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of overlapping tuning curves, is widely used for neural represen-
tations of various visual parameters (color, stereo depth, motion, 
etc.). As there were no synaptic interactions between neurons in the 
model (as is typical for models of population coding), the model did 
not form a neural network. We were primarily interested in the rep-
resentation of space in visually responsive areas in occipital, parietal, 
inferotemporal, and prefrontal cortices, but some aspects of the 
approach developed here might transfer to other topics such as the 
construction of spatial maps for navigation in the hippocampus.

The model was restricted to consideration of 2D stimuli, as 
neural mechanisms for the extraction of depth information include 
additional mechanisms than those for the other two dimensions 
(although the final representation of space might not differ for the 
three dimensions). A frontoparallel plane (similar to a computer 
screen) defined the universe of all possible stimulus locations serv-
ing as inputs to the model. Given this stimulus set, the model did not 
include consideration of any depth cues, whether binocular (stereo, 
disparity, or vergence angle) or monocular (texture gradients, for 
example), and all stimulus representations were monocular. To a 
limited extent, neural representation of space in the depth domain 
has been considered previously (Lehky and Sejnowski, 1990). In 
addition, we were concerned solely with modeling retinotopic 
space and did not examine coordinate transforms to other frames 
of reference.

IntroductIon
Space serves as a framework for organizing our visual experience. 
An object is always perceived as having some extent and as existing 
at some location. The object itself will also generally have different 
parts in some sort of spatial relation to each other in a manner that 
defines object shape. Kant theorized that the spatial organization 
we experience of the world is imposed by the characteristics of 
our perceptual apparatus, which he argued produced a Euclidean 
visual space (Kant, 1781/1999). Helmholtz was among the first 
to empirically examine the spatial aspect of vision (Helmholtz, 
1910/1962). His psychophysical investigations demonstrated that 
the geometry of visual space differed markedly from a Euclidean 
one. A vast body of psychophysical data since then corroborates 
Helmholtz, indicating that visual space is affected by both stimulus 
and task conditions in a manner difficult to describe by any fixed 
geometry (Wagner, 2006).

In this report we present a simple neural model for the represen-
tation of space. We explore how various known neural characteris-
tics (such as increasing receptive field (RF) size with eccentricity) 
influence the spatial representation. In the model, location is rep-
resented by the collective activity of a population of neurons with 
different but overlapping tuning curves for space. These spatial 
tuning curves correspond to the RFs of visual neurons. The basic 
structure of this model, a population code constructed out of a set 
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Algorithmically, the model revolved around statistical dimen-
sionality reduction techniques. The number of dimensions for 
the spatial representation was reduced from the size of the neural 
population (up to several hundred thousand neurons) down to a 3D 
manifold embedded within the high-dimensional neural response 
space, dimensionally isomorphic with 3D physical space. We were 
particularly interested in how accurately such low-dimensional 
manifolds were able to capture the global geometry of standard 
Euclidean physical space. We shall argue that for some purposes the 
ability to form a low-dimensional representation of space may be 
computationally efficient (see also Sereno and Lehky, 2011).

A wide variety of dimensionality reduction methods are avail-
able (Lee and Verleysen, 2007; Izenman, 2008), both linear and 
non-linear. We focused on one of the oldest and most widely 
used non-linear techniques, multidimensional scaling (MDS). No 
claim is made that the brain is implementing these dimensionality 
reduction algorithms, and no attempt was made in the model to 
neurally implement any dimensionality reduction algorithm. We 
used MDS as a data analysis tool for data from a virtual monkey, 
where we could define and manipulate the precise characteristics 
of the neural population, mimicking different cortical areas’ known 
population characteristics. Using MDS tells us what information is 
available implicitly encoded within population activities. We sug-
gest the brain is making use of that information. However, there 
are many ways to make use of the information and we do not wish 
to claim on the basis of available evidence that the brain is or is not 
implementing any particular algorithm.

In using population responses to reconstruct visual space, the 
model only had access to neural firing rates. That is, the response of 
each neuron was not labeled with additional information indicat-
ing RF properties for that neuron (RF peak location, RF diameter, 
and RF tuning curve shape). It is not clear in terms of biological 
mechanisms how all that additional information would be attached 
to the response of each neuron and communicated to the next 
neuron. If such information were available then the problem of 
spatial representation can become trivial, with just four spatially 
overlapping neurons sufficient to reconstruct 3D space through a 
process of trilateration. By not including information about tun-
ing curve characteristics, our approach differs fundamentally from 
standard population decoding models based on Bayesian statistics 
or basis functions which do assume such information is available 
(Oram et al., 1998; Zhang et al., 1998; Deneve et al., 1999; Pouget 
et al., 2000; Averbeck et al., 2006; Jazayeri and Movshon, 2006; 
Quian Quiroga and Panzeri, 2009).

When recovering a parameter from neural population activity 
(in this case spatial position), the parameter must be specified 
relative to some coordinate system or frame of reference. For the 
Bayesian or basis function decoding models referenced above, the 
grid of tuning curves with labeled characteristics provides that ref-
erence frame. In that case the reference frame is said to be extrinsic 
as it is externally imposed on the stimulus by the RFs. For our 
model, tuning curve properties were not available and therefore 
could not serve as a reference frame. However, it is still possible 
to specify spatial position in terms of the relationships between 
objects that occupy the space (i.e., relative positions), which is 
what we did. Here the frame of reference is intrinsic. Extrinsic and 
intrinsic frames of reference are discussed by Lappin and Craft 

(2000). It is a general characteristic of MDS models, such as we 
use here, to specify recovered parameters within such an intrin-
sic reference frame. A consequence of using intrinsic reference 
frames is that information about scale, orientation, and position 
for a 2D spatial stimulus configuration is lost, although the rela-
tional structure of the configuration is retained. For the standard 
population coding models using extrinsic reference frames, the 
coding of sensory stimuli is atomistic as each stimulus point can 
be decoded without reference to any other stimulus point. On the 
other hand, for a decoding model based on an intrinsic reference 
frame, the coding is relational over a configuration of stimulus 
points (where we allow the configuration either to be physically 
present or built up within memory). Representation in terms of 
intrinsic reference frames therefore connect with Gestalt ideas 
about perception (Köhler, 1992). A recent model which shares 
our use of an intrinsic frame of reference to represent space is 
presented by Curto and Itskov (2008), which otherwise takes a 
different mathematical approach.

In recent years, MDS models of vision have focused on the 
representation of shape (Cutzu and Edelman, 1996; Edelman and 
Duvdevani-Bar, 1997; Sugihara et al., 1998; Edelman, 1999; Op 
de Beeck et al., 2001; Vogels et al., 2001; Kiani et al., 2007; Lehky 
and Sereno, 2007; Kriegeskorte et al., 2008). Ironically, little effort 
has gone into similar MDS studies on the representation of visual 
space, despite the inherently spatial nature of the technique (e.g., 
the standard textbook example of MDS involves the recovery of a 
spatial map of cities given a table of intercity distances). Previous 
applications of MDS in a spatial context include a neurophysiologi-
cal study in monkey hippocampus (Hori et al., 2003), as well as 
several human psychophysical studies of space perception (Indow, 
1968, 1982; Toye, 1986).

Although MDS can recover abstract shape spaces in those mod-
els oriented to shape perception, it is difficult to evaluate the accu-
racy of such recovered spaces as there is no objective standard to 
compare them to. That is, there is no universal metric to quantify 
shape similarity. On the other hand, we do know and can precisely 
quantify what physical space is like (it is Euclidian for scales that 
are behaviorally relevant), which gives us a standard with which to 
compare spatial representations recovered from population activ-
ity. Making such comparisons between physical space and recov-
ered neural spatial representations will be the approach we use 
to evaluate the spatial representations. This does not mean that 
neurally-represented space ought to quantitatively match physi-
cal space, but that physical space can serve as a reference point for 
comparing neural space.

This modeling was motivated by actual spatial response data 
obtained from monkey neurophysiological recording in dorsal and 
ventral visually responsive cortex, described in the accompanying 
report (Sereno and Lehky, 2011). MDS methods, identical to those 
used in the model, were applied to that data in order to recover, 
compare, and better understand representations of visual space from 
those areas. This resulted in the observation that spatial representa-
tions differed substantially in the two cortical areas. The dorsal stream 
was able to represent space in a metrically accurate manner within 
a low-dimensional manifold while the ventral stream was not able 
to do so (recovering only a topologically- or  categorically-correct 
spatial representation). One goal of the  modeling here, therefore, 
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were narrowly dispersed they would be confined to within a region 
close to the foveal representation (for example, all RF centers con-
fined within a circle 4° in diameter). Representations with narrow 
RF dispersion are foveally emphasized. A wide dispersion would have 
RF centers spread over a broader area. RF center dispersion was 
defined purely in terms of RF center locations. It did not include 
the outer edges of the RF regions around the periphery. High-level 
structures in both the ventral visual stream (AIT, Op de Beeck and 
Vogels, 2000) and dorsal visual stream (LIP, Ben Hamed et al., 2001) 
have relatively narrow RF dispersions compared to striate cortex.

number of model neurons
The number of model neurons in the population was set by the 
requirement to fill a hexagonal grid. The number of locations in 
the grid was determined by the RF spacing between units and RF 

was to understand how differences in such recovered spatial repre-
sentations might arise from differences in the RF characteristics of 
neural populations in different cortical areas.

materIals and methods
receptIve fIeld sIze and shape
Receptive field centers were spread in two dimensions, forming a 
regular hexagonal array (Figure 1) in most simulations. The RF for 
each neuron was a 2D Gaussian curve. Peak heights for all neurons 
were normalized to 1.0 unless otherwise noted. Neurophysiological 
data in both the ventral visual stream (AIT, Op de Beeck and Vogels, 
2000) and dorsal visual stream (LIP, Ben Hamed et al., 2001) indi-
cate that RFs in higher extrastriate areas have spatial tuning curves 
that are approximately Gaussian. The response r for such a RF was 
given by:
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Receptive field diameter was specified by the space constant σ. 
Examples of populations with different RF diameters are shown in 
Figure 1A. Tails of the Gaussian tunings curves were not truncated 
and therefore extended across the whole visual field. As a conse-
quence of that, each stimulus point stimulated the entire population 
of tuning curves.

