
Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 141 | 1

COMPUTATIONAL NEUROSCIENCE
Original research article

published: 23 November 2010
doi: 10.3389/fncom.2010.00141

many brain areas through long range connections (for a review 
see Cooper et al., 2002). The functional consequences of the long-
range neuromodulatory projections are very diverse and depend 
strongly on the specific neuromodulator, the target area and the 
neuromodulatory concentration. For example, the release of ace-
tylcholine from the basal forebrain into the cortex is involved in the 
control of attention (Hasselmo and McGaughy, 2004; Herrero et al., 
2008; Deco and Thiele, 2009), and noradrenaline, mainly originat-
ing from the locus coeruleus, is released throughout the central 
nervous system facilitating the processing of relevant, or salient, 
information (Berridge and Waterhouse, 2003). One neuromodula-
tory function which has evoked high interest in the experimental as 
well as the theoretical neuroscience communities is reward learning 
on the basis of dopamine released in the striatum from midbrain 
areas (Schultz et al., 1997; Reynolds et al., 2001).

An influential hypothesis on the mechanism of neuromodu-
lation is that neuromodulators can be released extrasynaptically 
from en passant boutons on neuromodulatory axons and modu-
late the plasticity of synapses that are remote from release sites, 
a concept known as volume transmission (Agnati et al., 1995; 

1 IntroductIon
It is generally assumed that mammalian learning is implemented 
by changes in synaptic efficacy, as it is the case in simpler organisms 
(see e.g., Antonov et al., 2003). Historically, attempts to provide a 
theoretical explanation of learning have mainly been influenced 
by Hebb’s postulate (Hebb, 1949) that the sequential activation 
of two neurons strengthens the synapse connecting them. Thus, 
theoretical “Hebbian” plasticity rules depend on the pre- and post-
synaptic activity and sometimes also on the weight itself. Although 
these rules have been shown to solve some interesting problems 
(Gerstner et al., 1996; Song et al., 2000; Song and Abbott, 2001) it 
is not clear that such “two factor” rules can be the mechanism that 
enables animals to learn complicated tasks, such as those to find 
sparse rewards in complex environments.

However, experiments have shown that in some preparations, 
synaptic plasticity depends not only on the activity of the pre- and 
post-synaptic neurons but also on the presence of neuromodulators 
such as acetylcholine, norepinephrine, serotonin, and dopamine. 
Neuromodulators are released from neurons that are primarily 
located in the brainstem and basal forebrain, but that innervate 
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as an external stimulus), by the generation of a spike or it can be 
driven in discrete time steps. The neuromodulatory signal is either 
represented as a discrete variable that has a non-zero value only at 
the points in time that an update is triggered, or it is represented 
as a continuous variable between discontinuous updates. The three 
categories and their sub-categories are illustrated in Figure 2.

In the first category (Figure 2A), the plasticity modulating signal 
does not depend on the spiking activity of the network at all. The 
signal is updated in an event-driven fashion triggered by exter-
nal events, such as entering a reward-related state in a navigation 
task or the occurrence of a reward predicting stimulus in classi-
cal conditioning tasks. Both discrete-time (Potjans et al., 2009b; 
Vasilaki et al., 2009) and continuous-time (task two in Izhikevich, 
2007) representations of the neuromodulatory signal have been 
investigated.

In the second category (Figure 2B), the generation of the plas-
ticity modulating signal requires the presence of an all-knowing 
external supervisor. The signal depends on the interplay between 
information provided externally and internally. Signal updates 
are triggered by the occurrence of an external event (task three in 
Izhikevich, 2007) or the emission of a spike of a specific output 
neuron within the network (XOR task in Florian, 2007; Seung, 
2003; Xie and Seung, 2004); alternatively, the signal is generated 
in discrete time steps (Baras and Meir, 2007, target firing learn-
ing model in Florian, 2007). In the event-driven model proposed 
by Izhikevich (2007) to solve an instrumental conditioning task, 
the signal is modeled as a continuous variable where the timing 
and magnitude of updates are determined externally. Whether the 
update is actually carried out by the synapses is contingent on an 
internal condition (i.e., a comparison of firing rates in two pools) 
meeting an externally imposed criterion (i.e., the desired ordering 
of the firing rates). In the models proposed by Seung (2003), Xie 
and Seung (2004), and Florian (2007) to solve a XOR task, updates 
are triggered by the spikes of an output neuron; the magnitudes of 
the updates are determined by an external supervisor that evalu-
ates the response of the output neuron to the spiking activity of an 
input layer representing different combinations of 0 and 1. For an 
input of [0,1] or [1,0], every spike of the output neuron results in 
a positive value for the neuromodulatory signal, whereas a negative 
value is generated for each input spike in response to an input of 
[0,0] or [1,1]. Between spikes of the output neuron, the value of 
the neuromodulatory signal is zero.

Other models in the second category assume that the signal is 
updated in discrete-time steps in n·∆T, where n is an integer; ∆T 
can be a small step size or the duration of a certain episode. This 
is illustrated in the middle row of Figure 2B. Here the values of 
the signal are determined as a function of the spiking activity in 
comparison to a desired activity which is provided by an external 
supervisor. The signal can either take continuous values, as in the 
model proposed by Baras and Meir (2007) to solve a path learning 
task and the target firing-rate learning model proposed by Florian 
(2007) or discrete values at specific times, as in an alternative variant 
of the target firing-rate learning model proposed by Florian (2007) 
and the XOR learning model proposed by Baras and Meir (2007).

The first two categories demonstrate the importance of three-
factor rules in solving reward related tasks of different complex-
ity, ranging from XOR to navigation tasks. However, in order to 

Figure 1 | Volume transmission: a neuromodulator is released from en 
passant boutons on neuromodulatory axons and modulates the 
plasticity of synapses remote from the release sites as a “third factor.” 
The modulatory signal is a composition of the neuromodulator released by 
multiple boutons in a certain area (three are shown). For simplicity the figure 
shows only one modulated synapse. However, commonly the signal is 
assumed to affect multiple synapses within a certain volume (pink area).

Zoli and Agnati, 1996). This is illustrated in Figure 1. For an 
 illustration of en passant boutons on a neuromodulatory axon and 
a schematic representation of the main sources of volume trans-
mission signals, see Moreau et al. (2010) and Zoli et al. (1999), 
respectively. This hypothesis implies a temporal rather than a 
spatial selectivity for neuromodulatory action (Arbuthnott and 
Wickens, 2007). Pawlak et al. (2010) in this special issue review 
the recent experimental in vitro findings concerning the effects 
of neuromodulators released from long-range neuromodulatory 
systems on STDP. Despite the large range of time scales and the 
variety of mechanisms by which the neuromodulators influence 
STDP, the review finds that the effects can be divided into two 
categories. In the first category, the neuromodulator is essentially 
required for the induction of STDP. In the second category, the 
neuromodulator alters the threshold for the plasticity induction. 
The review argues that the neuromodulatory influence is the cru-
cial mechanism linking synaptic plasticity to behaviorally based 
learning, especially when learning depends on a reward signal. 
This hypothesis is further supported by a number of spiking neu-
ronal network models that can learn a reward related task, due to 
the incorporation of three-factor synaptic plasticity rules (Seung, 
2003; Xie and Seung, 2004; Baras and Meir, 2007; Florian, 2007; 
Izhikevich, 2007; Legenstein et al., 2008; Potjans et al., 2009b; 
Vasilaki et al., 2009).

