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cortical areas like inferotemporal cortex, neurons can synchronize 
their spiking when monkeys successfully solve visual recognition 
tasks (Gochin et al., 1994; Anderson et al., 2006) or processes fea-
tures of faces (Hirabayashi and Miyashita, 2005), but evidence for 
stimulus dependent or even object-specific synchronized firing in 
higher visual areas remains sparse. Despite of this unresolved issues, 
cortical areas beyond sensory pathways express temporally pre-
cise spike firing which has been related to prediction of go signals 
(Riehle et al., 1997), decision making (Dudkin et al., 1995; Thiele 
and Hoffmann, 2008), spatial (Constantinidis and Goldman-Rakic, 
2002), as well as working memory for temporal intervals and color 
(Sakurai and Takahashi, 2006).

Does millisecond precise neuronal firing have any relevance for 
cortical information processing? Evidence for the behavioral rel-
evance of precise neuronal timing beyond mere covariation with 
behavior was recently provided by electrical stimulation experi-
ments in auditory cortex which showed that rats can detect inter-
stimulus-intervals of 3 ms (Yang et al., 2008). However, there is 
growing evidence that precise neuronal activity patterns across 
different spatiotemporal scales are highly relevant for informa-
tion coding in sensory and associational areas of the cortex (Kayser 
et al., 2009). Another piece of evidence that points to the relevance 
of precise neuronal timing is the observation that during attention, 
the variance of spike responses is reduced (Mitchell et al., 2007), 
which may be related to the occurrence of stabilizing gamma oscil-
lations (Rodriguez et al., 2010).

However, there are other observations of cortical synchrony 
which suggest that precise spike timing is a much more gen-
eral principle of cortical function than serving the encoding of 

INTRODUCTION
Synchrony of neuronal spike firing has originally been proposed 
as a fundamental property of neocortical function (Delage, 1919; 
Hebb, 1949; Abeles, 1982, 1991) and has been observed under 
various conditions in numerous areas of the cerebral cortex. Early 
evidence was provided by studies of primary visual cortex (Gray 
et al., 1989; reviewed in Singer and Gray, 1995), later synchrony 
was observed in extrastriate (Kreiter and Singer, 1996) and other 
sensory areas like A1 (Ahissar et al., 1992; deCharms and Merzenich, 
1996) and executive areas including frontal cortex (Vaadia et al., 
1995), primary motor cortex (Murthy and Fetz, 1996; Riehle et al., 
1997; Pipa et al., 2007). However, the nature of synchronous firing 
has nurtured a long standing debate whether synchrony serves the 
integration of signals distributed over large neuronal populations 
(Singer, 1999 versus Shadlen and Movshon, 1999). One interest-
ing problem in this discussion was that studies in which attention 
was explicitly or implicitly modulated, synchrony could either 
change as predicted by properties of the sensory stimuli (Kreiter 
and Singer, 1996; Maldonado et al., 2000; Steinmetz et al., 2000) 
or in a counterintuitive way, which was not related to properties of 
the stimuli (de Oliveira et al., 1997; Thiele and Stoner, 2003). Two 
recent studies (Dong et al., 2008; Lima et al., 2010) have once more 
investigated whether the “binding-by-synchronization” hypothesis 
can predict spike synchrony in area V1 of behaving macaques. Both 
studies found synchrony which did show some degree of stimulus 
dependence, but reflected more spatial properties of the underly-
ing connectivity as had been shown before for correlated firing 
of neurons in V1 and V2 (Nowak et al., 1999; Kohn and Smith, 
2005) rather than direct evidence for figural binding. In higher 
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 behaviorally relevant information provided by sensory input. One 
of the prominent properties of corticocortical networks is their 
massive divergence and convergence (Salin and Bullier, 1995) and 
the very low number of synaptic contacts between individual cells 
(Douglas and Martin, 2004) combined with small unitary synaptic 
potentials (Sjöström et al., 2008). As a consequence, signal propaga-
tion along cortical pathways depends on cooperativity of a large 
number of converging presynaptic neurons (Sjöström et al., 2008). 
But, beyond feed-forward processing of sensory information, corti-
cal networks are continuously active (Arieli et al., 1996; De Luca 
et al., 2006), which may be the consequence of reverberating syn-
fire chains (Abeles et al., 1993; Prut et al., 1998) and is most likely 
the basis for ongoing brain processes like thinking and dreaming. 
Regulating the general fluidity of neuronal interactions on large 
spatial scales are likely to reflect general capabilities of the cortical 
network which can be addressed more empirically as general factor 
of intelligence (van den Heuvel et al., 2009). Beyond these puta-
tive cognitive functions of precise neuronal timing, synchronous 
cortical activity is involved in the organization of cortical circuits 
as abundant evidence for spike timing dependent plasticity suggests 
(Caporale and Dan, 2008).

Why could synchronous spiking be useful for in the organization 
of short-term memory in prefrontal cortex? (1) Synchrony might 
sustain endogenous activity during the memory delay for maintaining 
stimulus information without depending on further sensory drive, 
(2) Synchrony may support sensory coding of feature conjunctions 
as hypothesized in the binding hypothesis (see however Dong et al., 
2008), (3) Synchronous activity could drive downstream neurons in 
premotor cortex to prepare and execute the behavioral responses, (4) 
Synchrony may reconnect more abstract representations to sensory 
representations during rehearsal as has been shown for locking of 
theta oscillations across areas with dual micro electrode recordings 
in ventral PFC and V4 (Liebe et al., 2009; Hoerzer et al., 2010), (5) 
Synchrony might structure executive processes underlying task per-
formance by driving circuits that serve different subtasks in the mem-
ory process. We set out to determine whether we can find synchronous 
spiking in our multi-site prefrontal recordings and if confirmed, to 
test whether this synchrony is task and/or stimulus dependent.

