
COMPUTATIONAL NEUROSCIENCE

The structure and activity can be examined in a simplified but 
easily tractable neuronal system, namely in dissociated cultures of 
cortical neurons. Neurons placed in a culture have the capability 
to develop and self-organize into functional networks that exhibit 
spontaneous bursting behavior (Kriegstein and Dichter, 1983; 
Marom and Shahaf, 2002; Wagenaar et al., 2006). The structure 
of such networks can be manipulated by changing the physical 
characteristics of the environment where neurons live (Wheeler and 
Brewer, 2010), while the activity is recorded using multielectrode 
array chips. Networks of spiking neurons have been systematically 
analyzed in the literature (for example, see Brunel, 2000; Tuckwell, 
2006; Kumar et al., 2008; Ostojic et al., 2009). In addition, models 
aiming to study neocortical cultures are presented in (Latham et al., 
2000; Benayon et al., 2010), among others.

In this work, we follow the modeling approach of a recent study 
(Gritsun et al., 2010) in simulating the activity of a neuronal system. 
The model is composed of Izhikevich model neurons (Izhikevich, 
2003) and the synapse model with short term dynamics (Tsodyks et al., 
2000). We employ an information theoretic framework presented in 
Galas et al. (2010) in order to estimate the information diversity in 
both the structure and dynamics of simulated neuronal networks. 
This framework utilizes the normalized compression distance (NCD), 

1 IntroductIon
Neuronal networks exhibit diverse structural organization, which 
has been demonstrated in studies of both neuronal microcircuits 
and large-scale connectivity (Frégnac et al., 2007; Voges et al., 
2010; Sporns, 2011). Network structure, the connectivity pat-
tern between elements contained in the network, constrains the 
interaction between these elements, and consequently, the overall 
dynamics of the system. The relationship between network struc-
ture and dynamics has been extensively considered in theoreti-
cal studies (Albert and Barabási, 2002; Newman, 2003; Boccaletti 
et al., 2006; Galas et al., 2010). In networks of neurons, the pattern 
of interneuronal connectivity is only one of the components that 
affect the overall network dynamics, together with the non-linear 
activity of individual neurons and synapses. Therefore, the con-
straints that structure imposes on dynamics in such systems are 
difficult to infer, and reliable methods to quantify this relationship 
are needed. Several previous studies employed cross-correlation 
in this context (Kriener et al., 2008; Ostojic et al., 2009), while 
the study reported in Soriano et al. (2008) proposed a method to 
infer structure from recorded activity by estimating the moment 
in network development when all of the neurons become fully 
connected into a giant component.
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which employs the approximation of Kolmogorov complexity (KC) 
to evaluate the difference in information content between a pair of 
data sequences. Both network dynamics in the form of spike trains 
and network structure described as a directed unweighted graph can 
be represented as binary sequences and analyzed using the NCD. KC 
is maximized for random sequences that cannot be compressed and 
small for the regular sequences with lot of repetitions. Contrary to KC, 
a complexity measure taking into account the context-dependence 
of data gives small values for the random and regular strings and is 
maximized for the strings that reflect both regularity and randomness, 
i.e., that correspond to the systems between order and disorder (Galas 
et al., 2010; Sporns, 2011). The notion of KC has been employed before 
to analyze experimentally recorded spike trains, i.e., the recordings of 
network dynamics, and to extract relevant features as in Amigó et al. 
(2004) and Christen et al. (2006). Another examples of application 
of information theoretic methods in the analysis of spike train data 
can be found in Paninski (2003).

The NCD has been used for analysis of Boolean networks in Nykter 
et al. (2008), where it demonstrated the capability to discriminate 
between different network dynamics, i.e., between critical, subcriti-
cal and supercritical networks. This study employs NCD in a more 
challenging context. As already mentioned, in neuronal networks the 
influence of structure on dynamics is not straightforwardly evident 
since both network elements (neurons) and connections between 
them (synapses) possess their own non-linear dynamics that con-
tribute to the overall network dynamics in a non-trivial manner. The 
obtained results show that random and regular networks are separable 
by their NCD distributions, while the networks between order and 
disorder cover the continuum of values between the two extremes. 
The applied information theoretic framework is novel in the field of 
neuroscience, and introduces a measure of information diversity capa-
ble of assessing both structure and dynamics of neuronal networks.

2 MaterIals and Methods
2.1 network structure
Different types of network structures are considered in this study. In 
locally connected networks (LCN) with regular structure every node is 
preferentially connected to its spatially closest neighbors. Only for high 
enough connectivity a node connects to more distant neighbors. In 
random Erdős–Rényi (RN) networks every pair of nodes is connected 
with equal probability regardless of their location. Finally, networks 
with partially local and partially random connectivity (PLCN) possess 
order and disorder in their structure. In Algorithm 1, we describe a 
unified scheme for generating these three types of networks.

Algorithm 1 | Scheme for generating distance-dependent networks.

    for node index i ∈ {1,…,N} do

        Take number of in-neighbors ni ∼ Bin(N − 1, p).

        for in-neighbor index j ∈ {1,…,ni} do

           1. Give weights wk to all nodes k ≠ i that are not yet connected to i s.t. 

                w Dk ik
W= − , where Dik is the spatial distance between nodes i and k.

           2. Normalize by P k w
w
k

k k
( ) ,= ∑  where P(k) represents the probability to  

               draw node k.

           3. Randomly pick k from the probability mass distribution P and create  

                a connection from k to i.

        end for

    end for

The scheme uses three parameters: probability of connection 
between a pair of nodes p ∈ [0,1], factor that defines dependence 
on distance W ≥ 0, and the spatial node-to-node distance matrix 
D ∈ N × N. The matrix D is presumed positive and symmetric. For 
W = 0 the scheme results in a RN, as for W = ∞ we obtain a LCN. 
These latter networks are considered the limit cases of an arbitrarily 
big factor W: when choosing the in-neighbor one always picks the 
spatially closest one that has not yet been chosen as an in-neighbor. 
Randomness in the picking of the in-neighbors is applied only when 
there are two or more possible in-neighbors with the exact minimal 
distance from the considered node. In these cases, the in-neighbor 
is chosen by random.

It is notable that regardless of the choice of the distance-depend-
ence factor W the scheme results in a network with in-degree dis-
tributed binomially as Bin(N−1, p). Equal in-degree distribution 
makes the considered networks comparable: each network has the 
same average number of neurons with a high number of synaptic 
inputs as well as those with a low number. This property does not 
arise in most studied models of networks with varying distance-
dependence, as Watts–Strogatz networks (Watts and Strogatz, 1998) 
or Erdős–Rényi based models where the probability of connection 
is altered by the spatial distance between the nodes (see e.g., Itzhack 
and Louzoun, 2010).

2.1.1 NETMORPH: a neuronal morphology simulator
In addition to networks described above, we study biologically real-
istic neuronal networks. NETMORPH is a simulator that combines 
various models concerning neuronal growth (Koene et al., 2009). 
The simulator allows monitoring the evolution of the network from 
isolated cells with mere stubs of neurites into a dense neuronal 
network, moreover, observing the network structure determined 
by the synapses at given time instants in vitro. It simulates a given 
number of neurons that grow independently of each other, and 
forms synapses whenever an axon of a neuron and a dendrite of 
another neuron come near enough to each other. The neurite seg-
ments are static in the sense that when they are once put onto their 
places they are not allowed to move for the rest of the simulation.