We also examined the effect of changing RF shape in two ways. 
The first variant was elliptical RFs. These were described by:
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The anisotropy was produced by setting the x and y space constants 
to be unequal, σ

y
 = 3σ

x
, producing the elongated fields with the 

major axis aligned vertically (Figure 18A). The other RF variant 
included surround inhibition. That was done using RFs described 
by Difference of Gaussians (DOG):
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after which peak height was normalized to 1.0. This equation pro-
duced a RF shape in which the excitatory region was approximately 
the same size and shape as produced by Eq. 1, but with inhibitory 
regions added at the periphery (Figure 16A).

receptIve fIeld spacIng
Another parameter defining the encoding population was RF 
 spacing- the distance separating two RF centers. This is illustrated 
in Figure 1B. Although primarily working with constant RF spacing 
on a regular hexagonal grid, we also examined the consequences 
of having randomly distributed RF centers (Figures 20A,B). In 
particular, Gaussian distributed RF centers resulted in more model 
neurons devoted to foveal and parafoveal representations, more 
closely mimicking cortical representations.

receptIve fIeld dIspersIon
A third population parameter we varied was the dispersion of RF 
centers (Figure 1C). The RF center dispersion was the visual field 
range (diameter) over which RF centers extended. If the RF centers 
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Figure 1 | illustration of parameters describing the neural population for 
encoding space. Green dots mark the locations of receptive field centers. 
Black circles indicate receptive field diameter, with radius equal to one space 
constant σ of the 2D Gaussian spatial tuning curve. In the model, 
characteristics of the encoding population are defined by (A) Receptive field 
diameter, (B) Spacing between receptive field centers, (C) Dispersion of 
receptive field centers.
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using the Procrustes transform as described below, but we did not 
use this extra point for error calculations. We were not generally 
concerned with the selectivity of the model neurons to stimulus 
shape, assuming that this population of neurons was responsive 
to the stimulus that was presented (although shape effects are 
considered in Figure 10).

Multidimensional scaling is a non-linear algorithm that takes 
as input a matrix of distances between all the response vectors and 
produces as output a spatial configuration of points that reproduces 
those distances. It proceeds iteratively to minimize an error func-
tion between the original distances and distances in the output 
spatial configuration.

Given n neurons in the population, presenting a stimulus at 
a particular location led to a pattern of activation described by a 
vector with n components. Each component of the vector indicated 
the firing rate, under that stimulus condition, for one neuron. For 
a stimulus at location a, we obtained the vector a

1
, a

2
, a

3
,…a

n
, and 

for a stimulus at location b, the vector b
1
, b

2
, b

3
,…b

n
, having a dif-

ferent pattern of activation.
As a first step in the implementation of the spatial MDS analysis, 

a measure of the distances between different response vectors must 
be computed. It is possible to define a variety of distance measures, 
but the one we used was based on the correlation between vec-
tors. The distance d between two response vectors was defined as 
d = 1 − r, where r was the Pearson correlation coefficient between 
vectors, calculated on a component-by-component basis. Under a 
correlation-based measure, the distance between two response vec-
tors depends on the angle between the vectors and not the lengths 
of the vectors. The correlation coefficient is equal to the cosine of 
the angle between response vectors (if they are centered to mean 
zero), giving a more geometric interpretation of r.

A correlation-based measure has the advantage over a Euclidean 
one in not being sensitive to overall changes of the level of activity 
in the population, but rather emphasizing changes in the pattern of 
population activity. For example, if moving from one stimulus con-
dition to another caused or coincided with a doubling of the activ-
ity of all neurons, that would lead to a doubling of the Euclidean 
distance between the two response vectors, but zero distance under 
a correlation-based measure because the relative activities of the 
different neurons had not changed. This could occur in a biological 
system due to changes in animal alertness, for example.

For n neurons in the encoding population, the population 
response to a stimulus at a particular location can be represented 
by a point in n-dimensional space. With data from k locations, 
we have k points in n-dimensional space. In the model, popula-
tions were large, ranging from hundreds of neurons to hundreds 
of thousands of neurons, depending on the parameters chosen. 
Thus information about spatial location was embedded within a 
very high-dimensional space. The purpose of MDS was to reduce 
the dimensionality of the spatial representation (Lee and Verleysen, 
2007), allowing examination of how accurately space could be rep-
resented within low-dimensional manifolds under different RF 
characteristics for the encoding population.

If we have data for stimuli at k locations, then there are k 
response vectors. Calculating the distances between all possible 
pairs of response vectors leads to a k × k matrix containing those 
values, called the distance matrix. The distance matrix served as the 

dispersion. Smaller RF spacing or greater RF dispersion led to a 
larger number of neurons. Hence, changing the RF spacing param-
eter (see Receptive Field Spacing, above), by definition, changed 
the number of RFs stimulated by a single point.

stImulus Input In physIcal space
As an input to the model we generally used a grid of stimulus 
points in physical space arranged along a polar coordinate grid, 
such as shown in Figure 2. Those points were presented as stimuli 
to the neural population one at a time, producing a different neural 
response vector for each of the locations. By using a discrete grid 
of stimulus locations as input rather than a continuous pattern, we 
follow the same approach used in experimental investigations of 
spatial perception established by Helmholtz in the mid-nineteenth 
century (Helmholtz, 1910/1962) and used to the present day in both 
human and monkey studies (see, e.g., companion report, Sereno 
and Lehky, 2011).

multIdImensIonal scalIng
Multidimensional scaling was carried out using the Matlab 
Statistics Toolbox. Neural response vectors from the stimulus con-
figuration were then fed into a classical MDS analysis (Young and 
Householder, 1938; Shephard, 1980; Borg and Groenen, 1997). The 
output of MDS was a set of geometrical coordinates, one for each 
stimulus location, corresponding to the relative spatial positions 
of stimulus points as encoded within the neural population. As 
detailed below, a measure of distortion was then calculated com-
paring the original spatial configuration in physical space with the 
spatial configuration that was recovered from the model’s neural 
encoding of space. The effect of model parameters (RF diameter, 
etc.) on the level of spatial distortion within the neural encod-
ing could then be examined. In addition to the eight points at 
each eccentricity depicted in Figure 2, we added a ninth point at 
an angle of 22.5° to introduce an asymmetry in the grid, which 
aided in aligning the neural and physical coordinate systems when 
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Figure 2 | Typical configuration of points in physical space that served 
as input to the model. It consisted of 40 points arranged in a polar grid. The 
center of the grid corresponded to visual fixation. The points were arranged 
over five eccentricities, at [1, 2, 4, 6, 8] degrees of visual angle. At each 
eccentricity, eight points were placed in a circle at 45° increments.
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extracts relative positions, the coordinate system of the recovered 
points could be rotated and reflected relative to physical space. 
Such an arbitrary linear transform in the neural representation of 
space is not a problem, just as the upside-down optical projection 
of the world on the retina is not a problem.

To quantitatively compare the recovered neural space with the 
original physical space, both must be transformed to the same 
coordinate system. To accomplish that, we used the Procrustes 
transform, a formalism that allowed us to quantify how accurately 
relative positions were recovered. The Procrustes transform linearly 
scaled, rotated, and reflected the geometrical coordinates output by 
MDS in such a manner as to minimize an error measure between 
stimulus coordinates in neural space and the stimulus coordinates 
in physical space. The error measure we used, called stress, was the 
square root of the normalized sum of squared errors between the 
two sets of coordinates:
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−( )

−( )
∑∑
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d d

d d

ij ij
ji

ij ij
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In the equation, d
ij
 is the physical Euclidean distance between 

stimulus locations i and j, d̂ij is the distance recovered by MDS 
from the neural population representation, and 〈·〉 is the mean 
value operator. The denominator normalizes the error by the scale 
of the distances. The Procrustes calculations were done in three 
dimensions. As the physical stimulus points were 2D, we set the 
value of the third physical dimension equal to zero for all points 
when doing the calculations.

If the representation of space within a 3D neural manifold was 
simply a linear transform of physical space, then stress would be 
zero. If there was a residual non-zero stress after performing the 
Procrustes transform, then there would be a non-linear distor-
tion between physical space and the neural representation (the 
relative positions of stimulus points would be incorrectly repre-
sented). Greater stress indicates greater spatial distortion implicit 
within the neural population coding. Thus, by calculating stress 
we have a measure of the accuracy of the low-dimensional neural 
encoding of space. When plotting spatial positions recovered by 
the model, we show outputs of the Procrustes transform unless 
otherwise noted.

