
COMPUTATIONAL NEUROSCIENCE

These will, for example, attempt to replicate topologies observed in 
data, and be aimed at attempting to understanding how structural 
networks are related to functional networks (Sporns, 2011).

Despite it being recognized for some time that networks in the 
brain can be both scale-free and small-world in their connectivity 
(Buzsáki, 2006), many simulations, e.g., of cortical neuronal net-
works, have assumed completely homogenous regular or random 
networks. In order to highlight that simple algorithms exist for 
incorporating complex heterogeneity in simulations, in this paper 
we review the most well known ones.

Scientific analysis of the connectivity properties of networks 
is facilitated by a field of mathematics known as graph theory 
(Newman et al., 2006). We therefore also review mathematical 
results that can be readily used to help verify correct implementa-
tion. Many expressions describing statistical properties of networks 
have been obtained by the statistical physics community (Albert 
and Barabási, 2002; Newman, 2003; Boccaletti et al., 2006; Newman 
et al., 2006), but the majority are only approximations or asymp-
totic, even though they are sometimes stated as apparently exact 
results. This can lead to confusion when simulation results are not 
in agreement with the theory.

Our intention is to provide a resource that a reader can use 
to help them confidently write software that produces a network 
which they can state conforms to a given algorithm and/or net-
work properties and statistics, and then adapt as necessary. Such a 
resource is an essential prerequisite for many kinds of simulations, 
such as comparative studies of whether certain network structures 
are essential for aspects of brain functionality.

1 IntroductIon
Recent advances in imaging techniques have led to improved data, 
and increased knowledge, about the connectivity of both structural 
(anatomical) and functional networks in the brain (Bullmore and 
Sporns, 2009). Many studies across a diverse range of anatomical 
parts of the brain and scales have found that networks may exhibit 
complex connectivity properties. By complex, we mean that they 
display inhomogeneous features characteristic of a combination 
of both regularity and randomness – see Bullmore and Sporns 
(2009) for a comprehensive review, and Buzsáki (2006); Sporns 
(2011) for further discussion. These include so-called “scale-free” 
networks (Freeman and Breakspear, 2007) and/or “small-world 
networks” (Bassett and Bullmore, 2006; He et al., 2007).

The feature that distinguishes any network with either (or both) 
of these properties, from ordered or regular networks, and what are 
usually simply called “random networks,” is that scale-free (Barabási 
and Albert, 1999) networks are inhomogeneous in the “degree” of 
nodes (i.e., the number of connections a node has to other nodes), 
and small-world networks (Watts and Strogatz, 1998) are inhomoge-
neous in that the pattern of connectivity between nodes is relatively 
localized. By contrast, regular and random networks are statistically 
completely homogeneous in both properties. Differences like these 
are referred to as differences in network topology.

While such complex network topologies have been studied in neu-
ral models by simulation or in terms of their statistical physics (Roxin 
et al., 2004; Shanahan, 2008), the recent acceleration of experimental 
evidence in favor of their existence in the brain at multiple scales lead 
us to anticipate that many more modeling studies will be  forthcoming. 
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1.1 network models covered In thIs paper
Many well known networks, e.g., the internet, social networks, and 
neuronal networks, are easily characterized as graphs using the ter-
minology and notation of the field of graph theory. Such graphs 
consist of a set of N nodes and K edges.

The first network we describe, that of Erdös and Rényi (1960), 
is extremely well known, and dates back to the 1950s, when con-
siderable research was being carried out into graph theory, and its 
suitability for modeling real world networks. Perhaps it is worth 
remembering that at that time computers were a rare luxury 
when it came to modeling such networks, and even on those 
occasions one was available, its “computing power” was almost 
insignificant compared to modern systems. As a consequence 
much of the modeling was based on relatively small “ordered” 
or “regular” networks. Such networks are rare in the real world, 
and consequently Erdös and Rényi (1959, 1960) produced two 
random graph models, the G(N, M) and G(N, p) models, while 
working separately Gilbert (1959) also produced the G(N, p) 
model.

The G(N, M) model uniformly randomly selects a graph from 
the set of all possible graphs with N nodes and M edges. The G(N, 
p) model connects each distinct node pair with probability p – 
we will consider only this model. What these models show is that 
random networks have a consistently shorter average path length 
than ordered networks.

This was the first major step in solving three main problems in 
using graph theory to model real world complex networks. Two 
other main inconsistencies remained. The second is the tendency of 
nodes in real world networks to form highly interconnected groups, 
or clusters, and yet still retain irregular connectivity patterns. The 
model of Watts and Strogatz (1998) captures these features, and is 
therefore the second network we consider.

The third inconsistency is that neither the Erdös–Rényi network 
nor the Watts and Strogatz (1998) network reproduce networks with 
“hubs” – i.e. a small number of nodes with a much larger than aver-
age number of edges to/from other nodes – or a property known as 
“scale-free.” The model of Barabási and Albert (1999) does, and we 
thirdly consider this model, although note that it does not reproduce 
the small-world property of Watts and Strogatz (1998).

The final specific network that we discuss in full detail is a lesser 
known network generation algorithm – although it is reviewed 
in Boccaletti et al. (2006) – that of Klemm and Eguílez (2002b), 
which leads to networks that are both scale-free, and small-world.

Another class of network structure that is also relatively less 
well known in many application areas for graph theory, but is of 
high relevance for neuroscience modeling (Meunier et al., 2010) 
is modular networks (Girvan and Newman, 2002).

We note that there are many variations that can be added to 
the models reviewed here that may provide networks with desired 
statistics – see, for example Newman et al. (2006) for reviews. In 
particular, we do not discuss weighted networks, as our intention 
is to introduce the basic concepts and ideas.

1.2 organIzatIon of paper
The remainder of this paper is organized as follows. In Section 2 
we introduce and discuss relevant graph theoretic terminology and 
statistics. Next, Section 3 contains descriptions and pseudo-code for 

the four network generation algorithms we are focusing on, as well 
as stating known mathematical results for the resultant networks. 
Example simulations and use of mathematical results are given 
in Section 4. Finally, in Section 5 we briefly discuss other metrics 
and networks types that we have not covered in this paper, as well 
as some of the limitations and caveats of comparing simulated 
networks to data.

2 termInology and commonly used network 
statIstIcs
In this section we discuss three of the most widely known metrics 
used for characterizing network topology: degree distribution, aver-
age path length, and clustering coefficient. This allows us to define 
“small-world” and “scale-free.” Table 1 summarises the mathemati-
cal notation we introduce. Firstly we introduce some terminology 
and discuss the crucial aspect of network directedness.

2.1 dIrected and undIrected networks
Graphs may be directed or undirected. This is important for com-
munication processes between nodes in a network. If a graph’s 
nodes are indexed between 1 and N, each edge is defined as a link 
between a pair of nodes, say i and j. In an undirected graph, the 
ordering of the pair of nodes that define each edge is unimportant: 
if an undirected edge links nodes i and j, then node i can communi-
cate to node j and node j can communicate to node i. In a directed 
graph, the ordering is meaningful: if there exists a directed edge 
from node i to node j, node i can communicate to node j. However, 
unless there exists a corresponding directed edge from node j to 
node i, node j cannot communicate directly to node i. As will be 
discussed later in the paper, this has a considerable impact when 
choosing a domain appropriate model for simulations.

To avoid confusion, in pseudo-code presented below we will 
refer to the connections between node pairs in undirected networks 
as reciprocal edges and to those in directed networks as directed 
edges, with a postfix similar to “from i to j,” so as to clearly define 
direction of possible communication.

2.2 adjacent and neIghborhood
Two nodes in an undirected network are said to be adjacent if an 
edge that links the two nodes exists. In a directed network, node 
i is said to be adjacent to node j (and node j is said to be adjacent 
from node i) if a directed edge from node i to j exists. If there is 
no directed edge from node j to node i, than node j is not adjacent 
to node i.