MATERIALS AND METHODS
We therefore trained two female monkeys (M. mulatta) to perform 
a visual short-term memory task which consisted of a 0.5-s sam-
ple presentation, followed by a 3-s delay and a 2-s test presenta-
tion (Figure 1). Sample stimuli were randomly drawn from a set 
of 20 familiar stimuli and test stimuli were drawn from the same 
set excluding the sample of this trial in half of the trials in which 
non-matching test stimuli were used. Match and Non-match trials 
were presented in random order. When the test stimulus was shown, 
the monkey had to decide whether the stimulus was matching the 
 sample and respond by pressing the left of two buttons while in case 

of a non-match, the monkey had to press the right button. By requir-
ing behavioral responses for both types of test stimuli we made sure 
that all trials are homogenous with respect to response preparation 
and motor activity. Stimulus presentation and behavioral control 
were provided by a custom-made program. The monkeys did not 
have to fixate, but we measured eye movements at high resolution 
with the double magnetic induction method (Bour et al., 1984). 
The percentage of correct behavioral responses ranged between 71 
and 87% across sessions. Anatomical MRI scans (T1-flash, 1 mm3 
isovoxel, 1.5 T) were used to guide implantation of recording cham-
bers and to reconstruct recording positions. All procedures were 
approved by the local authorities (Regierungspräsidium) and are 
in full compliance with the guidelines of the European Community 
(EUVD 86/609/EEC) for the care and use of laboratory animals.

Simultaneous recording of multi-unit activity was performed 
with up to 16 platinum–tungsten-in-quartz fiber microelectrodes 
(Thomas RECORDING, Giessen, Germany) from ventral PFC. 
Electrodes had been arranged in a square shaped 4 × 4 grid with a 
distance between nearest neighbors of 500 μm. Signals were filtered 
(0.5–5 kHz, 3 dB/octave), digitized at 32 kHz, and saved as time 
stamp with attached waveform. Preprocessing included the rejec-
tion of artifacts (movements, licking) and removing line noise at 
50 ± 0.5 Hz. Spike pattern analyses were performed for sets of trials 
constructed from the stimulus and behavioral protocol using the 
NeuronMeter software package (http://neuronmeter.convis.info). 
Data will become available online at the German Neuroinformatics 
Node (http://www.neuroinf.de/).

ANALySIS Of SyNCHRONOUS fIRINg
To identify differences in neuronal coupling expressed by modulation 
of spike synchrony we used a bivariate and multivariate extension 
of NeuroXidence (Pipa et al., 2008; Wu et al., submitted; see also 
http://www.NeuroXidence.com). In the present article, each incidence 
of a synchronized firing event is referred to as a joint-spike event 
(JSE), while the identity of a JSE is referred to as a joint-spike pattern 
(JS-pattern). Or, with other words JSE are realizations of a JS-pattern.

In a first step, the frequency ft
k p, ( )org  of JSEs of a certain 

JS-pattern (p) was determined by the bivariate and multivariate 
extension of NeuroXidence for each trial (t) and for each factor (k) 
of an experiment. To account for the stochasticity of spike times, 
a JS-pattern is defined by a millisecond wide temporal window, 
which accounts for the maximal uncertainty of synchronous fir-
ing (Figure 2A). In this paper, this uncertainty (t

c
) was set to 3 ms. 

Note that the detection of a JSE is not based on binned spike trains, 
but uses the exact experimental spike times which were sampled 
at a precision of 32 kHz, i.e., times of threshold crossing were ini-
tially recorded as multiples of 31.25 μs. For illustrative purposes, 
Figures 2B,C demonstrate how significant JS-patterns (Figure 2B) 
are destroyed when spike trains are randomly jittered by t

r
 = 15 ms 

(Figure 2C). In the original data, the total number of significant 
joint-spike patterns consisted of patterns with complexities 2–6, 
59% of JSP with complexity 2, 13% complexity 3, 17% complexity 
4, 10% complexity 5 and 1% complexity 6. After jitter the number 
of significant patterns was reduced for all complexities. Compared 
to the frequency of significant joint-spike pattern in the original 
data, the percentage in respect to the complexity dropped from 59 
to 54% (c2), from 13 to 3% (c3), from 17 to 4%, from 10 and 1 to 

1http://neuronmeter.convis.info
2http://www.neuroinf.de/

Q6

Figure 1 | Time structure of the visual memory task.
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In a third step, we determined for each trial (t), each exper-
imental factor (k), and each JS-pattern (p), the difference 
∆ = −f f ft

k p
t
k p

t
k p, , ,( ) ( )org sur  of JSE frequencies in original and 

surrogate data sets. Ultimately, this difference ∆ft
k p,  is used to test 

whether the strength of synchrony of a certain JS-pattern differs 
across experimental conditions. To this end, the bi- and multivari-
ate versions of NeuroXidence test whether the mean or median of 
the delta frequencies ∆ft

k p,  of JSEs is significantly different across 
experimental factors. For the bivariate case, mean and median were 
compared by unpaired t-test and Mann–Whitney U-test, respec-
tively. For the multivariate case, an ANOVA or a Kruskal–Wallis 
test were used. This comparison yields exactly one p-value per 
JS-pattern tested across experimental factors and trials. To prevent 
any sampling bias, only those JS-patterns were tested for which 
JSEs occurred at least once for every individual factor. For each 
experiment between hundreds and many thousands of JSE pat-
terns were tested.

In order to summarize the results across all tested JS-patterns 
detected in each experiment, we grouped JS-patterns based on their 
complexity (c), which is given by the number of sites participating 
in a synchronous event. JS-complexity ranges from c = 2 (pairs), in 

0% for complexity 5 and 6. This effect is summarized in Figure 2D 
as frequency distribution of JS-patterns as a function of their com-
plexity and a Cumulative Distribution Function based on a two 
sample KS-test is plotted in Figure 2E.

In a second step, the frequencies ft
k p, ( )sur  of chance JSEs were 

estimated for JS-pattern (p), trial (t), and experimental factor (k) 
from surrogate data which were derived from the original data 
by jittering each individual spike train under the assumption that 
neuronal spike discharge is not coupled on a fine temporal scale. 
We generated exactly one surrogate trial for each original trial to 
prevent a sampling bias. For setting the amount of jitter applied to 
the original data when generating the surrogates, a second slower 
time scale t

r
 was defined which was set to t

r
 = 15 ms. The slower 

time scale t
r
 sets the minimal interval during which rate covariation 

may explain coincident firing. Therefore, t
r
 defines the maximal 

extent of the jittering, which is applied to destroy any fine tempo-
ral cross-structure that may exist between different spike trains. 
Because spike trains are shifted as a whole against each other within 
t

r,
 the auto-structure, rate covariations across neurons as well as rate 

variation and other features of each individual spike train, which 
are slower than the time scale t

r
, are preserved.

