated that generate
their own modulatory signals, it paves the way for the investigation
of closed-loop functional models. We already successfully applied
our framework to a model that implements temporal-difference
learning based on dopamine modulated plasticity to solve a navi-
gation problem (Potjans et al., 2009c). Even though the network
investigated here was comparatively small (order of 103 neurons),
systematic investigation of it required distributed computing;
although the plasticity process occurs on a time scale of tens of
milliseconds, the learning process on the network level takes place
on a time scale of minutes to hours. The user has full flexibility to
assign the volume transmitter to specific groups of neuromodula-
tor releasing neurons and neuromodulated synapses, thus allowing
the simulation of multiple volumes with different neuromodulator
concentrations or multiple neuromodulators with different dynam-
ics in the same network. Our results suggest that the framework will
scale up to much larger networks than those investigated here. This
will enable the investigation of “brain-scale” networks modeling
circuits made up of several brain areas. One possible application is
to investigate the role of neuromodulators such as acetylcholine in
the cortex simultaneously with its generation process, which takes
place in subcortical areas. It is our hope that our novel technol-
ogy will make it easy for computational neuroscientists to study
sophisticated models with interesting system-level behavior based
on neuromodulated plasticity.

acknowledgMents
We are most grateful to Hans Ekkehard Plesser for language legality
consultation. We also thank the editor and the reviewers for the
constructive interaction which helped us to considerably improve
the integration of our work into the special issue. Partially funded
by DIP F1.2, BMBF Grant 01GQ0420 to the Bernstein Center for
Computational Neuroscience Freiburg, EU Grant 15879 (FACETS),
the Junior Professor Program of Baden-Württemberg, “The Next-
Generation Integrated Simulation of Living Matter” project, part of
the Development and Use of the Next-Generation Supercomputer
Project of the Ministry of Education, Culture, Sports, Science
and Technology (MEXT) of Japan and the Helmholtz Alliance
on Systems Biology. Access to supercomputing facility through
JUGENE-Grant JINB33.

Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 141 | 15

Potjans et al. Distributed computing of neuromodulated plasticity

Cooper, J., Bloom, F., and Roth, R.
(2002). The Biochemical Basis of
Neuropharmacology. New York,
Oxford: Oxford University Press.

Deco, G., and Thiele, A. (2009). Attention:
oscillations and neuropharmacology.
Eur. J. Neurosci. 30, 347–354.

Eppler, J. M., Helias, M., Muller, E.,
Diesmann, M., and Gewaltig, M.
(2009). PyNEST: a convenient inter-
face to the NEST simulator. Front.
Neuroinformatics 2, 12.

Florian, R. V. (2007). Reinforcement
learning through modulation of
spike-timing-dependent synap-
tic plasticity. Neural Comput. 19,
1468–1502.

Garris, P. A., Ciolkowski, E. L., Pastore, P.,
and Wightman, R. M. (1994). Efflux
of dopamine from the synaptic cleft
in the nucleus accumbens of the rat
brain. J. Neurosci. 14, 6084–6093.

Gerstner, W., Kempter, R., van Hemmen, J.
L., and Wagner, H. (1996). A neuronal
learning rule for sub-millisecond tem-
poral coding. Nature 383, 76–78.

Gewaltig, M.-O., and Diesmann, M.
(2007). NEST (Neural Simulation
Tool). Scholarpedia J. 2, 1430.

Hammarlund, P., and Ekeberg, O. (1998).
Large neural network simulations
on multiple hardware platforms. J.
Comput. Neurosci. 5, 443–459.

Hanuschkin, A., Kunkel, S., Helias, M.,
Morrison, A., and Diesmann, M.
(2010). A general and efficient method
for incorporating precise spike times
in globally time-driven simulations.
Front. Neuroinform. 4:133. doi:
10.3389/fninf.2010.00113.

Harris, J., Baurick, J., Frye, J., King, J.,
Ballew, M., Goodman, P., and Drewes,
R. (2003). A novel parallel hardware
and software solution for a large-scale
biologically realistic cortical simula-
tion. Technical Report, University of
Nevada, Reno, NV.

Hasselmo, M., and McGaughy, J. (2004).
High acetylcholine levels set circuit
dynamics for attention and encod-
ing and low acetylcholine levels set
dynamics for consolidation. Prog.
Brain Res. 145, 207–231.