The neighborhood, A
i
, of node i is defined as the set of all nodes 

j that are adjacent from node i. Each node in a neighborhood, A
i
 

is called a neighbor of node i. There is an important (and domain 
specific) distinction when modeling with directed networks, as the 
neighborhood only includes nodes j when there exists a directed edge 
from node i. That is, j to i only edges are not in the neighborhood A

i
.

2.3 degree, mean degree and degree dIstrIbutIon
The degree of node i in an undirected graph, denoted as k

i
, is the 

number of edges between node i and other nodes in the graph, i.e., the 
size of the neighborhood, A

i
. If a network is directed then each node 

will have both an in-degree and an out-degree. For such networks, 
we introduce the notation k

in, i
 and k

out, i
 to denote these for node i.
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path is defined as the minimum number of edges that must be fol-
lowed from node i to arrive at node j. If we define d

i,j
 = 0 when i = j 

or there is no path between i and j, then this can be expressed as

 

L
N N

di j
j

N

i

N

=
− ==

∑∑1

1 11( )
,,  (2)

where the term N(N − 1) is the total number of node pairs.
Note that this expression is true for both directed and undirected 

graphs, but that since it is always true that d
i,j
 = d

j,i
 for undirected 

graphs, the expression simplifies in this case to
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The topology of a network has a profound effect on the way average 
path length scales with network size, N. For example, for a regular 
ring lattice topology (see Figure 1), L scales linearly, whereas with a 
Barabási and Albert (1999) scale-free network it scales logarithmi-
cally. For the small-world network of Watts and Strogatz (1998), 
the scaling of L with N is dependent on a parameter used in the 
construction of the network – see Section 3.

2.4.1 When is average path length a useful metric?
Average path length can be a somewhat problematic metric, because 
in some contexts it is only meaningful for graphs where all N nodes 
can be reached from any other node in the network. Graphs where 
this is not true are described as not connected. Here we define as zero 
the shortest path between pairs of nodes for which no path exists, 
so that L can be calculated. We do this because all the networks we 
consider are either guaranteed to allow all paths to exist, or produce 
networks where the probability that paths between node pairs do 
not exist is infinitesimal.

The mean degree of an undirected network, k , is simply the 
average of the nodal degrees:

 
k

k

N

i
i

N

= =
∑
1 .

 (1)

For a directed network we have mean in-degree (denoted as kin) and 
mean out-degree (denoted as k out).

Degree distribution refers to the probability P(n) that an arbitrar-
ily selected node in a network has degree n, where n = 1, …, k

max
, 

and k
max

 is the maximum degree. If a network is directed then it 
has in-degree and out-degree distributions. Equivalently, the term 
is used to describe the fraction of nodes in a network with degree, 
n. For empirical networks it can be found as follows. Let k

n
 be a 

count of the number of nodes in a network with degree n, where 
n = 1, …, k

max
. The degree distribution is given by P(n) = k

n
/N.

For networks whose properties are based on theoretical algo-
rithms, P(n) can be derived mathematically, and refers to the prob-
ability that an arbitrary node, out of all possible networks that the 
algorithm can generate, has degree n. The degree distribution of a 
single instance of such a network is only an approximation to the 
mathematical derivation, but is usually more accurate as N increases.

2.4 average path length
Average path length is one of the most commonly used metrics for 
quantifying network topology (Albert and Barabási, 2002). It has 
important implications for the study of how neuronal networks are 
“wired,” as well as their ongoing evolution (Buzsáki, 2006; Achard 
and Bullmore, 2007; Bullmore and Sporns, 2009).

Mathematically, we denote average path length of a graph as L. It 
is defined as the average number of edges that must be traversed in 
the shortest path d

i,j
 between any two pairs of nodes i and j. Shortest 
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Figure 1 | The Watts and Strogatz (1998) algorithm begins with a ring lattice network (A), which is a ring of nodes with edges divided evenly between its 
kL closest left and right neighbors. The lattice is converted to a small-world network (B) by the algorithm of Watts and Strogatz (1998). Here we used pw = 0.05, 
kL = 4, and N = 20.
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For directed networks the local clustering coefficient based on 
outward edges is

c
e

k k
i

j h i

i i

=
−

|{ } |

( )
.,

, ,out out 1

A similar expression may be written for inward edges.
The global clustering coefficient is

C
N

ci
i

N

=
=
∑1

1

.

Note that 0 ≤ ≤1.C

2.5.1 When is clustering coefficient a useful metric?
As stated above, the clustering coefficient of Watts and Strogatz (1998) 
was designed to be used as a statistic for undirected networks. While it 
is mathematically simple to extend it to directed networks the mean-
ingfulness of doing so is less clear, and depends on what is being 
modeled. For example, it might be considered as a form of clustering 
if nodes that are adjacent from node i are likely to have at least one 
directed edge between them. The directed definition we stated above 
is not suited to measuring this, because edges in both directions con-
tribute double a single directed edge. Nor does it take into account 
whether clustering for directed networks should be defined in a way 
that emphasizes the existence of bidirectional links, i.e., where nodes 
i and j have directed edges both from i to j and j to i – see Song et al. 
(2005) for experimental evidence of the existence of such links in the 
rat visual cortex. Resolving the question of the most appropriate defi-
nition of clustering coefficient for such directed networks is beyond 
the scope of this tutorial/review paper – see Fagiolo (2007) for two 
alternative definitions of clustering coefficient for directed networks, 
and associated discussion. See also Rubinov and Sporns (2010).

2.6 small-world networks and proxImIty-ratIo
It is difficult to identify a consensus on how exactly to define “small-
world” for the purposes of classifying a network. As pointed out 
by Newman et al. (2006), “the small-world effect” is a term used to 
describe networks whose average path length is comparable with 
a homogeneous random network, without any regard to cluster-
ing. On the other hand, the specific network generation algorithm 
described by Watts and Strogatz (1998) leads to what they call a 
small-world network when the clustering coefficient is large com-
pared to that of a random network, and the average path length 
is comparable to that of a random network. This definition is sat-
isfactory for that network, because the actual magnitude of the 
clustering coefficient is clearly comparable with a regular network 
that conforms with an intuitive definition of clustering.

However, the definition of Watts and Strogatz (1998) can be 
problematic if one attempts to use it to classify arbitrary networks. 
For example, it is shown below that the clustering coefficient of the 
scale-free network of Barabási and Albert (1999) decreases as the 
network size increases, but that the rate of decrease is slower than 
that of a random network. In this sense, the clustering coefficient 
of the former network is much larger than that of the latter, which 
by Watts and Strogatz (1998) would mean classifying the scale-
free network as “small-world.” This contradicts the fact that the 
clustering coefficient is extremely small relative to regular lattices.

Whether this is a useful approach for other networks depends on 
what is being modeled. If for example the network being modeled 
will potentially contain disconnected node pairs, and disconnected 
nodes affect what is being modeled, it might be helpful to find a 
metric that will identify and assess such a topology. One option 
would be global efficiency or average inverse shortest path – see 
Boccaletti et al. (2006) for a review of such alternative metrics. 
Another alternative is to simply calculate a vector of average path 
lengths for each separate sub network of the overall network.

2.5 clusterIng coeffIcIent
Clustering coefficient is a statistic introduced originally by Luce and 
Perry (1949) that describes the likelihood that any node j in the 
neighborhood, A

i
, of node i, is also adjacent to the other nodes in 

A
i
. It later became a focus point in Watts and Strogatz’ seminal 

work highlighting the important convergence of two factors, short 
average path length, and high clustering coefficient (Watts and 
Strogatz, 1998).

The tendency for a higher likelihood of j being adjacent to h 
when both j and h are in A

i
, compared with when h is an arbitrary 

node selected from all other nodes in the network, is a phenomenon 
which has been noted in many designed and naturally occurring 
complex networks (Milgram, 1967; Watts and Strogatz, 1998). In 
particular, a high level of clustering has been observed in anatomi-
cal connections between brain regions (Buzsáki, 2006; Bullmore 
and Sporns, 2009).