Figure 2 | Demonstration of time windows, coincidences before and after 
significance estimation and after introducing artificial jitter. (A) Sketch to 
illustrate the idea of testing joint-spike events (JSE) by comparing time scales. 
Joint-spike patterns (JSP) are considered significant if there are more or less JSE 
than in a dataset in which spike timing of neurons is synchronized and spike rate 
covariations are slower than tr = 15 ms. To define this criterion, two time scales 
were introduced. The first time scale (tc) defines the temporal precision with 
which spikes have to coincide in order to be detected as JSE. The second time 
scale (tr) defines the maximum speed of rate covariation. Using these two time 
scales, JSEs are considered as significant if there are significantly more JSEs, 
i.e., coincidence firing with an uncertainty less than tc, in the original data than in 
a surrogate data set obtained by jittering the original spike trains with ±7.5 ms. 
(B) Raster plot of all significant synchronous patterns in 14 sites after correction 

with tr. (C) Raster plot of the same data after destroying JSPs: In order to 
demonstrate that the JSPs shown in (B) are real, we performed a control for 
which both – original and surrogate – data were jittered with the same tr = 15 ms. 
This control corresponds to a data set that does not have any fine temporal spike 
synchronization across neurons, but may have spike rate covariation slower than 
tr. (D) Quantitative comparison of the number of significant JSPs in original and 
control data set, shown in (B,C), respectively. Red bars are normalized to 1, and 
the blue bars are normalized to the total numbers of non-jittered patterns (red = 
number of patterns of complexity c in non-jittered data / number of patterns for all 
complexities in non-jittered data; blue = number of patterns of complexity c in 
jittered data / number of patterns for all complexities in non-jittered data). (e) 
Cumulative Distribution Function of a two sample KS-test. The p-value of 0.0037 
reflects that the number of JSPs is highly significantly decreased.
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TEMpORAL MODULATION Of JS-pATTERN COMpLExITy
The frequencies ρ( )t c

specific for stimulus specific as well as ρ( )t c
false 

and ρ( )t c
correct for performance related modulations of spike syn-

chrony had been computed for each JS-pattern complexity and 
each sliding window. Note that each JS-pattern that contributes 
to any of the three frequencies r(t)

c
 can be considered as signifi-

cant. To test whether the frequency of JS-patterns also has been 
significantly modulated over time, we compared ρ( )t c

specific and the 
difference ∆ −ρ = ρ( ) ρ( )c c ct tperf correct false to analogous results obtained 
from analyses of the same data, but based on permuted trials. 
Trial permutation exchanged trials between experimental factors 
while the simultaneity and the auto-structure of all recorded spike 
trains was preserved. This way we could destroy any performance 
or stimulus specific modulations, while keeping all other proper-
ties of the joint-spike trains intact so that the analysis of spike 
synchrony and temporal modulation of neuronal coupling is not 
compromised (Figure 3A). Therefore trial permutation serves as 
an ideal estimate of the frequency r(t)

c
 and its variability under the 

null hypothesis that synchrony is unchanged between experimental 
factors. Trial permutation was performed independently for each 
sliding window, giving exactly one p-value per JS-pattern for the 
original trial structure and for the trial permuted data (Figure 3B). 
As for the original data, we then computed the frequencies 
∆ρ = ρ( ) − ρ( )c c ct t, , , ,perm

perf
perm

correct
perm

false  and ρ( )t c , .perm
specific  Using the average 

∆ρc , ,perm
perf  ∆ρc ,perm

specific and the SD std perm
perf( ),,∆ρc  std perm

pecific( ),∆ρc
s  of both fre-

quencies over time for the same complexity, we expressed the mod-
ulations of JS-pattern frequency as time course of the trial for each 
complexity as a z-scores: z t t tc c c c( ) ( ( ) ( ) ), ,

perf perf
perm

perf
perm

perfstd(= ∆ ∆ ∆ρ − ρ )/ ρ
 

for behavioral performance (Figure 3C), and 
z t t tc c c c( ) ( ( ) ( ) ,

specific specific
perm

specific std(= ∆ ∆ ∆ρ − ρ )/ ρ ,, )perm
specific  for stimulus speci-

ficity (not shown). In a last step, we compared the modulation 
of z-scores for performance and stimulus specific modulations of 
spike synchrony based on a critical z-score accounting for multiple 
comparisons of all sliding windows and all complexities. Note that 
the distribution of ∆ρc , perm

perf  is not expected to be normal given that 
∆ρc , perm

perf  is a difference of counts which are rather low. Therefore 
using the z-score may not be appropriate. We validate the modula-
tion of z-scores for performance and stimulus specific modulations 
based on a rank order statistic. To this end we performed the permu-
tation analysis three times, yielding in total 1368 estimates of ∆ρperm

perf  
(three times 97 estimates across time and 8 pattern complexities). 
We then determined the largest absolute value ∆r

crit
 out of all 1368 

estimates and used this as the critical value for a minimal significant 
difference from zero (corresponding test level is p < 0.001). This 
latter rank test is independent of the underlying distribution of 
chance deviations from zero. Using both methods we found mostly 
the same time complexity pattern to be significant.

MEDIAN vERSUS MEAN
The entire analysis was performed for both, mean pattern frequency, 
based on t-test and ANOVA, as well as for median pattern frequency 
based on Mann–Whitney U-test and Kruskal–Wallis test. ANOVA 
and Kruskal–Wallis test were used for multivariate analyses. For 
both tests we obtained qualitatively and quantitatively very simi-
lar results. In particular, comparison of z-scores yielded the same 
significant modulation across time and for the same complexities. 

which at least two sites have fired in synchrony during a temporal 
window of t

c 
= 3 ms. If c = 3, at least three sites fired synchronously, 

and so on. We analyzed JS-patterns with a complexity of up to c = 8. 
To summarize results for each complexity we derived the frequency 
σ of JS-patterns that each expressed a significant difference in ∆ft

k p,  
across the factors k.

In order to account for dynamic modulations of spike coupling 
throughout the different periods of each trial, we performed the 
joint-spike analysis outlined above by using sliding windows. The 
sliding window length was chosen to fit the assumed time scale 
of changes of neuronal coupling given the underlying processes 
that encode, maintain, or decode information. Given the some-
times very transient rate responses we used a sliding window of 
100 ms length during the sample and test stimulus presentation 
periods. The delay period could be analyzed with longer windows 
of 400 ms because of much slower rate modulations. Note that this 
choice of the sliding window length is independent of the spike 
rate modulation per se. NeuroXidence allows for an unconstrained 
choice of sliding window length, because it accounts for auto-
structure and rate covariation slower than t

r
. This distinguishes 

NeuroXidence from other methods like for example the unitary 
event method (Grün  et al., 1999, 2002, 2003) which all require 
stationary data.

