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to as a “chunk,” and sequences of chunks generate diverse “motifs.” 
Owing to the recursive structure and branching of the automaton 
describing their songs, the Bengalese finch is considered to gener-
ate an almost infinite number of different motifs. The complexity 
of this song structure is in contrast to the linearity of the songs 
produced by the Zebra finch, which is nonetheless a close relative 
of the Bengalese finch (Zann, 1996).

The acquisition and production of songs is made possible by 
a group of discrete brain nuclei and their connecting pathways, 
referred to as the song system (Figure 2; Nottebohm et al., 1976; 
Nottebohm, 2005). Within the song system, the HVC (used as a 
proper name, not as an abbreviation) plays a key part as a premotor 
nucleus generating temporal patterns of songs. In electrophysiolog-
ical studies of the Zebra finch, the activation pattern of each HVC 
neuron was found to be highly context-dependent, corresponding 
to a particular moment in a song motif (Fee et al., 2004). Moreover, 
a recent study showed that cooling the HVC results in slowing song 
speed with preserved acoustic structure, whereas cooling the RA, a 

IntroductIon
Due to its similarity to human speech in being a learned complex 
sequential behavior, birdsong has come to be a widely studied 
topic in neuroscience. The Bengalese finch in particular learns 
highly complex songs that have syntactical structure, providing 
researchers with an excellent biological model for studying this 
phenomenon (e.g., Okanoya, 2004; Sakata and Brainard, 2006, 
2009). Figure 1 shows a typical sound spectrogram of the song 
sequences of the Bengalese finch. The song consists of several varie-
ties of “syllables,” the smallest units of a birdsong. Each syllable can 
be identified as a discrete element on a sound spectrogram and is 
denoted by a letter of the alphabet, for example “a,” “b,” and “c.” 

Syllable-to-syllable transitions follow rules that can be described 
using a finite state automaton which we refer to as “syntax.” 
Normally, the automaton describing a Bengalese finch’s song has 
probabilistic branching and recursive connections (Honda and 
Okanoya, 1999; Okanoya, 2004; Sakata and Brainard, 2006). A 
series of syllables without branching constitutes what is referred 
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downstream motor nucleus, does not affect temporal structure of 
song (Long and Fee, 2008). This evidence strongly suggests that the 
HVC is a temporal pattern generator for song syllable sequences.

Due to its strong premotor activity, the nucleus interfacialis 
(NIf), one of the upstream inputs to the HVC, has been considered 
to play an important role in the generation of birdsong (Okanoya, 
2004). One common belief regarding its function is that the NIf is 
a major source of auditory input to the HVC (Nottebohm et al., 
1976; Coleman et al., 2007; Roy and Mooney, 2009).

Although lesions in the NIf do not affect generation of songs 
in the Zebra finch (Cardin et al., 2005), in the Bengalese finch the 
NIf is considered to be one of the essential regions that gener-
ate complexity in songs. While lesions of the NIf in the Bengalese 
finch reduce the branching of syllable-to-syllable transitions, syl-
lable sequences still correspond to paths on the original diagram 
(Hosino and Okanoya, 2000). The reduction of complexity occurs 
only in birds that sing songs that are complex, and not in birds that 
sing simple songs. Based on this observation, it is inferred that the 
NIf, in cooperation with the HVC, provides complexity for the 
generation of songs.

However, it remains unclear what types of interactions between 
the HVC and the NIf have the potential to produce complex syntac-
tical songs. That these questions have not yet been answered is a con-
sequence of the technical difficulties associated with  investigating 

the actual interactions between brain regions of  singing birds. In 
order to overcome these difficulties, computational modeling has 
been used in several studies of neural mechanisms in songbirds. 
For example, Fee et al. (2004) proposed a model in which the HVC 
generates temporal patterns of songs through cooperation with the 
RA. In this model, it is assumed that temporal patterns of songs are 
represented as feedforward activities of the HVC, the role of which 
is analogous to a recording “tape.” Doya and Sejnowski (1995), 
Fiete et al. (2004, 2007), and Jin et al. (2007) also developed mod-
els based on a similar assumption. Although the design of these 
models is sufficient for explaining the song generation of the Zebra 
finch, the songs of which are very linear, they are not sufficient to 
explain the song generation of the complex syntactical song of the 
Bengalese finch.

In order to investigate the mechanism of song production in the 
Bengalese finch, Katahira et al. (2007) recently proposed a compu-
tational model, in which complex syntactical sequences with proba-
bilistic branching can be produced by simple interactions between 
deterministic spike propagations and random noise. Jin (2009) 
also proposed a model based on the similar idea of a “branching 
chain” with random noise. These models mainly focused on the 
microcircuit level of the HVC, and successfully showed that spikes 
can stably propagate through branching chains of neurons in coop-
eration with inhibitory interneuron and random noise (Katahira 
et al., 2007; Jin, 2009).

Based on a similar idea of the interaction between deter-
ministic dynamics and random noise, but using firing rate level 
abstraction, we also developed a macro level neural network 
model of HVC–NIf interaction of the song production in the 
Bengalese finch (Yamashita et al., 2008). In this system, the HVC 
was modeled by a recurrent neural network (RNN) that learns 
to generate temporal patterns of song sequences and the NIf was 
modeled as a random noise generator which provides stochas-
ticity for branching of song sequences. The model successfully 
reproduced song sequences obtained from real Bengalese finches 
and mimicked developmental learning process of real young birds 
(Yamashita et al., 2008).