Besides looking at stress values, a second independent way to 
quantify the performance of the analysis is to examine the  eigenvalues 
associated with the MDS output. Eigenvalues were calculated from 
the matrix Y  × Y ′ where Y was the MDS output matrix of recovered 
spatial positions, each matrix row representing a single position. If 
there are n neurons in the encoding population, the original repre-
sentation of visual space has n dimensions. After the MDS analysis 
there are still n dimensions, but the n-dimensional space has been 
transformed so that most of the variance can be explained by a 
small number of those dimensions. Associated with each dimension 
in the MDS output is an eigenvalue that indicates how much of 
the variance is accounted for by that dimension. If MDS has been 
successful in reducing the dimensionality of the population repre-
sentation, then only a few of these eigenvalues will be large and most 
will be close to zero. When all the eigenvalues are normalized such 

immediate input to the MDS analysis. The MDS algorithm includes, 
by definition, the constraint that those distances be preserved as 
much as possible when calculating a low-dimensional approxima-
tion to the data. By preserving inter-point distances at low dimen-
sions, the relative spatial configuration amongst the points was 
preserved, giving us a map of global space as represented within a 
low-dimensional manifold by the neural population.

It should be noted that whether or not population responses 
lie on a low-dimensional manifold reflects inherent geometri-
cal properties of those responses, independent of MDS or any 
other dimensionality reduction method. MDS does not cause 
responses to lie on a low-dimensional manifold, but merely serves 
as an analytic tool that reports whether such a low-dimensional 
manifold exists.

“Low-dimensional” in practice meant we projected high-
 dimensional population activity down to a 3D neural response 
manifold, as physical space is 3D. The physical stimulus was 2D, 
so that the recovered spatial representation ought to have been 
confined to a 2D subspace within that 3D manifold, if the geometry 
of neural space were dimensionally isomorphic to the geometry of 
physical space. Spatial distortion in the 2D representation of a 2D 
stimulus would be mathematically indicated by extension of the 
representation into higher dimensions in the MDS analysis.

We interpreted the third dimension derived from the MDS 
analysis as representing a third physical dimension (depth), analo-
gous to the way the first two MDS dimensions were interpreted as 
representing the other two physical dimensions. This meant that 
curvature into the third MDS dimension was interpreted as distor-
tion in which the flat physical stimulus has now become curved 
in depth within its neural representation. This interpretation was 
attractive as there is extensive psychophysical evidence that flat, 
frontoparallel patterns are indeed perceived as curving in space, 
originating with Helmholtz’s work (Helmholtz, 1910/1962) and 
moving forward into more modern times (Ogle, 1962; Foley, 1966; 
Wagner, 2006). Distortions into mathematical dimensions greater 
than three would simply be indicative of misplaced locations within 
a 3D space. Typically such higher-dimensional distortions were 
small in magnitude.

We found that some neural population parameters produced 
spatial representations that were dimensionally isomorphic to 
physical space, while others did not produce such isomorphism. 
Whether actual neural representations of space are isomorphic of 
course remains an empirical question, explored in the accompany-
ing paper (Sereno and Lehky, 2011).

procrustes transform
The Procrustes transform was used to help quantify the amount of 
distortion between the physical configuration of stimulus points 
and the configuration of points recovered by MDS. This transfor-
mation was only used as a tool to evaluate MDS results, and no 
claim is made that it occurs in vivo.

The output from MDS was a set of k geometrical coordinates 
defining the relative locations of stimulus points as extracted from 
neural activities. Because the coordinates were extracted from dis-
tances between population vectors whose elements are firing rates, 
the scale was arbitrary and did not correspond to any physical unit 
such as centimeters or degrees of visual angle. Also, as MDS only 
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results
Spatial representations formed by the encoding population of neu-
rons were examined as a function of the characteristics of the RFs 
forming the population.

The effect of changing RF diameter is shown in Figure 3. As the 
analysis was done in three dimensions corresponding to physical 
space, the spatial coordinates of the stimulus points recovered from 
the population activity were also in three dimensions, even though 
the original physical stimulus was flat on the frontoparallel plane. 
The left column of Figure 3 plots these recovered points projected 

that their sum is 1.0, then the values of the normalized eigenvalues 
indicate the fraction of variance in the data that is accounted for by 
each dimension. We then pick those dimensions whose eigenvalues 
account for a large fraction of the total and use them to form a 
low-dimensional approximation of the original data. Ideally, for 
our conditions with stimuli confined to two dimensions within 
3D physical space, to produce an isomorphic representation, the 
reconstructed neural space should have only two dimensions with 
non-zero eigenvalues, both of them equal to 0.5, and the rest of the 
dimensions should have zero eigenvalues.
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Figure 3 | Spatial representation recovered by the model, for different 
receptive field diameters. (A) RF diameter = 48° (B) RF diameter = 24° (C) 
RF diameter = 8°. The number of model neurons in the encoding population is 
indicated by n. For each receptive field diameter, the left column shows the 
spatial representation in the x-y or frontoparallel plane. The right column 
shows curvature of the recovered spatial representation in the z-axis 
direction, caused by spatial distortion introduced by the neural coding. The x-z 

plots in the right column are taken along a cross-section of space 
corresponding to the y = 0 axis. Normalized eigenvalues associated with the 
multidimensional scaling procedure are displayed to the right of each row. RF 
dispersion was 64°, RF spacing was 0.1°, and the stimulus configuration was 
a 16° diameter grid as in Figure 2. Dots are color coded by eccentricity of 
physical stimulus, in order to ease interpretation of recovered spatial 
configurations that are highly distorted.
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to the stimulus configuration used in Figures 3 and 4. In MDS 
 studies, a stress level of 0.1 is conventionally assigned as the bound-
ary between a “good” representation and a “poor” representation 
(Borg and Groenen, 1997), though like the p = 0.05 criterion for 
statistical significance, this is entirely arbitrary. A biological crite-
rion of what constitutes a good representation could eventually be 
based on psychophysical discrimination studies.

Figure 5 confirms that RF diameter and RF dispersion are both 
important parameters affecting the accuracy of the spatial repre-
sentation. When using grid stimulus patterns, the lowest distor-
tions occur when both those parameters have large values. The 
decreased accuracy when RF center dispersion is narrow occurs 
even when the RFs are very large. Likewise, there is decreased 
accuracy when RF diameter is small, even when there is large 
dispersion. With large RFs, multiple overlapping RFs cover the 
peripheral visual field, but that is not sufficient to form an accu-
rate large-scale spatial map. The RF centers must also spread out 
over the periphery.

We can create the converse of a narrowly focused RF center 
dispersion by arranging a “foveal-sparing” distribution of RF cent-
ers to form an annulus around the foveal region (e.g., Motter and 
Mountcastle, 1981). In our simulations, removing the foveal rep-
resentation did not reduce the accuracy of spatial representations, 
and even improved them very slightly.

To verify that the observed sensitivity to RF diameter and dis-
persion did not reflect an idiosyncrasy of the MDS technique, we 
tried the same analysis procedure using a different dimensionality 
reduction algorithm, principal components analysis (PCA). The 
resulting stress plot for PCA is shown in Figure 6, correspond-
ing to the stimulus configuration used in Figure 5B for the MDS 
analysis. The contours for the PCA stress plot qualitatively resemble 
those of the MDS stress plot (lowest stress values when both RF 
diameter and RF dispersion are large), except that in the PCA plot 
the entire surface is shifted to higher stress values. Those higher 
stress values may reflect limitations in the PCA algorithm, a linear 
dimensionality reduction method, compared to MDS, a non-linear 
method, in extracting optimal low-dimensional approximations to 
the original high-dimensional neural response data.

Although RF diameter and RF dispersion were found to be 
important parameters, RF spacing did not have a major effect on 
spatial representations. Figure 7 shows that a plot of stress as a 
function of RF spacing is flat going out to inter-neuron spacings of 
several degrees. Visual cortical RF spacing in actuality is some small 
fraction of a degree, well within the flat portion of the graph. For 
a biologically plausible range, therefore, the accuracies of spatial 
representations are not sensitive to the RF spacing of the encoding 
population. In addition, changing RF spacing also changes the effec-
tive number of RFs stimulated by a single point (see Figure 1B). 
Thus, as shown in Figure 7, the number of neurons in the model 
had a negligible effect on the results.

A significant result shown in Figure 5 is that the accuracy of the 
spatial representation decreased for larger stimulus configurations. 
Interestingly, the stress plots for different-sized stimulus configu-
rations are close to scaled copies of each other. Taking a square 
from the lower left corner of the stress plot for a small stimulus 
configuration and expanding it produces the approximate plot for 
a large stimulus.

onto two dimensions (frontal plane), to facilitate comparison to the 
2D physical configuration. The right column plots the side view, 
showing the curvature of the recovered representation into the third 
dimension (depth). Because MDS results are equivocal concerning 
the sign of the recovered coordinates, whether the curvature along 
the z coordinate is toward or away from the observer cannot be 
determined; here and in all following plots we follow the conven-
tion that curvature is away from the observer.

As the physical stimulus had no variation in depth, this curvature 
in depth is an indication of distortion in a low-dimensional neural 
representation of space. The eigenvalues in Figure 3 give another 
indication of spatial distortion. Ideally only two dimensions should 
have non-zero eigenvalues to represent the 2D stimulus configura-
tion in a dimensionally isomorphic manner, but here we see non-
zero eigenvalues spreading into higher dimensions.