BEHAvIORAL AND STIMULUS SpECIfIC MODULATION Of SpIkE 
SyNCHRONIzATION
First we used the bivariate NeuroXidence method to detect modu-
lation of spike synchronization depending on the behavioral suc-
cess of the monkeys, comparing trials with correct or incorrect 
behavioral responses. On average, performance was ∼80%, trials 
with correct responses were four times more frequent than tri-
als with behavioral errors. To prevent any bias, we balanced the 
number of correct and incorrect trials for each session by selecting 
subsets of correct trials which were close in time to the error trials. 
With the bivariate version of NeuroXidence we tested whether 
synchrony was modulated by the performance of the monkey and 
derived the direction of modulation, i.e., tested whether synchro-
nous firing compared to chance occurred more often in correct 
trials than in incorrect (relative increase for correct), or whether 
synchronous firing occurred more often in incorrect trials than in 
correct (relative increase for incorrect). In a second step we derived 
the frequency r of JS-patterns of complexity c that expressed a sig-
nificant increase of spike synchrony for correct responses ρ( )t c

correct , 
and the frequency of JS-patterns of complexity c that expressed 
a significant increase of spike synchrony for incorrect responses 
ρ( )t c

false .
The multivariate version of NeuroXidence was used to detect 

stimulus specific modulations of spike synchronization. Here, the 
k-experimental factors were all the 20 different visual stimuli pre-
sented during the sample period. These were tested for significant 
differences ∆ft

k p,  across stimuli. A significant difference indicates 
that the strength of spike synchrony is modulated in a stimulus spe-
cific manner. As for changes related to behavioral performance, we 
next summarized results by computing the frequency of JS-patterns 
for each complexity c that expressed a stimulus specific modulation 
of spike synchrony ρ( )t c

specific .
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paired test ∆ = −f f ft
k p

t
k p

t
k p, , ,( ) ( )org sur  can be used. However, using 

more than one surrogate causes the distribution of the difference to 
approach a normal distribution. This in turn changes the median 
compared to the mean. Since this change is stronger for skewed 
distributions, the amount of change is also a function of the fre-
quency of patterns. A true null hypothesis implies that the amount 
of change of the median compared to the mean, which is induced 
by using more than one surrogate, is a function of the firing rate. 
Using more than one surrogate per trial can falsify the significance 
estimation (a detailed discussion on these effects and the choice of 
number of surrogates per trial including numerical calibrations can 
be found in Pipa et al., 2008 and Wu et al., submitted). Thus, using 
only one surrogate per trial is the most conservative approach. Since 
our results indicate that the test power with just one surrogate is 
still sufficiently high, we decided to use a single surrogate per trial.

NULL HypOTHESIS
The null hypothesis (HØ) of this study assumes that synchroniza-
tion of spike discharge is not different across different conditions 
of the experiment. Synchronization of spiking activity across sites 

However, the results based on evaluation of means revealed slightly 
higher values. Therefore we present the more conservative results 
based on median testing in this paper.

NUMBER Of SURROgATES
In the presented approach we derived exactly one surrogate trial 
from each original trial by shifting all spike trains individually by 
a random time smaller t

r
. A small number of surrogates prevents a 

sampling bias, because if original and surrogate data have exactly 
the same number of samples, they also have the same degrees of 
freedom. Increasing the number of samples of the surrogates could 
be achieved by more than one jitter configuration of the same origi-
nal trial. This, however, would have two effects. First, the number 
of different patterns would be larger in the surrogate data, since the 
probability for individual patterns to occur – at least once – scales 
with the number of samples. The second effect is that computing 
the difference ∆ft

k p,  of spike pattern frequencies is non-trivial: in 
order to compute this difference one can use the average ∆ft

k p, ( )sur  
computed across surrogates for the same trial. This again gives as 
many surrogate samples as original frequencies such that the same 

Figure 3 | effects of permuting trials on pattern incidence and as basis of a 
significance estimate. The x-axis represents time after sample stimulus onset in 
seconds. The y-axis shows pattern complexity and the z-axis (color) is explained for 
each figure below. Sliding windows span 400 ms in (A1–C1), while they are 
100 ms long in (A2–C2). (A) Shows the difference between the frequencies of 
JS-patterns with increases of synchrony for trials with correct and false behavioral 
responses. (B) Shows the results for the identical dataset, but with randomly 

permuted trials across the classes “correct” and “false.” Based on the average 
level of differences in (B) and the SD of these differences, differences in (A) were 
expressed as z-scores in (C). We subtracted the average difference per complexity, 
but evaluated significance across the entire time course of the trial, starting at −0.5 
and ending at 4.3 s after sample stimulus onset. (C) We then divided this 
difference, derived for each sliding window and complexity, by the SD of the 
respective measurement in the case that classes are permuted [shown in (B)].
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extension of the NeuroXidence method. As detailed in the method 
section, we first identified synchronous firing on a time scale of 3 ms 
and corrected for rate modulation on a time scale of 15 ms and 
slower (Figure 2). To test whether joint-spike events were modu-
lated for different experimental factors, we tested whether the rate 
and spike train auto-structure corrected synchrony differed across 
experimental conditions. The 3803 JS-patterns visible in Figure 4C 
were composed of 329 JS-pattern with complexity c = 2, 1455 with 
c = 3, 1581 with c = 4, 407 with c = 5, 30 with c = 6, and 1 JS-pattern 
of complexity c = 7. For each JS-pattern we determined whether 
spike synchrony was stronger in correct or in error trials. The high-
est number of significant JS-patterns was found between 150 and 
250 ms after sample onset (Figures 4A2,B2). During this period, 
808 JS-patterns were significant (c2: 91, c3: 308, c4: 325, c5: 73, c6:10, 
c7:1). This amounts to 21.2% of the identified JS-patterns and is 
therefore much higher than the expected number of false positives 
given by the test level of 1%. As shown in Figure 4D, the firing rates 
as determined in 20 ms intervals cannot explain the difference in 
JS-patterns. However, the incidence and temporal profile is different 
for different sites. Some sites participated only in low complexity 
JS-patterns, while others started with strong modulation of high 
complexity JS-patterns, which were particularly pronounced during 
the later phase of the sample presentation (see units 1, 6, and 12 in 
Figure 4A2 and units 3, 7, and 10 in Figure 4B2).