Hebb, D. O. (1949). The Organization of
Behavior: A Neuropsychological Theory.
New York: John Wiley and Sons.

Herrero, J. L., Roberts, M. J., Delicato, L.
S., Gieselmann, M. A., Dayan, P., and
Thiele, A. (2008). Acetylcholine con-
tributes through muscarinic recep-
tors to attentional modulation in v1.
Nature 454, 1110–1113.

Izhikevich, E. M. (2007). Solving the dis-
tal reward problem through linkage of

STDP and dopamine signaling. Cereb.
Cortex 17, 2443–2452.

Lamport, L. (1978). Time, clocks, and the
ordering of events in a distributed sys-
tem. Commun. ACM 21, 558–565.

Legenstein, R., Pecevski, D., and Maass, W.
(2008). A learning theory for reward-
modulated spike-timing-dependent
plasticity with application to biofeed-
back. PLoS Comput. Biol. 4, e1000180.
doi: 10.1371/journal.pcbi.1000180.

Markram, H., Lübke, J., Frotscher, M.,
and Sakmann, B. (1997). Regulation
of synaptic efficacy by coincidence of
postsynaptic APs and EPSPs. Science
275, 213–215.

Markram, H., and Tsodyks, M. (1996).
Redistribution of synaptic efficacy
between neocortical pyramidal neu-
rons. Nature 382, 807–810.

Montague, P. R., McClure, S. M., Baldwin,
P., Phillips, P. E., Budygin, E. A.,
Stuber, G. D., Kilpatrick, M. R., and
Wightman, R. M. (2004). Dynamic
gain control of dopamine delivery in
freely moving animals. J. Neurosci. 24,
1754–1759.

Moreau, A., Amar, M., Le Roux, N., Morel,
N., and Fossier, P. (2010). Serotoninergic
fine-tuning of the excitation–inhibition
balance in rat visual cortical networks.
Cereb. Cortex 20, 456–467.

Morrison, A., Aertsen, A., and Diesmann,
M. (2007). Spike-timing dependent
plasticity in balanced random networks.
Neural Comput. 19, 1437–1467.

Morrison, A., and Diesmann, M. (2006).
“Maintaining causality in discrete
time neuronal network simula-
tions,” in Proceedings of the Potsdam
Supercomputer School 2005, Germany.

Morrison, A., and Diesmann, M. (2008).
“Maintaining causality in discrete
time neuronal network simulations,”
in Lectures in Supercomputational
Neuroscience: Dynamics in Complex
Brain Networks, Understanding
Complex Systems, eds P. Beim Graben,
C. Zhou, M. Thiel, and J. Kurths
(Springer, Verlag: Berlin Heidelberg),
267–278.

Morrison, A., Diesmann, M., and Gerstner,
W. (2008). Phenomenological models
of synaptic plasticity based on spike-
timing. Biol. Cybern. 98, 459–478.

Morrison, A., Mehring, C., Geisel, T.,
Aertsen, A., and Diesmann, M.
(2005). Advancing the boundaries of
high connectivity network simulation
with distributed computing. Neural
Comput. 17, 1776–1801.

Morrison, A., Straube, S., Plesser, H. E.,
and Diesmann, M. (2007). Exact
 subthreshold integration with

 continuous spike times in discrete
time neural network simulations.
Neural Comput. 19, 47–79.

Nordlie, E., Gewaltig, M.-O., and Plesser,
H. E. (2009). Towards reproducible
descriptions of neuronal network mod-
els. PLoS Comput. Biol. 5, e1000456.
doi: 10.1371/journal.pcbi.1000456.

Pawlak, V., Wickens, J. R., Kirkwood,
A., and Kerr, J. N. D. (2010). Timing
is not everything: neuromodula-
tion opens the STDP gate. Front.
Syn. Neurosci. 2:146. doi: 10.3389/
fnsyn.2010.00146.

Pecevski, D., Natschläger, T., and Schuch,
K. (2009). PCSIM: a parallel simula-
tion environment for neural circuits
fully integrated with python. Front.
Neuroinformatics 3:11. doi: 10.3389/
neuro.11.011.2009.