The growth of the axons and dendrites is described by three 
processes: elongation, turning, and branching, all of which are only 
applied to the terminal segments of the dendritic and axonal trees. 
The elongation of a terminal segment obeys the equation

n ni i
Fn= ,−

0  (1)

where v
i
 is the elongation rate at time instant t

i
, v

0
 is the initial elon-

gation rate, n
i
 is the number of terminal segments in the arbor that 

the considered terminal segment belongs to, and F is a parameter 
that describes the dependence of the elongation rate on the size 
of the arbor.

The terminal segments continue to grow until a turning or 
branching occurs. The probability that a terminal segment j changes 
direction during time interval (t

i
, t

i
 + ∆t) obeys equation

P r L ti j L j i, = ( ),∆
 

(2)

where ∆L
j
(t

i
) is the total increase in the length of the terminal seg-

ment during the considered time interval and r
L
 is a parameter that 

describes the frequency of turnings. The new direction of growth is 
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Further considered measures of network structures are the 
shortest path length and the clustering coefficient (Newman, 2003). 
We choose these two standard measures in order to show differ-
ences in the average distance between the nodes and the overall 
degree of clustering in the network. The shortest path length l

ij
 

(referred to as path length from now on) from node i to node j 
is the minimum number of edges that have to be traversed to get 
from i to j. The mean path length of the network is calculated as 
L l

N i j
N

ij= ∑ =
1

12 , , where such path lengths l
ij
 where no path between 

the nodes exists are considered 0. The clustering coefficient c
i
 of 

node i is defined as follows. Consider N
i
 as the set of neighbors of 

node i, i.e., the nodes that share an edge with node i in at least one 
direction. The clustering coefficient of node i is the proportion 
of traversable triangular paths that start and end at node i to the 
maximal number of such paths. This maximal number corresponds 
to the case where the subnetwork N

i
 ∪ {i} be fully connected. The 

clustering coefficient can thus be written as

c
j k M M

i

i i j j k k i

i i

=
( ) |{ }

−1( ) .
,

| | | |

, , ,∈ ∧ ∧N
N N

2 M

 

(4)

As the connections to self (autapses) are prohibited, one can 
use the diagonal values of the third power of connectivity matrix 
M to rewrite Eq. 4 as

c
M

i
ii

i i

=
( )

−( ) .
3

1| | | |N N
 (5)

This definition of clustering coefficient is an extension of Eq. 5 
in Newman (2003) to directed graphs. The clustering coefficient of 
the network is calculated as the average of those c

i
 for which |N

i
| > 1.

Examples of connectivity patterns of different network struc-
ture classes, including a network produced by NETMORPH, 
are illustrated in Figure 1. The figure shows connectivity of a 

obtained by adding perturbation to a weighted mean of previous 
growing directions. The most recent growing directions are given 
more weight than the earliest ones.

The probability that a terminal segment branches is given by

p n B e e Ci j i
E t t S

n
i j

i,
/ /= −1( )2 / ,− − −

∞
∆t t g

 (3)

where n
i
 is the number of terminal segments in the whole neuron at 

time t
i
 and E is a parameter describing the dependence of branching 

probability on the number of terminal segments. Parameters B∞ 
and t describe the overall branching probability and the depend-
ence of branching probability on time, respectively – the bigger the 
constant τ, the longer the branching events will continue to occur. 
The variable g

j
 is the order of the terminal segment j, i.e., how many 

segments there are between the terminal segment and the cell soma, 
and S is the parameter describing the effect of the order. Finally, 

the probability is normalized using the variable Cn n k
n S

i i

i k= ∑ =
−1

1 2 g .

Whenever an axon and a dendrite of two separate neurons grow 
near enough to each other, there is a possibility of a synapse forma-
tion. The data consisting of information on the synapse formations, 
and hence describing the network connectivity, is output by the 
simulator. Technical information on the simulator and the model 
parameters that are used in this study are listed in Appendix 6.1.

2.1.2 Structural properties of a network
In this study we consider the network structure as a directed 
unweighted graph. These graphs can be represented by connectivity 
matrices M ∈ {0, 1}N × N, where M

ij
 = 1 when there is an edge from 

node i to node j. The most crucial single measure characterizing the 
graphs is probably the degree of the graph, i.e., the average num-
ber of in- or out-connections of the nodes. When studying large 
networks, not only the average number but also the distributions 
of the number of in- and out-connections, i.e., in- and out-degree, 
are of interest.

RN W=0.5 W=1 W=2 LCN NETMORPH

Figure 1 | upper: examples of the connectivity patterns. White: target cell, red: cells having output to the target cell, black: cells receiving input from the target 
cell; Middle: Connectivity matrix. Y-axis: From-neuron index, X-axis: To-neuron index; Lower: Selected part of the connectivity matrix magnified.
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Variables x and z are the fractions of synaptic resources in the 
recovered and inactive states, respectively, and t

rec
 and t

I
 are synaptic 

model parameters. The time instant t
sp

 stands for a spike time of 
the presynaptic cell; the spike causes a fraction u of the recovered 
resources to become active. For excitatory synapses the fraction 
u is a constant U, as for inhibitory synapses the dynamics of the 
fraction u is described as

du

dt

u
U u t t

facil

sp= − + −( ) −( ).
t

d1

 

(11)

To solve the differential equations we apply Euler method on 
Eqs 6 and 7 and exact integration (see e.g., Rotter and Diesmann, 
1999) on Eqs 10 and 11. The simulation setup for the activity model 
described above is discussed further in Section 3.1. Values of the 
model parameters and the initial conditions of the model are given 
in Appendix 6.2. Figure 2 illustrates a typical population spike train 
of different network classes with connection probability 0.1, and a 
magnified view of one of their bursts.

2.2.2 Synchronicity analysis
Given a population spike train, we follow the network burst detec-
tion procedure as presented in Chiappalone et al. (2006), but using 
a minimum spike count minSpikes = 400 and maximal interspike 
interval ISI = 10 ms. Once the starting and ending time of the burst 
are identified, the spike train data of the burst are smoothed using 
a Gaussian window with deviation 2.5 ms to obtain a continuous 
curve as shown in Figure 3. The shape of the burst can be assessed 
with three statistics that are based on this curve: the maximum fir-
ing rate (mFr), half-width of the rising slope (Rs) and half-width 
of the falling slope (Fs) (Gritsun et al., 2010).

In addition to the network burst analysis, we estimate the cross-
correlations between spike trains of two neurons belonging to the 
same network. We follow the method presented in Shadlen and 
Newsome (1998), where the cross-correlation coefficient (CC) 
between spike trains of neurons j and k is defined as CCjk

A

A A

jk

jj kk
= . 

Here, the variable A
jk
 represents the area below the cross-correlo-

gram and is computed as

A x i x ijk

j k

j k
i

T

= ( ) ( +








 −











=

−

=−
∑∑ 1

0

1

100

100

l l
t t

t

) ( ) .Θ
 

(12)

The variable x
j
(i) is 1 for presence and 0 for absence of a spike 

in the ith time bin of spike train of neuron j, l
j
 is the mean value of 

x
j
(i) averaged over i, and T is the number of time bins in total. The 

running variable t is the time lag between the two compared signals, 
and the weighting function Θ is chosen triangular as Θ(t) = T−|t|.