Integrating across all experiments, we obtained a total of 18150 
different JS-patterns (Table 1) that changed the level of synchrony 
in a performance related way (all test levels 1%) and which involved 
up to 8 units (corresponds to complexity = 7) simultaneously 
(Figure 5). To summarize the results, we determined the frequen-
cies ρ( )t c

specific for stimulus specific, or ρ( )t c
false and ρ( )t c

correct for perfor-
mance related modulations of spike synchrony per complexity and 
per sliding window, and expressed this as a rate (s−1). Note that each 
JS-pattern that contributes to any of the three frequencies r(t)

c
 is in 

excess of all patterns sampled across all experimental conditions and 
thus can be considered significant. Figure 5A shows ρ( )t c

correct , which 
is the rate of JS-patterns in sliding windows of 400 ms duration 
for each complexity, reflecting more synchrony during trials with 
correct compared to incorrect responses. While Figure 5A1 repre-
sents the entire time course starting 700 ms before sample stimulus 
presentation and ending after test stimulus processing, Figure 5A2 
features the sample response epoch with higher temporal resolution 
(sliding window of 100 ms duration). In analogy, Figure 5B1,B2 
show the rate of ρ( )t c

false , that is the rate per second of JS-patterns 
which reflect more synchrony during trials with incorrect compared 
to correct responses. These analyses show that across all experiments, 
the highest rate of performance dependent JS-patterns can reach 
up to 120 patterns per second which was observed for complexity 4 
and during error trials also 3, but not in pairs. High rates of ρ( )t c

correct 
and ρ( )t c

false occurred during all behaviorally relevant epochs: dur-
ing sample stimulus processing, during early delay and during test 
stimulus processing. Remarkably, rates ρ( )t c

correct were particularly 
high during the delay period of correct trials during which visual 
memory was required to generate an appropriate response.

To compare changes of frequencies ρ( )t c
correct and ρ( )t c

false , we 
computed ∆ −ρ = ρ( ) ρ( )c c ct tperf correct false and derived a z-score z t c( )perf  
based on a permutation test, that randomized class labels for cor-
rect and incorrect trials, to test whether observed differences can 

is measured by comparing the frequency of a certain JS-pattern 
with the expected frequency if neurons are not synchronized. More 
specifically, here synchronization is defined as coordinated firing 
on a time scale faster than t

c
. Slower effects on a time scale larger 

t
r
 such as rate covariation across neurons, are not considered as 

synchronization. Testing HØ is therefore based on, first, a spike rate 
and spike train auto-structure corrected measure of synchroniza-
tion, and second, a test that checks whether an experimental excess 
or deficit of spike synchrony compared to chance levels is the same 
or different across conditions. The latter test is based on a mean 
or median test for each JS-pattern (p) and uses the spike rate and 
spike train auto-structure corrected measure of synchronization 
∆ = −f f ft

k p
t
k p

t
k p, , ,( ) ( ).org sur  HØ is rejected, in case of testing the 

mean, if the average of ∆ft
k p,  across trials for a certain JS-pattern 

(p) is different across the factors k. The median testing rejects HØ, 
if the median of ∆ft

k p,  across trials for a certain JS-pattern (p) is 
different across the factors k. The median test is more strict, because 
HØ is only rejected if the difference of ∆ft

k p,  is consistent across 
trials. Due to the rate and auto-structure correction, based on sur-
rogate data, any source of changes of ∆ft

k p,  other than fine temporal 
changes on a time scale faster than t

c
 can be excluded (analytical 

and numerical demonstration for this can be found in Pipa et al., 
2008 and Wu et al., submitted).

pATTERN COMpLExITy
We investigated JS-pattern complexity ranging from 2 to 8. In order 
to estimate the impact of JS-pattern complexity on global corti-
cal cooperativity, we distinguish between sub- and supra-patterns. 
A sub-pattern is a pattern that is embedded in a more complex 
JS-pattern. Thus, the complexity of a sub-pattern is always smaller 
than the complexity of the embedding JS-pattern. As an example, 
any complexity 3 pattern contains three sub-patterns of complexity 
2. The more complex embedding pattern is called supra-pattern. It is 
not straight forward to predict the significance of a given JS-pattern, 
i.e., whether its sub- and supra-patterns are significantly different 
from chance level. For a sub-pattern, we know that it occurs at 
least as often as its supra-pattern. This, however, is not sufficient 
for qualifying a sub-pattern as significant JSE, even if the embed-
ding supra-pattern has been proven to be significant. The reason 
is that the expected frequency of chance occurrences of a pattern 
usually increases with decreasing complexity. Thus, the frequency of 
a supra-pattern may be larger than the critical minimal frequency 
of patterns of large complexity, but below the critical frequency for 
low complexity patterns. In this case, significant high complexity 
JS-patterns occur, while sub-patterns may not be significant, as can 
be observed in the data presented here (e.g., Figures 3C1,C2). In 
the opposite case, low complexity JS-patterns are significant, but 
not their embedding supra-patterns. The simplest explanation is 
that the supra-pattern does not occur often enough.

RESULTS
We report results based on the analysis of neuronal spiking of 133 
multi-units recorded during 12 experimental sessions of a visual 
memory task (Figure 1). The two monkeys performed a total of 
9830 trials with on average 80% correct responses. In these data 
we identified differences in neuronal coupling expressed by modu-
lation of spike synchrony by using a bivariate and multivariate 
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Figure 4 | Millisecond precise joint spike events (JSe) in prefrontal 
multi-units. (A1, B1) Raster plots of 14 simultaneously recorded multi-unit signals 
(dots) for the sample stimulus period in trials with correct (A1) and erroneous 
behavioral responses (B1). (A2, B2) The same raster plots with superimposed 
JSEs marked by colored squares, each covering an interval of maximal 3 
milliseconds; colors reflect JSE complexity, i.e. how many units participated in a 
pattern. Yellow indicates JSE of pairs of units (c = 2), red and darker colors 

represent higher complexities ranging from c = 3 to 5. (A2) shows only JSEs 
which occurred in sets of sites that synchronized more often during trials with 
correct behavioral responses, while (B2) shows those JSE that occurred more 
often during error trials. (C) All JS-patterns combined from (B2, C2), irrespective of 
their modulation by behavioural performance. (D) Distributions of firing rates 
across all units, split for trials with correct and erroneous behavioral responses and 
below as average time course.