These spiking neuronal network models of reward learning are 
typically formulated in a general way before being tested in concrete 
tasks. The generation of the neuromodulatory signal, or third fac-
tor, is determined by the task to be solved. Three categories can be 
identified for the generation of the neuromodulatory signal: either 
the signal is injected into the spiking network by an external con-
troller, or it is determined by a mixture of an external supervisor 
and the spiking activity of the network or it is generated purely 
internally. The categories can be further discriminated with respect 
to the points in time leading to discontinuous changes in the value 
of the signal. An update can be triggered by an external event (such 
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model size. The spiking network models implementing three-factor 
synaptic plasticity rules discussed above consist only of a small 
(of the order of 10 to 102) (Seung, 2003; Xie and Seung, 2004; 
Baras and Meir, 2007; Florian, 2007; Potjans et al., 2009b; Vasilaki 
et al., 2009) to moderate (of the order of 103) number of neurons 
(Izhikevich, 2007; Legenstein et al., 2008). However, to simultane-
ously achieve cortical levels of connectivity (10%) and number of 
inputs (104) (Braitenberg and Schüz, 1998), a minimal network 
size of 105 neurons is required. Similarly, to investigate brain-scale 
circuits involving the interaction of multiple brain areas, large-
scale networks are likely to be necessary. Consequently, distributed 
computing techniques are required. Indeed, even the systematic 
study of smaller networks demand such techniques as learning 
often takes place on a very long time scale compared to the time 
scale of synaptic plasticity. The requirement for distributed com-
puting adds to the complexity of the problem of implementing 
neuromodulated plasticity via volume transmission. The challenge 
can be stated as follows: how can a synapse, which is typically only 
accessed through its pre-synaptic neuron, be efficiently informed 
about a neuromodulatory signal generated by a population of neu-
rons that are generally located on machines different than those 
of either the pre- or the postsynaptic neuron. Whereas efficient 

understand how different brain areas interact to produce cognitive 
functions these models are not sufficient. This problem requires the 
consideration of functionally closed loop models, where the neuro-
modulatory signal is generated by the network itself (Figure 2C). 
So far, only two studies have investigated such models. In both 
the model proposed by Izhikevich (2007), which learns a shift in 
dopamine response from an unconditional stimulus to a reward-
predicting conditional stimulus, and that proposed by Legenstein 
et al. (2008) which learns a biofeedback task, each spike of a spe-
cific population of neurons leads to an update of a continuous-
time variable.

The simulation of models in this third category and the spike-
based models of the second category is beset by considerable 
technical challenges. Spike-driven updates are intrinsically more 
troublesome than updates driven by external events or occurring in 
regular intervals, as they do not entail a natural interruption point 
for the simulation at which signal information can be calculated and 
conveyed to the relevant synapses. This difficulty is compounded 
in the context of models where different brain regions interact, as 
the neuromodulatory signal is not only likely to be composed of 
the activity of a population of neurons, but also affecting synapses 
between entirely different populations. A final hurdle comes with 

A B C

Figure 2 | Characterization of existing modeling studies with respect 
to the generation process of a plasticity modulating signal. From left to 
right: interplay between external (E) and internal (N) information in the 
generation process of the modulatory signal (n). (A) The signal is generated 
purely externally (task two in Izhikevich, 2007; Potjans et al., 2009b; Vasilaki 
et al., 2009). (B) The signal combines information from an external supervisor 
and internal information (Seung, 2003; Xie and Seung, 2004; Baras and Meir, 
2007; Florian, 2007; Izhikevich, 2007, task three). (C) The signal is generated 

purely internally (task four in Izhikevich, 2007; Legenstein et al., 2008). From 
top to bottom: timing of discontinuous updates to the signal. Top: updates 
are triggered by external events, indicated by arrows (event-driven). Middle: 
updates occur in discrete time steps dt (time-driven). Bottom: updates 
triggered by the arrival of neuromodulatory spikes, indicated by arrows 
(spike-driven). Upper and lower rows show a signal that takes continuous 
values between updates, or discrete values at the times of updates, 
respectively.
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illustrated description, see Morrison et al. (2005). Variants of this 
scheme underlie the majority of simulators that are designed for 
simulating networks of point neurons, for example NEST (Gewaltig 
and Diesmann, 2007), C2 (Ananthanarayanan and Modha, 2007) 
and PCSIM (Pecevski et al., 2009), see Brette et al. (2007) for 
a review.

2.1.1 Network representation
Our fundamental assumption is that a neural network can be rep-
resented as a directed graph, consisting of nodes and the connec-
tions between them. The class of nodes comprises spiking neurons 
(either single- or few-compartment models) and devices, which are 
used to stimulate or record from neurons. A connection enables 
information to be sent from a sending node to a receiving node. 
The definition of a connection typically includes at least a weight 
and a delay. The weight determines the strength of a signal and the 
delay how long it takes for the signal to travel from the sending to 
the receiving node. The simplest synapse model delivers a fixed 
connection weight to the post-synaptic node. If the connection is 
intended to be plastic, the connection definition must also include 
a mechanism that defines the weight dynamics. “Two factor” rules, 
such as spike-timing dependent plasticity, can be implemented if 
the post-synaptic node maintains a history of its relevant state 
variables (e.g., as described in Morrison et al., 2007).

Each neuron is represented on exactly one of the m machines 
running the simulation, and synapses are distributed such that they 
are represented on the same machine as their post-synaptic target. 
Distributing the axon of a sending node in this way has a consider-
able advantage in communication costs compared to distributing 
dendrites (Morrison et al., 2005). In contrast to the neurons, each 
device is represented on every machine and only interacts with the 
local neurons. This reduces the communication load, as measured 
data or stimulation signals do not have to be transferred between 
machines. The cost of this approach is that m data files are gener-
ated for each recording device.

2.1.2 Simulation dynamics
Time-driven network update. The network is evaluated on an 
evenly spaced time grid t

i
 = i·∆t. At each grid point the network is 

in a well defined state S
i
. The time interval ∆t between two updates 

can be maximized by setting it to the minimal propagation delay 
d

min
 of the network. This is the largest permissible temporal desyn-

chronization between any two nodes in the network (see Lamport, 
1978; Morrison et al., 2005; Plesser et al., 2007). Note that the 
computation resolution for the neuron models can be much finer 
than the resolution of the global scheduling algorithm, for example 
neurons can advance their dynamics with a time step h = 0.1 ms 
even if the global algorithm advances in communication intervals 
of ∆t = 1 ms. Alternatively, neuron model implementations can 
be defined within this framework that advance their dynamics in 
an event-driven fashion, i.e., from one incoming spike to the next 
(Morrison et al., 2007; Hanuschkin et al., 2010).

During a network update from one time step to the next, i.e., the 
interval (t

i − 1
,t

i
], a global state transfer function U(S

i
) propagates 

the network from one state S
i
 to the next S

i+1
. As a result of this, 

each neuron may generate one or more spike events which are com-
municated to the other machines at the end of the update interval 

methods exist to integrate the dynamics of large-scale models by 
distributed computing (Hammarlund and Ekeberg, 1998; Harris 
et al., 2003; Morrison et al., 2005), so far no solution for the efficient 
implementation of neuromodulated plasticity in spiking neuro-
nal networks has been presented. Studies of network models in 
which the neuromodulatory signal is internally generated have not 
provided any technical details (Izhikevich, 2007; Legenstein et al., 
2008), thus the models cannot be reproduced or extended by the 
wider modeling community.

To address this gap and thus open up this fascinating area of 
research, we present a framework for the implementation of neu-
romodulated plasticity in time-driven simulators operating in a 
distributed environment. The framework is general, in that it is 
suitable for all manner of simulations rather than one specific 
network model or task. Moreover, we do not focus on a specific 
implementation language, neuromodulator or neuromodulated 
plasticity mechanism and rely on only a few assumptions about 
the infrastructure of the underlying simulator. In the framework 
the plasticity modulating signal is generated by a user-defined 
population of neurons contained within the network. The neuro-
modulatory signal influences all synapses located in a user-defined 
specific volume, modeling the effect of volume transmission (see 
Figure 1). Our framework yields excellent scaling for recurrent 
networks incorporating neuromodulated STDP in its excitatory 
to excitatory connections. In order to analyze the efficiency of the 
framework implementation accurately, we develop a general tech-
nique to decompose the total run time into the portion consumed 
by communication between machines and the portion consumed 
by computation. This separation enables us to distinguish the satu-
ration in run time caused by communication overhead from any 
potential saturation caused by a sub-optimal algorithm design. This 
technique can be applied to arbitrary network simulations und 
will thus aid the future development and analysis of extensions to 
distributed simulation tools.