In the current study, we test our previously proposed idea of 
the functional role of NIf–HVC interaction, through a compari-
son between a biological experiment and a computational model 
simulation. The focus of the current model is on how complex 
syntactical songs of the Bengalese finch can arise from dynamics of 
neural connections representing groups of neurons in discrete brain 
nuclei. The model of neurons is a conventional firing rate model, 
in which each unit’s activity represents the average firing rate over 
a group of neurons. Due to its level of abstraction, consistency in 
physiological details, such as features of neural activity at the level of 
individual neurons and characteristics of individual synapses, were 
not considered. However, the level of abstraction used in our model 
could be suitable for investigating macro level dynamics of brain 
regions through direct comparison with behavior of actual animals.

Data of the biological experiment was obtained from a distinct 
study conducted by the same authors (Okumura et al., 2007a). In 
this biological experiment, activity of the NIf is reversibly inhibited 
and changes of songs induced by this pharmacological inhibition 
were observed. The plausibility of the model is tested by the com-
parison between the changes in the songs of actual birds that are 

FIgure 1 | Sound spectrogram of the song syllable sequence of the 
Bengalese finch. A song consists of several repetitions of an introductory 
syllable followed by a syllable sequence. Each syllable is identified as a 
discrete element in the sound spectrogram and is denoted by a letter of the 
alphabet. Songs are described in terms of sequences of syllables. The syllable 
“a” is the introductory syllable of this song.

FIgure 2 | Neural basis of birdsong. The NIf–HVC–RA pathway acts as the 
song production pathway (for clarity, the pathway responsible for song 
learning is not highlighted). LMAN, lateral magnocellular nucleus of anterior 
nidopallium; DLM, medial nucleus of the dorsolateral thalamus; VTA, ventral 
tegmental area.
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using a PC-based multi-channel triggering hard disk recording 
system (Avisoft Recorder; Avisoft Bioacoustics, Berlin, Germany). 
Acoustic features of each song (syllables) were preserved. Observed 
changes were limited to their song syntax, which is the target of 
the current analysis.

Recorded songs were described by sequences of letters through 
sound spectrogram analysis. Changes in song syntax were analyzed 
by counting the occurrence frequencies of letter blocks in each 
song sequence. We use the term “letter block” to refer to strings of 
syllables, for example a three letter block “abc,” four letter block 
“abcd” and so on. The distribution of letter block occurrence prob-
abilities reflects distinguishing features of each song. In a previous 
study, it was found that the songs of the Bengalese finch can usu-
ally be satisfactorily reproduced using a third-order Markov model 
(Hosino and Okanoya, 2000). Although a third-order Markov proc-
ess corresponds to the probability distribution of four letter blocks, 
results for letter blocks of length between three and five did not 
show any qualitative difference. Due as well to the limited amount 
of actual birdsong data, the longer the length of letter block is, the 
less reliable the calculated statistics are. Therefore, in the present 
study, the length of the letter block was set at 3.

In order to evaluate the similarity between two song sequences, the 
Kullback–Leibler-divergence (KL-divergence), a well-known distance 
measure of probabilistic distributions, is used (Cover and Thomas, 
1991). The KL-divergence is determined by the following formula:
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where A corresponds to the component syllables of a particular 
song, An is the set of all strings of length n that can be built from D 
and D′ correspond to a particular song syntax with a probabilistic 
distribution of strings, and P

D
(x) is the occurrence probability of 

string x under distribution D. Specifically, in the current study, 
D and D′ correspond to probability distributions of the songs in 
the normal condition and songs altered by chemical perfusion, 
respectively. As is standard, we set 0log0 = 0 and 0/0 = 1. In cases 
where there is a string with a null probability in D′, but not in D, 
P

D′(x) is set to a small value (1.0 × 10−6) to avoid division by zero.
In order to evaluate the diversity of songs, we use the block 

entropy, determined by the following formula

induced by pharmacological inhibition of the NIf and the changes 
in the songs produced by the model that result from modification 
of parameters representing NIf functions.

MaterIals and Methods
suMMary of bIologIcal experIMent and analysIs of song 
sequence
In order to characterize the changes of song sequences in actual 
songbirds, we first briefly introduce the methods and the find-
ings of the biological experiment (Okumura et al., 2007a). All 
experimental procedures were undertaken in accordance with 
the animal experimentation guidelines of RIKEN (RIKEN-BSI) 
approved by the institute’s animal ethics committee. Subjects of the 
experiments were five adult male Bengalese finches (body weight 
12.7–15.5 g). The birds were obtained from the breeding colony 
of the Laboratory of Biolinguistics, RIKEN-BSI and a commercial 
supplier (Komiyama pet shop, Tokyo, Japan). These birds were 
at least 180 days old and their adult songs were crystallized. The 
number of notes in their songs varies from 8 to 14, and entropies 
of their songs vary between 1.41 and 1.63. 

Activity of the NIf was reversibly inhibited by muscimol (GABA 
agonist) through reverse microdialysis technique (Höcht et al., 2007). 
Details of the experimental equipment and surgical procedure for 
guide cannula implantation are described in Okumura et al. (2007b). 
The tips of the guide cannulae were located 2.00 mm anterior, 
1.50 mm lateral from the Y point (Lambda), and 1.85 mm deep from 
the surface of the dura mater. This coordination is approximately 
0.30 mm above the center of the NIf. The position of the guide can-
nula was verified through histological experiment (Figure 3B). The 
range of minimum distance from active surface membranes of the 
probes to the border of the NIf was 0–150 μm and its average was 
approximately 60 μm. It is thus inferred that the observed changes 
in songs resulted from the chemical effects on the NIf.