2.3 InforMatIon dIversIty as a Measure of data coMplexIty
Complexity of different types of data and systems has been studied 
in numerous scientific disciplines, but no standard measure for it 
has been agreed upon. The most widely used measures are probably 
Shannon information (entropy) and the theoretical KC. Shannon 
information measures the information of a distribution. Thus, it is 
based on the underlying distribution of the observed random vari-
able realizations. Unlike Shannon information, KC is not based on 
statistical properties, but on the information content of the object 
itself (Li and Vitanyi, 1997). Hence, KC can be defined without 

single cell (upper row), the connectivity matrix in total with 
black dots representing the ones (middle row) and a zoomed in 
segment of the connectivity matrix (bottom row). The struc-
ture classes shown are a RN, three examples of PLCN obtained 
for different values of distance-dependence factor W, a LCN 
and a NETMORPH network. Connection probability p = 0.1 is 
used in all network types. Note the variability in the spread of 
neighbors within different networks: for RNs they are spread 
totally random, as for LCNs they are distributed around the 
considered neuron. Due to the boundary conditions the spread 
of the out-neighbors in LCN is not circular, as the nodes near 
the border have on average more distant in-neighbors than the 
ones located at the center. In NETMORPH networks the spread 
of the out-neighbors is largely dictated by the direction of the 
axonal growth.

2.2 network dynaMIcs
2.2.1 Model
To study the network activity we follow the modeling approach 
presented in Gritsun et al. (2010). We implement the Izhikevich 
model (Izhikevich, 2003) of spiking neurons defined by the follow-
ing membrane potential and recovery variable dynamics

dv

dt
v v r I

dr

dt
a bv r

= + + − +

= −

0 04 5 1402.

( )
 

(6)

and the resetting scheme

if thenv
v c

r r d
≥

←
←

30, .
+



  

(7)

Parameters a, b, c, and d are model parameters and

I I Isyn G= +
 

(8)

is an input term consisting of both synaptic input from other mod-
eled neurons and a Gaussian noise term. The synaptic input to neu-
ron j is described by Tsodyks’ dynamical synapse model (Tsodyks 
et al., 2000) as

I t A y tj syn ij ij
i

, ( ) ( ).= ∑
 

(9)

The parameter A
ij
 accounts for the strength and sign (positive 

for excitatory, negative for inhibitory) of the synapse whose presyn-
aptic cell is i and postsynaptic cell j – note the permutated roles of 
i and j compared to those in Tsodyks et al. (2000). The variable y

ij
 

represents the fraction of synaptic resources in the active state and 
obeys the following dynamics:

dx

dt

z
ux t t

dy

dt

y
ux t t

dz

dt

y z

rec

sp

I

sp

I rec

= − −( )
= − + −( )
= − .

t
d

t
d

t t
 

(10)
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a  network (Neel and Orrison, 2006), and a few measures exist also 
for the complexity of the output of a neuronal network (Rapp et al., 
1994), but no measure of complexity that could be used for both 
structure and dynamics has – to the best of our knowledge – been 
studied. To study the complexity of the structure we consider the 
connectivity matrix that represents the network, as for the complex-
ity of the network activity we study the spike trains representing 
spontaneous activity in the neuronal network. We apply the same 
measure for assessing complexity in both structure and dynamics.

2.3.1 Inferring complexity from NCD distribution
We use the NCD presented in Li et al. (2004) as a measure of infor-
mation distance between two arbitrary strings. The NCD is a com-
putable approximation of an information distance based on KC. 
The NCD between strings x and y is defined by

considering the origin of an object. This makes it more attractive 
for the proposed studies as we can consider the information in 
individual network structures and their dynamics. The KC C(x) 
of a finite object x is defined as the length of the shortest binary 
program that with no input outputs x on a universal computer. 
Thereby, it is the minimum amount of information that is needed 
in order to generate x. Unfortunately, in practice this quantity is 
not computable (Li and Vitanyi, 1997). While the computation of 
KC is not possible an upper bound can be estimated using lossless 
compression. We utilize this approach to obtain approximations 
for KC.

In this work we study the complexity of an object by the means 
of diversity of the information it carries. The object of our research 
is the structure of a neuronal network and the dynamics it pro-
duces. There are numerous existing measures for the complexity of 
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Figure 2 | An example of population spike trains of four different networks 
with a selected burst magnified. The distance-dependence factor W = 1 is 
used in the PLCN network. (A): The full population spike train, (B–D): The spiking 
pattern of the selected burst illustrated by different orderings of the neurons, 
and (e): The selected region in (D) magnified. In (B) the neurons are primarily 

ordered by their type and secondarily by their location in the grid such that the 
lower spike trains represent the excitatory neurons and the upper spike trains 
the inhibitory neurons. In (C) the neurons are ordered by the time of their first 
spike in the selected burst, i.e., the lower the spike train is, the earlier its first 
spike occurred. In (D) the neurons are ordered purely by their location in the grid.

Mäki-Marttunen et al. Information diversity in neuronal networks

Frontiers in Computational Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 26 | 5

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Although the variation of NCD by no means captures all the 
properties that are required of a complexity measure and fulfilled 
by the set complexity Ψ, it lacks the difficulty arising in deter-
mining the functions f and g in Eq. 14. Let us consider this in 
more detail from the point of view that we do not know how the 
functions f and g should be like – which is a fact, apart from the 
knowledge on them having roots in 0 and 1. Suppose we have 
two finite sets of strings, S s sn1 1

1 1= …{ }( ) ( ), ,  and S s sm2 1
2 2= …{ }( ) ( ), , . 

Denote the NCDs between the strings of set S
1
 by dij

( ) ,1 ∈  where 
i,j ∈ {1,…,n}, and accordingly, let dij

( )2  be the NCDs between the 
strings of set S

2
. If any of the NCDs dij

( )1  (i≠j) is unique in the 
sense that it is unequal to all NCDs dkl

( )2  (k≠l), then we find an 
e-neighborhood B dij∈( )( )1  that contains an NCD value of S

1
 but 

none of those of S
2
. Thereby, we can choose the functions f and g 

such that the value of f × g is arbitrarily large at dij
( )1  and arbitrarily 

small outside B dij∈( ),( )1  leading to Ψ(S
1
) > Ψ(S

2
). We can general-

ize this to a case of any finite number of sets S
1
,…,S

N
: if for set S

I
, 

I ∈ {1,…,N} there is an NCD value dij
I( ) (i ≠ j) that is unequal to 

all other NCD values dkl
J( ) (J ≠ I, k ≠ l), then the functions f and g 

can be configured such that ∀J ≠ I:Ψ(S
I
) > Ψ(S

J
). Hence, the lack 

of knowledge on functions f and g imposes severe restrictions on 
the eligibility of the set complexity Ψ as such.