A general scheme for the distributed simulation of neural net-
works is summarized in section 2.1 to clarify terminology and make 
explicit the assumptions made about the simulator infrastructure. 
In section 3.1 we present an efficient way to implement neuro-
modulated plasticity in this distributed simulation environment. 
To illustrate the technique, in section 3.2 we compare the run times 
of recurrent networks (104 and 105 neurons) incorporating neu-
romodulated spike-timing dependent plasticity (Izhikevich, 2007) 
to those of networks incorporating the corresponding “two factor” 
spike-timing dependent plasticity.

The conceptual and algorithmic work described here is a module 
in our long-term collaborative project to provide the technology 
for neural systems simulations (Gewaltig and Diesmann, 2007). 
Preliminary results have been already presented in abstract form 
(Potjans et al., 2009a).

2 MaterIals and Methods
2.1 dIstrIbuted neural network sIMulatIon
To clarify the terminology used in the rest of the manuscript and 
define the requirements a simulator must fulfill in order to incor-
porate our framework for neuromodulated plasticity, in the follow-
ing we briefly describe a general purpose time-driven simulation 
scheme for distributed computation. For a more thorough and 
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correctly can be found in Morrison and Diesmann (2008). For the 
purposes of this manuscript, we assume that a simulator deliv-
ers events as described above, i.e., spikes have propagation delays, 
are communicated between machines at regular intervals and are 
buffered at the target neuron until they are due to be incorporated 
in the neuronal dynamics.

Synapse update. In contrast to neurons, incoming events are rare 
for individual synapses at realistic firing rates. Therefore, to develop 
our framework we make the assumption that a simulator uses the 
more efficient strategy of updating synapses in an event-driven 
fashion only on the arrival of a pre-synaptic spike rather than in a 
time-driven fashion as neurons are. This is possible for the class of 
synaptic models that only depend on local factors such as the cur-
rent weight of the synapse, the time since the last update and state 
information available from the post-synaptic neuron (Morrison 
et al., 2008). This class includes synaptic depression (Thomson and 
Deuchars, 1994), synaptic redistribution (Markram and Tsodyks, 
1996) and spike-timing dependent plasticity (STDP) (Markram 
et al., 1997; Bi and Poo, 1998, 2001).

As we measure performance on the example of STDP with a 
neuromodulatory third factor (see section 3.2) it is worth discuss-
ing the infrastructure for calculating STDP updates triggered only 
on the arrival of pre-synaptic spikes in somewhat more detail. See 
Figure 3B for the sequence diagram for the activation of an STDP 
synapse; the corresponding pseudo-code is given in Morrison et al. 
(2007). All post-synaptic variables, such as the post-synaptic spike 
times and the low-pass filtered post-synaptic rate, are stored at the 
post-synaptic neuron. On the arrival of a pre-synaptic spike, the 
synapse requests these variables from the post-synaptic neuron 
for the period between the last and the current pre-synaptic spike 
(get_history(s_last,s_pre)). Based on this information the 
synapse can integrate its weight dynamics from one spike time to 
the next. The post-synaptic variables only have to be stored until 
they have been processed by every incoming synapse. After the 
weight has been updated an event is sent to the post-synaptic neu-
ron as in the case of the simple synapse model discussed in section 
2.1.2 and illustrated in Figure 3A.

2.2 benchMark network Models
To investigate the performance of our proposed framework, we 
measure the simulation times of recurrent networks incorporat-
ing neuromodulated spike-timing dependent plasticity at their 
excitatory–excitatory connections whilst systematically varying 
the number of processors used. The STDP model uses an all-to-
all spike pairing scheme and is based on the model proposed by 
Izhikevich (2007):
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where c is an eligibility trace, n the neuromodulator concentra-
tion, s

pre/post
 the time of a pre- or post-synaptic spike, s

n
 the time of 

a neuromodulatory spike, and C
1
 and C

2
 are constant coefficients. 

at t
i
. Before the start of the next network update, i.e., the interval 

(t
i
,t

i+1
], the communicated events are delivered to their targets. This 

is described in greater detail below. In the following, we will refer 
to ∆t as the communication interval. To implement our framework 
for neuromodulated plasticity, we therefore assume that the update 
cycle of the underlying simulator in a distributed environment can 
be expressed as the following algorithm:

1: T ← 0
2: while T < T

stop
 do

3:     parallel on all machines do
4:        deliver events received at last 
            communication to targets
5:        call U(s

T
 )

6:     end parallel
7:     communicate new events between machines
8:     increment network time: T ← T + ∆t
9: end while

Event delivery. A neuron’s spike events must be delivered to its 
target nodes with a propagation delay determined by the connecting 
synapse. After the communication of events that takes place after 
each ∆t interval, the simulation algorithm activates the outgoing 
synapses of the neurons that spiked during the previous interval. 
The sequence diagram for a simple synapse model is shown in 
Figure 3A. The synapse generates an event of weight w and delay d. 
The delay is determined by subtracting the lag between spike gen-
eration and communication from the propagation delay associated 
with the synapse: for a spike generated at s

pre
 and communicated at 

t
i
 with a total synaptic propagation delay d

syn
, the remaining delay 

d is equal to d
syn

 − (t
i
 − s

pre
). The event is sent to the synapse’s target 

node, which writes the event to its incoming event buffer such that 
it becomes visible to the update dynamics of the target neuron at the 
correct time step, s

pre
 + d

syn
. A description of the ordering of buffer 

reading and writing operations to ensure that events are integrated 

A

B

Figure 3 | Sequence diagram for static (A) and STDP (B) synapses. The 
object Synapse (j,i) denotes a synapse from source neuron i to target neuron j; 
neuron i emits a spike at time spre.
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Voltaire ISR9024D-M); the MPI implementation is OpenMPI 1.3.1. 
The simulations for the 105 neuron networks are performed on a 
Bluegene/P (JUGENE1).

3 results
3.1 IMpleMentIng neuroModulated plastIcIty In a dIstrIbuted 
envIronMent
In this section we present a novel and general framework to imple-
ment neuromodulated plasticity efficiently for a distributed time-
driven simulator as described in section 2.1. The neuromodulator 
concentration available in a certain volume is the superposition 
of the neuromodulator concentration released by a population 
of neurons projecting into the same volume. We assume, in 
agreement with experimental findings (e.g., Garris et al., 1994; 
Montague et al., 2004), that each spike of the neuromodulator 
releasing neurons contributes to the extracellular neuromodula-
tor concentration and thus the concentration can be given as a 
function of spike times.

3.1.1 A distributed volume transmitter
The major challenge is to provide an efficient mechanism to inform 
a set of synapses about a non-local neuromodulatory signal in a 
manner that respects the temporal ordering of spikes and signal 
changes, without making the assumption that the neurons gener-
ating the signal are identical with the modulated synapses’ pre- or 
post-synaptic neurons or even that they are represented on the same 
machines as the pre- or post-synaptic neurons. Our solution is to 
introduce a new category of node, which we will refer to as a “vol-
ume transmitter.” The volume transmitter collects all spikes from 
a neuromodulator releasing population of neurons and transmits 
the spikes to a user-specified subset of synapses (see Figure 4A). As 
the subset of synapses is typically distributed over all machines, we 
define the volume transmitter to be duplicated on each machine. It 
provides the spikes to the synapses local to its machine, in common 
with the “device” category of nodes (see section 2.1.1). However, 
as the population of neurons releasing the neuromodulator into 
a given volume is also typically distributed over all machines, the 
volume transmitter must receive spikes from a globally defined 
population, in common with the “neuron” category of nodes. The 
volume transmitter, therefore, represents a third category of nodes, 
duplicated on each machine and transmitting information locally 
like a device, but receiving events from all machines like a neuron. 
The distribution of the volume transmitter, the transmission of the 
spikes to the local synapses and the global collection of the spikes 
from the neuromodulator releasing neurons are depicted for an 
example network distributed over two machines in Figure 4B.

Note that the dynamics of the neuromodulator concentration is 
calculated by the synapses rather than the volume transmitter. This 
enables the same framework to be used for a variety of neuromodu-
latory dynamics as long as they depend only on the spike history. 
Moreover, the association of a volume transmitter with a specific 
population of neuromodulator releasing neurons and a specific subset 
of synapses allows multiple volume transmitters to be defined in the 
same network model. Thus a network model can represent multiple 
projection volumes and multiple neuromodulatory interactions.