Through the microdialysis cannula, muscimol was perfused for 
30 min followed by 6-h recording of songs. The concentration of 
muscimol in perfusion fluid (avian artificial cerebrospinal fluid) 
was 50 mM, and the perfusion rate was 1.0 μl/min. Following the 
perfusions of muscimol, we did not observe any abnormal behavior. 
The birds were able to fly, rest, jump to the other perch, eat, and 
sing as usual in their cage (Figure 3A). After chemical perfusion, 
all songs were recorded over time in a sound attenuated chamber 

FIgure 3 | Subject of biological experiment with the experimental equipment (A) and summary of probe positions confirmed by histological experiment 
(B). LV, lateral ventricle; OM, tractus occipitomesencephalicus.
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extended repetition of the introductory syllable were also observed. 
These interruptions introduce syllable-to-syllable transitions which 
did not appear in song sequences under normal conditions. This 
variability of syllable-to-syllable transitions resulted in relatively 
high entropy. In the last stage, however, these abnormal syllable 
sequences disappeared. As a result, KL-divergence and entropy of 
the song sequences eventually recovered to normal levels. These 
results confirm that NIf activity is essential for the Bengalese finch 
to produce complex syntactical songs.

Model
Model overview
The architecture of the model used in the current study is shown 
in Figure 5. The model was developed based on the following three 
assumptions, each of which is supported by established biological 
evidence: (1) Temporal patterns of songs are represented as network 
dynamics in the HVC. (2) The NIf provides auditory feedback to 
the HVC. (3) The NIf generates random noise that feeds into the 
HVC. Assumption (3) is the simplest possible assumption consist-
ent with the fact that simple interactions between the HVC and the 
NIf generate complexity of syntax in temporal birdsong sequences. 

The HVC is modeled by a fully connected RNN that learns to 
generate temporal patterns of song syllable sequences. Every unit 
of the RNN is connected to every other unit, including itself. This 
connectivity allows the RNN to preserve internal states and to gen-
erate temporal sequences of birdsongs. The number of RNN units, 
including input–output units, is 35. This is the minimum value 
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in both cases, n is set to 3.
After chemical perfusion, recorded songs were grouped into 

30 min intervals. Analyses were conducted for each interval using 
measures described earlier. The birds were considered to have recov-
ered from the effects of chemical perfusion at the moment at which 
the KL-divergence stabilizes to the control level (point of recovery). 
Data for each bird was shifted such that their points of recovery 
were aligned on the time axis (Figure 4).

In all the subjects, KL-divergence monotonically decreased to 
a level of the fluctuations typical of the Bengalese finch’s songs 
(Figure 4A). This indicates that activity of the NIf recovered to its 
normal level. Block entropies, on the other hand, first showed very 
low values, then rose to a level higher than the control, and finally 
settled down to the control level (Figure 4B). This trend, which is 
found to be consistent among all birds, represents the distinctive 
result of this experiment.

Figure 4C shows examples of song sequences from the pharma-
cological experiment. At the early stage of recovery process, exten-
sion of the introductory repeated syllable sequences and decrease in 
length of the subsequent normal syllable sequence were observed. 
Extension of the introductory repeated syllable sequences resulted 
in a low entropy value. In the middle stage of recovery, extension 
of the introductory repeated syllable sequences continued to be 
observed. In addition, normal song sequences interspersed with 

FIgure 4 | Summary of biological findings. (A) KL-divergence from the animal 
experiment. (B) Block entropy from the animal experiment. (C) Examples of song 
sequences in the recovery process (Bird A). In the graphs (A,B), time 0 correspond to 

the point of recovery. In graphs (B), the entropy values E are divided by the values of 
the control. Thus, the value 1.0 corresponds to normal level for all subjects (gray line). 
Values in the figure legend indicate the mean block entropies of each animal subject.
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where O is the set of indices corresponding to the input–output 
units, x

i,t
 is the neural state of the ith unit at time t, N is the total 

number of units, θ
i
 is the threshold of the ith unit, f is the sigmoid 

function f(x) = 1/1 + e−x, and G(t) is the noise added to the mem-
brane potential of non-input–output units. This noise provides 
stochasticity for branching of syllable sequences, in cooperation 
with the RNN of the HVC. The level of noise is defined in terms 
of the interval of a uniform distribution. For example, if the noise 
level is set to 0.5 then the noise follows a uniform distribution on 
the interval [−0.5, 0.5]. Noise is added only during the generation 
of sequences, not during model learning. Even if noise is added 
during training, results do not show any difference. Therefore, to 
reduce the number of arbitrarily set parameters, additive noise G(t) 
was set to 0 during training. In the previous study, we showed that 
there is an optimal noise range within which the model generates 
syllable sequences that have branching probability distributions 
very similar to the template (Yamashita et al., 2008). For the normal 
condition, during testing, G(t) is set at this optimal level of noise.

The output syllable of the model at each time step is selected 
by winner-take-all (WTA) computation: the output unit with the 
highest activation is selected as the output syllable of the net-
work. The selection of output syllables by the WTA computation 
resembles the vocalization process of songbirds in the sense that 
real birds, like the output of the WTA computation, only generate 
whole syllables like “a” or “b,” not mixed sounds like “a + b.” In 
real birds, vocalized syllable sounds are sent back to the HVC via 
the NIf as auditory feedback. To implement this feedback process, 
vocalized sound outputs from the current time step are fed back 

large enough to successfully allow the network to learn songs with a 
maximum number of syllables. The number of input–output units is 
the same as the number of syllables in the song that the model learns. 
Each of the input–output units corresponds to a syllable sound.