For very large RFs (Figure 3A), the spatial representation recov-
ered from the population activity has a high degree of accuracy in 
a 3D manifold. This is shown by the low value of stress between 
the configuration of the physical stimulus and the recovered con-
figuration (stress = 0.038). As RF diameter becomes smaller, spa-
tial distortion increases. The higher distortion is indicated by the 
increase in stress (stress = 0.535, Figure 3C) and also by the increase 
in eigenvalues beyond the first two dimensions as one goes down 
the rightmost column in Figure 3.

Increased distortion as RF diameters shrink is also apparent directly 
from inspection of the plots in Figure 3. The spatial representation 
is most accurate near fixation, and becomes increasingly distorted 
toward the periphery. The distortion has the effect of contracting 
the representation of peripheral points in the stimulus configuration 
inward toward the center. This 2D contraction is accompanied by 
increased curvature into the third dimension. If RF size is sufficiently 
small, distortion at large eccentricities becomes so great that the 2D 
representation of the most peripheral ring of points crosses inside 
more central rings (Figure 3C). The 2D topological ordering of points 
from the original physical stimulus configuration has been lost.

The effect of varying another population parameter, the disper-
sion of RF centers, is examined in Figure 4. A RF centers dispersion 
of 64° means that all RF centers are confined within a circle of 
diameter 64° centered on the foveal representation, or, equivalently, 
that all RF centers are within 32° of the foveal representation. As 
will be discussed later, the dispersion of RF centers is known to 
vary greatly between different cortical visual areas, so this param-
eter sheds light on the spatial consequence of that variation. We 
found that the accuracy of spatial representations within a low-
dimensional manifold does depend strongly on the dispersion of 
RF centers, with accuracy decreasing when the RF centers are nar-
rowly confined to a central region for large RF sizes.

Comparing Figures 3 and 4, the spatial distortion caused by 
narrow RF center dispersion differs in nature from that caused by 
small RF diameter. For narrowly dispersed RF centers, although 
the representation becomes highly distorted, topological ordering 
is never lost. On the other hand, for small RF diameter the topo-
logical ordering is lost.

Spatial distortion, as measured by stress, is shown as a function 
of both RF diameter and RF dispersion in Figure 5. Stress plots 
are shown for three spatial configurations of the stimulus input, 
differing in diameter. The middle row in Figure 5 corresponds 
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large extent (compare Figure 9 with Figure 8B). Notably, all ring 
configurations had much lower stress than grid configurations, 
indicating difficulty in dealing with multiple eccentricities simul-
taneously. Overall, it appears more difficult to form an accurate 
global representation as the region of space included in the repre-
sentation increases.

The simulations considered so far have been of homogeneous 
populations in which all neurons were similarly responsive to the 
same shape feature. That homogeneity in shape responsiveness 
was reflected in the fact that the Gaussian spatial tuning curves 
in the population all had the same peak height. We now examine 

The size-effect plots in Figure 5 confound two variables: the 
diameter of the stimulus configuration and the number of points in 
the configuration. To separate those factors we conducted two other 
sets of simulations. First, we kept the number of points constant 
while changing diameter by using ring-shaped stimulus configura-
tions rather than grids. Second, we changed the number of points 
in a ring without changing its diameter.

Increasing the diameter of the stimulus ring increased distor-
tion of the recovered spatial configuration (Figure 8), showing 
that stimulus spatial scale does matter. On the other hand, increas-
ing the number of points in a ring did not change distortion to a 
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Figure 4 | Spatial representation recovered by the model, for different 
receptive field dispersions. (A) RF dispersion = 64° diameter (B) RF 
dispersion = 24° diameter (C) RF dispersion = 8° diameter. For each dispersion 
value, left column shows the spatial representation in the x-y or frontoparallel 

plane. The right column shows curvature of the recovered spatial representation 
in the z-axis direction, caused by spatial distortion introduced by the neural 
coding. RF diameter was 48°, RF spacing was 0.1°, and the stimulus 
configuration was a 16° diameter grid.
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where Γ is the gamma function. The parameters were set to a = 2.0 and 
b = 0.5, giving a mean value of the multiplicative factor of ab = 1.0. 
A gamma distribution was chosen because  neurophysiological data 
indicates that the probability distribution of responses in a neural 
population to a single shape stimulus is right-skewed (Lehky et al., 
2005; Franco et al., 2007).

Having thus created a mosaic of cells tuned to different shape 
features, we proceeded in the same manner as before to examine 
the representation of space, using one fixed shape as stimulus. The 
resulting 3D plot of stress as a function of RF diameter and RF dis-
persion for an inhomogeneous population is shown in Figure 10B. 
For comparison, the same plot for a homogeneous population 
under the same stimulus conditions is given in Figure 5B.

the effect of allowing neurons in the population to have selectivity 
for different shapes. Such an inhomogeneous population will have 
spatial tuning curves that have different peak heights (Figure 10A). 
Neurons highly responsive to a particular stimulus shape have tall 
peaks, while neurons that do not respond well to that shape have 
shallow peaks.

For the simulations we varied the spatial tuning curve height 
for each neuron by multiplying it by a gamma distributed random 
number. The equation for a gamma probability density function is:
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Figure 5 | Three-dimensional plot of stress as a function of rF diameter and rF dispersion, using grid stimulus configurations. (A) 8° diameter stimulus 
grid. (B) 16° diameter stimulus grid. (C) 24° diameter stimulus grid.



Frontiers in Computational Neuroscience www.frontiersin.org February 2011 | Volume 4 | Article 155 | 10

Lehky and Sereno Modeling of visual space

For the stimulus configuration at 4°, the recovered spatial 
representation is plotted as centered at 4° in Figure 11B to facili-
tate comparison with the physical stimulus (this shift in the plot 
is caused by the Procrustes transform). In reality, because spa-
tial representations are based on distances between population 
response vectors that result in an intrinsic code (relative posi-
tions), the center of the representation is not tied to a particular 
coordinate; the center location is undefined (see also translated 
stimuli in Sereno and Lehky, 2011). Because we are just extract-
ing relative positions, representation of the stimulus configu-
ration is position invariant at a population level (within limits 
described next).

Stress is plotted as a function of stimulus translation in 
Figure 11C for the two RF dispersion values. The plots show a 
central region around fixation where spatial representations of 
Euclidean physical space are highly accurate. The diameter of that 
central region roughly corresponds to RF dispersion. Again, as 
we are using intrinsic coding in this model, different positions 
of the stimulus configuration within the central region cannot 

Including inhomogeneous shape responsiveness in the popula-
tion did not degrade the ability to form spatial representations. In 
fact, for some parameter conditions (small RF dispersion and large 
RF diameter), the inhomogeneous population had substantially 
lower stress than the homogeneous population. For many other 
parameter conditions there was little difference between homoge-
neous and inhomogeneous populations. There were no conditions 
under which the inhomogeneous population noticeably underper-
formed the homogeneous population.

Having considered the effects of stimulus scale on recovered spatial 
representations in Figures 5 and 8 we then examined stimulus trans-
lation. We used a stimulus grid whose diameter was small enough 
(6°) that it formed fairly accurate low-dimensional representations 
when centered at fixation (Figure 11A), given the RF parameters 
chosen (large dispersion, 48°, left column; or small dispersion, 12°, 
right column; holding RF diameter constant at 12°). Upon translat-
ing the stimulus configuration to 4° eccentricity (Figure 11B), the 
spatial representation remained accurate for the wide RF dispersion, 
but became highly distorted for the narrow RF dispersion.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

st
re

ss

8

16

24

32

40

48

56

64

R
F 

di
sp

er
si

on
 (d

eg
)

8 16 24 32 40 48 56 64
RF diameter (deg)

-16 -8 0 8 16
-16

-8

0

8

16

x (deg)

y 
(d

eg
)

stimulus locations

stim. configuration diameter=16o

BA

Figure 6 | Three-dimensional plot of stress using principal components analysis rather than multidimensional scaling. (A) Spatial configuration of stimulus, 
which was a 16° diameter stimulus grid as used in Figure 5B. (B) Stress plotted as a function of RF diameter and RF dispersion.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

st
re

ss

8

16

24

32

40

48

56

64
R

F 
di

am
et

er
 (d

eg
)

1 2 3 4 5
RF spacing (deg)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

RF spacing (deg)

st
re

ss

RF centers
dispersion=64o

RF diameter=24o
RF diameter=8o

BA

Figure 7 | Stress as a function of rF spacing. (A) 2D plot, at selected values for RF diameter and RF dispersion. (B) 3D plot of stress as a function of RF diameter 
and RF spacing. These plots show that RF spacing has a negligible effect on stress.



Frontiers in Computational Neuroscience www.frontiersin.org February 2011 | Volume 4 | Article 155 | 11

Lehky and Sereno Modeling of visual space

While we see in Figure 11C that RF dispersion had a critical effect 
on the size of the region of positional invariance, RF diameter was 
not a major factor determining invariance. Figure 12C shows stress 
plotted as a function of stimulus translation for small RF diameter 
(4°, left column) and large RF diameter (24°, right column), holding 
RF dispersion constant at 48°. The central region of invariance was 
essentially the same diameter for both RF diameters.