δ(t) is the Dirac delta function; τ
c
 and τ

n
 are the time constants of 

the eligibility trace and the neuromodulator concentration, respec-
tively. Unlike the networks investigated by Izhikevich (2007), the 
neuromodulator concentration is always present, so we subtract a 
baseline b from the neuromodulator concentration. STDP(∆t) is 
the window function of additive STDP:
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e if

e if
( ) ,

| |/

| |/
∆

∆
∆

∆

∆t
A t

A t

t

t
=

>
≤





+
−

−
−

+

−

τ

τ

0

0

where ∆t = s
post

 − s
pre

 is the temporal difference between a post-
synaptic and a pre-synaptic spike, A+ and A− are the amplitudes of 
the weight change and τ+ and τ− are time constants. As a control, 
we also measure the simulation times of networks in which the 
neuromodulated STDP is exchanged for STDP without neuro-
modulation according to the model of Song and Abbott (2001), 
i.e., w t t s= −STDP pre/post( ) ( )∆ δ . In the neuromodulated and the 
unmodulated networks the synaptic weights are bounded between 
0 and a maximal synaptic weight w

max
.

We investigate the performance for networks of two different 
sizes: 1.125 × 104 and 1.125 × 105, referred to in the rest of the 
manuscript as the 104 and 105 networks, respectively. Both networks 
consist of 80% excitatory and 20% inhibitory current based inte-
grate-and-fire neurons. In the subthreshold range the membrane 
potential V is determined by the following dynamics:

dV

dt
V

C
I t= − +1 1

τm m

( ),

where τ
m

 is the membrane time constant, C
m

 the membrane capac-
ity and I(t) the input current to the neuron, which is the sum of 
any external currents and the synaptic currents. The synaptic cur-
rent I

syn
 due to an incoming spike is represented by an exponential 

function:

I t w
t

syn e syn( ) ,
/= − τ

where w is the weight of the corresponding synapse and τ
syn

 the rise 
time. If the membrane potential passes the threshold V

th
 a spike is 

emitted and the neuron is clamped to the reset potential V
reset

 for 
the duration of the refractory period τ

ref
.

The excitatory–excitatory connections are plastic, as described 
above; all other connections are static. All neurons receive addi-
tional Poissonian background noise. The network firing rate due to 
the Poissonian background noise of both networks is approximately 
10 Hz in the asynchronous irregular regime. We arbitrarily choose 
the first N

nm
 excitatory neurons to be the neuromodulator releasing 

neurons. A tabular description of the benchmark network models 
and a specification of the parameters used can be found in Tables 1 
and 2 of Appendix.

The simulations are carried out using the simulation tool NEST 
(Gewaltig and Diesmann, 2007) with a computation time step 
of 0.1 ms and a communication interval equal to the minimal 
propagation delay d

min
. The simulations of the 104 neuron net-

works are performed on a cluster of SUN X86 consisting of 23 
compute nodes equipped with two AMD Opteron 2834 quad core 
processors with 2.7 GHz clock speed running Ubuntu Linux. The 
nodes are connected via InfiniBand (24 ports InfiniBand switch, 1http://www.fz-juelich.de/jsc/jugene/
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the spike times are discarded once all incoming synapses have 
accessed them. This is an inappropriate strategy for managing 
the neuromodulatory spikes, as they are typically generated by 
a population of neurons and so have a substantially higher total 
rate than the pre-synaptic spike rate. Having a large number of 
spikes in the history entails proportionally higher computational 
costs for the algorithm that determines which spikes can be dis-
carded. We propose a novel alternative approach: in addition 
to delivering a spike history “on demand” when a pre-synaptic 
spike arrives (Figure 5A), the volume transmitter also delivers 

3.1.2 Managing the spike history
In order to calculate its weight update, a neuromodulated syn-
apse must have access to all the spikes from the neuromodulator 
releasing neuron population that occurred since the last pre-
synaptic spike. This is similar to the requirement of an STDP 
synapse, which needs access to the post-synaptic spike history 
since the last pre-synaptic spike (see section 2.1.2). For STDP, 
this requirement can be met if the post-synaptic neuron stores 
its spike times (Morrison et al., 2007). To prevent a continual 
growth in memory requirements as a simulation progresses, 

A B

Figure 4 | A distributed volume transmitter object. (A) The volume transmitter (VT) collects all spikes from the neurons releasing the neuromodulator into a given 
volume and delivers them to any associated synapses. (B) An example network is distributed over two machines. The volume transmitter (VT) is duplicated on each 
machine. It collects globally the spikes of the neuromodulator releasing neurons (red) and delivers them locally to the neuromodulated synapses (blue).

Figure 5 | Sequence diagram for neuromodulated synapses in the event-driven (A) and the time-driven (B) mode.
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could still receive events at later event delivery phases. At this point, 
the volume transmitter copies the contents of the ring buffer in the 
range [0,∆t/h − 1] to a separate spike history buffer of length ∆t/h, 
see Figure 6C. It then resets those counters to zero and rotates the 
’front’ of the ring buffer by ∆t/h segments as shown in the right 
side of Figure 6B. Thus the spike history buffer contains all the 
neuromodulatory spikes that are due to arrive in the projected 
volume in the interval (t

i
,t

i+1
], and the ring buffer is prepared to 

receive the events communicated at time t
i+1

.
We now turn to the delivery of the neuromodulatory spikes to 

the synapses. Let us assume that a synapse associated with a given 
volume transmitter has received and processed all the neuromodula-
tory spikes with arrival times up to and including t

i
. Therefore the 

last update time of the synapse s
last

 is equal to the last neuromodu-
latory spike time ≤t

i
. At time t

i+1
 the machines exchange all events 

generated in the interval (t
i
,t

i+1
]. If the synapse’s pre-synaptic neuron 

emits a spike at time s
pre

 within this interval, all neuromodulatory 
spikes with t

i
 < (s

n
 + d

n
) < s

pre
 still need to be taken into account to 

calculate the weight dynamics of the synapse up to s
pre

. Conversely, 

its spike history to all associated synapses at regular intervals 
(Figure 5B). Not only does this combination of an event- and 
time-driven approach allows us to dispense with an algorithm to 
discard spikes from the history, it also has the major advantage 
of enabling the spike history to be stored in a static data struc-
ture, rather than a computationally more expensive dynamic 
data structure.

Let us first consider the collection and storing of the spikes of the 
neuromodulator releasing neurons (Figure 4). A suitable structure 
to store the spikes is a traditional ring buffer which stores data in 
a contiguous series of segments as shown in Figure 6, where each 
segment of the buffer corresponds to one integration time step h 
(see also Morrison et al., 2005; Morrison and Diesmann, 2006). 
However, unlike the standard usage of a ring buffer in neuronal net-
work simulations, where only one object reads from it and exactly 
one read operation from one segment is carried out in each time 
step, in this situation multiple objects depend on the data and 
read operations are carried out at unpredictable times and require 
information from a range of segments at once. Consequently, a new 
approach to writing to and reading from a ring buffer is necessary, 
as we describe in the following.

When a neuromodulator releasing neuron n emits a spike at 
time s

n
, a certain propagation delay d

n
 is required for the spike 

to arrive at the projection volume, as illustrated in Figure 6A. 
Following the description in section 2.1.2, events are communi-
cated after each communication interval of length ∆t. Assuming s

n
 

is in the interval (t
i−1

,t
i
] where t

i
 = i∆t, the neuromodulatory spike 

event is communicated between machines at time t
i
 along with 

all the other spike events generated in that interval (see Morrison 
and Diesmann, 2006 for an in depth discussion of the interval 
 borders). Neuromodulatory spike events generated in that interval 
are delivered to the volume transmitter and sorted into the ring 
buffer according to their propagation delays. Assigning the “front” 
of the ring buffer the index 0, for a spike emitted at s

n
 with a delay 

d
n
, the counter at position (s

n
 + d

n
 − t

i
)/h − 1 is incremented. This is 

depicted in the left side of Figure 6B. Setting the ring buffer size to 
d

max
/h, where d

max
 is the maximal propagation delay, allows the cor-

rect order of spikes to be maintained for all possible configurations 
of spike generation time, communication time, and propagation 
delay. The communication interval ∆t can be set to any integer 
multiple of h up to d

min
, the minimum synaptic propagation delay. 