Several methods exist for measuring clustering coefficient. One 
of the first was the “triangles” method (Luce and Perry, 1949), which 
uses the ratio between open and closed triangles to calculate cluster-
ing coefficient. The method of Soffer and Vázquez (2005) was cre-
ated to exclude degree correlation biases. It is important to be aware 
of the different choices available, and to chose the most appropriate 
method for the application – see also (Newman et al., 2002; Barrat 
et al., 2004; Schank and Wagner, 2005).

We shall use the Watts and Strogatz (1998) definition of cluster-
ing coefficient, because it is widely used, intuitive and it can provide 
local as well as global clustering coefficients. With this definition, 
local clustering coefficient, c

i
 for node i is defined as the fraction of 

actual edges between node i’s neighbors, out of all possible edges 
between its neighbors. The (global) clustering coefficient, C , is sim-
ply the average of the N local clustering coefficients. While this 
metric is primarily used only for undirected networks – see Section 
2.5.1 – it is simple to naively extend it to undirected networks by 
considering either only the outward edges or only the inward edges 
of each node to be actual connections. Note that the total number 
of possible edges in i’s neighborhood, A

i
, for undirected graphs is 

k
i
(k

i
 − 1)/2 and for directed graphs is k

out,i
(k

out,i
 − 1).

To write an expression for local clustering coefficient, we intro-
duce the notation {e

j,h
}

i
 to denote the set of all edges that exist in a 

network, amongst nodes in A
i
. The indices j and h are in the ranges 

j = 1,…,k
i
, h = 1, …, k

i
, j ≠ h for undirected networks and j = 1, …, 

k
out,i

, h = 1,…,k
out,i

, j ≠ h for directed networks. The size of the set 
of edges is denoted as |{e

j,h
}

i
|.

For undirected networks the local clustering coefficient is

c
e
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i

j h i
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−
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The second network we consider is the “small-world” network 
of Watts and Strogatz (1998). While the degree distribution of this 
network is similar to that of an Erdös–Rényi random network – in 
the sense that it has a central peak at the mean degree and degree 
probabilities that rapidly decrease for degrees away from the mean, 
which is very dissimilar to scale-free degree distributions – the net-
work’s clustering coefficient is large compared with an Erdös–Rényi 
random network of the same size and mean degree, and is almost 
independent of N, while the average path length increases with 
network size at about the same rate as an Erdös–Rényi random 
network of the same size and mean degree. Thus, the network is 
inhomogeneous in the sense that nodes in the neighborhood of 
any node i are more likely to be in the neighborhood of each other 
than they are in an Erdös–Rényi random network.

The third network is the scale-free network described by Barabási 
and Albert (1999). This network is quite unlike the Erdös–Rényi 
random network because it contains large numbers of nodes with 
small degree, and a small numbers of “hubs,” which are nodes with 
very large degree. Thus the degree distribution is highly inhomo-
geneous. The average path length and clustering coefficient both 
change with the network size in a manner similar to the Erdös–
Rényi random network.

The fourth network (Klemm and Eguílez, 2002b) is less well 
known, but we present it here because it combines the high local 
clustering of the Watts–Strogatz small-world network, and the 
degree distribution of the Barabási–Albert scale-free network, and 
can therefore be described as a scale-free small-world network.

Apart from the Erdös–Rényi random network, which is often 
easily converted to a directed network, the other networks described 
are usually undirected only. But, as discussed, structural and func-
tional brain networks may be either directed or undirected. For 
example, at the scale of communication between individual neu-
rons, a directed network is a good model, because action poten-
tials that initiate in one neuron propagate from that neuron along 
axons, where they cause changes in the state of other neurons via 
synaptic junctions. In contrast, at the scales of imaging techniques 
like fMRI, EEG, and MEG, functional and structural networks can 
be inferred that are best modeled as undirected networks. Nodes 
in these models consist of gross areas of the brain that consist of 
millions of neurons, and edges represent the fact that two way 
communication must exist between those nodes.

We therefore in the pseudo-code describe for each network one 
simple switch that converts the original network to a directed net-
work. This suggested conversion is by no means the only or best 
conversion – we chose our approach for simplicity, minimal change, 
and to ensure the directed network has very close to the same sta-
tistical properties as the corresponding undirected network. In 
particular, we ensure the mean in-degree and mean out-degree of 
the directed networks are both the same as the mean degree of the 
corresponding undirected network.

Each conversion to a directed network is tailored to the network 
topology it is modifying, and employs a variable d that determines 
the probability that modified edges are undirected equivalent, i.e., 
whether they are reciprocal. For example in the case of d = 1, all 
modified edges are reciprocal and as such there is no practical dif-
ference between the directed and the undirected version. However, 
we introduce d so that in general it can be set to less than 1 and 

One suggested approach to avoiding such ambiguity is to 
quantify the “small-world-ness” of a network, as suggested by 
Walsh (1999), and who to this end introduced a metric known as 
 proximity-ratio. This is defined as

 

S

C

L
C

L
r

r

= ,  (4)

where C
r
 and L

r
 are the clustering coefficient and average path length 

of a random network with the same size, N, and mean degree, k, 
of a network with clustering coefficient C and average path length 
L. With these definitions, the Watts and Strogatz (1998) definition 
requires that C Cr�  and L Lr� .  Walsh (1999) defines a network as 
“small-world” when S >> 1, given that S = 1 for a random network, 
and this definition agrees with that of Watts and Strogatz (1998), but 
additionally provides a means of quantitatively comparing networks.

This metric has recently been independently defined in neu-
roscience in order to quantify the “small-world-ness” of neural 
circuits in the brain stem (Humphries et al., 2006), who in contrast 
to Walsh (1999) suggest S > 1 and C Cr/ >1 suffices to identify a 
small-world network.

2.7 scale-free networks
While degree distribution has long been of interest in the study of 
complex networks (Erdös and Rényi, 1960; Price, 1965), it was more 
recently brought to prominence in Barabási and Albert’s (1999) 
ground breaking work on constructing scale-free networks. A scale-
free network has a degree distribution where the probability of a 
node having a given degree has a scale-invariant decay as degree 
grows. That is, it follows a power-law of the form

 P n n( ) ,∼ −g  (5)

where g > 1 is a constant and n = 1, 2,…, N. As is discussed in 
more detail below, such a distribution is very different to that of 
homogeneous random networks.

Scale-free degree distributions appear in complex systems 
throughout the natural world, as well as in designed systems. It 
is not yet clear whether scale-free degree distributions can be 
expected to be prevalent in brain networks (Sporns, 2011) at all 
scales. However, “hubs” and “power-law” degree distributions have 
been observed, and how they develop and their role in brain func-
tion are an important area of research (Buzsáki, 2006).

3 sImulatIng complex braIn networks wIth and 
wIthout small-world and/or scale-free propertIes
In this section we present three very well known networks, and one less 
well known network. Table 2 summarises the parameters that need to 
be selected when generating these networks. The first network, usu-
ally attributed to Erdös and Rényi is probably the single most widely 
used model. It is often referred to as a “random network,” and it sets 
a benchmark for homogeneity, based on three characteristic proper-
ties: (i) its degree distribution symmetrically decays away from the 
mean degree; (ii) its average path length increases as the network size 
increases for a fixed mean degree; and (iii) it has a clustering coefficient 
that reduces as the network size increases for a fixed mean degree.
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There is no known exact result for the average path length of this 
undirected network. A widely known scaling relationship (Watts 
and Strogatz, 1998; Albert and Barabási, 2002) can be used to pro-
vide qualitative guidance on how L changes with the network size 
and mean degree:

 
L

N

k
∼ log

log

( )

( )
.  (7)

This scaling relationship says that for fixed mean degree, the average 
path length is expected to increase logarithmically with network 
size. Less well known is an approximation to the average path length 
due to Fronczak et al. (2004), which states that for N sufficiently 
large and k N� ,
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k
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The Watts–Strogatz clustering coefficient of an undirected Erdös–
Rényi random network is given by (Watts and Strogatz, 1998; Albert 
and Barabási, 2002)