What is incommon for the proposals for f and g presented in 
Galas et al. (2010) is that the product function f × g forms only one 
peak in the domain [0,1]. The crucial question is: where should 
this peak be located – ultimately, this is the same as asking: where 
is the boundary between “random” and “ordered” sets of data? 
Adopting the wideness of NCD distribution as a measure of data 
complexity is a way to bypass this problem. The wider the spread 
of NCD values, the more likely it is that some of the NCD values 
produce large values for f × g. Yet, difficulties arise when deciding 
a rigorous meaning for the “wideness” or “magnitude of variation” 
of the NCD distribution. In the present work, the calculated NCD 
distributions are seemingly unimodal; thereby we use the standard 
deviation of the NCD distribution as the measure of complexity 
of the set.

2.3.2 Data representation for complexity analysis
Two different data analysis approaches to studying the complex-
ity are possible (Emmert-Streib and Scalas, 2010): one can assess 
(1) the complexity of the process that produces a data realization, 
or (2) the complexity of the data realization itself. In this study we 
will apply the approach (2) in both estimating the complexity of 
structure and the complexity of dynamics. To study the complex-
ity in the context-dependent manner described in Section 2.3.1 
we divide the data into a set of data, and represent it as a set of 
strings. For the structure, the rows of the connectivity matrix 
are read to strings, i.e., each string s shows the out-connection 
pattern of the corresponding neuron with s

i
 = “0” if there is 

no output to neuron i and s
i
 = “1” if there is one. The NCDs 

are approximated between these strings. In order to compute 
the NCD of the dynamics every spike train is converted into a 
binary sequence. Each discrete time step is assigned with one if 
a spike is present in that time slot, and with zero otherwise. For 
example, a string “0000000000100101000” would correspond to a 
case where a neuron is at first silent, then spikes at time intervals 
around 10∆t, 13∆t and 15∆t, where ∆t is a sampling interval. 

NCD
min

max
( , )

( ) ( ), ( )

( ), ( )
,x y

C xy C x C y

C x C y
=

− ( )
( )

 

(13)

where C(x) and C(y) are the lengths of the strings x and y when 
compressed – accounting for approximations of KCs of the respec-
tive strings – and C(xy) is that of the concatenation of strings x and 
y. In our study we use standard lossless compression algorithms 
for data compression1.

The NCD has recently been used in addressing the question 
whether a set of data is similarly complex as another (Emmert-
Streib and Scalas, 2010), based on a statistical approach. In another 
study (Galas et al., 2010), the complexity of a set of strings is esti-
mated using a notion of context-dependence, also assessable by 
the means of the NCD. We follow the latter framework and aim at 
estimating the complexity of an independent set of data – in our 
study, this set of data is either a set of connectivity patterns or a set 
of spike trains. In Galas et al. (2010) the set complexity measure is 
introduced; it can be formulated as

Ψ(S C x
N N

f d g di
i

N

ij ij
j i

) = ( )
( − ) ( ) ( ).

=
∑ ∑

1

1

1≠  

(14)

To calculate the set complexity Ψ one has to approximate 
the KCs of all strings x

i
 in the set S = {x

1
,…,x

N
} and the NCDs 

d
ij
 = NCD(x

i
,x

j
) between the strings. The functions f and g of NCD 

values are continuous on interval [0,1] such that f reaches zero at 
1 and g reaches zero at 0.

In this study we, for reasons to follow, diverge from this definition. 
We define the complexity of a set of data as the magnitude of variation 
of NCD between its elements: the wider the spread of NCD values, the 
more versatile the set is considered. That is, a complex set is thought 
to include both pairs of elements that are close to each other from 
an information distance point of view, pairs of elements that are far 
from each other, and pairs whose distance is somewhere in between.

Rs Fs

mFr

mFr/2

Figure 3 | illustration of the meaning of variables mFr, rs, and Fs. (as 
defined in Gritsun et al., 2010).

1http://7-zip.org/

Mäki-Marttunen et al. Information diversity in neuronal networks

Frontiers in Computational Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 26 | 6

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


are in accordance with experimental studies that consider the 
connectivity of a mature network to be 10–30% (Marom and 
Shahaf, 2002).

Other considered networks are generated by Algorithm 1 using 
the abovementioned connection probabilities. The distance-
dependence factors for these networks are chosen as W = 0, 0.5, 
1, 2, 4, 10, ∞.

The spiking activity in the abovementioned networks is studied 
by simulating the time series of the N = 1600 individual neu-
rons according to Section 2.2. The connectivity matrix of the 
modeled network defines which synaptic variables y

ij
 need to be 

modeled: the synaptic weights A
ij
 are non-zero only for non-zero 

connectivity matrix entries M
ij
, hence for such (i,j) that M

ij
 = 0 

the synaptic variables y
ij
 can be ignored in terms of Eq. 9. In this 

article we disallow multiple synapses from a neuron to another. 
Throughout the paper the fraction of the inhibitory neurons is 
fixed to 25%, which are picked by random, and the sampling 
interval is fixed to 0.5 ms.

3.2 network structure classes dIffer In theIr graph theoretIc 
propertIes
We first study the structural properties of the network classes 
presented above by the means of measures introduced in Section 
2.1.2. The in-degree distributions of the networks generated by 
Algorithm 1 are always binomial, as the out-degree distributions 
vary. Empirically calculated out-degree distributions, path length 
distributions, and local clustering coefficient distributions are 
shown in Figure 5, together with the respective NETMORPH 
distributions.

One can observe an increase in the mean path length as well as 
mean clustering coefficient with the increase of distance-depend-
ence factor W, i.e., when moving from RN toward LCN. The out-
degree distributions of NETMORPH networks are wider than 
those of any other type of network, but regarding the width and 
mean of the path length and clustering coefficient distributions 
the NETMORPH networks are always somewhere between RN 
and LCN.

3.3 networks wIth dIfferent structure show varIatIon In 
burstIng behavIor
For the activity part we simulate 61 s of spike train recordings 
using the models described in Section 2.2 and the model param-
eters described in Appendix 6.2. In all of our simulations a net-
work burst occurs in the very beginning due to the transition 
into a steady state, which is why we ignore the first second of 
simulation. We simulate a set of spike trains for structure classes 
W = 0, 1, ∞ and NETMORPH using connection probabilities 
p = 0.02, 0.05, 0.1, 0.16. The average connection weight and other 
model parameters stay constant, only the connectivity matrix var-
ies between different structure classes and different connection 
probabilities. In the case of p = 0.02 none of the networks shows 
bursting behavior, for p = 0.05 a burst emerges in about one out 
of three 1-min simulations, as for p = 0.1 and p = 0.16 there are 
bursts in every 1-min recording. Table 1 shows the acquired mean 
bursting frequencies – they are comparable to the ones obtained 
in Gritsun et al. (2010). We concentrate on the two bigger con-
nection probabilities.

For the compression of strings we use the general purpose data 
 compression algorithm 7zip2. The compressor parameters and 
the motivation for this particular compression method are given 
in Appendix 6.3.

3 results
3.1 sIMulatIon setup
In the present paper we study both structural and dynamical 
properties of networks of N = 1600 neurons. Regarding the choice 
of the structure of neuronal networks we base our approach 
on the growth properties of those networks produced by the 
NETMORPH simulator. To choose a trade-off between biologi-
cal reality and ease of comparison to other types of networks we 
set the initial cell positions in a two-dimensional regular 40 × 40 
grid. The present work does not consider continuous boundaries, 
i.e., the physical distance between the neurons is the standard 
Euclidean distance. The distance between adjacent neurons is set 
≈25 μm, which is chosen such that the density of neurons cor-
responds to one of the culture densities examined in Wagenaar 
et al. (2006) (1600 cells/mm2). Figure 4 shows the average con-
nection probability in a NETMORPH network as a function of 
time, where the average is taken over 16 simulation realizations. 
The standard deviation of the connection probability is found 
very small between different realizations (<0.002), hence only 
mean values are plotted here.