Although the size of the invariance window was not strongly 
affected by RF diameter, the level of distortion within the window 
was diameter-dependent. Small RFs led to higher distortion in the 
recovered spatial representation within the window (Figure 12, left 
column). However, despite the higher distortion, the representa-
tion remained invariant because the relative positions of points 

be distinguished. In other words, the central region defines an 
area of positional invariance, where the recovered stimulus con-
figuration does not change. Distortion of the recovered stimu-
lus configuration starts to increase as the edge of the stimulus 
configuration passes beyond the region containing RF centers 
(despite the fact that the RFs themselves extend far past the RF 
centers). With this additional distortion, the recovered spatial 
configuration changes shape in different parts of the visual field, 
and positional invariance is lost in the periphery. Overall the 
representation of space is non-Euclidean due to the “ distortion” 
in the periphery, but is approximately Euclidean (given large 
enough RF diameter) for a variable region around fixation, 
dependent on RF dispersion.
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shows the output from the Procrustes transform. Here the MDS 
output has been transformed to maximize congruence with the 
physical stimulus configuration, a procedure that allows us to 
quantify how well the relative positions of the stimulus points 
have been recovered.

While Figure 13 shows the effects of stimulus translation inside 
the window of invariance, Figure 14 shows what happens when 
translation goes beyond that window. Figure 14 corresponds to the 
situation in the right column of Figure 11 (narrow RF dispersion). 
In the MDS output (Figure 14B), information about absolute posi-
tion has been lost. However, in this case the loss of absolute position 
information did not lead to a positionally-invariant representation. 
Shifting the stimulus location caused secondary non-invariances by 
changing the scale of the representation and also distorting relative 
positions of points within the stimulus configuration (“shape”). 
(The change in scale of the MDS output could have been removed 

remained unchanged as the stimulus configuration was shifted 
about. Thus we see, comparing left and right columns in Figure 12, 
that the issues of accurate representation and invariant representa-
tion are dissociable.

The intrinsic nature of the spatial representation extracted 
by the model during stimulus translation is made explicit in 
Figure 13. This figure corresponds to the left column of Figure 11 
(wide RF dispersion), with the translation occurring inside the 
window of invariance. The first row in Figure 13 indicates the 
physical stimulus configuration, centered at [0°, 0°] (left column) 
or translated to [4°, 4°] (right column). The second row shows 
the MDS outputs at the two stimulus locations. Because MDS is 
only recovering relative positions of stimulus points, information 
about absolute position has been lost. The representations for the 
centered and translated stimuli are essentially identical. In other 
words, the representations are position invariant. The third row 
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Figure 9 | effect on recovered spatial representations of increasing number of stimulus points. (A) Spatial configuration of stimulus, which was a ring with an 
increased number of positions compared to Figure 8. (B) Stress plotted as a function of RF diameter and RF dispersion.
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Figure 10 | Spatial representations recovered from an inhomogeneous neural 
population containing neurons tuned to different shape features. (A) Heights of 
Gaussian spatial tuning curves varied depending on responsiveness of each neuron 
to the single shape used as a stimulus. Tuning curves are depicted schematically as 

1D functions, whereas they were actually 2D Gaussian functions. Peak heights have 
been normalized so that the tallest peak is equal to 1.0. (B) 3D plot of stress as a 
function of RF diameter and RF dispersion, using a population with inhomogeneous 
shape responsiveness. Stimulus configuration was a 16° diameter grid.
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where r  was the deterministic response (with range 0.0–1.0) 
and N(0, σ) was normally distributed noise with mean zero 
and standard deviation σ. The results are shown in Figure 15. 
Correlated noise had absolutely no effect. That is as expected 
because perturbing two neural response vectors in exactly the 
same way does not affect the distance between them, and there-
fore does not affect recovered stimulus positions under the MDS 
analysis we are using. Uncorrelated noise increased distortion in 
the recovered spatial representation. The increased distortion was 
not primarily due to random jitter in the recovered positions 
(although there was some of that), but rather increased signal 
spreading into the third dimension at larger stimulus eccentrici-
ties, mimicking the effect of a smaller RF size. It appears that 
the chief effect of uncorrelated noise is to reduce the effective 

by normalizing the distance matrix in the MDS procedure to have 
some fixed mean value, which we did not do.) Thus we see here 
that the absence of absolute positonal information is necessary but 
not sufficient for positional invariance.

Noise is a ubiquitous feature of neural responses. The effect 
of noise on recovered spatial representations was examined using 
noise that was either correlated (correlation coefficient = 1.0) or 
uncorrelated (correlation coefficient = 0.0) amongst cells in the 
population. The noise had two components, one being background 
noise independent of the level of neural activity and the other 
proportional to neural activity. The overall equation for the noise-
corrupted response r

n
 was:

 r r rn = + +Ν Ν( , . ) ( , . )0 0 2 0 0 1  
(6)
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Figure 11 | effect of stimulus translation on the recovered spatial representation: different rF dispersions. Left column: wide RF dispersion (48°). Right 
column: narrow RF dispersion (12°). (A) Stimulus configuration centered at fixation. (B) Stimulus configuration centered at (4°, 4°). (C) 3D plot of stress as a 
function of x and y stimulus translation. In all cases, receptive field diameter was 12°, receptive field spacing 0.1°, and the stimulus configuration was a 6° 
diameter grid.
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In many visual areas RF diameter increases as a function of 
eccentricity (Hubel and Wiesel, 1974; Gattass and Gross, 1981; 
Gattass et al., 1981, 1988; Van Essen et al., 1984; Albright and 
Desimone, 1987; Boussaoud et al., 1991; Ben Hamed et al., 2001; 
Motter, 2009). We added this feature to one variant of the model 
(Figure 17A), making RF diameter increase linearly with eccentric-
ity as has generally been observed in the literature:

  
σ σE a= +0 Ε  (7)

where σ
0
 was the space constant defining RF diameter (Eq. 1) at 

the foveal region, E was eccentricity in degrees, and a was the slope 
of the eccentricity function, set equal to 1.0. Although in reality 
the slope varies with brain area (appearing to increase the further 
one gets from striate cortex, Gross et al., 1993), the value we chose 

RF diameter in the population. Uncorrelated noise also pro-
duced negative eigenvalues in the MDS output, indicating that 
the recovered spatial locations could not be represented within 
a Euclidean space with complete accuracy.

We also looked at the effects of adding an inhibitory surround 
to the spatial tuning curves of the RFs. Instead of having Gaussian 
tuning curves, we used DOG (Eq. 3; Figure 16). This large change 
in the RF profile allowed us to examine if the results were highly 
sensitive to our general assumption that RFs were Gaussian. Adding 
the inhibitory surround had little effect on the spatial representa-
tion formed by the population model, making the representation 
slightly less accurate (higher stress) for populations with smaller 
RF diameter. The primary determinant of the quality of the spa-
tial representation remained the RF size, and not the presence or 
absence of suppressive regions in the RF.
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Figure 12 | effect of stimulus translation on the recovered spatial 
representation: different rF diameters. Left column: small RF diameter (4°). 
Right column: large RF diameter (24°). (A) Spatial representation recovered from 
the model with stimulus configuration centered at fixation. (B) Spatial 

representation recovered from the model with stimulus configuration centered 
at (4°,4°). (C) 3D plot of stress as a function of x and y stimulus translation. In all 
cases, receptive field dispersion was 24°, receptive field spacing 0.1°, and the 
stimulus configuration was a 6° diameter grid.
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spatial representations improve when using larger RFs (Figure 3), 
and that stimuli located at larger eccentricities are the most difficult 
to accurately incorporate within a spatial representation (Figure 8), 
it is not surprising that larger RFs in the periphery improve the 
spatial accuracy achieved by the neural population, especially for 
populations/areas that have small RFs near the fovea.

Another variation in RF shape was to make them anisotropic rather 
than circularly symmetric, as biological RFs are never perfectly circu-
lar. For our simulations we used elliptical RFs (Eq. 2), oriented verti-
cally with the long axis double the length of the short axis (32° × 16°, 

was within the range reported in the literature. When comparing 
constant and eccentricity-dependent RFs we made both their RF 
diameters equal at the foveal region.

Making RF size eccentricity-dependent did lead to some 
improvement in the accuracy of spatial representations especially 
for smaller RF diameter (decreased stress between the physical stim-
ulus configuration and the recovered configuration; Figure 17B). 
However, the behavior of the model essentially remained the same 
in a qualitative sense, without causing a major change in the shape 
of the stress vs. RF diameter curve. Given that we already know 
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Figure 13 | Translation of stimulus configuration (large rF dispersion). This 
corresponds to the conditions in left column of Figure 11, inside central invariant 
area. Left column: stimulus configuration centered at fixation [0°, 0°]. Right 
column: stimulus configuration centered at [4°, 4°]. (A) Physical stimulus 

configuration, a ring of points 8° in diameter. (B) Output of multidimensional 
scaling procedure. (C) Procrustes transform of MDS output. Receptive field 
diameter was 24°, receptive field dispersion was 48°, and receptive field spacing 
was 0.1°.
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Figure 14 | Translation of stimulus configuration (small rF dispersion). 
This corresponds to conditions in right column of Figure 11, outside central 
invariant area. Left column: stimulus configuration centered at fixation [0°, 0°]. 
Right column: stimulus configuration centered at [4°, 4°]. (A) Physical stimulus 
configuration, a ring of points 8° in diameter. (B) Output of multidimensional 

scaling procedure. (C) Procrustes transform of MDS output. Green dots indicate 
recovered spatial configuration, black dots indicate original physical spatial 
configuration. (Black dots are obscured in left Procrustes panel.) Receptive field 
diameter was 24°, receptive field dispersion was 12°, and receptive field spacing 
was 0.1°.