The input to the RNN is a vocalized syllable sound at the current 
time step, and the output of the system is a syllable sound for the 
next time step. The discrete time step of the RNN is incremented 
with each syllable output of the song sequence. The level of audi-
tory feedback sent back through the NIf is assumed to be modi-
fied according to the level of NIf activity. The NIf is also assumed 
to generate random noise which is fed to the RNN units of the 
HVC. This noise provides stochasticity for branching of syllable 
sequences, in cooperation with the RNN of the HVC.

Model dynamics
The model of neurons is a conventional firing rate model, in which 
the output of each unit is determined by applying a sigmoid func-
tion to the sum of all its inputs. The membrane potential (u

i,t
) 

and the activation (y
i,t

) of the ith unit at time t are determined by 
following formula

u
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FIgure 5 | Model overview. Shaded circles are the input–output units of the 
RNN. Each input–output unit corresponds to a song syllable. Bars on the top 
right of the diagram indicate activation of output units at time t. Syllable “b” with 
the highest activation is selected to be the vocalized syllable sound at time t 

(WTA computation). The bars on the bottom of the diagram indicate the values 
of the auditory feedback input at time t + 1. The level of noise added to the 
non-input–output units and the level of feedback are assumed to correspond to 
the activity of the NIf.
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model, a network is trained by means of supervised learning using 
template song sequences obtained from real birds. The conven-
tional back-propagation through time (BPTT) algorithm is used for 
learning of the model network (Rumelhart and McClelland, 1986). 
Interested readers could find details of the learning algorithms as 
described in our previous work (Yamashita et al., 2008). In the 
current study, the BPTT is used not for mimicking the song learn-
ing process of the actual Bengalese finch but as a general learning 
rule. Therefore obtained results reflect the characteristic feature 
of the proposed network architecture, not the learning algorithm.

Simulation of pharmacological experiment
In simulating the effects of chemicals, the model is first trained to 
imitate the song sequences of the Bengalese finch taken from the 
biological experiment (Figure 6). In order to examine the effect of 
chemicals on the NIf, two parameters, corresponding to the level 
of activity of the NIf, are modified, one defining the level of added 
noise and the other defining the level of auditory feedback. The 
recovery process from the chemical effects over the course of time 
is simulated using a model described in the following formula,

R t e Kt( ) = − −1  (6)

where R(t)is the recovery rate at time t, K is a parameter which 
determines the slope of the curve. Since the absorption of chemi-
cals is ignored in this calculation, the recovery rate monotonically 
increases from 0 to 1. The level of noise in the recovery process, 
G(t), which is added to the internal value of non-input–output 
units at time t, is determined as follows,

G t G R tG( ) ( )= ∗

 (7)

as auditory inputs at the next time step. For example, if “b” was 
the vocalized sound at time t then at time t + 1, the input unit 
corresponding to syllable “b” is only set as “active” and other input 
units are set as “inactive.” On the other hand, activation values of 
the non-input–output (context) units y

i,t
 are simply copied to the 

neural states of next time step x
i,t + 1

. These calculations including 
selection of an output sound and external feedback inputs are 
described as follows.

x
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0 2

if

if

otherwise  

(5)

In the process of training, synaptic weights values sometimes grow 
too large, resulting from the sigmoid used in the activation func-
tion. To avoid this problem in learning, for the normal condition, 
the activation values of an active unit and those of inactive units 
are set to 0.8 and 0.2, instead of using 1.0 and 0.0 respectively. This 
limitation of the activation range of input–output units is com-
monly used to avoid divergence of weight values during learning 
process. Both in training and in generation, initial states of the 
network are set to their neutral value, i.e., the internal state of each 
neuron is set to 0.

Training
In the song learning of real birds, template song sequences are 
considered to be stored somewhere in the brain; the bird modifies 
its vocal output until the auditory feedback it receives matches the 
memorized template (Funabiki and Konishi, 2003). In the proposed 

FIgure 6 | experimental procedure. Each of the five model networks is 
trained using the song of a different Bengalese finch subject. Once each model 
learns to generate the song sequence of its respective animal subject 

sufficiently well, values of the synapse weights are fixed and the model network 
is considered to reproduce the behavior of its subject. Performance of the 
trained model is evaluated using the similarity measure described earlier.
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that manages to learn to generate the song sequence of its respec-
tive animal subject is considered to have reproduced the behavior 
of its subject.

sIMulatIon of cheMIcal effects on the nIf
In order to examine the effects of changes in the levels of noise 
and feedback, KL-divergence and entropy are calculated from 
sequences generated with various levels of noise and feedback. 
Figure 8 shows an example of the relationship between noise, 
feedback, KL-divergence and block entropy. KL-divergence is 
minimal when the noise and feedback are at normal levels. The 
values of KL-divergence increase as noise and feedback levels 
decrease, contours of constant divergence taking the shape of 
concentric circles (Figure 8A). When both noise and feedback are 
at their minimum level, KL-divergence reaches a maximum value. 
Entropy, on the other hand, reaches a maximum with the highest 
level of noise and lowest level of feedback (Figure 8B). From the 
maximal entropy point, values decrease as noise decrease and 
feedback increase, contours again taking the shape of concentric 
circles. These features are consistent among all five model net-
works, each model bird learning songs of their respective animal 
subject counterparts.