The main emphasis throughout this article will be on con-
nection probabilities p = 0.02, 0.05, 0.1, 0.16 that, accord-
ing to Figure 4, correspond to days 8, 11, 15, and 19 in vitro. 
The selected range of days in vitro is commonly considered 
in experimental studies of neuronal cultures. The connection 
probabilities 0.1 and 0.16 of 15th and 19th DIV, respectively, 
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Figure 4 | Connection probability as a function of time in the structure 
of networks generated by the NeTMOrPH simulator.

2http://7-zip.org/
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We test the difference of the medians statistically between different 
structure classes using U-test. The null hypothesis is that the medians 
of two considered distributions in a panel of Figure 6 are equal. The 
distributions of each measure (SC, mFr, Rs, Fs) and each network 
density are tested pairwise between the different network types. 
The test shows similarity of medians of Rs distributions between 
NETMORPH network and PLCN with connection probability 0.1 
(p-value = 0.59), but not in the case of connection  probability 0.16 
(p-value = 1.7 × 10−13). The same holds for medians of Fs distributions 
of these networks, respective p-values being 0.20 and 0.0027. In all 
the rest of the cases the null hypothesis of medians of any measure 
being the same between any two distributions of different structure 
classes can be rejected, as none of the p-values exceeds 0.002. The 
variances of the distributions are not tested, but one can observe 
that LCNs clearly produce the widest SC, Rs, and Fs distributions.

3.4 coMplexIty results In structure and dynaMIcs
We start by studying simultaneously the KC of the rows of a con-
nectivity matrix and the KC of the spike trains of the corresponding 
neurons. We generate a network for each structure class (W = 0, 0.5, 

The difference between the intraburst patterns of the different 
networks can already be observed in the magnified burst images in 
Figure 2, particularly in 2C where the effect of the location of the 
neuron in the grid is neglected. We show the difference by studying 
the following burst statistics: spike count per burst (SC), and the 
three burst shape statistics defined above (mFr, Rs, and Fs). Figure 6 
shows the distribution of these statistics in activity simulations 
of different network structure classes. The means as well as the 
medians of the three latter measures for both the NETMORPH 
and W = 1 networks constantly fall between the two extremes, LCN 
and RN. The same does not hold for SC.
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Figure 5 | Out-degree, path length and clustering coefficient distributions plotted for different network classes and different connection probabilities. The 
power coefficient W = 1 is used for PLCN networks. The mean path lengths and mean clustering coefficients are shown in association with the respective curves.

Table 1 | Bursting rates of networks of different structure classes.

 W = 0 W = 1 W = ∞ NeTMOrPH

p = 0.1 4.1 ± 1.3 7.5 ± 2.0 13.3 ± 0.9 10.7 ± 2.2

p = 0.16 16.4 ± 1.2 17.6 ± 1.2 19.8 ± 2.0 19.0 ± 1.6

Values shown: mean ± SD in bursts/min, calculated from 16 different 1-min 
recordings per table entry.
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distance-dependence factor W = 1 is used for PLCN. Histograms are smoothed using a Gaussian window with standard deviation = range of values/100.

1, 2, 4, 10, ∞; NETMORPH) and a population spike train recording 
for each of these networks. A set of 80 neurons is randomly picked 
from the N = 1600 neurons retaining the proportion of excitatory 
and inhibitory neurons. This data set is considered representative 
of the whole set of neurons. Figure 7 shows approximations of KCs 
for both structure and dynamics of different structure classes and 
different connection probabilities. The value of C(struc) shows the 
length of a compressed row of the connectivity matrix as C(dyn) 
is the length of the compressed spike train data of the correspond-
ing neuron.

Figure 7 shows that the mean of the compression lengths of 
full spike train data descends when moving from local to random 
networks, as the mean compression length of columns of connec-
tivity matrix ascends. The rising of the C(struc) is in accord with 
the fact that random strings maximize the KC of a string, whereas 
the descending of the mean values of C(dyn) can be explained by 
the decrease in the number of bursts. A slightly similar trend is 
visible when studying the KC of intraburst spike trains, but more 
than that, the range of values of C(dyn) seems to decrease when 
moving from local to random networks.

However, as pointed out earlier, the KC alone does not tell much 
about diversity of the data set, only the information content of 
each element of the set alone. We wish to address the question 
of to what extent the information in one element is repeated or 
 near-to-repeated in the other elements. We first analyze the structure 
and dynamics data using alternative measures, namely, Hamming 
distance (HD) and cross-correlation coefficient (CC). HD counts 
the proportion of differing bits in two binary sequences: it equals 
zero for identical sequences and one for sequences that are inverse 
of each other. The same elements as those in Figures 7A,C are 

analyzed using HD, i.e., the rows of connectivity matrix and spike 
trains of the corresponding neurons. The same number of 80 sam-
ple neurons is picked randomly, and HD is computed between the 
( )2

80 3160=  pairs of neurons. In addition, the dynamics is analyzed 
using CC between pairs of spike trains. The CC measures similarity 
between two spike trains and is capable of capturing time shifts 
between the signals. Hence the CC serves as an extension of the HD, 
or of the inverse of HD (as cross-correlation measures similarity 
and HD measures divergence). Figure 8 shows the distribution of 
HD computed for both structure and dynamics (Figures 8A,C) 
and that of CC computed for dynamics versus HD computed for 
structure (Figures 8B,D).

In Figures 8A,C one can observe the widening of the HD dis-
tribution in both structure and dynamics when moving from 
random to local networks. The same applies for the CC distri-
bution (Figures 8B,D). The HD(struc) distributions of the most 
locally connected networks are wider than that of RN, because 
for each neuron there exist some neurons with a lot of common 
out-neighbors (the spatially nearby neurons, small HD value) and 
some neurons with zero or near to zero common out-neighbors 
(the spatially distant neurons, large HD value). For some of the 
considered networks a bimodal distribution of HD(dyn) can be 
observed. In such cases, the peak closer to zero corresponds to the 
comparison of neurons of the same type (excitatory–excitatory 
or inhibitory–inhibitory), while the peak further from zero cor-
responds to comparison of neurons of different type (excitatory–
inhibitory). This bimodality is due to the difference in intraburst 
patterns between excitatory and inhibitory neurons: Figure 2B 
shows that on average the inhibitory population starts and ends 
bursting later than the excitatory one. This effect is most visible 
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Section 2.3.1. We take the same elements as in Figure 7 – rows of 
connectivity matrix and full spike train data of neurons or intraburst 
segments only – and calculate the NCDs between these elements. 
These NCD distributions are plotted in Figure 9.