A communication interval of ∆t = h, where events are communi-
cated in every time step, is the most obvious, naive approach and 
is probably implemented in at least the first version of almost all 
simulators. As mentioned in section 2.1.2, a choice of ∆t = d

min
 is 

the largest possible communication interval that still maintains the 
correct ordering of events. Maximizing ∆t has two advantages: it 
reduces the communication overhead (see Morrison et al., 2005), 
and each neuron can perform d

min
/h integration time steps as an 

uninterrupted sequence, improving the cache efficacy considerably 
(Plesser et al., 2007).

As a result of the sorting, right before the event delivery phase 
at time t

i+1
, the counters for positions in the range [0,∆t/h − 1] 

give the total number of neuromodulatory spikes that are due to 
arrive at the synapses in each time step from t

i
 + h to t

i+1
. Counters 

at positions greater than ∆t/h do not necessarily contain the total 
number of spikes for their respective time steps, as these positions 

Figure 6 | Writing to and reading from the ring buffer of the volume 
transmitter for event communication in intervals of ∆t. In this example, 
∆t = 3h, where h is the computation time step. (A) Short black bars indicate 
the grid h imposes on the temporal axis. At time step ti = i∆t all spikes 
generated by the neuromodulator releasing neurons in the time interval (ti−1,ti] 
are delivered to the volume transmitter (here: the spike times s1,s2,s3 (brown 
bars) with propagation delays d1,d2,d3). Blue bars indicate the arrival of the 
spikes in the projection volume. (B) Ring buffer. Left: at time ti during event 
delivery. The neuromodulatory spikes generated in (ti−1,ti] (blue bars, labeled by 
the event id for illustration only) increment the counters at the positions 
(sx + dx − ti)/h − 1 for x = [1,2,3] from the “front” of the ring buffer (indicated by 
the red 0). At the end of the event delivery phase, the first ∆t/h elements 
(gray) contain the neuromodulatory spikes due to arrive in the projection 
volume during (ti,ti+1]. Right: at ti+1 during event delivery. The ’front’ of the buffer 
has been rotated ∆t/h segments clockwise with respect to the buffer at time 
ti. Neuromodulatory spikes generated in the time interval (ti,ti+1] by the 
neuromodulator releasing neurons (generation times not shown) are written 
to the buffer (orange bars), the first ∆t/h elements (gray) contain the 
neuromodulatory spikes due to arrive in the projection volume during (ti+1,ti+2]. 
(C) The spike history buffer. Left: at ti+1 before the event delivery phase the 
contents of the top ∆t/h elements of the ring buffer at ti (gray) are copied to 
the spike history buffer and the counters are reset. Right: at ti+2 before the 
event delivery phase the contents of the top ∆t/h elements of the ring buffer 
at ti+1 are copied to the spike history buffer and the counters are reset.
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1 neuron1=nest.Create("iaf_neuron")
2 neuron2=nest.Create("iaf_neuron")
3 vt=nest.Create("volume_transmitter")
4 nest.SetDefaults("neuromodulated_ 
    synapse",{"vt": vt[0]})
5 nest.Connect(neuron1, neuron2, 
    model="neuromodulated_synapse")

Here we are using NEST’s interface to the Python2 program-
ming language PyNEST (Eppler et al., 2009). The population of 
neurons releasing the neuromodulator are connected to the vol-
ume transmitter with standard synaptic connections specifying the 
propagation delays. For example, in NEST:

6 nest.ConvergentConnect(neuromodulator_neurons, 
   vt, delay=d, model="static_synapse")

These operations can be performed in either order.

3.2 perforMance
To investigate the efficiency and scalability of our framework, we 
simulated networks of 104 and 105 neurons incorporating STDP 
with and without neuromodulation at their excitatory–excitatory 
synapses as a function of the number of processors used (see sec-
tion 2.2). The results are illustrated in Figure 7. Figure 7A shows 
the simulation times for one biological second of the 104 neuron 
network and Figure 7B shows the corresponding speed-up curves, 
i.e., how much faster a simulation runs with m machines than with 
1 machine (Wilkinson and Allen, 2004). When neuromodulatory 
spikes are transferred in intervals of ∆t = d

min
, a supralinear scal-

ing can be observed up to 32 machines, beyond which the scaling 
is approximately linear. Simulation times are on average 17 times 
slower than those for the corresponding network incorporating 
unmodulated STDP. If neuromodulatory spikes are transmitted 
less often, in intervals of 70·d

min
, the reduced number of operations 

results in a supralinear scaling up to 184 machines. As the number 
of machines grows, the disparity in simulation times between the 
neuromodulated and unmodulated networks decreases. The supra-
linear scaling in all simulations of the 104 neuron network is due 
to cache effects.

Figures 7C and D show the simulation times for one bio-
logical second of the 105 neuron network and the correspond-
ing speed-up curves. The neuromodulated network (transfer 
interval: 100·d

min
) and the unmodulated control network both 

scale approximately linearly up to 1024 machines. On aver-
age the neuromodulated network is 3.2 times slower than the 
unmodulated network.

These results demonstrate that the framework scales well, up 
to at least 184 or 1024 machines, depending on the network size. 
However, they also raise a number of questions. Firstly, in Figures 
7A and B we observe that the unmodulated network shows a supra-
linear scaling up to 64 processors, but then the simulation time 
saturates at 0.65 s. This suggests that an increase in communication 
overhead is masking the decrease in computation time. How do 
the scaling properties of the neuromodulated and unmodulated 
networks compare if the communication overhead is factored out? 
Secondly, the neuromodulated network simulations take longer 

 neuromodulatory spikes that have already been  generated and com-
municated between machines, but are due to arrive at the projection 
volume after s

pre
, i.e., (s

n
 + d

n
) ≥ s

pre
, should not be taken into account. 

When the synapse is activated  during the event delivery phase at t
i+1

, it 
therefore requests the spike history buffer from the volume transmit-
ter, which contains those neuromodulatory spikes for which (s

n
 + d

n
) 

is in the range (t
i
,t

i+1
], as described above. Depending on its dynam-

ics, it may also need  additional  information from the post-synap-
tic neuron; this is  illustrated for the case of dopamine-modulated 
STDP (Izhikevich, 2007) in Figure 5A, where the post-synaptic spikes 
between s

last
 and s

pre
 must also be requested. At the end of its weight 

update, the synapse emits an event of the appropriate weight and delay 
to its post-synaptic target, and sets its variable s

last
 to the value of s

pre
.

Directly after the event delivery phase at t
i+1

, the volume trans-
mitter sends its spike history buffer to every associated synapse 
(see Figure 5B: send_history()). This triggers a weight update 
for every synapse in which the synapse’s last update time s

last
 is 

earlier than the latest spike in the spike history buffer, s
VT

. In the 
dopamine-modulated STDP synapse shown in Figure 5B, calculat-
ing the weight update involves requesting all post-synaptic spikes 
between s

last
 and s

VT
. After calculating the weight update, the synapse 

sets its variable s
last

 to the value of s
VT

. Thus at the event delivery 
phase at time t

i+2
, each synapse associated with the volume trans-

mitter has received and processed all neuromodulatory spikes with 
arrival times up to and including t

i+1
.

In the above we have described how the synapse can be informed of 
the spikes necessary for calculating its weight updates without requir-
ing dynamic memory structures or an algorithm to discard spikes that 
are no longer necessary. The key insight is that event-driven requests 
for the volume transmitter’s spike history triggered by the arrival 
of pre-synaptic spikes can be complemented by delivering the spike 
history at regular intervals in a time-driven fashion. This combined 
approach does not entail any additional computational costs for the 
synapse. It must process every  neuromodulatory spike, so it makes no 
difference when the processing takes place, as long as all the informa-
tion required to calculate a weight update is available when an event 
is generated. On a global level there are additional costs, as accessing 
every synapse every ∆t interval involves more operations than access-
ing synapses only on the arrival of pre-synaptic spikes. However, these 
additional costs can be reduced by transferring the neuromodulatory 
spikes not in intervals of ∆t, but in intervals of n·∆t, where n is an 
integer. We leave n as a parameter that can be chosen by the user; 
the consequences of the choice of transfer interval are discussed in 
section 3.2.3. The only alterations that need to be made to the above 
description to accommodate this improvement is that the spike his-
tory buffer must be correspondingly longer (i.e., n·∆t/h), and spikes 
must be copied from the ring buffer to the correct section of it.