 
C p

k

N
= = .  (9)

3.2 watts–strogatz small-world network
While experimenting with just how much randomness was required 
to substantially reduce the average path length of regular networks, 
Watts and Strogatz (1998) created what has become known as the 
archetypical small-world network. They began by creating an undi-
rected ring lattice network – see Figure 1A. These networks have a 
high clustering coefficient in comparison to Erdös–Rényi random 
networks, i.e., if each node has a degree k

L
, where k

L
 is even, then 

C k kL L= − −0 75 2 1. ( ) /( ) (Barrat and Weigt, 2000).
They then applied a process of random rewiring, whereby 

each edge has an arbitrarily chosen probability, p
w
, of being 

re-wired – see Figure 1B. Note that (i) the algorithm rewires 
only one end of each edge, and traverses edges in a manner that 
ensures each node loses at most half of its edges; and (ii) edges 
are only replaced, not added or removed and therefore the total 
number of edges and the mean degree is unchanged. By vary-
ing p

w
 they were able to show that only a very small number of 

“rewires” is required to produce a low average path length (i.e., 
comparable to that of an Erdös–Rényi random network of the 
same size and mean degree), whilst maintaining a high cluster-
ing coefficient (i.e., comparable to the lattice, and much larger 
than that of an Erdös–Rényi random network of the same size 
and mean degree).

The reason that only a few re-wirings can cause such a dramatic 
change in average path length, and hardly affect clustering coef-
ficient, is that by definition, the clustering coefficient is a global 
metric based on the average of local clustering coefficients. Thus, 
a small number of re-wirings will only affect a small number of 
terms in the average, and not change it significantly. However, each 
term in the average path length is a global metric – the shortest path 

thus result in non-trivial conversions where there exist node pairs 
that may not be connected in both directions; e.g., we have found 
that d = 0.5 does not significantly affect the metrics we discuss 
in this paper. However, otherwise the influence of d on statistical 
parameters is beyond the scope of this paper, as it is our inten-
tion to highlight the need to consider directed networks, without 
regard to the generic properties of the example approach we use to 
illustrate this fact.

Note that the factor d does not have the same influence on all of 
the networks discussed. It is only applied to the “randomization” 
section of the Watts–Strogatz model; as such it will only affect 
edges that have been re-wired, which is generally a very small pro-
portion of total edges; the remainder of the network maintains its 
undirected equivalence.

3.1 erdös–rényI random network
The following algorithm produces a G(N, p) Erdös–Rényi random 
network with mean degree k Np= ,  or if desired, our directed ver-
sion of it, which is designed to mirror as closely as possible the 
directed extensions of the other three networks presented below. 
In this algorithm all possible edges are considered and included in 
the network with probability p.

For: each node i

 For: each node j = i + 1…N

  Set: Chance = a uniform random number between 0 and 1

   If: p > Chance

    If: Undirected

     Create a reciprocal edge between node i and node j

    Else

     Set: Chance = a uniform random number between 0 and 1

     If: d > Chance

      Create a directed edge from node i to node j

      Create a directed edge from node j to node i

     Else

      Create a directed edge from node i to node j

      Set: Node h : uniformly randomly chosen from the set 

of all nodes excluding i and j

      Create a directed edge from node h to node i

     EndIf

    EndIf

   EndIf

  EndFor

 EndFor

3.1.1 Mathematical verification for (undirected) Erdös–Rényi random 
networks
The degree distribution of an undirected Erdös–Rényi G(N, p) 
random network is well known to be the binomial distribution,

 
P n p p n Nn

N n N n( ) ( ) ,.., .( )= ( ) − = −−1 0 1  (6)

The mean degree for a network with m edges is k Np= .  It is quite 
common to use large graphs, i.e., where N is large. In this case it can 
be shown that the degree distribution is well approximated by the 
Poisson distribution, provided p is sufficiently small, i.e., k N� . 
Under these conditions we have
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     Create a directed edge from node j to node i

    Else

     Create a directed edge from node i to node j

     Set: Node h : uniformly randomly chosen from the set 

of all nodes excluding i, j and nodes adjacent to i

     Create a directed edge from node h to node i

    EndIf

   EndIf

  EndIf

 EndFor

EndFor

3.2.1 Mathematical verification for the (undirected) network of Watts 
and Strogatz (1998)
Although the mean degree is exactly k k= L  (Barrat and Weigt, 
2000), no exact expression for the degree distribution for a Watts–
Strogatz small-world network is known, except when p

w
 = 0, in 

which case every node has degree k
L
. An approximation for the case 

of 0 < p
w
 < 1 was calculated by Barrat and Weigt (2000) as
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 (10)

where n
k k= +L L

2 2 1, ,.... Note that k
L
 is assumed to be even and there-

fore the argument in the factorial (n − k
L
/2 − i)! is always integer. 

Like the Erdös–Rényi random network, this degree distribution 
has a peak at the mean degree, and tails off for larger and smaller 
degrees. The network could perhaps therefore be considered homo-
geneous for degree, except for the fact that the construction algo-
rithm does not allow nodes to have a degree smaller than k

L
/2.

There is also no known exact expression for average path length 
of this network. A scaling approximation due to Newman et al. 
(2000) is that
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k u u

u

u u
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where u = p
w
k

L
N. For the case of fixed p

w
 and k

L
, if k NL � ,  and 

N is sufficiently large, then the average path length is expected to 
increase with network size, because the terms involving u converge 
to a constant for large N (Albert and Barabási, 2002).

While clustering coefficient also does not have a known exact 
expression, it was shown by Barrat and Weigt (2000) that it is well 
approximated for large N as
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Since N is assumed to be large, for p
w
 < 1 the term expressed as 

O(1/N) can be ignored.
As discussed in Section 2.6, Watts and Strogatz (1998) eval-

uate their network relative to an Erdös–Rényi type random 
network. Suppose p < 1, and that an Erdös–Rényi random 
network has size N and mean degree k

L
 = k, and a Watts and 

between each pair of nodes. One changed link has the potential 
to significantly change a large number of shortest paths by creat-
ing “shortcuts,” and thus lead to a significant change in average 
path length.

These network characteristics dealt with the second major prob-
lem for the modeling of real world networks as outlined in Section 
1. However, as each “rewire” is random and merely occasionally 
replaces a close neighbor with a long distance one (introducing a 
“shortcut” effect) the reduction of average path length is affected 
without any change to average degree, and without creating degree 
distributions with hubs or the scale-free property. It is noted that 
there is no guarantee that an immediate neighbor will be replaced 
with one more “distant” – i.e., one for which the current shortest 
path is relatively long – it is simply that in a network with k NL � ,  
it is statistically more likely that the new neighbor will be outside 
a node’s neighborhood. It is further noted that the degree distri-
bution will be affected, in correlation with the size of p

w
 (i.e., the 

number of random rewires).
The following algorithm produces the undirected Watts and 

Strogatz (1998) small-world network of size N, or if desired, our 
directed version of it. The parameters are k

L
, the total number of 

edges for each node in the initial network (assumed to be even), and 
p

w
, the rewiring probability. Note that the algorithm ensures each 

edge in the initial ring lattice is considered for rewiring exactly once.