One can observe a gradual increase in the mean values of 
NCD(struc) with the increase of randomness to the structure of 
the network in Figure 9. This is rather expected: the more random-
ness applied to the structure of the network, the further away the 
connectivity data of different neurons are from each other. As for 
the NCD(dyn) values between full spike train data of neurons, 
one can observe a gradual decrease in the mean value with the 
increase of randomness, and a slightly similar evolution is visible 
in the burst-wise calculations as well. Both this and the decrease in 
the deviation of the NCD(dyn) values are in accordance with the 
properties of intraburst spike patterns illustrated in Figure 2: the 
spike train data seem more diverse and wider-spread in the local 
networks than in the random ones. Furthermore, as the bursting 
frequency is higher in LCNs than in RNs (Table 1), the analyzed 
LCN spike trains (1 min recordings) show more variability than 

in RNs, as can be observed both in Figures 2 and 8A. As for the 
CCs, the distributions are unimodal. This indicates that the dif-
ferences between the spiking patterns of inhibitory and excitatory 
neurons are observable on small time scale (HD uses the bins of 
width 0.5 ms), but not on large time scale (cross-correlations are 
integrated over an interval of ±50 ms). This is further supported by 
the fact that when the time window for CC calculations is narrowed, 
the CCs between neurons of same type become distinguishable 
from those between neurons of different type (data not shown).

Both HD and cross-correlation, however, assess the similarity 
between the data by observing only local differences. The HD deter-
mines the average difference between the data by comparing the data 
at exact same locations, as the cross-correlation allows some varia-
tion on the time scale. Both measures fail to capture similarities in 
the data if the similar patterns in the two considered data sequences 
lie too far from each other. This is also the case if the sequences 
include more subtle similarities than time shifts, e.g., if one sequence 
is a miscellaneous combination of the other’s subsequences. Thereby, 
we proceed to the information diversity framework presented in 
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Figure 7 | Kolmogorov complexity approximation of a spike train of a 
neuron (dyn) versus the KC approximation of the respective row of 
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shown). Furthermore, the decrease in the complexity of the struc-
ture by the increase in randomness is also present in the case where 
the neurons in the connectivity matrix are randomly permutated. 
This shows that the trend in the structural complexity in Table 2 
is not an artifact of the order in which the neuron connectivities 
are read into strings.

3.5 conclusIon
The structure of RNs are described by low path length and low 
clustering coefficient, and further by high KC and low information 
diversity. The RN dynamics is described by short and relatively rare 
bursts, and hence low KC of the spike train data. As the opposite, the 
structure of LCNs show longer path length and greater clustering 
coefficient, and the KC approximations of the structural data are 
small while the information diversity is large. The bursts in the LCN 
spike trains are longer and more frequent than in RN spike trains. 
The KC approximations of the LCN spike train data are large on 
average. Based on the variation in NCD, the intraburst complexity 
is higher in LCN output than in that of RN, and for the sparser of 
the two network densities the same holds for complexities of full 
spike trains.

The in-between networks, PLCNs, fall between the two extremes 
(RN and LCN) by their structural properties as well as their bursting 
behavior. The same holds for the biologically realistic NETMORPH 
networks. The information diversity of the structure of these net-
works is between that of RN and LCN. Similarly to LCNs, the 
intraburst dynamics of NETMORPH networks as well as the most 
locally connected PLCNs are more complex in terms of NCD vari-
ation than that of RNs.

those of RN. Consequently, the mean NCD(dyn) is visibly higher 
in LCN. When analyzing the dynamics of the intraburst interval, 
data variability is less pronounced and the difference between the 
means of NCD(dyn) distributions is smaller.

We repeat the experiment of Figure 9 10 times, and for each 
entry we calculate the standard deviations of NCD distributions 
(i.e., the complexities in our definition) of both structure and 
dynamics. Table 2 shows the mean complexities and their stand-
ard deviations, and the network classes in which the complexity is 
significantly different from that of a RN. The table shows that the 
structural complexity decreases with the increase of randomness 
to the structure. The complexity of full spike trains shows a less 
consistent trend. For sparser networks (p = 0.1), the more locally 
connected networks produce more complex full spike trains than 
RNs, as for denser networks (p = 0.16), only one of the PLCNs has 
statistically different complexity from that of RNs. We consider 
the latter statistical difference an outlier as a clear trend is absent. 
For the intraburst complexities the results suggest that the LCNs 
together with NETMORPH and some of the most locally connected 
PLCNs produce more complex dynamics than RNs.

The information diversity results of Table 2 do not clearly indi-
cate which network produces the most complex dynamics. The 
p-values for the test whether the information diversity of the most 
complex full spike trains is different from that of the second most 
complex are 0.13 and 0.38 for sparse and dense networks, respec-
tively. For the intraburst complexities the respective p-values are 
0.80 and 0.62. The results for the complexity of structure are quali-
tatively the same when considering the columns of connectivity 
matrix, i.e., the in-connection patterns, instead of rows (data not 
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and the networks of fixed size (N = 1600). The further studies test-
ing alternative models and examining the influence of network size 
are needed to confirm these findings. Still, the presented results 
demonstrate capability of the employed measure to discriminate 
between different network types.

The basis for the present study is the question: if one changes 
the structure of the neuronal network but keeps the average degree 
(or even the whole in-degree distribution) constant, how does 

4 dIscussIon
In this work we present and apply an information diversity measure 
for assessing complexity in both structure and dynamics. According 
to this measure the neuronal networks with random structure pro-
duce less diverse spontaneous activity than networks where the con-
nectivity of neurons is more dependent on distance. The presented 
study focuses on only one neuronal activity model, i.e., Izhikevich 
type neurons with dynamical model of synapses (Tsodyks model), 
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The ellipses drawn represent 90% of the probability mass of a Gaussian distribution with same mean and covariance matrix as the plotted data.
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Table 2 | Complexities calculated as standard deviations of NCD distributions for both elements of structure and dynamics.

 STruCT DYN (full) DYN (bursts) STruCT DYN (full) DYN (bursts)

LCN 0.054 ± 0.003* 0.040 ± 0.003* 0.071 ± 0.012* 0.051 ± 0.003* 0.027 ± 0.003 0.057 ± 0.006*

W = 10 0.045 ± 0.002* 0.041 ± 0.004* 0.067 ± 0.008* 0.045 ± 0.003* 0.030 ± 0.003 0.053 ± 0.003*

W = 4 0.036 ± 0.002* 0.042 ± 0.003* 0.075 ± 0.006* 0.036 ± 0.004* 0.027 ± 0.002 0.057 ± 0.007*

W = 2 0.029 ± 0.001* 0.045 ± 0.004* 0.074 ± 0.015* 0.027 ± 0.002* 0.027 ± 0.003 0.048 ± 0.004*

W = 1 0.022 ± 0.001* 0.034 ± 0.004* 0.055 ± 0.007* 0.019 ± 0.001* 0.025 ± 0.002* 0.047 ± 0.006

W = 0.5 0.017 ± 0.001* 0.028 ± 0.002 0.048 ± 0.020 0.014 ± 0.001* 0.029 ± 0.002 0.042 ± 0.003

RN 0.014 ± 0.001 0.028 ± 0.002 0.042 ± 0.002 0.013 ± 0.001 0.029 ± 0.003 0.044 ± 0.005

NETM 0.040 ± 0.004* 0.039 ± 0.006* 0.053 ± 0.008* 0.033 ± 0.002* 0.027 ± 0.003 0.052 ± 0.005*

The three leftmost columns are calculated from simulations with connection probability p = 0.1, three rightmost with p = 0.16. Each entry represents the 
mean ± standard deviation of the wideness of the NCD distribution, calculated over 10 repetitions for each entry. The entries where the median of values is signifi-
cantly different (U-test, p-value 0.05) from the corresponding RN entry are marked with asterisk (*).