3.1.3 Establishing a neuromodulated connection
The interaction between the volume transmitter and the synapses 
requires a bidirectional link. This link from synapse to volume 
transmitter can be realized by passing the volume transmitter as a 
parameter when a neuromodulated synapse is defined. The  synapse 
stores a pointer to the volume transmitter and passes its own pointer 
to the volume transmitter, which maintains a list of associated 
synapse pointers. For the simulation tool NEST (Gewaltig and 
Diesmann, 2007) this can be expressed as follows: 2http://www.python.org
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 communication buffers containing spike entries are  communicated 
between machines in time steps of d

min
. The number of spikes that 

each machine sends can be approximated as ( / )N m dλ min, where 
N is the total number of neurons, m the number of machines and 
λ the average firing rate. If the spikes of successive time steps of 
length h are separated in the communication buffers by markers, 
the total number of bytes in each communication buffer is:

b m
N

m
d b

d

h
b( ) = +λ min spike

min
marker

where b
spike

 is the number of bytes to represent the global identi-
fier of a neuron and b

marker
 is the number of bytes taken up by a 

marker. In our implementation in NEST, b
spike

 = b
marker

 = 8. For 
a given network simulation we can calculate b(m) and thus the 
communication time as:

T m
T

d
T m b mex

min

Ex( ) , ( )= ( )1

than the unmodulated network simulations. Is this due to the 
overhead of the volume transmitter infrastructure or due to the 
increased complexity of the neuromodulated STDP update rule? 
Finally, faster simulation times are observed when the transfer inter-
val of the volume transmitter is increased. What is the relationship 
between the performance and the choice of transfer interval? We 
address these questions in the following three sections.

3.2.1 Saturation due to communication overhead
Let us assume that the simulation time T

sim
(m) for m machines is 

composed of two components: the computing time T
c
(m) required 

to perform the parallel simulation operations such as calculating 
the neuronal and synaptic dynamics, and the communication time 
T

ex
(m) required to exchange events between machines:

T
sim

(m) = T
c
(m) + T

ex
(m)

The communication time T
ex

(m) is a characteristic of the com-
puting architecture used for simulation and typically depends on 
the number of communicated bytes. As described in section 2.1.2 

Figure 7 | Performance of simulations of networks incorporating STDP 
with and without neuromodulation. (A) Time to simulate 1 biological second 
of the 104 neuron network as a function of the number of machines in double 
logarithmic representation. Neuromodulated STDP with transference of 
neuromodulatory spikes from the volume transmitter in intervals of dmin (red), 
70·dmin (green), unmodulated STDP (blue). (B) Speed-up factor for the simulation 

times shown in (A). (C) Time to simulate 1 biological second of the 105 neuron 
network as a function of the number of machines in double logarithmic 
representation. Neuromodulated STDP with transference of neuromodulatory 
spikes from the volume transmitter in intervals of 100·dmin (green), unmodulated 
STDP (blue). (D) Speed-up factor for the simulation times shown in (C). Gray 
lines indicate linear predictions.
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with the number of machines. This representation underlines the 
fact that the communication overhead plays a proportionally bigger 
role for computationally less expensive applications: the proportion 
of the total time consumed by data exchange increases more quickly 
for the unmodulated network simulation than for the neuromodu-
lated cases, rising to more than 40% for the unmodulated network at 
184 machines and to 25 and 5% for the neuromodulated networks 
with transfer intervals of 70·d

min
 and d

min
 respectively.

To obtain the pure computation time T
c
(m), we substract the 

communication time T
ex

(m) from the total run time T
sim

(m). The 
result is shown in Figure 9A and the corresponding speed-up curves 
in Figure 9B.

The effect on the scaling of the neuromodulated network simu-
lations is small. However, the saturation of simulation time for the 
unmodulated network observed in Figures 7A and B is no longer 
visible, demonstrating that the saturation was due to communication 
overhead rather than suboptimal simulation algorithms. All network 
simulations exhibit linear scaling or better up to 184 machines.

where T m bEx
1 ( , ) is the time taken to perform one exchange between 

m machines of b bytes per machine and T is the biological time 
simulated. The single exchange time T m bEx

1 ( , ) can be determined 
empirically by measuring the time taken for n calls of the exchange 
routine for a packet of size b and dividing the total time by n. We 
measured the single exchange time T m bEx

1 ( , ) on our X86 computing 
cluster by averaging over 1000 function calls exchanging packets of 
sizes determined by the 104 neuron network simulation (see section 
2.2). Figure 8A shows the total communication time T

ex
 as a function 

of the number of machines for the 104 neuron network simulation. 
The communication time increases with the number of machines 
in proportion to m ln(m), which is to be expected for the algorithm 
underlying the MPI_Allgather() routine from the MPI library3 
used in our implementation. Figure 8B shows the communication 
time as a percentage of the total simulation time T

sim
. The proportion 

of the simulation time taken up by data exchange increases rapidly 

Figure 8 | Communication overhead in a distributed simulation of the 104 
neuron network. (A) Time required for all necessary data exchanges for a 
simulation of one biological second as a function of the number of machines. 
The gray curve is a fit of m·ln(m) to the data. (B) Communication time as a 

percentage of the total simulation time as a function of the number of machines. 
Neuromodulated STDP with transference of neuromodulatory spikes from the 
volume transmitter in intervals of dmin (red), 70·dmin (green), unmodulated 
STDP (blue).

Figure 9 | Computation time for a distributed simulation of one biological second of the 104 neuron network. (A) Computation time as a function of number 
of machines in double logarithmic representation. Neuromodulated STDP with transference of neuromodulatory spikes from the volume transmitter in intervals of 
dmin (red), 70·dmin (green), unmodulated STDP (blue). (B) Speed-up factor for the simulation times shown in (A). Gray lines indicate linear predictions.

3http://www.open-mpi.org/
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The alternative approach, to store spikes in a dynamically sized 
buffer and update synapses only on demand, requires the use of an 
algorithm to discard spikes that have already been processed. The 
complexity of such an algorithm is linear in the number of spikes 
in the buffer, therefore such a scheme would entail proportionally 
higher costs with increased neuromodulatory spike rate, whereas 
the cost for our framework is approximately constant.

3.2.3 Dependence of performance on the transfer interval
Figures 7 and 10 show that faster simulation times are achieved 
with a transfer time of 70·d

min
 than with a transfer time of d

min
 

for all numbers of machines and all neuromodulatory rates. This 
is unsurprising, as the longer transfer time entails proportion-
ally fewer transfer operations: the number of transfer operations 
is given by T/(n·d

min
), where T is the biological time simulated. 

However, a longer transfer time also requires a larger data struc-
ture to hold all the buffered spikes. As increasing the memory 
used by an application will generally decrease its speed, optimiz-
ing performance may require a trade-off to be found between 
reducing the number of operations and limiting the memory 
requirements.