Temporal changes in the effect of chemicals on the NIf were 
simulated using the model of recovery process described earlier 
(Eqs 6–8). In order to investigate the relationship between the audi-
tory feedback and noise in the recovery process, changes of songs 
were observed while changing the value of the parameter K which 
determines the slope of the curve for recovery rates. The value 
of K

F
 for auditory feedback was held fixed at 0.05. Difference in 

conditions was described in terms of the ratio of K
G 

and K
F
 (K

G
/K

F
).

Kullback–Leibler-divergence consistently decreases monotoni-
cally and stabilizes to the control level among all five model net-
works (Figures 9A,C,E). On the other hand, under the condition of 
K

G
/K

F
 = 1.0, in three out of five model birds, changes in entropies 

resulting from the simulated pharmacological effects exhibited 
trends that are similar to those observed with the animal subjects 
(Figure 9D). That is, block entropies first show very low values, then 
rise to a level higher than the control, and finally settle down again 
to the control level. Under the condition of K

G
/K

F
 = 1.5, overshoot 

of entropy values in the recovery process is exaggerated due to an 
increase in the relative effect of noise. This trend is consistently 
observed among all five model networks (Figure 9B). On the other 
hand, under the condition that K

G
/K

F
 = 0.5, this effect is reduced, 

and it disappeared in most of the cases (Figure 9F).
Figure 9G shows examples of song sequences generated by the 

model in the recovery process. Changes in songs resulting from 
the simulated pharmacological effects exhibit trends that are simi-
lar to those observed with the animal subjects. At an early stage 
of the recovery process, extension of the introductory repeated 
syllable sequences and decrease in length the subsequent normal 
syllable sequence are observed. In the middle stage of recovery, 
extension of the introductory repeated syllable sequences continue 
to be observed. In addition, normal sequences are interspersed 
with extended repetition of the introductory syllable. In the last 
stage, however, these abnormal syllable sequences completely dis-
appear. A similar development is observed in the case of animal 
subjects (Figure 4C).

where G* is the optimal level of noise at which the model generates 
syllable sequences that have branching probability distributions 
very similar to the template. For each individual model that learns 
its respective song, this optimal value of noise is set as the value 
of the normal condition. In the process of recovery, noise level 
increases monotonically from 0 to the optimal level G*.

The level of feedback is determined as the activation value of 
the input unit at the next time step based on a vocalized syllable at 
the current time step. In simulation of the recovery process, Eq. 5 
is modified as follows,

x

y i O

F t i O y yi t

i t

i t
j O

j t,

,

, ,( ) max

.

+ ∈
=

∉
∈ ∧ =








1

0 2

if

if

otherwise

  

(5′)

F t R tF( ) . ( ) .= +0 6 0 2  
(8)

The level of feedback in the process of recovery, F(t), is determined 
as a linear function of the recovery rate R(t). Thus, the level of 
feedback increases monotonically from 0.2 (inactive level) to 0.8 
(normal level). R

G
(t) and R

F
(t) are the recovery rates of noise and 

feedback defined by Eq. 6 using the parameters K
G
 and K

F
, respec-

tively. The point at which the recovery rate reaches 0 corresponds 
to the point of recovery in the biological experiment.

results
reproductIon of anIMal subjects’ songs
Performance of the model was evaluated by calculating the 
KL-divergence between template songs and learner’s songs. Through 
the learning process, KL-divergence decreases until it reaches a level 
that corresponds to the fluctuations typical of the Bengalese finch’s 
songs (Figure 7). This indicates that the current model successfully 
learned to generate complex syntactical songs nearly identical to 
those of the subject birds in the biological  experiment. A model 

FIgure 7 | Performance of the model. The level of noise added is set to the 
optimal level for each learning trial and feedback is set to a normal level. Bar on the 
right bottom of the graph indicates the mean and degree of SD of KL-divergence 
among control songs (i.e., daily fluctuations of the subjects’ songs).
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not determined before a bird starts to sing. This assumption leads 
to the requirement of two additional mechanisms that enable the 
RNN to generate complex song syllable sequences with probabil-
istic branching: additive noise and an auditory feedback process.

As a result of learning from the song sequences of real birds, 
activation patterns of the RNN used to model the HVC converge 
to the probabilities of syllable-to-syllable transitions in learned 
song sequences. In other words, at non-branching points (within 
chunk), only one output unit, corresponding to the next syllable, 
is active, and other output units are inactive. At branching points 
(chunk-to-chunk connection), on the other hand, the activity of 
output units is distributed according to the occurrence probability 
of each branch. However, this activation is not enough to gener-
ate complex sequences with probabilistic branching. Due to the 
completely deterministic dynamics of the RNN, in the absence of 
noise, the model network is only capable of generating one song 
sequence made up of a set of branches corresponding to the most 
frequent path in the learned song. This is despite the fact that syl-
lable sequences learned from the template contain some branching, 
and despite the fact that activation of the RNN of the HVC repre-
sents branching that is probabilistically distributed. In the current 
model, additive noise, which is assumed to be provided in a way 
that is context independent, is essential to reproduce stochasticity 
of branching in song syllable sequences.