be explained by chance. Based on critical z-scores, which were 
corrected for multiple comparison across different complexities 
and different sliding windows, we identified periods and com-
plexities (“time complexity bins”) with significant modulations 
of the frequency of JS-patterns that each showed a significant and 
performance related modulation of spike synchrony (Figure 5C1). 
In other words, Figure 5C measures how significant the overall 
increase of spike synchrony was in correct compared to error tri-
als. Strongest modulation of spike synchrony was observed for 
JS-patterns of higher complexities and during the delay period. 
While the maximum complexity with significant modulations of 

z t c( )perf  reached 4 during the sample presentation (Figure 5C2), the 
complexity reached up to 7 during the delay. Surprisingly, pairwise 
synchrony measured by z t c( )perf was not significantly modulated. In 
general, behaviorally relevant periods are dominated by increases 
of synchronous activity in correct trials. Only during late delay and 
test stimulus presentation, spike synchrony of low complexities was 
stronger during error trials (Figure 5C1).

In stark contrast to the results for trials with correct behavioral 
responses, lower numbers of JSE were observed during error trials 
(Figure 5B). Most notably, this observation is not caused by some 
scaling or signal-to-noise problem, because during test stimulus 
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processing, when the monkey had to retrieve memory content and 
compare this to the test stimulus, an increase of JSE frequency was 
observed which is compatible with the JSE frequency observed dur-
ing sample stimulus processing and the early delay in correct trials 
(compare Figures 5A1,B1). An interesting feature of JSE increases 
during test stimulus processing is that complexity during correct 
trials is higher (4–6) compared to the complexity of JSE during 
error trials (2–5). Finally, we computed a contrast for JSE modula-
tion in trials with correct and incorrect behavioral responses after 
z-transformation using the variance obtained from permuted data 
in each experiment (Figure 5C). The main finding of this analysis is 
that during the first half of the delay, JSE increases during successful 
trials outbalance JSE during error trials while during late delay the 
converse is true. This is not a shaky effect, because these effects hold 
for many hundred milliseconds and are consistent across numerous 
adjacent complexities (Figure 5D).

We then also tested whether the occurrence of synchronous 
spike patterns was stimulus specific (Figure 6). Stimulus specific 
modulation of synchrony could be identified in 15273 patterns 
involving up to six units (Table 1). When comparing Figures 5 and 
6, it is evident that stimulus specific modulation of  synchronous 
firing is much more confined to stimulus response epochs than 
performance dependent modulation with two interesting excep-
tions: during early and mid delay. First, during early delay, JSE of 
complexity 3 occurred in a stimulus specific fashion for 800 ms, 
supporting the idea that synchronous neuronal activity during 
early delay is involved in encoding and stabilizing memory related 
activity. Second, well over a second into the delay, a short burst of 
JSE of complexity 5 discharged highly significant stimulus spe-
cific synchronous spikes (Figure 6B) which is reminiscent of the 
elevated rate of JSE c = 5 observed during correct trials in the 
performance analysis (Figure 5A1). Another interesting relation 
between performance dependent synchrony increases and stimulus 
specific synchrony increases can be observed during test stimulus 
processing when the monkey has to perform a comparison between 
arriving sensory information and memory content: First, the time 
complexity pattern of stimulus specific JSE peaks at around 300 ms 
after test stimulus onset at complexity 4 which matches the peak of 
performance dependent JSE modulation in correct trials. This is, of 

course, expected, because the analysis of stimulus specific JSE was 
exclusively performed on trials with correct behavioral responses. 
Note the different JSE pattern during error trials. Second, stimu-
lus specific JSE modulation during test stimulus processing was 
more than twice as strong as during sample stimulus processing 
(compare, e.g., JSE of complexity 4 during “S” and “T” periods in 
Figure 6A), which was not the case for correct trials in the perfor-
mance dependent modulation (Figure 5A1).

The temporal precision of JS-patterns is an important parameter 
of this study. We have chosen t

c
 to be 3 ms. Other studies used less 

precise patterns that may extend from 5 ms to even more imprecise 
recurrences. To select the appropriate temporal scale for our analy-
sis, we performed the same analysis procedure for four different 
t

c
 windows with (t

c
 = 2, 3, 5, and 7 ms). The lower bound of rate 

responses were scaled in the same way with t
r
 = α* t

c
, and α = 3 

leading to t
r
 values of 6, 9, 15, and 21 ms. We found that effects 

across the four scales were compatible, but strongest modulation 
of performance and stimulus related modulations of spike syn-
chrony were observed for t

c 
= 3 ms. This finding suggests that the 

experimental data reported here were dominated by JS-patterns 
with a temporal precision of 3 ms. For smaller t

c
, i.e., t

c 
= 2 ms, 

much less JSE were detected since most of the observed JSEs had 
an imprecision larger than 2 ms. For longer t

c
, i.e., 5 and 7 ms, the 

rate correction was effectively stronger because the model impreci-
sion t

c
 was too large for the dominating imprecision in the data.

DISCUSSION
The main finding of this study is that patterns of precise spike syn-
chrony (≤3 ms), here referred to as joint-spike events (JSE), change 
their frequency of occurrence and their complexity in a dynamic 
way which depends on the behavioral success of the monkey and 
the stimuli in the memory task. These JSE are no rare events, nor 
do they occur by chance. JSE with performance related changes 
occur more than 20 times more often than expected by chance. 
This raises the question how relevant synchronous firing may be 
for cortical processing (Herrmann et al., 2004; Uhlhaas et al., 2009).

ANALySIS AppROACH
Synchronous patterns of higher complexity had been observed in 
behaving monkeys before, but there have been and still are intensive 
discussions about whether such events might occur just by chance 
(Baker and Lemon, 2000). First and foremost, complex and usu-
ally time varying structures of spike trains caused the fear that 
model based analyses, which assume either stationary firing rates 
or idealized spike density distributions like following a Poisson 
distribution or reflecting a renewal process, cause false positive find-
ings. To avoid such assumptions, we have chosen a non-parametric 
approach that estimates the amount of chance JSE per trial based 
on permuted data from the exact same experiment thus preserv-
ing the auto-structure. Therefore any kind of complex structure, 
but also any kind of rate modulation slower than t

r
, the time scale 

for rate changes considered by NeuroXidence. At the same time 
the method stays very sensitive, on a level that is compatible to 
other methods, like standard pairwise cross correlation, factorial 
recoding of synchronous spike trains derived from data compres-
sion algorithms (Schnitzer and Meister, 2003) or the Unitary Event 
method (Pipa et al., 2008).