//First create a ring lattice

For: all nodes i = 1…N

 For: all nodes j = i + 1…i+ κ
L
/2

  If: j > N //Make sure forward connects loop round

   Set: j = j − N ;
  EndIf

  If: Undirected

   Create a reciprocal edge between node i and node j

  Else

   Create a directed edge from node i to node j

   Create a directed edge from node j to node i

  EndIf

 EndFor

EndFor

//Second rewire edges randomly with probability p
w

For: all nodes i = 1…N

 For: all nodes l = i + 1…i+ κ
L
/2

  If: l > N //Make sure forward connects loop round

   Set: l = l − N ;
  EndIf

  Set: Chance = a uniform random variable between 0 and 1

   If: p
w
 > Chance

    Set: node j = uniformly randomly chosen from the set 

of all nodes, excluding i and nodes adjacent to/from i 

other than j

     Disconnect: node i and node l

    If: Undirected

     Create a reciprocal edge between node i and node j

    Else

     Set: Chance = a uniform random number between 0 and 1

     If: d > Chance

     Create a directed edge from node i to node j
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it is typical to choose m
o
 = m. One cannot choose m > m

o
 as then 

the first new node introduced cannot be assigned m edges. Thus, 
the initial network size m

o
 determines the maximum mean degree 

of the network. The m existing nodes are chosen with a probability 
proportional to their current degree; the combination of network 
growth with this preferential attachment is what leads to a power-
law degree distribution (Barabási et al., 1999).

Note that Barabási and Albert (1999) do not state how many 
edges the initial network has, however in Barabási et al. (1999) it 
is clear that the initial network has no edges. In order to ensure the 
network never produces isolated nodes, i.e., a path exists between 
every pair of nodes, in our algorithm we begin with all-to-all con-
nectivity, as in Fronczak et al. (2004). Note that typically m << N and 
hence the properties of the final network are almost independent 
of the initial network.

//First create the fully connected initial network

Set: number of edges E = 0

For: all nodes i = 1…m_o

 For: all nodes j = i + 1…m_o

  If: Undirected

   Create a reciprocal edge between node i and node j

   Increment: E

  Else:

      Create a directed edge from node i to node j

      Create a directed edge from node j to node i

   Set: E = E + 2
  EndIf

 EndFor

EndFor

//Second add remaining nodes with a preferential 

attachment bias

For: all nodes i = m_o + 1…N

 Set: Current_Degree = 0

 While: Current_Degree < m

  Set: node j = uniformly randomly chosen from the set of 

all nodes, excluding i and nodes adjacent to i

  Set: b = (number of nodes adjacent to node j ) / E

  Set: Chance = a uniform random number between 0 and 1

   If: b > Chance

    If: Undirected

     Create a reciprocal edge between node i and node j

     Increment: E

    Else

     Set: Chance = a uniform random number between 0 and 1

     If: d > Chance

      Create a directed edge from node i to node j

      Create a directed edge from node j to node i

      Set: E = E + 2
     Else

      Create a directed edge from node i to node j

      Increment: E

      Set: No_Connection = true

      While: No_Connection

        Set: node h = uniformly randomly chosen from the set of 

all nodes, excluding i and nodes adjacent to i (excludes j)

        Set: b = (number of nodes adjacent to node h) / E

Strogatz (1998) network also has size N and parameter k
L
 = k, 

where N >> k. With reference to Eqns (9) and (12), one of the 
two requirements of the Watts and Strogatz (1998) definition 
of a small-world means that

0 75
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1

13
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p O
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As discussed by Watts and Strogatz (1998), the stated condition 
can be shown numerically to be true for a broad range of p

w
 > 0.

Another interesting difference between the clustering coef-
ficients of the two models is that as N increases, the clustering 
coefficient for the Watts and Strogatz (1998) network is almost 
independent of N for p

w
 < 1, while it decreases inverse proportion-

ally with N for the Erdös–Rényi network. This term O(1/N) in Eqn. 
(12) is only significant when p

w
 → 1, in which case both networks 

show the same scaling with N. These facts should be observable 
from any simulation of these networks.

Finally, we remark that despite similar clustering coefficients 
and average path lengths, a Watts and Strogatz (1998) network 
with p

w
 = 1 is not identical to an Erdös–Rényi random network 

with the same size and mean degree k k= , since, for example, the 
Watts–Strogatz algorithm does not allow nodes to exist with degree 
smaller than k/2, whereas that of Erdös–Rényi does.

3.3 barabásI and albert scale-free network
In their ground breaking work Barabási and Albert (1999) noted 
that many “real world” networks such as citation networks, the 
world wide web, and biological networks have hubs, that is, a small 
number of nodes with a very large degree. One possible factor for 
the ubiquity of network topologies that contain hubs is that they 
have been shown to be more robust when faced with non-targeted 
node removal (Barabási and Albert, 1999). It is possible that this 
offers an advantage for such topologies in naturally evolving net-
works. Barabási and Albert (1999) hypothesized that part of the 
reason for the existence of such networks is due to a preferential 
attachment bias, i.e., the “rich-get-richer” phenomena, whereby 
nodes with the largest degree are more likely to attract connec-
tions from nodes being added to the network. Accordingly they 
designed a network generation model which incorporates such a 
bias by assigning each existing node a probability of receiving new 
edges proportional to its current degree.

The resultant network topology follows a power-law degree dis-
tribution like that introduced in Eqn. (5). As such, it has resolved 
the final of the three problems with compatibility between net-
work generation models, and “real world” network topologies, as 
described in Section 1. However, as is shown below, while its average 
path length is comparable to a random network, it does not exhibit 
high local clustering. Nonetheless, as so many naturally occurring 
networks display degree distributions similar to the (Barabási and 
Albert, 1999) model, it remains one of the most well known and 
often used network generation methods.

The following algorithm produces a Barabási and Albert (1999) 
undirected scale-free network of size N, or if desired, our directed 
version of that network. It begins with an initial network of size m

o
 

and then N − m
o
 nodes are introduced sequentially into the network, 

where each node connects to/from m ≤ m
o
 existing nodes. Note that 
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It is not obvious from the stated scaling relationships whether or 
not this network can be classified as a small-world according to the 
criteria of Watts and Strogatz (1998). However, since the clustering 
coefficient decreases with N we can expect that clustering coefficient 
will become close to zero as N increases, and compared to a lattice 
or the Watts and Strogatz (1998) network for small p

w
, it exhib-

its minimal clustering. Numerical calculations of the proximity-
ratio – see Section 2.6 – agree with this; as we illustrate below, the 
proximity-ratio is of the order of 5−10 for this network. While, in 
comparison with highly clustered networks, this is not sufficiently 
large to warrant classification as a small-world network, it is dif-
ficult to unambiguously classify the network as small-world or not.

3.4 klemm and eguílez small-world-scale-free network
The final model we will be considering is the undirected network 
creation algorithm of Klemm and Eguílez (2002b). We chose this 
model for two reasons. Firstly, it manages to combine all three 
properties of many “real world” irregular networks – it has a high 
clustering coefficient, a short average path length (comparable with 
that of the Watts and Strogatz (1998) small-world network), and a 
scale-free degree distribution. Indeed, as can be seen in Figure 6, 
average path length and clustering coefficient can be tuned through 
a “randomization” parameter, m, in a similar manner to the param-
eter p

L
 in the Watts and Strogatz (1998) small-world network.

Secondly, the algorithm employs a list of “active” nodes in order 
to ensure a preferential attachment model. It is a simple matter to 
extend this approach so that the small-world and scale-free topol-
ogy of the Klemm and Eguílez (2002b) network is maintained, 
while catering for multiple node “types.” All that is required is the 
addition of one list of active nodes for each additional type of node. 
This may be of particular use when modeling cortical networks. 
For example, it would allow the modeler to easily define excitatory 
and inhibitory node types, and vary the percentage of each, without 
significantly affecting average measurements in any of the three 
metrics we discuss here.

The following algorithm produces an undirected Klemm and 
Eguílez (2002b) network of size N, or if desired, our directed version 
of it. It begins with the creation of a fully connected network of 
size m. The remaining N − m nodes in the network are introduced 
sequentially along with edges to/from m existing nodes. The algo-
rithm is very similar to the Barabási and Albert (1999) algorithm, 
but as mentioned above, a list of m “active nodes” is maintained. 
This list is biased toward containing nodes with higher degrees.