Plesser, H. E., Eppler, J. M., Morrison, A.,
Diesmann, M., and Gewaltig, M.-O.
(2007). “Efficient parallel simulation
of large-scale neuronal networks
on clusters of multiprocessor com-
puters,” in Euro-Par 2007: Parallel
Processing, volume 4641 of Lecture
Notes in Computer Science, eds A.-M.
Kermarrec, L. Bougé, and T. Priol
(Berlin: Springer-Verlag), 672–681.

Potjans, W., Morrison, A., and Diesmann,
M. (2009a). Implementing neuro-
modulated plasticity in distributed
simulations. Front. Neuroinformatics
Conference Abstract: 2nd INCF
Congress of Neuroinformatics. doi:
10.3389/conf.neuro.11.2009.08.043.

Potjans, W., Morrison, A., and Diesmann,
M. (2009b). A spiking neural network
model of an actor-critic learning agent.
Neural Comput. 21, 301–339.

Potjans, W., Morrison, A., and Diesmann,
M. (2009c). A spiking temporal-
difference learning model based on
dopamine-modulated plasticity. BMC
Neurosci. 10(Supp 1), 140.

Reynolds, J. N. J., Hyland, B. I., and
Wickens, J. R. (2001). A cellular
mechanism of reward-related learn-
ing. Nature 413, 67–70.

Schultz, W., Dayan, P., and Montague,
P. R. (1997). A neural substrate of
prediction and reward. Science 275,
1593–1599.

Seung, H. S. (2003). Learning spiking
neural networks by reinforcement
of stochastic synaptic transmission.
Neuron 40, 1063–1073.

Song, S., and Abbott, L. F. (2001). Cortical
development and remapping through
spike timing-dependent plasticity.
Neuron 32, 339–350.

Song, S., Miller, K. D., and Abbott, L. F.
(2000). Competitive Hebbian learning

through spike-timing-dependent
synaptic plasticity. Nat. Neurosci. 3,
919–926.

Thomson, A. M., and Deuchars, J. (1994).
Temporal and spatial properties of
local circuits in neocortex. Trends
Neurosci. 17, 119–126.

Vasilaki, E., Frémaux, N., Urbanczik, R.,
Senn, W., and Gerstner, W. (2009).
Spike-based reinforcement learning
in continuous state and action space:
When policy gradient methods fail.
PLoS Comput. Biol. 5, e1000586. doi:
10.1371/journal.pcbi.1000586.

Wilkinson, B., and Allen, M. (2004).
Parallel Programming: Techniques
and Applications Using Networked
Workstations and Parallel Computers
(2 ed.). Prentice Hall.

Xie, X., and Seung, H. S. (2004). Learning
in neural networks by reinforcement
of irregular spiking. Phys. Rev. E 69,
41909.

Zoli, M., and Agnati, L. F. (1996). Wiring
and volume transmission in the cen-
tral nervous system: The concept
of closed and open synapses. Prog.
Neurobiol. 49, 363–380.

Zoli, M., Jansson, A., Syková, E., Agnati,
L. F., and Fuxe, K. (1999). Volume
transmission in the cns and its rel-
evance for neuropsychopharma-
cology. Trends Pharmacol. Sci. 20,
142–150.

Zubler, F., and Douglas, R. (2009). A
framework for modeling the growth
and development of neurons and net-
works. Front. Comput. Neurosci. 3:25.
doi: 10.3389/neuro.10.025.2009.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential conflict
of interest.

Received: 01 February 2010; accepted:
15 September 2010; published online: 23
November 2010.
Citation: Potjans W, Morrison A and
Diesmann M (2010) Enabling functional
neural circuit simulations with distributed
computing of neuromodulated plastic-
ity. Front. Comput. Neurosci. 4:141. doi:
10.3389/fncom.2010.00141
Copyright © 2010 Potjans, Morrison and
Diesmann. This is an open-access article
subject to an exclusive license agreement
between the authors and the Frontiers
Research Foundation, which permits unre-
stricted use, distribution, and reproduc-
tion in any medium, provided the original
authors and source are credited.

Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 141 | 16

Potjans et al. Distributed computing of neuromodulated plasticity

appendIx
benchMark Model descrIptIon and specIfIcatIon

A: MoDel SuMMAry

Populations Three: excitatory (E), inhibitory (I),

 neuromodulator releasing neurons

 (M) (⊂ excitatory population)

Connectivity Random convergent connections

Neuron model Leaky integrate-and-fire, fixed voltage threshold,

 fixed absolute refractory time (voltage clamp),

 exponential synaptic current inputs

Plasticity Additive STDP/neuromodulated additive STDP

 in all excitatory to excitatory connections

Input Independent fixed-rate

 Poisson spike trains to all neurons

Measurements Simulation time

B: PoPulATioNS

Name elements Size

E Iaf neuron NE = 4NI

I Iaf neuron NI

M Iaf neuron Nnm

C: CoNNeCTiViTy

Name Source Target Pattern

EE E E Random convergent CE → 1,

 variable weight, delay d

IE E I Random convergent CE → 1,

 weight wE, delay d

EI I E Random convergent CI → 1,

 weight − gwE, delay d

II I I Random convergent CI → 1,

 weight − gwE, delay d

D: NeuroN AND SyNAPSe MoDel

Name Iaf neuron

Type Leaky integrate-and-fire,

 exponential shaped synaptic current input

Subthreshold dynamics dV
dt

V
C

I t= − +1 1
τm m

() if t > t* + τref

 V (t) = Vreset otherwise

 I t w t
syn e syn() /= − τ

Spiking If V(t−) < Vth ∧ V (t+) ≥ Vth

 1. Set t* = t

 2. Emit spike with time stamp t*

e: PlASTiCiTy

Type Source Target Weight dynamics

Additive STDP E E w t t

t
A t
A

t

t

= −

=
−

− −
+

−

≤

STDP

STDP

pre/post

e if
e

() ()

() | |/

|

∆

∆ ∆

∆

∆

δ

τ

s

0

||/ τ+ >{ if ∆t 0

Neuromodulated E E

w c n b

c
c

t t s C

n
n t s
c

n

n

n

= −

= − + −()

= − +
−()

()

()
τ

δ

τ
δ

τ

STDP pre/post∆ 1

CC2

additive STDP

F: iNPuT

Type Description

Poisson generators Independent for each neuron, rate νext, weight wext

g: Measurements

Time to complete simulation, not including network construction time

Table 1 | Tabular description of benchmark network model after Nordlie et al. (2009).

Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 141 | 17

Potjans et al. Distributed computing of neuromodulated plasticity

Table 2 | Specification of default parameters used in the 104 and 105

benchmark networks. Table labeling refers to the model description in

Table 1.

Name Value (104) Value (105) Description

B: PoPulATioN

NE 9000 90000 Number of excitatory neurons

NI 2250 22500 Number of inhibitory neurons

Nnm 50 50 Number of neuromodulator

 releasing neurons

C: CoNNeCTiViTy

CE 900 9000 Number of excitatory inputs per neuron

CI 225 2250 Number of inhibitory inputs per neuron

wE 175 pA 45.61 pA Synaptic weights E → I

g 17 5 Relative inhibitory strength

d 1.5 ms 1.5 ms Synaptic delay

D: NeuroN MoDel

τm 10 ms 10 ms Membrane time constant

Cm 250 pF 250 pF Membrane capacity

Vreset 0 mV 0 mV Reset potential

τref 0.5 ms 0.5 ms Absolute refractory period

τsyn 0.33 ms 0.33 ms Rise time of postsynaptic current

Vth 20 mV 20 mV Fixed firing threshold

e: PlASTiCiTy

winitial 175 pA 45.61 pA Initial synaptic weights for plastic

 synapses (E → E)

wmax 350 pA 91.22 pA Maximal synaptic weights for

 plastic synapses

A+ 0.005 pA 0.005 pA Amplitude of weight change

 due to facilitation

A− 1.05·A+ 1.05·A+ Amplitude of the weight change

 due to depression

τ+ 20 ms 20 ms Time constant of facilitation

τ− 20 ms 20 ms Time constant of depression

b 0.5 μM 0.5 μM Neuromodulatory baseline

 concentration

τc 1000 ms 1000 ms Time constant of eligibility trace

C1 11 2(/)s Mµ 11 2(/)s Mµ Constant coefficient

τn 200 ms 200 ms Time constant of neuromodulator

 concentration

C2 1 μM 1 μM Constant coefficients

F: iNPuT

wext 175 pA 45.61 pA Synaptic weight of external connections

νext 27 kHz 46 kHz External Poisson rate