Table 1 | Number of joint-spike events (JSe) detected to be modulated 

by behavioral performance and stimulus specificity.

# JSe Performance Specificity

CoMPlexiTy

2 743 792

3 3283 3225

4 7239 5850

5 4733 3808

6 1443 1598

7 595 –

8 114 –

Sum 18150 15273

Units 122 118

Sessions 13 12
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Figure 5 | Time course and performance dependence of joint-spike 
event complexity. Rate of JSE (z-axis/color scale) with complexity (y-axis) 
ranging from 2 to 8 which was significantly modulated by behavioral 
performance, displayed as a function of time with respect to the onset of 
sample stimuli (x-axis). (A,B) JSE rate plotted for sets of recoding sites which 
expressed more JSE during trials with correct behavioral responses (A) and 
during error trials (B). (C) Time resolved contrast of the rates plotted in (A,B) 
after z-transformation. z-scores were computed by taking the absolute 
difference between values in (A,B), divided by the SD of values obtained in 
permuted trials with correct and erroneous behavioral responses, thus 
referencing to the variance of the same experiment. The critical z-value 

was 4.2, given a test level of 1% and a Bonferroni correction for 48 sliding 
windows and 7 complexities. (D) Colored time complexity bins mark 
periods of significant differences of performance dependent joint-spike 
events at a test level of 0.1%. Significance was evaluated using a rank order 
test of the original differences shown in (C1,C2) compared with results 
obtained based on permuted trials (compare to Figures 3B1,B2). On the left 
(A1–D1), pattern incidence is shown for the entire duration of the task based 
on analyses with sliding windows of 400 ms duration, while on the right 
(A2–D2), pattern incidence was analyzed with sliding windows of 100 ms 
duration and plotted exclusively for the first 400 ms of sample stimulus 
presentation.
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 differences in  neuronal synchrony between conditions. Using this, 
we derived a z-sore and applied a Bonferroni correction. This second 
step is robust against changes of rates and particular auto-structures 
of neuronal activity across conditions, because NeuroXidence uses 
surrogate data which maintain this structure. Since a permutation 
test is used, no assumption is made regarding the distribution of 
any parameter. Last, but not least, testing median and mean JSE 
frequency at the level of individual JS-patterns provided very similar 
results for the modulation of spike synchrony.

To avoid that synchronous activity could have escaped our atten-
tion due to shallow significance levels we set the criteria for detecting 
JS-patterns as conservative as possible. We chose the required tem-
poral precision t

c
 of a synchronous firing pattern to be equal or less 

than 3 ms (see also Pipa et al., 2007 for further discussion on time 
scale separation). This parameter confines the analysis to very precise 
patterns, in particular if more than two multi-units were involved. 
On the one hand, the interval t

c
 can also be seen as a necessary upper 

bound of time scales which define a very fast increase of firing rate 
covariation across all units participating in a JS-pattern. On the other 
hand, the second interval t

r
 is important to contrast synchrony to all 

other kinds of rate covariation, in particular, on slower time scales. 
We chose t

r
 = 15 ms which implies that any covariation of firing 

rates occurring within more than 15 ms (or slower as 66 Hz) is con-
sidered as rate. Any covariation of firing rates occurring within less 
than 3 ms (or faster than 333 Hz) is considered to be a JS-pattern. It 
is important to note that 15 ms as an upper bound of rate covaria-
tions is very conservative given that firing rate changes are typically 
observed with bin sizes of several tens of milliseconds.

METHODOLOgICAL LIMITATIONS
A first limitation of the current approach is that the analysis does 
not consider the nature of the analyzed JS-patterns, e.g., their spa-
tial structure. This implies that for example information about 
the similarity of patterns accounted for different experimental 
conditions could not be analyzed. The spatial structure, however, 
might be very relevant for the neuronal processes. Furthermore, 
this limitation implies that similarity and stability of JS-patterns 
over time across different sliding windows were not analyzed. This 
might be very relevant, as a stable increase of JSE during the delay 
period which lasted for more than 2 s, may have been composed 
of very different sets of JS-patterns over time. Knowledge of this 
stability might allow to distinguish between the two hypotheses 
which either assume that information is encoded in stable and 
rather small subpopulations, or, that information is encoded on the 
sequences of many and very rich transitions of different neuronal 
states. However, technically this tracking of stability seems very 
demanding if not even impossible at the time.

A second limitation of the current analysis is that we cannot 
determine the actual size of neuronal assemblies which are involved 
in the encoding and maintenance of behaviorally relevant informa-
tion. Given our finding that up to 8 multi-units out of a population 
of 10–24 can be involved in behaviorally relevant JS-patterns, one 
may conclude that assemblies can be very large, maybe involving 
a third or even half of the neurons. From a theoretical perspective, 
such a code may appear very attractive, because the coding space 
becomes really large, if on average a third or half of the neurons in 
a population engage in JS-patterns.

A complication that arises when dealing with the activity of a 
large number of neurons is that the number of JS-patterns grows 
so large that standard approaches based on single JS-patterns are no 
longer applicable and the amount of information is overwhelming 
and may even become confusing. To overcome this problem, we 
chose a simple strategy which consists of computing the frequency 
of JS-patterns that have before been shown to be significantly modu-
lated by experimental factors. Using this simplification, we lost the 
identity of JS-patterns, but we were able to condense observations 
to a very handy low dimensional set of numbers: frequency and 
pattern complexity for each time window. However, this reduction 
requires a second level of hypothesis testing, since, even though 
each JS-pattern that is included in the statistics is significant, the 
expected level of significant JS-patterns is unknown. Therefore 
we used another robust non-parametrical test, based on permu-
tations. This test compares the frequency of patterns observed in 
trials selected for original experimental factors (i.e., trials with cor-
rect versus incorrect behavioral responses, or the different stimuli 
the monkey had to memorize) and, a second set of JS-pattern fre-
quencies derived from permuted class labels. This test preserved 
the simultaneity of recorded neuronal activity, but swapped trials 
between different experimental conditions in order to destroy any 

Figure 6 | Time course of stimulus specific joint-spike events. (A) 
Incidence of JSE of complexities 2–6 which exhibited a stimulus specific 
modulation during 3 ms short intervals in patterns per second. (B) Statistical 
evaluation of stimulus specific JSE incidence was performed in analogy to the 
analysis of performance dependent JSE incidence. z-sores were computed by 
dividing the number of JSE in trials in which a specific visual object was 
memorized divided by the SD of JSE in trials from the same recording session, 
but after permutation for memorized stimuli. To this end we used the identical 
data and the identical number of trails per stimulus, but permuted stimuli 
randomly across all trails. z-transforms were performed for each individual 
complexity and based on the SD derived from the entire time course starting at 
the beginning of the baseline and including all other epochs until after button 
press of the monkey. The critical z-value was 4.08 given a test level of 1% and a 
Bonferroni correction for 48 sliding windows and 5 complexities.