The parameter m is the probability with which new edges are 
connected to non-active nodes. When new nodes are added to the 
network, each new edge is connected from the new node to either a 
node in the list of active nodes or with probability m, to a randomly 
selected “non-active” node. The new node is added to the list of 
active nodes, and one node is then randomly chosen, with prob-
ability p

d
, for removal from the list, i.e., deactivation. This choice 

is biased toward nodes with a lower degree, so that the nodes with 
the highest degree are less likely to be chosen for removal.

The combination of preferential attachment with the random 
selection of nodes outside the active nodes for new edges leads 
to a network that for p not too close to zero or one, is scale-free, 
has high clustering and a short average path length. When p = 0, 
the absence of edges to deactivated nodes ensures clustering is 

        Set: Chance = a uniform random variable between 0 and 1

        If: b > Chance

         Create a directed edge from node h to node i

         Increment: E

         Set: No_Connection = false

        EndIf

       EndWhile

      EndIf

     EndIf

    EndIf

   EndWhile

EndIf

3.3.1 Mathematical verification for the (undirected) network of 
Barabási and Albert (1999)

The Barabási and Albert (1999) network produces a network 
with the following approximate probability distribution for the 
degrees within the network:

 
P n

m

n
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1
2
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This power-law relationship conforms with the definition of scale-
free introduced in Eqn. (5), with g = 3. However, that this is only 
an approximation to the degree distribution should be clear if one 
attempts to sum up P(n) for all n, since the result will not be unity. 
An exact result for the degree distribution due to Dorogovtsev et al. 
(2000) is that
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Since the algorithm always adds m links at each of N − m
o
 steps, the 

total number of (undirected) links in the final network is always 
m m m N mo o o( )/ ( ),− + −1 2  and therefore the mean degree is

k
m m m N m
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For large N and small m
o
 we can write

k m� 2 .

No exact expression for the average path length is known, 
however, Bollobás and Riordan (2004) derived the scaling 
L N N∼ ( ( )/ ( ( ))),log log log  and Fronczak et al. (2004) derived the 
approximate expression
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The average path length is therefore expected to increase with net-
work size.

The clustering coefficient is not known exactly. It was shown by 
Albert and Barabási (2002) that the clustering coefficient decreases 
with N, but less slowly than it decreases for an Erdös–Rényi net-
work. More recently, Klemm and Eguílez (2002b) derived the fol-
lowing scaling relationship
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m N
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 (17)
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      Create a directed edge from node j to node i

     EndIf

     Set: Connected = true

    EndIf

   EndWhile

  EndIf

 //Replace an active node with node i. Active nodes with 

lower degrees are more likely to be replaced.

Set: node i as an Active_Node

 While: node j is not chosen

  Set: j = uniformly randomly chosen node from Active_Nodes

  Set: p
d
 = (1 / k

j
) / sum(1 / k

j
)

  Set: Chance = a uniform random number between 0 and 1

  If: p
d
 > Chance

   Set: node j as chosen

   Remove: node j from Active_Nodes

  EndIf

 EndWhile

EndFor

//Third, if directed, use d to set undirected equivalency

For: all nodes i = 1…N

 For: all nodes j = the set of all nodes adjacent to node i

  Set: Chance = a uniform random variable between 0 and 1

  If: d > Chance

   Set: node h = uniformly randomly chosen from the set of 

all nodes, excluding i and nodes adjacent to i

   Disconnect: directed edge from node i to node j

   Connect: directed edge from node i to node h

  EndIf

 EndFor

EndFor

3.4.1 Mathematical verification
The undirected network of Klemm and Eguílez (2002b) is very 
closely based on the Barabási–Albert network. It therefore has the 
same degree distribution by design, with k m� 2 ,  and Eqn. (13) 
applies to this network for P(n).

Klemm and Eguílez (2002b) state that average path length is 
proportional to log(N) in their network. This was not derived, but 
does fit the data, and we can write

 L N∼ log( ).  (18)

While Klemm and Eguílez (2002b) derived an expression for clus-
tering coefficient for the extreme cases of m = 0 (which is the same 
as the Barabási and Albert network) and m = 1, there is no known 
relationship for general m.

4 example network  sImulatIons and verIfIcatIon
4.1 undIrected networks
We present in Figures 2–6 examples that illustrate how the math-
ematical results presented above can be used to verify simulation 
based data.

In Figure 2 it is clear that the mathematical expressions for 
the degree distribution provide an excellent match to the relative 
frequencies of the occurrences of each degree from even a single 
simulation of each network. We have chosen N = 5000 as this is 
sufficiently large for the match to be good. Much smaller N will not 

very high, because all active nodes are guaranteed to have all-to-
all connectivity. This in turn means a relatively long average path 
length, because the process of deactivating and adding new nodes 
creates a network similar to a regular lattice. In contrast, when 
p = 1, the network is equivalent to that of Barabási and Albert 
(1999), and thus has relatively low clustering, but an average path 
length comparable with a random network. Intermediate values of 
p ensure enough randomly chosen edges are created to reduce the 
average path length to be comparable to a random network, while 
clustering remains significantly higher than a Barabási and Albert 
(1999) network. Unlike the Watts and Strogatz (1998) algorithm, 
preferential attachment when edges are randomly chosen ensures 
the degree of nodes can grow very large, just like in the Barabási 
and Albert (1999) network.

p
d
 = the probability a node will be deactivated

k
j
 = the degree of node j

//First create the fully connected initial network, and 

add its nodes to active nodes

For: all nodes i = 1…m_

 Add: i to Active_Nodes

 For: all nodes j = i+1…m

  If: Undirected

   Create a reciprocal edge between node i and node j

  Else:

      Create a directed edge from node i to node j

      Create a directed edge from node j to node i

  EndIf

 EndFor

EndFor

//Second, iteratively, connect remaining nodes to active 

nodes or a random node with probability m, then remove 

one active node

For: all nodes i = m + 1…N

 For: all nodes j in Active_Nodes

  Set: Chance = a randomly chosen continuous variable 

between 0 and 1

  If: m > Chance or the set of Deactivated_Nodes = 0

   If: Undirected

    Create a reciprocal edge between i and node j

   Else:

    Create a directed edge from node i to node j

    Create a directed edge from node j to node i

   EndIf

  Else:

   Set: Connected = false

   While: Connected == false

Set: node j = randomly chosen from the set of all 

Deactivated_Nodes

    Set: Chance = a uniform random number between 0 and 1

    Set: E = sum(Degrees of all Deactivated_Nodes)

    If: k
j
 / E > Chance

     If: Undirected

      Create a reciprocal edge between i and node j

     Else:

      Create a directed edge from node i to node j
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produce such a good outcome, but if many  independent repeats 
of each network were produced, and the resulting degree distri-
butions ensemble averaged, we would also expect a good match 
for smaller N. The scale-free behavior of the Barabási and Albert 
(1999) and Klemm and Eguílez (2002b) networks is clear from 
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Figure 2 | Degree distributions of each undirected network, and 
out-degree distribution for our directed versions of the Watts and 
Strogatz (1998) and Barabási and Albert (1999) networks with d = 0.5. 
Markers show the relative frequency of occurrence of each degree based on a 
single simulation of each network with size N = 5000. Lines show the 
mathematical expressions for the degree distribution, P(n), given by Eqns (6), 
(10), and (14). For the Erdös–Rényi undirected network, k = 10 and thus 
p = 0.002. For the Watts–Strogatz undirected network, kL = 10 and pw = 0.1. 
For the Barabási–Albert undirected network, m = mo = 5. For the Klemm–
Eguílez undirected network, m = 0.1 and m = 5. The same parameters were 
used for the directed versions of the Watts–Strogatz and Barabási–Albert 
networks. For the directed networks d = 0.5.