In addition to noise, in the current model, the auditory feed-
back process plays an important role in maintaining dynamics of 
the RNN of the HVC. As shown in Figure 10A, reduction of the 
auditory feedback level diminishes the range of RNN activation. 
In particular, the effect of feedback reduction on RNN dynamics 
is large at branching points in song syllable sequences. This is due 
to the fact that at branching points, the activation of output units, 
which correspond to the occurrence probabilities of each branch, 
competes with each other. At non-branching points, in contrast, 
at which competition of the output activations does not occur, the 
effect of feedback reduction is low.

The importance of the feedback input at the branching point of a 
song sequence is related to the assumption that WTA-like dynamics 
occur outside of the HVC. Specifically, in the current model, it was 
assumed that WTA computation corresponds to the vocalization 

These observations strongly suggest that the distribution of 
entropy values results from a trade-off between the effects of noise 
and the effects of feedback on the dynamics of the RNN of the HVC. 
As a general rule, decrease of the noise level diminishes randomness 
of RNN dynamics. Therefore, decrease in the level of noise results in 
low entropy values. On the other hand, decreases in the level of feed-
back have an opposite effect, diminishing the difference between the 
maximum and minimal values of output activity (activation range; 
Figure 10A). Reduction of the activation range raises the relative 
effect of noise, resulting in the identity of the selected output unit 
switching more easily Figure 10B. For this reason, decreases in the 
level of feedback result in higher entropy values.

In the recovery process, entropies of song sequences reflect com-
peting effects of the two parameters. At early stages of the recovery 
process, both noise and feedback are at a low level. Although the 
activation range is low, the absolute level of noise is also low. Thus, 
entropy of the sequences is lower than the level sustained under 
normal conditions. In the middle stage of the recovery process, 
subject to certain ranges of noise and feedback, the relative effect 
of noise reaches a level so high that entropy values rise to higher 
than normal values. Within this range, seemingly random syllable 
transitions not present in the normal sequences begin to appear. In 
the last stage of the recovery process, the level of feedback reaches a 
high enough level to reduce the relative effects of noise. As a result, 
entropy returns to its normal level, a condition in which noise 
affects the dynamics of the RNN only at the branching points of 
song sequences.

dIscussIon
Model MechanIsM
It is known that deterministic dynamics of the RNN is able to rep-
resent multiple temporal sequences with probabilistic branching 
through associations between various initial states and internal 
dynamics of context units (“initial sensitivity”; Nishimoto et al., 
2004; Namikawa and Tani, 2010). However, in the current study, 
initial states of the network were set to their neutral value, both in 
training and in generation. This setting of the neutral initial states 
corresponds to a plausible assumption that a path of branching 
which would be selected in the production of song sequences is 

FIgure 8 | example of the relationship between noise, feedback and (A) KL-divergence and (B) block entropy (Bird BModel). The origin of the axes corresponds 
to the condition in which both functions are set to minimal levels. The upper-right corner of each graph corresponds to the normal state.
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An alternative to the above assumption is that WTA-like dynamics 
occur within the HVC. For example, Katahira et al. (2007) and Jin 
(2009) proposed models in which distributed activity of the HVC at 
song branching is maintained using WTA-like dynamics (lateral inhi-
bition of interneurons) within the HVC. These models showed that, 
through the WTA-like dynamics within the HVC, stochastic song 
sequence can be reproduced without any feedback inputs (Katahira 
et al., 2007; Jin, 2009). Therefore, the role of the auditory feedback 

which occurs at downstream parts of the HVC such as RA and other 
motor nuclei, whereas auditory feedback corresponds to external 
inputs to the HVC. As described earlier, owing to the stochastic 
nature of the Bengalese finch song, the activation of output units 
of the RNN is distributed at branching points. Due to such dis-
tributed activity, the dynamics of the RNN of the HVC needs to be 
maintained by the external feedback inputs which reflect the result 
of WTA computation.

FIgure 9 | Summary of the simulation of recovery process from the NIf inhibition while changing the value of KG/KF. (A,C,e) KL-divergence from the 
simulation. (B,D,F) Block entropy from the simulation. (g) Examples of song sequences in the recovery process (Bird AModel, KG/KF = 1.0). Values in the figure legend 
indicate the mean block entropies of each model bird.
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current model also demonstrated that overshoot of entropy values 
is enhanced under the condition that the noise-like activity recovers 
more quickly than does the feedback level (K

G
/K

F
 > 1.0). Although the 

current implementation is extremely simple, in the sense that both 
noise and feedback levels are linear function of R(t), this dissocia-
tion of timescale could be interpreted as the difference in sensitivity 
to excitatory–inhibitory interaction in the NIf. Noise-like activity 
may originate in the intrinsic activity of the NIf. Theoretical studies 
have proposed a hypothesis that the noise-like activity of neurons 
results from interaction between excitatory and inhibitory activation 
(Vreeswijk and Sompolinskyref, 1996; Amit and Brunelm, 1997). 
Moreover, the studies have shown that such noise-like activity is 
robustly generated over a wide range of activation levels. On the other 
hand, there exists a hypothesis claiming that precise balance between 
excitation and inhibition is important for gating and transmitting 
signals (Vogels and Abbott, 2009). In the pharmacological experi-
ment, transmission of auditory information may be disturbed by 
the imbalance of excitation and inhibition (i.e., enhanced inhibition 
induced by GABA agonist). Given that noise generation occurs over 
a wide range of excitatory–inhibitory interaction, and transmission 
of auditory information is sensitive to specific excitatory–inhibitory 
interaction, it is likely that noise generating function would recover 
first. Auditory feedback function would recover after  excitatory–
inhibitory interaction has returned to within a specific range.

correspondence to prevIous bIologIcal fIndIngs
Auditory feedback
In addition to NIf–HVC pathway, other auditory–vocal integration 
pathways have been heavily investigated recently. For example, it 
was shown that the nucleus Uvaeformis (Uva), which is a thalamic 
input to the HVC and NIf, may gate the auditory inputs to the HVC 
and the NIf from the auditory brainstem (Coleman et al., 2007). The 
same research group subsequently showed that the nucleus caudal 
mesopallium (CM), a source of cortical auditory input to the NIf, 
also projects directly to the HVC (Bauer et al., 2008). These observa-
tions suggest that some pathways other than NIf–HVC pathway may 
also be involved in auditory–vocal integration in song production.