Pipa and Munk Spike Synchrony in PFC

Frontiers in Computational Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 23 | 10

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


A third limitation of the current approach being restricted to 
multi-unit signals implies that we have investigated JS-patterns 
among several small, spatially separated neuronal populations and 
not single, well isolated units which are generally considered to 
reflect the activity of a single neuron. As we have recorded all wave 
forms at sufficient spectrotemporal resolution we have tried to 
sort spikes, but with limited success, the major obstacle being that 
most of the signals recorded for this study were not recorded with 
tetrodes, but with single-ended fiber microelectrodes. Therefore, 
despite good S/N, synchronous spikes occurring at individual 
sites were most of the time misclassified as deformed rare spike 
waveforms, which were discarded. Thus we restricted the analysis 
and interpretation of this study to multi-unit signals. As a con-
sequence, estimates of the assembly size as discussed above are 
even further hampered by concluding about synchronous firing 
only for several groups of neurons. However, this is a conservative 
approach for answering the question whether synchronous firing 
exists above chance, because each individual locally observed spike 
might already represent a synchronous event. Since we do not rely 
on any statistical assumption for the distribution of JS-patterns 
occurring by chance, but simply permute the existing time series, 
there is no trivial explanation for false positive events.

Our finding that JS-patterns with a precision of 3 ms and rate 
corrected at a time scale of 9 ms were more modulated by experi-
mental variables like behavioral performance than patterns at 
more precise or less precise scales suggests that the precision of 
3 ms is biologically meaningful. Compared to other studies, which 
reported JS-patterns of 5 ms precision, these time scales appear to 
be too short (Riehle et al., 1997). This difference, however, can be 
partly attributed to the chosen analysis techniques. For example 
in the paper by Riehle et al. (1997) the unitary event method 
was used. This method detects JSE based on binned spike trains 
with a bin size corresponding to the assumed temporal preci-
sion of the JS-pattern. Binning however requires that the window 
must be larger than the actual precision of the pattern, because 
JS-patterns close to the boarder of two bins have an effectively 
much smaller window than JS-patterns which are centered on a 
bin. Therefore, the detectability of a JS-pattern with methods using 
binning depends on the relative position of JS-patterns within 
the bins. In contrast, NeuroXidence describes a JS-pattern by the 
exact preset imprecision, given by t

c
. Results presented in Pipa et al. 

(2007) demonstrate this link between two time scales for exactly 
the same data as presented in Riehle et al. (1997). By applying 
NeuroXidence to these data, the authors confirmed the previous 
results based on the binning UE method to contain JSEs on the 
same time scale of 5 ms. However, reducing the preset time scale 
from 5 to 3 ms for the NeuroXidence method, resulted in an even 
stronger deviation from the chance level, while the number of 
patterns detected by binning decreased significantly. This indicates 
that the NeuroXidence method is more sensitive to find the lower 
bound of spiking precision of JS-patterns.

An earlier study that has successfully dealt with higher order 
spike patterns extracted from simultaneous recordings of reti-
nal ganglion cells has used a factorial recoding of synchronous 
spike trains that was derived from data compression algorithms 
(Schnitzer and Meister, 2003). This method is also very efficient in 
detecting and storing synchronous spike trains, but  unfortunately 

also involved time binning which has been shown to miss coinci-
dences (Pipa et al., 2007). The advantage of this method is that one 
can preserve the identity of each unit and of all groups of units 
involved in synchronous firing which is certainly a feature we want 
to include in future versions of our analysis technique.

fUNCTIONAL IMpLICATIONS
For the analysis of synchronous firing patterns one can distinguish 
the complexity from the order of a JS-pattern. While the complexity 
just gives the number of neurons or sites involved in a JS-pattern, the 
order determines the real underlying correlation structure. The latter 
is necessary to distinguish between the chance level and the occur-
rence of sub-patterns of a more complex JS-pattern (Martignon 
et al., 2000; Nakahara and Amari, 2002; Schneider and Grün, 2003). 
However, the latter is also more of theoretical nature than of any 
practical relevance. It had been demonstrated that the amount of 
data necessary to distinguish between a certain set of orders is gigan-
tic compared to the amount of data which is usually available in 
real experiments, but also with respect to the amount of informa-
tion a neuron in the cortex would have to decode if sub-patterns 
would be able to carry relevant information. Both arguments are 
in favor of using the much simpler JS-pattern complexity. Pattern 
complexity can be simply interpreted as a kind of input saliency for 
downstream neurons. The higher the complexity, the more neurons 
participate, the more salient the input pattern is, because the more 
numerous simultaneous or nearly simultaneous inputs are, the more 
they can draw from spatial summation properties of postsynaptic 
membranes resulting in more rapid depolarization or even non-
linear amplification of the postsynaptic membrane potential.

What precisely synchronous spike firing of distributed popula-
tions of cortical neurons really means for information processing 
and generating appropriate behavior is not yet well understood. The 
observation that JSE incidence was massively increased even before 
the predictable end of the memory delay is reminiscent of JSE in 
motor cortex due to sensorimotor expectancy (Riehle et al., 1997), 
suggesting that spike synchrony in PFC could reflect a mechanism 
for the temporal organization of executive processes. However, the 
finding that synchronous spiking is modulated by, both, behavioral 
performance and the memorized visual stimuli, suggests that syn-
chrony is a very fundamental processing mechanism of the cortex. 
How well synchronous spike signals can be used in the future to 
actually decode information processed and maintained in distrib-
uted cortical circuits remains to be seen. The well established fact 
that coincident neuronal activity is a potent trigger for synaptic 
plasticity suggests that synchronous activity may be a better predic-
tor for what cortical circuits need to be adapted for rather than an 
expression of their current performance.
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