To obtain the dependence of the simulation time on the transfer 
time, we carried out simulations of the 104 neuron network whilst 
varying the parameter n, where n·d

min
 is the transfer interval for 

communicating spikes in a time-driven fashion from the volume 
transmitter to the synapses (see section 3.1.2). The results are shown 
in Figure 11A. By plotting the simulation time as a function of 
1/n in Figure 11B, we can see that the simulation time is indeed 
proportional to 1/n for n>2. For smaller values of n the neuro-
modulator spike buffers are sometimes empty, in which case the 
transfer operation is omitted, leading to a faster simulation time 
than the linear prediction. These results demonstrate that increas-
ing the memory requirements of the volume transmitter does not 
result in a decrease in performance, so in practice a large value of 
n should be selected.

dIscussIon
Neuromodulated plasticity has recently become a hot topic in com-
putational as well as experimental neuroscience. There is evidence 
for neuromodulator involvement in many cognitive functions, such 
as attention or reward learning (Reynolds et al., 2001; Hasselmo and 
McGaughy, 2004). On the cellular level it has been shown that long-
range neuromodulatory systems strongly influence the induction 
of spike-timing dependent plasticity (see Pawlak et al., 2010 in this 
special issue). Neuromodulated plasticity is a strong candidate for 
a mechanism that links synaptic plasticity to system level learning 
(Seung, 2003; Xie and Seung, 2004; Baras and Meir, 2007; Florian, 
2007; Izhikevich, 2007; Legenstein et al., 2008; Potjans et al., 2009b, 
2010; Vasilaki et al., 2009; Pawlak et al., 2010, this special issue). 
However, so far in most spiking neural networks models imple-
menting neuromodulated synaptic plasticity, the signal is injected 
externally into the network rather than being generated by the 
network itself (but see Izhikevich, 2007 and Legenstein et al., 2008). 
Furthermore, technical details about the implementation of neu-
romodulated plasticity in spiking neural networks have not been 
provided. Due to this lack models cannot be easily reproduced or 
extended by the wider modeling community.

3.2.2 Dependence of performance on the neuromodulatory firing rate
Figures 7 and 9 show that the simulation times for the neuromodu-
lated network simulations are much longer than for the unmodu-
lated network simulations. This could be due to the computational 
cost of the volume transmitter overhead, or to the increased com-
plexity of the neuromodulated STDP update rule, which depends 
not only on the pre- and post-synaptic rate but also on the rate 
of the population of neuromodulator releasing neurons (see sec-
tion 2.2). For the curves shown in Figures 7 and 9, the size of the 
neuromodulator releasing population N

nm
 was set to 50, resulting 

in a neuromodulatory firing rate of ≈500 Hz.
Figure 10 shows the dependence of the simulation time for the 

104 neuron network on 184 processors as a function of the firing 
rate of the neuromodulatory population. The different firing rates 
are realized by varying the number of neuromodulator releasing 
neuron N

nm
 from 0 to 60 in steps of 5. Note that the network activ-

ity is not affected by the choice of N
nm

 on the time scale of one 
second, so the pre- and post-synaptic firing rates are constant for 
all values of N

nm
. A linear increase of simulation time with neuro-

modulatory firing rate can be observed, with a greater slope for a 
transfer interval of d

min
 than for 70·d

min
. For a neuromodulatory 

spike rate of 0 Hz, the simulation times for the neuromodulated 
networks are only slightly larger than for the unmodulated network. 
These results demonstrate that the large disparity in simulation 
times observed between the neuromodulated and unmodulated 
simulations is not due to overheads related to the volume transmit-
ter infrastructure but to the increased computational complexity 
of the neuromodulated STDP update rule. As a further test, we 
carried out an experiment for a neuromodulatory firing rate of 
500 Hz in which the volume transmitter infrastructure transfers the 
neuromodulatory spikes to the synapse, but the synapse performs 
the unmodulated STDP update rule, i.e., the synapse ignores the 
transferred spikes. In this case the simulation times are reduced to 
those of the unmodulated STDP control case (data not shown).

These results confirm the decision to store the neuromodula-
tory spikes in a fixed-size buffer and ensure all spikes are taken 
into consideration by regular updates of the associated synapses. 

Figure 10 | Simulation time for one biological second of the 104 neuron 
network for 184 machines as a function of the neuromodulatory firing 
rate. Neuromodulated STDP with transference of neuromodulatory spikes 
from the volume transmitter in intervals of dmin (red squares), 70·dmin (green 
squares). The blue line indicates the simulation time for the unmodulated 
network; the gray lines are linear fits to the data.
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exhibits supralinear scaling up to 184 machines on simulations of 
a balanced random network of 104 neurons incorporating neuro-
modulated STDP in its excitatory to excitatory connections. Further, 
linear scaling can be observed up to 1024 machines on simulations of 
a network containing 105 neurons with a biologically realistic number 
of inputs to each neuron (104) and connectivity (10%), correspond-
ing to 1 mm3 of mammalian cortex. The scaling properties of the 
neuromodulated network simulations are comparable to, or bet-
ter than, that of an unmodulated network simulation. Additionally, 
our framework does not incur any additional costs with increased 
firing rate of the neuromodulatory neuron population other than 
those necessarily imposed by the complexity of the neuromodulated 
synaptic update rules. Although our motivation was to provide a 
framework capable of meeting the demands of very large distributed 
neuronal network simulations, it can be used without adaptation for 
the serial simulation of smaller-scale networks in which the neuro-
modulatory signal is generated within the network.

In the context of analyzing the benchmark simulations we devel-
oped a technique to determine what proportion of the run time of 
a simulation is taken up by communication between machines. This 
generally applicable technique enables a developer of distributed 
software to distinguish a saturation due to communication over-
heads from one due to a suboptimally implemented algorithm.

Although our hybrid communication strategy was developed in 
the context of the particular challenges of neuromodulated plas-
ticity, it could well enable a more efficient formulation of algo-
rithms to model unmodulated plasticity such as STDP. Combining 
event-driven weight updates triggered by pre-synaptic spikes with 
time-driven updates at regular intervals would permit also the post-
synaptic spike history to be stored in a static data structure and 
remove the need for an algorithm to discard spikes that are no longer 
relevant. However, as one spike history structure is required for each 
post-synaptic neuron (rather than one for an entire neuromodula-
tory population), the memory requirements of the simulation will 
depend more strongly on the choice of transfer interval. In future 
work, we will investigate the trade-off between reducing the number 
of transfer operations and increasing the memory requirements.

We have formulated the neuromodulator dynamics as a dynamics 
on a graph where the interaction is mediated by point events. This 
integrates well into the representation of spiking neuronal  networks 

Here, we present for the first time a general framework for the 
efficient implementation of neuromodulated plasticity in time-
driven distributed simulations where the neuromodulatory signal 
is generated within the network. The presented framework paves 
the way for the investigation of a wide range of neural circuits 
which generate and exploit a neuromodulatory signal to carry 
out cognitive functions, such as dopamine-driven learning and 
noradrenaline-mediated stress response. The framework is general 
in the sense that it does not rely on a particular implementation lan-
guage, neuromodulator, or neuromodulated plasticity and makes 
few and easily fulfilled assumptions about the data structures and 
algorithms of the underlying simulation tool. The main difficulty 
in the implementation of neuromodulated plasticity in distributed 
simulations is how to inform the neuromodulated synapses effi-
ciently about the non-local neuromodulatory signal, which is typi-
cally generated by a population of neurons on different machines 
than either the pre- or the post-synaptic neuron. We solved this 
problem by introducing a new object called “volume transmitter,” 
which represents the neuromodulatory signal available in a cer-
tain volume by globally collecting all the spikes from neurons in 
a specified neuromodulator releasing population and transferring 
the spikes to a user-specified subset of local synapses. We propose a 
hybrid algorithm for the transfer of spikes from the volume trans-
mitter to the neuromodulated synapses. In addition to the delivery 
triggered by every pre-synaptic spike, the neuromodulatory spike 
history is delivered in discrete time intervals of n·∆t, where n is an 
integer and ∆t the communication interval of the network. This 
has three advantages over a purely event-based transfer: first, the 
neuromodulatory spikes can be stored in a static data structure; sec-
ond, no additional algorithm is required to determine which spikes 
can be cleared from the history; and third, the memory require-
ments are known and fixed regardless of the network activity. The 
technology is fully implemented and available in NEST including 
an example and can be controlled through the application interface 
to the Python programming language (Eppler et al., 2009).