Figure 18A). The spatial representation recovered from a popula-
tion with such RFs is shown is Figure 18B. Stress was higher with 
elliptical RFs, compared to stress for circular fields having the same 
mean RF diameter (24°; see Figure 3B). Inspection of Figure 18B 
shows the nature of this increased distortion: stimulus configurations 
that are physically circular were represented as elliptical, especially 
at small eccentricities. The vertical/horizontal anisotropies in this 
 representation of space matched those of the underlying RFs.

Receptive fields associated with a single cerebral hemisphere 
cover primarily the contralateral half of the visual field. We examined 
the effect this might have on spatial representations by  confining RF 

centers of the model to one hemifield (Figure 19A). Results are given 
in Figure 19B. As would be expected, the representation of space 
was highly skewed toward the hemifield covered by the RFs. This 
skewing may be slightly overstated by the model, as our distribution 
of RF centers was strictly confined to one side whereas biologically 
there is some scatter to the other side, especially in higher visual 
areas. One effect of the skewing was to produce a vertical/horizon-
tal anisotropy in the representation of space, resembling that seen 
in Figure 18. Thus we see that anisotropic spatial representations 
can result from either an anisotropic RF shape (Figure 18) or an 
anisotropic distribution of RFs centers (Figure 19).
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So far we have primarily used a regular hexagonal array of RF 
centers (as in Figure 1). Figure 20 examines the effects of placing 
the RF centers at random locations, following either a uniform 
distribution or a Gaussian distribution (the Gaussian distribu-
tion mimicked the greater concentration of RFs observed in the 
central representations of visual cortex). The results show virtually 
no difference between using a regular array of RF centers and a 
uniform random distribution (plot lines overlapping). Accuracy of 
the spatial representations was reduced slightly using a Gaussian 
random distribution of RF centers. Using a Gaussian distribution 
appeared to have an effect equivalent to a slight reduction in the 
RF dispersion.

The spatial representations developed above were based on 
presenting one stimulus point at a time from the stimulus con-
figuration, and then comparing population activities as that 
point was moved to different locations. In Figure 21 we explore 
interactions between two stimulus points presented simultane-
ously, with linear summation of responses within each RF. The 
space was mapped out as one stimulus point remained at a 
fixed location and a second point moved to different positions 
within a grid.

The physical stimulus configuration is given in Figure 21A, 
consisting of a circular grid of stimulus locations. The spatial 
representation recovered from population activity using the 
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Figure 15 | effect of noise on recovered spatial representations. Left column: frontal view. Right column: depth view. (A) Noise free neurons (B) Neurons with 
correlated noise (correlation coefficient = 1.0). (C) Neurons with uncorrelated noise (correlation coefficient = 0.0). Receptive field diameter was 64°, receptive field 
dispersion was 48°, and receptive field spacing was 0.1°.
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usual single-point procedure is shown in Figure 21B, for a set of 
 population parameters providing a highly accurate spatial recov-
ery (RF diameter = 32°; RF dispersion = 64°). The next panel 

(Figure 21C) shows how the simultaneous presence of a second 
fixed stimulus point (marked by a large open dot) warped the 
representation of space.

Figure 21D indicates, by the use of arrows for each point, the 
magnitude (length) and direction (angle) of these spatial distor-
tions (two stimuli versus one stimulus), demonstrating both attrac-
tion and repulsion in the apparent relative positions of the two 
points. Overall, the representation of space in a region around the 
points becomes contracted with a general shift toward the spatial 
center of the population (not the center of the stimuli). If the second 
stimulus is off-center (e.g., Figure 21C) the distortion is maximal 
near this stimulus and mostly occurs within the hemifield contain-
ing the stimulus, with little change spilling into the space directly 
opposite. If the second stimulus is placed at the spatial center of the 
population (not shown), the contraction toward the center occurs 
from all directions. Replacing the hexagonal grid of RF centers 
with either a uniform random distribution or Gaussian random 
distribution leads to similar two-point spatial warping.

dIscussIon
We have developed a population coding model of visual space based 
on an intrinsic representation of stimulus locations, and explored 
how the resulting representation of space is affected by the RF char-
acteristics of the neural population implementing it. An intrinsic 
representation means that stimulus locations are defined relative 
to each other, and not relative to an external coordinate frame 
(Lappin and Craft, 2000). In their psychophysical study, Lappin and 
Craft (2000) concluded that visual space is encoded in an intrinsic 
manner. Our model is an intrinsic representation as a consequence 
of the fact that there are no “labeled lines”: the reconstruction of 
space is based entirely on neural firing rates without labels attached 
to each firing rate indicating RF properties (position, size, shape) 
of the neuron.

Spatial representations based on extrinsic coding are firmly 
anchored to a particular external coordinate system (external to 
the stimuli, which may include a coordinate system defined by 
a grid of RFs). The problem in that case is to find ways of mak-
ing the representation invariant (with respect to scale, translation, 
and rotation) for particular situations, such as for some aspects 
of object recognition. On the other hand spatial representations 
based on intrinsic coding, which only specify relative positions, are 
inherently invariant. The problem now is the opposite: to generate 
non-invariant representations (representations tied to a particular 
physical location, orientation, etc.) as the need arises.

We suggest that one primary need for non-invariant visual rep-
resentations arise from interacting with the physical world, such as 
required in visuomotor control of saccades, reaching, or grasping. 
Non-invariance can be effected by making sensory representations 
of space and motor representations of space consistent with each 
other through learning (e.g., Fuchs and Wallman, 1998; Krakauer 
et al., 2000). Neural representations of space could be arbitrar-
ily scaled, rotated and reflected provided that, through learning, 
visual maps and motor control maps become aligned in appro-
priate cortical areas such that visual guidance leads to success-
ful motor performance. Connecting perceptual representation to 
action in the world serves to tie the representation to some external 
frame of reference (similar in purpose to the Procrustes transform 
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Figure 16 | effect of inhibitory surround within receptive fields on the 
accuracy of low-dimensional spatial representations. (A) Spatial profiles of 
two receptive field types. These represent slices through what where actually 
2D circularly symmetric receptive fields. (B) 2D plot of stress as a function of 
receptive field diameter, using both Gaussian and Difference of Gaussians 
(DOG) receptive fields. RF dispersion was 48°. (C) 3D plot of stress as a 
function RF diameter and RF dispersion using DOG receptive fields. Compare 
to Figure 5B, where we used Gaussian receptive fields. In both (B) and (C) RF 
spacing was 0.1° and stimulus configuration was a 16° grid.
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Figure 17 | effect of variable receptive field diameter on accuracy of 
low-dimensional spatial representations. (A) Neural population with receptive 
field diameters increasing linearly as a function of eccentricity. Green dots represent 
receptive field centers and circles represent one space constant of 2D Gaussian 
receptive fields. Diagram indicates receptive field configuration schematically for 

easy visualization, and does not match RF parameters used in simulations. (B) 
Stress as a function receptive field diameter, for both constant and variable diameter 
receptive fields. For the variable diameters plot, x-axis value is the foveal RF 
diameter, with that diameter increasing with slope 1.0 as a function of eccentricity. 
RF spacing was 0.1° and the stimulus configuration was a 16° diameter grid.
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Figure 18 | effect of anisotropic receptive fields on spatial representations. (A) Neural population with elliptical receptive fields. (B) Spatial representation 
produced by elliptical receptive fields. Space constants of the Gaussian receptive fields were 16° in the x-direction and 32° in the y-direction. RF spacing was 0.1° 
and the stimulus configuration was a 16° diameter grid.
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Figure 19 | effect of confining receptive field centers to one visual hemifield. (A) Green dots represent configuration of receptive field centers responding to 
right visual field stimuli (left cerebral hemisphere). (B) Representation of space produced by the hemifield receptive field geometry. RF spacing was 0.1° and the 
stimulus configuration was a 16° diameter grid.
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 formalism that was used as a tool in the model to quantify congru-
ence between the extracted representation and the original physical 
stimulus configuration).

Although intrinsic coding leads to invariant representations, our 
simulations found that the characteristics of the neural substrate 
placed limits on such invariance. For example, in Figure 11 we 
saw that translational invariance for low-dimensional represen-
tations was limited to a region around fixation, whose size was 
defined by RF dispersion. In general, throughout various simula-
tions, we found that undistorted low-dimensional representations 
of physical space were confined to an area around fixation whose 
size depended on the RF characteristics of the population. We 
give the name “Euclidean window” to the limited region of space 
around fixation where low-dimensional representation appears to 
be approximately Euclidean and various invariances hold. It has 
also been called, within a psychological context, the “Newtonian 
oasis” (Heelan, 1983; Arnheim, 2004).

Note that positional invariance here refers to maintaining rela-
tive positions within a stimulus configuration unchanged when 
the configuration is presented at different locations in the visual 
field. The same term, positional invariance, has also been used in 
the past to describe unchanged rank order of responses to different 
shapes at different positions (Ito et al., 1995; Janssen et al., 2008). 
We suggest that this concept might better be described instead as 
invariant feature-selectivity across stimulus position.