However, in spite of wide agreement on the importance of audi-
tory–vocal integration in song production, how auditory informa-
tion is integrated into premotor activities of the HVC remains as of 
yet unclear. In the current study, rather than attempt to fully imple-
ment details of auditory information pathways, we instead investi-
gated, in an abstract manner, how auditory information affects the 
dynamics of HVC activity in the song production process.

One of the key findings of the biological portion of this study 
(Okumura et al., 2007a) is that extended repetition of the introduc-
tory syllable sequences is induced by NIf inhibition (Figure 4C). 
In the simulation portion of this experiment, extended repetition 
of the introductory syllable sequences is reproduced (Figure 9G). 
This phenomenon is similar to stuttering in humans (Lee, 1950) 
and songbirds (Leonardo and Konishi, 1999) induced by auditory 
feedback modification.

These facts suggest that the changes of songs induced by phar-
macological inhibition of the NIf in our biological study may be 
interpreted as the modification of HVC dynamics resulting from 
reduction of auditory-related activities in the NIf. Our  observations 
also suggest that the NIf may contribute to real time control 

process was deferred as outside the scope of these studies. However, 
if external feedback inputs are not necessary to produce stochastic 
sequence of the Bengalese finch song, the assumption is inconsistent 
with the fact that reduction of auditory feedback strongly affects song 
structure in the Bengalese finch, whose songs exhibit probabilistic 
branching (Okanoya and Yamaguchi, 1997; Sakata and Brainard, 
2006), but does not affect song structure in the case of the Zebra 
finch, whose songs exhibit no branching (Bottjer and Arnold, 1984).

Due to the level of modeling, discussing correspondences 
between the proposed model and an actual brain is possible only 
at a macro level of abstraction. However, our hypothesis that audi-
tory feedback contributes to maintaining the dynamics of the HVC 
provides a possible explanation for the question of how auditory 
information is integrated into premotor activity of the HVC.

In the simulation of the pharmacological experiment, the model 
showed that complex features of changes in entropy values can be 
interpreted as a trade-off between the effects of noise and the effects 
of feedback on the dynamics of the RNN. Parameter studies of the 

FIgure 10 | Activation range. (A) Relationship between the level of feedback 
and the activation range. The activation range is calculated from the formula, 
AR t y yt

T

i O i t i O i t= −( )= ∈ ∈
1 0/ max min, ,Σ , where yi,t is the activation value of output 

units “before” application of the WTA computation. The graph shows mean 
values of activation ranges calculated from all five model networks learning 
their respective songs. (B) A schematic drawing of the relative effect of noise, 
which corresponds to the level of feedback. The bars in the diagram indicate 
the activation of the output units corresponding to syllables “a,” “b,” and “c.” 
Error bars indicate the range of possible fluctuation values resulting from noise. 
For the case of low level feedback, the activation range is so small that the 
effects of noise can easily switch which syllable it is that gets outputted.
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Seung, S. H. (2007). Intrinsic burst-
ing enhances the robustness of a 
neural network model of sequence 
generation by avian brain area HVC. 
J. Comput. Neurosci. 23, 283–299.

Kao, M. H., Doupe, A. J., and Brainard, M. 
S. (2005). Contributions of an avian 
basal ganglia-forebrain circuit to real-
time modulation of song. Nature 433, 
638–643.

Katahira, K., Okanoya, K., and Okada, M. 
(2007). A neural network model for 
generating complex birdsong syntax. 
Biol. Cybern. 97, 441–448.

Lee, B. S. (1950). Effect of delayed speech 
feedback. J. Acoustic Soc. Am. 22, 
824–826.

Leonardo, A., and Konishi, M. (1999). 
Decrystallization of adult birdsong 
by perturbation of auditory feedback. 
Nature 399, 466–470.

Long, M. A., and Fee, M. S. (2008). Using 
temperature to analyse temporal 

neural network model of birdsong. J. 
Neurophysiol. 92, 2274–2282.

Funabiki, Y., and Konishi, M. (2003). 
Long memory in song learning 
by zebra finches. J. Neurosci. 23, 
6928–6935.

Höcht, C., Opezzo, J. A., and Taira, C. A. 
(2007). Applicability of reverse micro-
dialysis in pharmacological and toxi-
cological studies. J. Pharmacol. Toxicol. 
Methods 55, 3–15.

Honda, E., and Okanoya, K. (1999). 
Acoustical and syntactical com-
parison between songs of the white-
backed Munia (Lonchura striata) and 
its domesticated strain, the Bengalese 
finch (Lonchura striata var.domes-
tica). Zoolog. Sci. 16, 319–326.

Hosino, T., and Okanoya, K. (2000). 
Lesion of a higher-order song nucleus 
disrupts phrase level complexity in 
Bengalese finches. Neuroreport 11, 
2091–2095.