1000 2000 3000 4000 5000
2

3

4

5

6

7

8

Network size, N

A
ve

ra
ge

 P
at

h 
Le

ng
th

, L

 

 

ER sim
ER approx
WS sim
WS scaling
BA sim
BA approx
KE sim
KE scaling
WS directed
BA directed

Figure 3 | Average path length as a function of network size, N. Markers 
show results for the average path length based on a single simulation of each 
network. Lines show the mathematical expressions for the average path 
length, L, given by Eqns (7), (11), (16), and (18). Note that the scaling 
relationships have been multiplied by a scalar chosen so that they align with 
the simulation data points at N = 5000. For the Erdös–Rényi undirected 
network, k = 10 and thus p = 10/N. For the Watts–Strogatz undirected 
network, kL = 10 and pw = 0.1. For the Barabási–Albert undirected network, 
m = mo = 5. For the Klemm–Eguílez undirected network, m = 0.1 and m = 5. 
The same parameters were used for the directed versions of the Watts–
Strogatz and Barabási–Albert networks. For the directed networks, d = 0.5.
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Figure 4 | Clustering coefficient as a function of network size, N. 
Markers show results for the clustering coefficient based on a single 
simulation of each network. Lines show the mathematical expressions for the 
clustering coefficient, C , given by Eqns (9), (12), and (17). Note that the scaling 
relationship of (17) was multiplied by a scalar chosen so that it aligns with the 
simulation data points at N = 5000. For the undirected Erdös–Rényi network, 
k = 10 and thus p = 10/N. For the undirected Watts–Strogatz network, kL = 10 
and pw = 0.1. For the undirected Barabási–Albert network, m = mo = 5. For the 
Klemm–Eguílez network, m = 0.1 and m = 5. The same parameters were used 
for the directed versions of the Watts–Strogatz and Barabási–Albert networks. 
For the directed networks, d = 0.5.
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Figure 5 | Proximity-ratio for a single simulation of three undirected 
networks, as a function of network size, N. For the undirected Erdös–Rényi 
network, k = 10  and thus p = 10/N. For the undirected Watts–Strogatz 
network, kL = 10 and pw = 0.1. For the undirected Barabási–Albert network, 
m = mo = 5. For the undirected Klemm–Eguílez network, m = 0.1 and m = 5.
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In Figure 4, there is an excellent match between data for C  
from a single simulation and the mathematical expressions for the 
Erdös–Rényi and Watts–Strogatz networks. The clustering coeffi-
cient for the Barabási–Albert model also clearly decreases with N 
as suggested by the scaling relationship of Eqn. (17), and slightly 
more slowly with N than it does for the Erdös–Rényi network, as 
pointed out by Albert and Barabási (2002). The scaling relationship 
was fitted in the same way as for Figure 3.

The small-world property is evident for the choice of p
w
 for the 

Watts–Strogatz network and m for the Klemm–Eguílez network. 
Although the average path length is larger in the Watts–Strogatz 
case than it is for an Erdös–Rényi network, it is significantly smaller 
than the path length for the deterministic lattice generated at the 
start of the Watts–Strogatz algorithm, which is L = 0.75(k

L
 − 2)/

(k
L
 − 1) = 2/3. The clustering coefficient for both small-world 

networks on the other hand, is close to 0.5, which is significantly 
larger than that of the Erdös–Rényi and Barabási–Albert models. 
Moreover, the clustering coefficient does not decrease with increas-
ing network size for the Watts–Strogatz and Klemm–Eguílez mod-
els, unlike the Erdös–Rényi and Barabási–Albert networks.

Figure 5 demonstrates that the Barabási–Albert network is not 
small-world in the sense of high clustering. This figure shows the 
proximity-ratio for the three complex networks, and it is clear that 

the fact that the degree distribution is approximately a straight 
line that decreases from small n to large n on the log–log axes of 
the figure.

Note that for the scale-free networks at large n there is a clear 
range of values of the degree probabilities that are never achieved. 
This is simply due to the finite size (N = 5000) of the network and 
the logarithmic scale of the plot. The smallest degree probabilities 
shown are at the value 1/5000, which occurs when there is only 
one node with degree n. The second smallest degree probability 
is 2/5000, which occurs for nodes with degree two. In general, the 
degree probabilities are discretized in units of 1/N, and this dis-
cretization is most apparent on a logarithmic axis at small prob-
abilities. The deviation of the degree distribution from the straight 
line predicted for the scale-free networks at this point are also due 
to the finite size of the network.

In Figure 3, the approximate results for L provide an excellent 
fit to the data, but the scaling relationships clearly do not align so 
well for every value of N. This is not due to the fact that we have 
not averaged over many repeats at each value of N, but because 
scaling relationships are not approximations in an absolute sense 
– they instead indicate a general trend (e.g., proportionality) in 
how one variables changes as another changes. The utility should 
however be clear, because in this case they illustrate how the aver-
age path length is expected to change with network size N, and the 
simulation data clearly shows the correct qualitative behavior. In 
all cases, the average path length increases with N, as predicted by 
the mathematical expressions. Note that we have multiplied each 
scaling relationship by a constant so that they align with the data 
points at N = 5000. Other choices, such as a best fit to all data 
points could also be used.
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Figure 6 | Normalized clustering coefficient and normalized average 
path length as function of pw for the Watts and Strogatz (1998) 
undirected network, with kL = 10 and N = 1000 and as a function of M for 
the Klemm and eguílez (2002b) network with m = 5 and N = 1000. The 
normalization is relative to the clustering coefficient and average path length 
at pL = 0 or m = 0, i.e., the case of no random re-wirings in each network. 
Simulation data is averaged over 100 independently generated networks.

Table 1 | Quick reference guide for mathematical notation used to 

describe graphs and associated statistics.

Variables Definitions

N An integer representing the total number of 

 nodes in a network.

Node id, i, j Integers in the range 1,…, N, representing 

 unique indices for nodes within a network.

Degree, ki Number of edges from node i to other nodes 

 in an undirected network.

In-degree, kin,i Number of edges to node i from other nodes 

 in a directed network.

Out-degree, kout,i Number of edges from node i from other 

 nodes in a directed network.

Mean degree, k  Average number of edges for a node to/from 

 other nodes in a network. Based on ki for 

 undirected networks, or on either kin,i or kout,i 

 in directed networks.

Degree distribution, P(n) Describes the fraction of nodes in a network 

 with each degree n = 1,…, kmax, where kmax is 

 the maximum degree.

Total degree, K Total number of edges between all nodes in 

 a network.

Shortest path, di,j The minimum number of edges that needs 

 to be followed from node i to arrive at node j.

Average path length, L The average of the shortest paths.

Neighborhood, Ai For each node i, this is the set of all nodes for 

 which an edge exists from node i.

Local edges, {ej,h}i The set of all edges that exist in a network, 

 amongst nodes in Ai.

Local clustering coefficient, ci The local clustering coefficient of node i.

Clustering coefficient, C  Global clustering coefficient in a network.
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Figure 7 | illustration of the undirected random network generated by the algorithm of erdös and rényi (1960) with N = 50 and p = 0.2 (so that k =10). 
Nodes with higher degree are placed centrally, and those with lower degree away from the center.

Table 2 | Quick reference guide for parameters within the discussed 

network generation algorithms.

Variables/acronyms Definitions

Probability p The probability that an edge exists between any 

 two nodes in an Erdös–Rényi network.

Probability pw The probability that a rewire will occur during the 

 Watts and Strogatz (1998) model creation.

Initial degree kL The degree of every node in the initial lattice in the 

 Watts and Strogatz (1998) model creation. Must 

 be an even integer.

Nodes mo The number of nodes in the initial network for the 

 Barabási and Albert (1999) model.

Nodes m The number of nodes each “new” node is initially 

 connected to for the Barabási and Albert (1999) 

 and Klemm and Eguílez (2002b) models.

Probability m The probability that a node will be chosen for 

 reconnection for the Klemm and Eguílez (2002b) 

 model.

Probability d The probability that a node pair will have directed 

 edges in both directions in the directed network  

 constructed algorithm.

this metric is significantly larger than unity for the Watts–Strogatz 
and Klemm–Eguílez models, and indeed grows with N for these 
models, but is relatively small for the Barabási–Albert network, so 
that according to Walsh (1999), it is not a small-world.