In this study we have been interested in identifying condi-
tions that lead to accurate representations of physical space when 
those representations are confined to 3D manifolds within a high-
 dimensional neural response space. We suggest here that making the 
representation of visual space dimensionally isomorphic with 3D 
physical space allows a more efficient interface between perceptual 
representations and motor representations for visuomotor control 
(where the motor representations control action in the physical 
world). This is a variant of the idea of Soechting and Flanders 
(1992) that maintaining common representational formats in 
 different parts of the brain might facilitate exchange of informa-
tion. In addition, Edelman and Intrator (1997) have argued that 

low-dimensional visual representations in general make many per-
ceptual problems more tractable by reflecting the low-dimensional 
nature of the real world. In general, given the principle that the 
simplest model or description of the world is to be preferred (see 
Hempel, 1966; Popper, 2002; re Ockham’s razor), it can be argued 
that a low-dimensional representation fits that criterion by offering 
mathematically the most parsimonious description. Even though 
low-dimensional and high-dimensional representations of space 
may be equivalent in terms of information content, formatting 
the same information in different ways within a neural popula-
tion can lead to changes in the nature, speed, and efficiency of the 
processing that is supported, as was pointed out by Kosslyn (1986). 
Seung and Lee (2000) provide a general discussion of the possible 
importance to perceptual processing of low-dimensional manifolds 
within high-dimensional neural response spaces.

By suggesting that in some cases spatial representations may be 
dimensionally isomorphic with physical space, we are proposing an 
isomorphism that is abstract and functional (a low-dimensional 
manifold embedded within a high-dimensional neural response 
space), rather than a structural isomorphism where 3D space is 
literally represented by a 3D grid of neurons in the brain (see Lehar, 
2003 for a discussion of functional versus structural isomorphism). 
Representations lying on such a functional manifold retain neigh-
borhood spatial relations without any requirement for actually 
reducing the high-dimensionality of responses of the embedding 
neural population.

Implicit in the suggestion above that low-dimensional represen-
tations of space may be critical for efficient visuomotor control, is 
the possibility that the dimensionality of space may be dissimilar 
in different cortical regions. In particular, low-dimensional spatial 
representations may occur within the dorsal visual stream, which 
is associated with the representation of space for the control of 
action (Ungerleider and Mishkin, 1982; Goodale and Milner, 1992), 
while the ventral visual stream may not be constrained to such a 
low-dimensional representation (or may be operating in a refer-
ence frame, perhaps allocentric, that appears high-dimensional 
when mapped retinotopically). Evidence for this is presented in 
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Figure 20 | (A) Effect of random placement of receptive field centers, 
rather than on a hexagonal grid. Two random distributions were 
examined: uniform and Gaussian. (A) Example uniform distribution of 
RF centers. (B) Example Gaussian distribution of RF centers. (C) Stress 

as a function of RF diameter, for regular hexagonal RF array as well as 
the two random distributions. The curves for the hexagonal array 
arrangement and the uniform distribution are almost identical and appear 
superimposed.



Frontiers in Computational Neuroscience www.frontiersin.org February 2011 | Volume 4 | Article 155 | 21

Lehky and Sereno Modeling of visual space

the accompanying paper (Sereno and Lehky, 2011), which reports 
low-dimensional spatial representation in a dorsal structure (lateral 
intraparietal cortex) and higher-dimensional representation in a 
ventral structure (anterior inferotemporal cortex, AIT).

The idea that spatial representations may be different in differ-
ent cortical areas finds support in our simulations. Having a model 
allowed us to examine how the nature of the spatial representation 
is determined by neural population characteristics, and we indeed 
found that the representation of space was strongly affected by 
those characteristics.

In the model, RF diameter was an important determinant of 
the capability of neural populations to accurately encode visual 
space within a low-dimensional manifold. There are several dozen 
visually responsive cortical areas (Felleman and Van Essen, 1991), 
and RF diameters differ widely amongst those areas. The smallest 
RFs are located in striate cortex, where they are typically a small 
fraction of a degree across (Hubel and Wiesel, 1977; Kagan et al., 
2002). RF diameter progressively increases as one ascends the hier-
archy of visual areas. At the upper levels of the hierarchy, median 
RF diameters are around 10° in either the ventral visual pathway 
(Op de Beeck and Vogels, 2000) or dorsal visual pathway (Ben 
Hamed et al., 2001). It is difficult to give a definite number for 
RF diameter because different labs have used different conditions 
or definitions and at higher cortical stages RF size appears to be 
substantially modulated by stimulus conditions (Op de Beeck and 
Vogels, 2000; Rolls et al., 2003).

Based on our modeling, these different visual areas should 
have different capabilities for forming accurate low-dimensional 
representations of space. Using intrinsic spatial coding, as we did 
for this model, populations with small RFs can only form highly 
distorted spatial representations. If the RFs are sufficiently small, 
the distortion increases to the extent that not only are the metrics 
of space warped, but even the topological ordering of points in 
space become scrambled (Figure 3C). In extrastriate areas with 
larger RF sizes, the capacity to represent visual space with high 
accuracy improves.

For the intrinsic spatial coding used here we found that large RFs 
produced the most accurate representations. The opposite would 
hold true if spatial coding were extrinsic. If the response of each cell 
were somehow labeled with the retinotopic coordinates of that cell 
(plus other RF properties), then striate cortex, with very small RFs 
would produce the most precise global spatial maps, while higher 
visual areas with larger RFs would have the poorest spatial repre-
sentations. Without such an assumption of labeled lines, although 
responses of small RFs are sensitive to slight changes in stimulus 
position, there is only a limited ability to attach a location to those 
responses within the context of a large global map. To accomplish 
that global spatial mapping with unlabeled neural responses, the 
RFs themselves must be spread out globally.

In addition to RF size, another important parameter identified 
by the modeling was the dispersion of RF centers. While it is widely 
appreciated that RF size varies in different visual areas, it is perhaps 

-8 -4 0 4 8
x (deg)

-8 -4 0 4 8
-8

-4

0

4

8
stress=0.026

x (deg)

-8 -4 0 4 8
x (deg)

-8 -4 0 4 8
x (deg)

y 
(d

eg
)

stress=0.010

-8

-4

0

4

8

-8

-4

0

4

8

-8

-4

0

4

8

y 
(d

eg
)

y 
(d

eg
)

y 
(d

eg
)

DC

BA

Figure 21 | Distortion of spatial representation in vicinity of a fixed stimulus 
point. (A) Configuration of stimulus points in physical space. It consisted of a 
6° × 6° square grid of points at 1° intervals. (B) Spatial representation of stimulus 
configuration recovered by neural model. Neural space was mapped presenting 
one stimulus point at a time, as was done in all previous cases described here. (C) 
Spatial representation when two stimulus points were presented simultaneously. 

One stimulus point was held fixed at location (2°, 2°), indicated by the black dot. 
Neural space was then mapped with a second point presented at different 
positions along the square grid. RF diameter was 48°, RF dispersion was 48°, and 
receptive field spacing was 0.1°. (D) Differences between panels (B) and (C) 
indicate spatial distortions caused by two-point interactions. Blue arrows indicate 
magnitude and direction of difference for each stimulus point.
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 representation of the stimulus configuration within a low-dimen-
sional manifold required both large RF diameter and wide RF dis-
persion. On the other hand, invariant spatial representation for 
translation depended on wide RF dispersion, but, significantly, did 
not require large RF diameter. Accuracy and invariance are two prop-
erties of spatial representations that can be dissociated. As objects 
are, to some extent, defined by the spatial configuration of their 
parts, these results may also relate to issues in object recognition.

Consistent with the limited range of translational invariance 
seen in the model, psychophysical data also shows limitations in 
position invariance during object recognition tasks (Kravitz et al., 
2008). Furthermore, other models of object recognition emphasize 
the need to retain some degree of positional information (rather 
than positional invariance) in order to maintain the separate iden-
tities of multiple objects within a scene (Roudi and Treves, 2008; 
Li et al., 2009).

Moreover, physiological data indicates position information is 
present in the responses of cells with large RFs, even in the ventral 
stream (Op de Beeck and Vogels, 2000; Lehky et al., 2008; Sereno 
and Lehky, 2011). Recent human fMRI studies also show modu-
lation of responses in the ventral stream by spatial information 
(Sayres and Grill-Spector, 2008; Kravitz et al., 2010). Such spatial 
selectivity is a necessary consequence of having Gaussian RFs, as 
data in those studies indicate is the case. The presence of large 
RFs cannot be taken in itself as evidence that spatial information 
is being lost.

As was mentioned above, RF dispersion is broader in LIP (Ben 
Hamed et al., 2001) than in AIT (Tovée et al., 1994; Op de Beeck and 
Vogels, 2000). Under our model, we would predict greater trans-
lational invariance in LIP. Applying the same population coding 
analysis as used here, physiological data in the accompanying paper 
(Sereno and Lehky, 2011) suggests that such is indeed the case.

Although we have framed the discussion here in terms of 
stimulus “points,” the same methods can be used to recover the 
positions of more complex shapes. For example, in the accom-
panying non-human primate paper, we present simple geometric 
objects (circles, triangles, etc.) at different positions while record-
ing single-cell responses. Using identical MDS methods for these 
monkey data as used in the model, we recover the position of 
those objects. Visual neurons are selective to both location and 
shape, and population coding for both occurs together. In this 
model we focus on location coding while ignoring the shape 
aspect of responses.