Jin, D. Z. (2009). Generating variable bird-
song syllable sequences with branch-
ing chain networks in avian premotor 

Coleman, M. J., Roy, A., Wild, J. M., and 
Mooney, R. (2007). Thalamic gating 
of auditory responses in telencephalic 
song control nuclei. J. Neurosci. 27, 
10024–100036.

Cover, T. M., and Thomas, J. A. (1991). 
Element of Information Theory. 
NewYork: Wiley.

Doya, K., and Sejnowski, T. J. (1995). A 
novel reinforcement model of bird-
song vocalization learning. Adv. Neural 
Inf. Process. Syst. 7, 101–108.

Fee, M. S., Kozhevnikov, A. A., and 
Hahnloser, R. H. (2004). Neural mech-
anisms of vocal sequence generation 
in the songbird. Ann. N. Y. Acad. Sci. 
1016, 153–170.

Fiete, I. R., Fee, M. S., and Seung, H. S. (2007). 
Model of birdsong learning based on 
gradient estimation by dynamic per-
turbation of neural conductances. J. 
Neurophysiol. 98, 2038–2057.

Fiete, I. R., Hahnloser, R. H., Fee, M. S., 
and Seung, H. S. (2004). Temporal 
sparseness of the premotor drive is 
important for rapid learning in a 

references
Amit, D. J., and Brunelm, N. (1997). 

Model of global spontaneous activity 
and local structured activity during 
delay periods in the cerebral cortex. 
Cereb. Cortex 7, 237–252.

Bauer, E. E., Coleman, M. J., Roberts, T. F., 
Roy, A., Prather, J. F., and Mooney, R. 
(2008). A synaptic basis for auditory-
vocal integration in the songbird. J. 
Neurosci. 28, 1509–1522.

Bottjer, S. W., and Arnold, A. P. (1984). 
The role of feedback from the vocal 
organ. I. Maintenance of stereotypical 
vocalizations by adult zebra finches. J. 
Neurosci. 4, 2387–2396.

Cardin, J. A., Raksin, J. N., and Schmidt, M. 
F. (2005). Sensorimotor nucleus NIf is 
necessary for auditory processing but 
not vocal motor output in the avian song 
system. J. Neurophysiol. 93, 2157–2166.

Cardin, J. A., and Schmidt, M. F. (2004). 
Auditory responses in multiple sen-
sorimotor song system nuclei are 
co-modulated by behavioral state. 
J. Neurophysiol. 91, 2148–2163.

The proposed hypothesis that the NIf performs a noise-like 
function also provides a possible connection between NIf activity 
and developmental learning of song syllable sequences, although 
the training algorithm that is currently used (back-propagation) 
is not considered biologically plausible. We hypothesize that the 
noise-like activity of the NIf, by generating fluctuations at each 
transition, could assist in exploration during the learning of syl-
lable-to-syllable transition rules. This is similar to the hypothesis 
stating that the random activity of the lateral magnocellular nucleus 
of anterior nidopallium (LMAN) supports exploration in syllable 
learning by fluctuating each individual sound (Doya and Sejnowski, 
1995; Kao et al., 2005; Ölveczky et al., 2005; Fiete et al., 2007). 
From this point of view, another testable prediction is proposed. 
If the noise-like activity of the NIf provides the random fluctua-
tions necessary for exploration in the learning of syllable-to-syllable 
transition rules, then at the early stage of learning, one would expect 
higher activity of the NIf (for exploration), whereas high activity 
would not be necessary at the end of the learning process. In the 
Bengalese finch, however, NIf activity might be relatively high even 
at the end of the learning process, allowing the Bengalese finch to 
produce complex songs with syntactical structure. To confirm the 
predictions, changes of NIf activity during development and dif-
ferences in NIf activity between the Bengalese finch and the Zebra 
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 mechanisms governing complex vocal behavior, and that studying 
the function of the NIf in the Bengalese finch could help contribute 
to a better understanding of human vocal behavior.

Another possible function
In the current model, the NIf is also assumed to generate random 
noises, which are fed into the HVC. The model showed that addi-
tive noise, in cooperation with deterministic dynamics of the HVC, 
is enough to reproduce occurrence probabilities of branching in 
song syllable sequences, even though noise is provided from the 
NIf independent of the syllable sequence context. In order to con-
firm the hypothesis that noise-like activity of the NIf is enough to 
generate complex syntactical songs, it would be useful to perform 
tests in which electrical stimulation (microstimulation) is applied 
to the NIf while the level of auditory feedback is assumed to be 
maintained at a normal level. In the Bengalese finch, the diversity 
of songs would be expected to increase as a result of such electrical 
stimulation; in particular, stimulation at the branching points of 
song sequences would be expected to show increased effects. To test 
this prediction, we are preparing to perform experiments in which 
electric stimulation is applied to the NIf.

The proposed model suggests that the production mechanism 
generating simple songs in the Zebra finch, and the mechanism 
generating complex syntactical songs in the Bengalese finch, are in 
essence the same, but with the exception that, in latter case, noise 
is added. The model also suggests that the NIf may not require a 
very complex representation. Our hypothesis is consistent with 
the fact that the NIf is a very small nucleus consisting of a small 
number of neurons and the fact that the activation pattern of the 
NIf is less context-dependent than that of the HVC or that of the 
RA (McCasland, 1987; Cardin and Schmidt, 2004). This is also 
consistent with the fact that the Bengalese finch and the Zebra finch, 
the songs of which are simple, are closely related and may indicate 
that there are no major functional differences between these species.
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