Figure 6 replicates the form of Figure 2 from Watts and Strogatz 
(1998), and Figure 1 from Klemm and Eguílez (2002b) on the same 
axes, and illustrates how the average path length and clustering 
coefficient change with p

w
 and m respectively, relative to p

w
 = 0 and 

m = 0. In this case we averaged both statistics over 100 different 
networks of each type. It is very interesting that the normalized clus-
tering coefficient for the Klemm–Eguílez network follows precisely 
the same curve as that of the Watts–Strogatz model. The average 
path length is not the same for the two networks, but both show 
the characteristic small-world behavior – the average path length 
rapidly decreases as the probability of randomly reconnecting edges 
(p

w
 or m) increases. It is also clear, given the less-smooth average 

path length curve, that in the Klemm–Eguílez network there is 
more variance between simulations.

Figures 7–10 show examples that visually illustrate the connec-
tivity amongst each of the four undirected networks. These were 
created from simulation data using a “force-based” graph method 
similar to that of Fruchterman and Reingold (1991).
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works are characterized by identifiable clusters or modules of nodes, 
within which there are relatively dense numbers of edges. In contrast, 
the proportion of edges between these modules are relatively low. One 
characteristic of modular networks, as pointed out by Meunier et al. 
(2010), is that while they are usually highly clustered small-world 
networks, not all small-world networks are modular networks.

There is no canonical algorithm for producing modular net-
works, and we therefore do not describe pseudo-code or simulation 
results for such networks. Modular networks can however be con-
structed by adapting other network algorithms for the modules. For 
example, the modular networks described by Girvan and Newman 
(2002) can be constructed by adapting the Erdös–Rényi network. 
Two different edge probabilities, are required: one for edges between 
nodes within a module, and another for edges between nodes in 
different modules. The first probability (for an intra-module) is 
higher, to ensure the network has higher connectivity within the 
modules than between modules. Another kind of “hierarchical” 
modular network was described by Ravasz and Barabási (2003).

4.2 dIrected networks
Also shown in Figures 2–4 are the out-degree distribution, average 
path length, and clustering coefficient based on a single simulation 
for the example directed versions of the Watts–Strogatz and Barabási–
Albert models. For these networks we set our parameter d = 0.5, which 
means that about half the edges are going to/from separate nodes.

There is clearly little difference between the general behavior of the 
metrics for the undirected and directed versions. Thus, our simula-
tions verify that our directed networks do maintain the same mean in-
degree and out-degree as the corresponding undirected network. They 
also show that with the choice of d = 0.5, that the shown metrics are 
almost identical to those for the corresponding undirected network.

5 dIscussIon
5.1 modular networks
We mentioned in Section 1.1 that modular networks are a class of 
network topology of particular relevance to neuroscience. The reasons 
for this have been recently reviewed by Meunier et al. (2010). Such net-

Figure 8 | illustration of the undirected small-world network generated by the algorithm of Watts and Strogatz (1998) with N = 50, pw = 0.15 and kL = 10. 
Nodes with higher degree are placed centrally, and those with lower degree away from the center.
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is that if the conceptual model is an undirected network, then so 
should be the simulated model; if it is directed, then the simula-
tion should be directed.

5.3 tunIng structural parameters
We mentioned above the tunability of the clustering coefficient and 
average path length of the Watts and Strogatz (1998) and Klemm and 
Eguílez (2002b) models. These, of course, are not the only models 

5.2 dIrected networks
We emphasize that our proposed directed networks are certainly 
not the only possible way of implementing directed networks 
with the small-world and scale-free properties. Many algo-
rithms for producing directed networks exist in the literature, 
e.g., Dorogovtsev et al. (2000) and Klemm and Eguílez (2002a) 
describe directed scale-free networks based on algorithms very 
similar to that of Barabási and Albert (1999). The main message 

Figure 9 | illustration of the undirected scale-free network generated by the algorithm of Barabási and Albert (1999) with N = 50 and m = mo = 5 (so that 
k   10). Nodes with higher degree are placed centrally, and those with lower degree away from the center. Note the small number of high-degree “hubs.”
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social networks – or negatively correlated – i.e., disassortative mix-
ing, which is usually the case in technological networks. Boguñá 
and Pastor-Satorras (2003) go on to generalize the idea of assign-
ing a fitness level to nodes – see e.g., Caldarelli et al. (2000) – to 
a hidden variable framework, which they use to provide models 
for the creation of networks with tunable degree correlations and 
clustering coefficients.

There are many aspects to the study of complex brain net-
works that we have not discussed here, such as the relation-
ship between structure and function (Bullmore and Sporns, 
2009), modeling using weighted networks (Barrat et al., 2004; 
Rubinov and Sporns, 2010), and the dynamical processes that 
can occur on networks (Hütt and Lesne, 2009). Moreover, com-
plex networks are not necessarily static, and can vary adaptively 
and evolve over time (Kozma and Barrat, 2008; Portillo and 
Gleiser, 2009).

5.5 comparIson of sImulated networks wIth data
Modelers are encouraged to use the networks described in this 
paper as a starting point, and to adapt them using variations that 
are informed by specific data. However, this comes with the caveats 
that (i) it is possible that some dynamical process that takes place 
within specific networks in the brain may rely on very precise con-
nectivity that a model network that is only statistically similar may 

that can produce tunable characteristics. For example, the model 
of Bianconi and Barabási (2001) uses a “fitness” model to assign 
levels of  “connectability” to nodes. The distribution function for this 
factor is used in conjunction with the Barabási and Albert (1999) 
preferential attachment model to vary the slope of the degree dis-
tribution, and thus this more flexible model could be preferable for 
neuroscience simulations where scale-free degree distributions are 
required. Similarly, the network of Albert and Barabási (2000) and 
the directed network introduced by Klemm and Eguílez (2002a) also 
produces a scale-free degree distribution with an easily tunable slope.

More generally, simple algorithms exist for producing networks 
with arbitrarily specifiable degree distributions (Molloy and Reed, 
1995). Such networks are random in the sense that many differ-
ent networks with the same degree distribution can exist, and the 
algorithm produces a single instance from the ensemble of possible 
networks. See also Newman et al. (2001), who performed compre-
hensive analysis of generating functions able to produce networks 
with arbitrary degree distributions, both undirected and directed.

5.4 other propertIes of networks
Boguñá and Pastor-Satorras (2003) discuss the interesting phe-
nomenon of degree correlation. This is a metric that describes if 
the respective degrees of two connected nodes are either positively 
correlated – i.e., assortative mixing, which is usually the case in 

Figure 10 | illustration of the undirected small-world and scale-free network generated by the algorithm of Klemm and eguílez (2002b), with N = 50, m = 5 
(so that k   10) and M = 0.01. Nodes with higher degree are placed centrally, and those with lower degree away from the center. Note the small number of 
high-degree “hubs.”
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be incapable of reproducing; and (ii) that it is not by any means 
guaranteed that any given algorithm will reproduce precisely all 
properties, even on average, of experimentally obtained data on 
the connectivity of neurobiological networks. For example one 
can produce a graph that is statistically the same in terms of some 
metrics, but differs in others that are perhaps not relevant to the 
process being studied.

Simulated networks can however still be useful in studying typi-
cal processes within the brain in many ways. For example, if one 
can identify relevant features, they may be able to ensure their 
algorithm produces graphs that match these. Another example is 
that a useful approach to understanding the complex nature of 
brain networks is to compare metrics produced from empirical 
data with “null-hypothesis” networks. In this paper we used the 
proximity-ratio measure of “small-world-ness” – this approach 

is based on using the Erdös–Rényi G(N, p) network as a “null-
hypothesis” network. As pointed out by Sporns (2011), the latter 
network is by no means the only network that might be specified 
for the null-hypothesis. A random network with an arbitrary degree 
distribution but no degree correlations might be generated using 
the approach of Molloy and Reed (1995) and used as a comparison 
with an empirical network with the same degree distribution but 
differences in other metrics.
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