Psychophysical investigations have found large distortions in the 
perception of space, such that the global geometric structure of vis-
ual space appears to be non-Euclidean (Suppes, 1977; Indow, 2004; 
Wagner, 2006). This is shown, for example, by measurements of the 
apparent frontoparallel plane (AFPP) horopter (Herring, 1879/1942; 
Helmholtz, 1910/1962; Ogle, 1962; Foley, 1966; Musatov, 1976). 
If a horizontal array of vertical rods is placed along an objective 
frontoparallel plane, they appear to curve away from the observer. 
If the positions of the rods are adjusted such that they subjec-
tively appear on a frontoparallel plane, the array physically curves 
inward. This is an indication of a curved visual space (in this case 
with a hyperbolic or Bolyai–Lobachevsky geometry), rather than 
a Euclidean space. A seminal model of hyperbolic visual space was 
developed by Luneberg (1947). Although most experimental work 

less well known that the dispersion of RF centers also varies. Striate 
cortex has its RF centers spread out over the broadest range, with 
substantial numbers extending out to 30° or 40° from the foveal 
representation (Gattass et al., 1981; Van Essen et al., 1984). At the 
other extreme, the most narrowly dispersed RF centers are found 
in AIT, where they are almost entirely confined to within 3°–4° 
of the fovea (Tovée et al., 1994; Op de Beeck and Vogels, 2000). 
Between those two values, we have RF center dispersions for V2 
(Gattass et al., 1981), V3 (Gattass et al., 1988), V4 (Gattass et al., 
1988; Motter, 2009), posterior inferotemporal (Boussaoud et al., 
1991), and moving dorsally, area MT (Gattass and Gross, 1981) as 
well as LIP (Ben Hamed et al., 2001), with dispersion values falling 
in the range of 10–20° from the fovea.

The modeling results indicate that the most accurate low-
 dimensional spatial representations occur for stimulus configu-
rations placed inside the central region of the visual field where RF 
centers are located. Although that might appear to give an advan-
tage to the area with the broadest dispersion, namely striate cortex, 
RF diameters in striate cortex are so small that even the best spatial 
reconstructions near fixation are very poor. The higher extrastri-
ate areas, with their larger RFs, are better able to support accurate 
global spatial representations. However because the dispersions of 
RF centers are more narrowly focused in those areas, low distortion 
representations are restricted to more central areas of the visual 
field (within 10–20° of fovea). AIT in particular, because its RF 
centers are severely confined to within 4°, would have the most 
constricted region of accurate spatial representations, confined 
to the foveal and parafoveal regions. In cases where good spatial 
representations are restricted to central vision, it would then be 
necessary to build up accurate large-scale metric maps of space 
by a sequential process, integrating information in memory over 
multiple saccades.

Using the terminology of Kosslyn et al. (1992), cortical areas with 
large RF diameter and wide RF dispersion implement a coordinate 
representation of Euclidean physical space in a metrically accurate 
manner. Cortical areas with somewhat smaller RF diameter, but 
particularly with narrow RF dispersion, represent space in a quali-
tative categorical manner, retaining neighborhood relations such 
as ordering (a point is to the left or right of another, for example). 
Kosslyn et al. (1992), using back-propagation modeling, noted a 
similar relation between RF diameter and coordinate/categorical 
representations of space that we have found here using MDS, with 
larger RFs providing the most accurate representation of space.

Our model investigated position invariant encoding at the popu-
lation level rather than single-cell level, using intrinsic encoding 
of space to extract relational structures within a configuration of 
stimulus positions. This is a different approach from that taken 
by some computational models of object recognition, which look 
for invariance in single-cell properties and postulate large-diam-
eter RFs as a mechanism for position invariant recognition (e.g., 
Riesenhuber and Poggio, 2000; Serre et al., 2007). Instead of invari-
ance occurring at the single neuron level, we suggest that invariant 
coding may be a population property, involving conservation of 
relationships amongst neural activities in a population.

In our model, a central region of translational invariance around 
fixation was defined primarily by the dispersion of RF centers in 
the population (Figure 11). As discussed earlier, accurate spatial 
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two-stimuli interactions. Our model showed that the representa-
tion of space was warped by the simultaneous presentation of two 
stimuli (Figure 21). Such warping of space in the region near a 
visual stimulus has been observed psychophysically (Badcock and 
Westheimer, 1985a,b; Greene and Brown, 1995; Ruda, 1998), and 
it is possible that visual crowding effects (Levi, 2008) may also be 
due to spatial distortion caused by multiple stimuli. More generally, 
it has long been recognized that there are spatial interactions with 
simultaneous multiple stimuli, both in behavioral studies (Sereno 
and Kosslyn, 1991; Sereno and Sereno, 1999) as well as physiologi-
cal studies (such as response modulation beyond the classical RF, 
Allman et al., 1985; Knierem and Van Essen, 1992).

We modeled the effects of two stimuli by linearly summing the 
responses to the stimuli within each RF, with no excitatory or inhib-
itory influences between different neurons. The source of spatial 
interactions was therefore quite different than normally postulated 
in the neurophysiology literature. Rather than having such interac-
tions mediated by horizontal synaptic connections between neurons 
(e.g., Das and Gilbert, 1999), they occurred here purely as the result 
of population activity amongst non-interacting neurons. While lat-
eral connections are likely to be one important aspect of this issue, 
the model raises the possibility that population coding effects, not 
apparent at the single-cell level, also contribute to spatial interactions 
observed perceptually. Although linear summation of responses from 
multiple stimuli within a single RF may not be biophysically realistic, 
it is sufficient to demonstrate the principle. See Sereno and colleagues 
(Patel et al., 2010; Sereno et al., 2010) for more elaborate dynamical 
modeling of spatial interactions amongst multiple stimuli.

While we presented the two stimuli simultaneously, the timing 
between two stimuli may be critical. For example, both behavio-
ral (e.g., Posner and Cohen, 1984) and physiological studies (Bell 
et al., 2004) show that changes in stimulus timing can produce 
either reflexive facilitation or inhibition depending on the degree 
of asynchrony. Moreover, the shapes of the two stimuli (same or 
different) affect these reflexive spatial interactions (Patel et al., 
2010; Sereno et al., 2010). In addition, it is possible that instead 
of having two stimuli physically present (i.e., reflexive attention), 
voluntary attention directed at a point may have a similar effect, 
so that voluntary attention might lead to similar distortions in 
spatial representations. Thus, the inclusions of dynamic neuronal 
properties, lateral interactions, multiple stimuli, feature tuning, 
as well as voluntary attentional conditions are potential areas for 
future development of a more complete spatial model.
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and modeling has involved binocular viewing conditions, the find-
ing that perceptual space is non-Euclidean extends to monocular 
vision as well (Koenderink et al., 2010).

The modeling presented here also produces an apparent curva-
ture of space when presented with stimuli within a frontoparallel 
plane (right column panels, Figures 3 and 4). Curvature of space 
in the model was a product of RF characteristics (RF diameter 
and dispersion of RF centers) in the encoding neural population. 
With large enough RFs, the modeling shows a region around fixa-
tion where a Euclidean representation of space appears to hold 
to a close approximation (what was called above the “Euclidean 
window”), with non-Euclidean distortions becoming greater as 
stimulus configurations extend to larger eccentricities.

In the model, viewing these distortions in the representation of 
visual space as curvature in depth depends on giving a spatial inter-
pretation to the third dimension of the MDS output. That would be 
analogous to the way that the first two MDS dimensions were given 
a spatial interpretation as the x- and y-directions in the frontopar-
allel plane. All dimensions produced by MDS are mathematical 
abstractions and must be provided with physical interpretations as 
part of the modeling process. The spread of signals into the fourth 
MDS dimension and higher was interpreted as misplacement of 
points (distortion) within the three spatial dimensions.

Horizontal–vertical anisotropies in the representation of space 
occurred under two conditions within the model. First, it occurred 
if the RFs themselves were anisotropic (non-circular; Figure 18). 
Second, it occurred if the distribution of RF centers were anisotropic, 
with a strong bias toward a contralateral placement of the RF cent-
ers (Figure 19). Non-circular RFs have previously been suggested 
as an explanation for anisotropic perception of space seen in psy-
chophysical data (McGraw and Whitaker, 1999). Here we suggest, 
in addition to that, a second possibility, namely, the distribution 
of RF centers. One consequence of vertical/horizontal anisotropy 
is to make the eigenvalues for the first two dimensions markedly 
unequal, as shown in Figures 18 and 19. A similar inequality was 
found in eigenvalues from MDS analysis of psychophysical spa-
tial data (Indow, 1968), providing additional evidence that human 
vision is indeed anisotropic. It is interesting to note that anisotropy 
was also found in the eigenvalues from an identical MDS analysis 
of physiological spatial data in monkeys (see Sereno and Lehky, 
2011). Some forms of amblyopia involve abnormal distortions of 
visual space with an exaggerated degree of anisotropy (Lagrès and 
Sireteanu, 1991). Under the modeling here, that might be attributed 
to disturbances in the RF organization in extrastriate cortex.

In the laboratory, it is often critical to reduce the complexity 
of input, for example to a single stimulus, to begin to understand 
how the visual system operates. While most of our manipulations 
used a single stimulus presentation, we did also briefly consider 
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