the spontaneous activity change? In the activity simulations, all 
model parameters remain constant, only the connectivity matrix 
is changed between the simulations of different network types; hence 
the variation in bursting properties emerges from the structure of 
the network only. The selected algorithm for generation of network 
structure possesses the capability to tune distance-dependence on 
a continuous scale. As a result, we have not only fully locally con-
nected networks, where a neuron always first connects to its nearest 
spatial neighbors before the distant ones (W = ∞, i.e., LCN), and 
fully random networks (W = 0, i.e., RN), but everything in between 
(0 < W < ∞, PLCN). The RNs correspond to directed Erdo˝s–Rényi 
networks that are widely used in similar studies in the field. These 
networks are characterized by a binomial degree distribution; 
hence the choice of binomial in-degree distribution for all network 
types. The only network class to violate this binomiality are the 
NETMORPH networks, which are considered in order to increase 
the biological plausibility of the study. The results showing that the 
NETMORPH networks are placed somewhere between the LCNs 
and RNs by most of their structural and dynamical properties also 
support the use of Algorithm 1 for the network generation. If this 
was not the case, one would have to try to find another way to pro-
duce networks with as extreme properties as those in NETMORPH 
networks. The range of networks between LCN and RN could also be 
produced with an application of Watts–Strogatz’ algorithm (Watts 
and Strogatz, 1998). The crucial difference is that in our in-between 
networks (PLCNs) the “long-range connections” are the shorter 
the bigger the parameter W is, while in Watts–Strogatz’ model the 
long-range connections are (roughly) on average equally long in 
all in-between networks. By a long-range connection we mean any 
connection to neuron A from neuron B when A is not yet connected 
to all neurons that are spatially nearer than B.

The complexity framework presented in this paper is adopted 
from Nykter et al. (2008), where critical Boolean networks are found 
to have the most complex dynamics out of a set of various Boolean 
networks. The method for estimating the complexity in the present 
work is different in the way that we apply the NCD measure between 
elements of a set that represents the object whose complexity is 
to be estimated (connectivity matrix, population spike train), not 
between different output realizations as in Nykter et al. (2008). This 
allows the estimation of the complexity of the object itself, not of 
the set of objects generated with the same process. The  complexity 

of the object is assessed by the diversity of the information it car-
ries. Although technically applicable to any set of strings, this is 
not supposed to be a universal measure of complexity. However, its 
use lacks the difficulties that arise when applying an alternative set 
complexity measure defined in Galas et al. (2010), as discussed in 
Section 2.3.1. The said non-universality of our measure stems from 
the limited range of deviation values that a NCD distribution can 
have, and on the other hand, the plain standard deviation might 
not be a good measure of wideness if the underlying distributions 
were multimodal. In this work all studied NCD distributions are 
unimodal. Furthermore, we only apply this complexity measure on 
data of comparable lengths and comparable characteristics, hence 
the resulting complexities are also comparable to each other. This 
may not be true in the opposite case, for example, spike trains of 
length 1 s and 1 h cannot be compared in an unbiased way.

In this study we show how the NCD values of both structure 
and dynamics of a neuronal network are distributed across the 
[0,1] × [0,1]-plane in the model networks (Figure 9), and calculate 
the mean information diversities of both structure and dynam-
ics (Table 2). The Figures 9A,C themselves give a good overview 
of the interplay between structural and dynamical information 
diversity. They show that the NCD distributions, computed for 
the considered types of networks, follow a visible trajectory. This 
trajectory is not evident when observing the widths of the NCD 
distributions only, nor when computing simpler distance measures 
(e.g., HD). The trajectory follows an “L”-shape, which is slightly 
violated by the NETMORPH NCD distribution (see Figure 9C). 
Whether there exists a network of the same degree that would 
span the whole “L”-shaped domain or a “superdiverse” network 
whose NCD values would cover also the unoccupied corner of the 
“L”-rectangle remains an open question. We have shown that such 
networks do not exist among the model classes studied here, and in 
the light of the results shown we also doubt the existence of such 
networks altogether, given the constraints of binomial in-degree 
distribution and the selected connection probability.

The different networks are separable also by the KC approxima-
tions of their structure and dynamics (Figure 7). However, we con-
sider the KC analysis alone insufficient because it lacks the notion of 
context-dependence: the KC of a spike train would be maximized 
when the on-set of neurons (i.e., spikes) are as frequent as off-
set of neurons (i.e., silent time steps) and randomly  distributed 
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bursts. Similar measures of entropy and KC have been applied 
before, but the capability of the NCD to capture context between 
different data makes it suitable for assessing data complexity. 
The presented measure can be used to analyze different phases 
in neuronal network growth, where the structure is simulated by 
publicly available growth simulators (Koene et al., 2009; Acimovic 
et al., 2011). Analysis of network structure, using the procedure 
described in this paper, can be employed for this study. Analysis 
of the structure and dynamics of the presented models can be 
used in relation to the in vitro studies with modulated network 
structure. The results of model analysis can help to predict and 
understand the recorded activity obtained for certain network 
structures imposed by the experimenter (Wheeler and Brewer, 
2010). Finally, the NCD variation as a measure of structural com-
plexity, can be applied to analyze the large-scale functional con-
nectivity of brain networks, similarly to the examples pointed in 
Sporns (2011).

The framework proposed in this study provides a measure of 
data complexity that is applicable to both structure and dynamics 
of neuronal networks. According to this measure, the neuronal 
networks with random structure show consistently less diverse 
intraburst dynamics than the more locally connected ones. The 
future work will incorporate a larger spectrum of different network 
structures in order to discover the extreme cases that more clearly 
maximize or minimize the complexity of dynamics.
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in time. The effect of number of spikes on KC is already seen in 
Figures 7A,C: the KCs of spike trains of dense networks, where the 
number of spikes is greater, are on average greater than those of 
sparse networks. This is contrary to the case of context-dependent 
complexities, as shown in Table 2, where the information diversities 
of full spike trains of dense networks are on average smaller than 
those of sparse networks. This leads to a profound question: how 
much spiking and bursting can there be before the activity is too 
random in order to contain any usable information? We believe 
that in order to address this question one has to apply a context-
dependent measure of complexity instead of KC.

The complexity result in Table 2 concerning the information 
diversity of structure seems to contradict with the general notion 
according to which the most regular structure should be less com-
plex than the structure that possesses both regularity and random-
ness (Sporns, 2011). It should be noted, however, that also the most 
regular networks studied in this work (LCNs) occupy a degree 
of randomness, since their in-degree distribution is binomial and 
since farthest neighbors of a neuron are picked by random out of 
all equally distant ones. There is a multitude of possibilities for the 
most ordered structure, other than the one chosen in this work. For 
example, in Sporns (2011) a fully connected network is suggested 
to be a highly ordered neuronal system. Applying the information 
diversity measure to such structure in the framework of Table 2 
gives a structural complexity of ≈0.0268, which is less than that of 
the majority of the studied PLCNs. Hence, we regard the proposed 
measure eligible to assess the complexity of the structure.