Our results show that simulation time is proportional to 1/n for 
n>2; this is due to the decrease in the number of operations per-
formed. As no deterioration in performance can be observed for 
large n as a result of the larger memory structure, in practice a large 
n should be selected. For a suitably large choice of n, our framework 

Figure 11 | Simulation time for one biological second of the 104 neuron network for 184 machines with respect to n, where n·dmin is the transfer interval of 
the volume transmitter. (A) Simulation time as a function of n. (B) Simulation time as a function of 1/n. The gray line shows the linear fit for n>2.
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used for large-scale simulation. In addition we have decided to place 
the dynamics of the neuromodulatory signal at the site of the indi-
vidual synapse. An alternative approach would be to low-pass filter 
the neuromodulatory spikes on each machine and then exchange 
and add the filtered signals between machines. As the global signal 
is mostly likely to be slow, this exchange could perhaps be per-
formed less often than the communication of spikes in intervals 
of ∆t. However, this alternative approach has several disadvantages 
with respect to our proposal. First, whereas the alternative proposal 
would require additional communication to exchange the filtered 
signals among machines, our framework causes no additional com-
munication costs, as spikes have to be exchanged anyway in the dis-
tributed framework. Therefore, an approximate solution is unlikely 
to be more efficient. Second, our approach has the advantage that 
neuromodulated synaptic dynamics where changes of the synaptic 
state depend on the instantaneous value of the neuromodulator 
level can be implemented exactly. Therefore, even in the case that an 
approximate solution is more efficient for a particular application, 
it would be useful to have the exact implementation at hand for a 
verification of the results. Third, in our proposal the same frame-
work can be used for a variety of different neuromodulators with 
different neuromodulatory dynamics, assuming the neuromodula-
tor level can be calculated solely on the basis of the spike train of 
the releasing population. However, this generality comes at a price. 
The time course of a neuromodulator, which is probably essentially 
identical within a certain volume of cortex, is recomputed in every 
synapse, resulting in redundant operations. Moreover, we assumed 
that each spike of the neuromodulator releasing population con-
tributes the same amount to the neuromodulator concentration. 
If necessary, these disadvantages can be remedied in the context of 
a specific scientific question by developing more specialized ver-
sions of the volume transmitter that calculate the dynamics of the 
neuromodulator under investigation and then deliver the results of 
this calculation to the synapses.

Our solution is based on the assumption that it is sufficiently 
accurate to represent the times of the neuromodulatory spikes on 
the grid defined by the computation step size. The framework can 
be modified to process “off-grid” spike times, but at the cost of 
maintaining dynamic data structures in the volume transmitter 
which would result in a deterioration of performance. A further 
limitation of our framework is that it has no capacity to repre-
sent spatial variations in neuromodulator concentration within 
the population of synapses such as diffusion processes. Recently, 

a simulation tool has been presented which considers diffusion 
processes by explicitly modeling the extracellular space (Zubler 
and Douglas, 2009).

As our solution enables networks to be simulated that generate 
their own modulatory signals, it paves the way for the investigation 
of closed-loop functional models. We already successfully applied 
our framework to a model that implements temporal-difference 
learning based on dopamine modulated plasticity to solve a navi-
gation problem (Potjans et al., 2009c). Even though the network 
investigated here was comparatively small (order of 103 neurons), 
systematic investigation of it required distributed computing; 
although the plasticity process occurs on a time scale of tens of 
milliseconds, the learning process on the network level takes place 
on a time scale of minutes to hours. The user has full flexibility to 
assign the volume transmitter to specific groups of neuromodula-
tor releasing neurons and neuromodulated synapses, thus allowing 
the simulation of multiple volumes with different neuromodulator 
concentrations or multiple neuromodulators with different dynam-
ics in the same network. Our results suggest that the framework will 
scale up to much larger networks than those investigated here. This 
will enable the investigation of “brain-scale” networks modeling 
circuits made up of several brain areas. One possible application is 
to investigate the role of neuromodulators such as acetylcholine in 
the cortex simultaneously with its generation process, which takes 
place in subcortical areas. It is our hope that our novel technol-
ogy will make it easy for computational neuroscientists to study 
sophisticated models with interesting system-level behavior based 
on neuromodulated plasticity.
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appendIx
benchMark Model descrIptIon and specIfIcatIon

A: MoDel SuMMAry

Populations Three: excitatory (E), inhibitory (I), 

 neuromodulator releasing neurons 

 (M) (⊂ excitatory population)

Connectivity Random convergent connections

Neuron model Leaky integrate-and-fire, fixed voltage threshold, 

 fixed absolute refractory time (voltage clamp), 

 exponential synaptic current inputs

Plasticity Additive STDP/neuromodulated additive STDP 

 in all excitatory to excitatory connections

Input Independent fixed-rate 

 Poisson spike trains to all neurons

Measurements Simulation time

B: PoPulATioNS

Name elements Size

E Iaf neuron NE = 4NI

I Iaf neuron NI

M Iaf neuron Nnm

C: CoNNeCTiViTy

Name Source Target Pattern

EE E E Random convergent CE → 1, 

   variable weight, delay d

IE E I Random convergent CE → 1, 

   weight wE, delay d

EI I E Random convergent CI → 1, 

   weight − gwE, delay d

II I I Random convergent CI → 1, 

   weight − gwE, delay d

D: NeuroN AND SyNAPSe MoDel

Name Iaf neuron

Type Leaky integrate-and-fire, 

 exponential shaped synaptic current input

Subthreshold dynamics dV
dt

V
C

I t= − +1 1
τm m

( )  if t > t* + τref

 V (t) = Vreset otherwise  

 I t w t
syn e syn( ) /= − τ

Spiking If V(t−) < Vth ∧ V (t+) ≥ Vth

 1. Set t* = t

 2. Emit spike with time stamp t*

e: PlASTiCiTy

Type Source Target Weight dynamics

Additive STDP E E w t t

t
A t
A

t

t

= −

=
−

− −
+

−

≤

STDP

STDP

pre/post

e if
e

( ) ( )

( ) | |/

|

∆

∆ ∆

∆

∆

δ

τ

s

0

||/ τ+ >{ if ∆t 0

Neuromodulated E E 






w c n b

c
c

t t s C

n
n t s
c

n

n

n

= −

= − + −( )

= − +
−( )

( )

( )
τ

δ

τ
δ

τ

STDP pre/post∆ 1

CC2

 
additive STDP

F: iNPuT

Type Description

Poisson generators Independent for each neuron, rate νext, weight wext

g: Measurements

Time to complete simulation, not including network construction time

Table 1 | Tabular description of benchmark network model after Nordlie et al. (2009).
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Table 2 | Specification of default parameters used in the 104 and 105 

benchmark networks. Table labeling refers to the model description in 

Table 1.

Name Value (104) Value (105) Description

B: PoPulATioN

NE 9000 90000 Number of excitatory neurons

NI 2250 22500 Number of inhibitory neurons

Nnm 50 50 Number of neuromodulator 

   releasing neurons

C: CoNNeCTiViTy

CE 900 9000 Number of excitatory inputs per neuron

CI 225 2250 Number of inhibitory inputs per neuron

wE 175 pA 45.61 pA Synaptic weights E → I

g 17 5 Relative inhibitory strength

d 1.5 ms 1.5 ms Synaptic delay

D: NeuroN MoDel

τm 10 ms 10 ms Membrane time constant

Cm 250 pF 250 pF Membrane capacity

Vreset 0 mV 0 mV Reset potential

τref 0.5 ms 0.5 ms Absolute refractory period

τsyn 0.33 ms 0.33 ms Rise time of postsynaptic current

Vth 20 mV 20 mV Fixed firing threshold

e: PlASTiCiTy

winitial 175 pA 45.61 pA Initial synaptic weights for plastic 

   synapses (E → E)

wmax 350 pA 91.22 pA Maximal synaptic weights for 

   plastic synapses

A+ 0.005 pA 0.005 pA Amplitude of weight change 

   due to facilitation

A− 1.05·A+ 1.05·A+ Amplitude of the weight change 

   due to depression

τ+ 20 ms 20 ms Time constant of facilitation

τ− 20 ms 20 ms Time constant of depression

b 0.5 μM 0.5 μM Neuromodulatory baseline  

   concentration

τc 1000 ms 1000 ms Time constant of eligibility trace

C1 11 2( / )s Mµ  11 2( / )s Mµ  Constant coefficient

τn 200 ms 200 ms Time constant of neuromodulator 

   concentration

C2 1 μM 1 μM Constant coefficients

F: iNPuT

wext 175 pA 45.61 pA Synaptic weight of external connections

νext 27 kHz 46 kHz External Poisson rate