In addition to analysis of well defined models, the presented 
measure can be used for analysis of experimental data. The method 
is straightforwardly applicable to neuronal activity recorded in 
the form of spike trains. Conversion of spike trains into binary 
sequences is described in the method section of this paper, as well 
as in the previous studies (Christen et al., 2006; Benayon et al., 
2010). It can be observed that variability in NCD distribution cor-
responds to the variability in spiking patterns within population 
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For each neuron i the initial values for the membrane potential 
variable v

i
 is drawn from uniform distribution U([c

i
,30]), where c

i
 

is the reset potential parameter of the neuron. The initial recovery 
variable of the neuron is set b

i
v

i
, where b

i
 is the sensitivity parameter 

of the neuron. The synaptic resources are initially in the recovered 
state, i.e., x

ij
 = 1, y

ij
 = 0, z

ij
 = 0. The initial effective fraction vari-

ables u are set u
ij
 = U

ij
, where U

ij
 is the resource fraction constant 

of the synapse ij.

6.3 coMpressIon Method
6.3.1 A test study of compressors
The quality of the complexity estimation presented in Section 
2.3 heavily depends on the precision of KC approximation. In 
this section we motivate our choice of compression method by 
examining different compressors in a simple test case. Recent stud-
ies incorporating NCD with data compressors have used mostly 
gzip and bzip2 (Li et al., 2004; Emmert-Streib and Scalas, 2010); 
in addition to these two we study 7zip3.  All compressors are run 
with the default parameters, in addition 7zip is run in a heavy 
mode that requires more memory and computation time. The 
challenge in the compression of strings used in this study is the 
recognition of similar data patterns that may lie very far from 
each other and differ from each other in a more or less subtle way. 

6 appendIx
6.1 Model paraMeters for netMorph
The parameters used for generating realistic networks by 
NETMORPH are listed in Table A1 in Appendix. We use the imple-
mentation netmorph2D, which allows the simulation of strictly 
two-dimensional networks. The version 20090224.1225 of the 
simulator is used. The parameters are obtained from Koene et al. 
(2009), where the axonal parameters were optimized to fit growth 
statistic obtained from real data. We are unaware of any similar 
parameter optimization study done for dendritic growth, hence 
we use the dendritic parameters listed in the context of Figure 12D 
in Koene et al. (2009).

We take into account that not all synapses become functional by 
applying a 25% fraction of effective synapses, i.e., on average every 
fourth of the candidate synapses proposed by the simulator is actu-
ally accepted as a synapse. In addition, we apply the cell placement 
in a fixed 40-by-40 grid where distance between adjacent neuron 
somas is 24.99 μm. To do this we had to recompile the simulator 
with our own extension that overrides the cell soma data created 
by the simulator (code not shown). For parameters not mentioned 
above we use the default values.

6.2 actIvIty Model paraMeters
The activity simulations are run on MATLAB. The parameters 
for Izhikevich model (Eqs 6 and 7) are obtained from Izhikevich 
(2003). They are listed in Table A2 in Appendix.

The parameters are randomized such that the random numbers 
r

e
 and r

i
 are drawn neuron-wise from a uniform distribution U(0,1). 

The noise term I
G
 (Eq. 8) is a piecewise constant (constant for 

1 ms time windows) zero-mean Gaussian variable with standard 
deviation 8 8 1. .ms  This value is chosen to make the silent periods 
have a spiking frequency not too scarce and not too dense (see the 
inter-burst periods in Figure 2 for the result). The simulation time 
step is chosen 0.5 ms.

The synapse parameters (Eq. 10) are taken from Tsodyks et al. 
(2000), and they are listed in Table A3 in Appendix.

For each synapse the values of variables t
rec

 and t
facil

 are first 
drawn from a Gaussian distribution with the shown mean and 
standard deviation of half of the mean. Values lower than 5 ms 
are replaced by the minimum value 5 ms. The procedure is similar 
with the resource fraction parameter U (Eq. 11), but for U both 
minimum and maximum value are applied. The minimum and 
maximum values are chosen following a test case in the NEST 
(Gewaltig and Diesmann, 2007) simulator, although the simulator 
itself is not used due to difficulties in simultaneous implementation 
of Tsodyks’ synapse model and Izhikevich’s neuron model.

Table A2 | izhikevich model parameters.

Model parameters excitatory inhibitory

a 0.02 0.02 + 0.08ri

b 0.2 0.25 − 0.05ri

c −65 + 15re
2  −65

d 8 − 6re 2

Table A3 | Tsodyks model parameters.

 excitatory inhibitory

DYNAMiCAL BeHAViOr PArAMeTerS

trec (average) 800 ms 100 ms

Tfacil (average) 0 1000 ms

TI 3 ms 3 ms

reSOurCe FrACTiON PArAMeTerS

U (average) 0.5 0.04

Umin 0.1 0.001

Umax 0.9 0.07

3http://7-zip.org/

Table A1 | The parameter values used in NeTMOrPH.

Model selection parameters:   growth and branching Axon Dendrite 

  model parameters:

arbor_elongation_model van_Pelt growth_nu0 0.00052083 0.00013889 (μm/s)

branching_model van_Pelt growth_F 0.16 0.39

TSBM van_Pelt B_inf 17.38 4.75

synapse_formation.PDF uniform E 0.39 0.5

direction_model segment_history_tension S 0 0

History_power 2 tau 1209600 319680 (s)
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which is dictated by 8 bits in an ASCII character relative to the one 
bit required for the representation of “0”s and “1”s, taking into 
account that the compressed string consists of two identical strings. 
The value 1/4 would be expected as the maximal mean compres-
sion efficiency of compressors with block size smaller than L(x), 
as one would have C(xx)≈2C(x) – this value is best approached by 
the compressor 7zip.

The reason we chose duplicated random strings as a test for 
compressors is that the strings are slightly similar from the com-
pressibility point of view when calculating, e.g., NCD between two 
rows of a connectivity matrix. For example, in the case of a LCN 
two halves of the string will not be fully identical but most often 
merely shifted and some of the bits replaced by their opposite. Also 
in the case of calculating NCD between spike trains of two neurons, 
most of the spikes will probably be clustered around the same time 
indices (the time index of a burst) surrounded by hundreds or 
thousands of “0”s (silent periods). Surely our test case does not 
capture all the phenomena related to this kind of compression 
challenges where most of the data in the two halves of the string 
are equal but not all, but this at least shows that even small chal-
lenges – compressing strictly duplicated data – are managed far 
less efficiently by some compressors than the others. Basing on 
this test, we choose to use the 7zip-heavy compressor to compute 
all the results presented in this work.

6.3.2 Compression software
For compression of data strings we use the LZMA SDK 4.65 pro-
vided by the 7-zip website4. To improve the default compression rate 
we set the number of fast bytes to 273 (default 128), the diction-
ary size to 1 Gb (default 8 Mb) and the number of match finding 
cycles to 750 (default 10), while keeping the rest of the parameters 
(number of literal context and position bits) default.

We test the performance of the above compressors in a simple 
problem, where the data to be compressed consists of a duplicated 
random string. Figure A1 in Appendix shows compression rate of 
these strings, i.e., plots of C(xx)/L(x), where x is a random string 
with equal probabilities of occurrences of “0” and “1”, L(x) is the 
length of the uncompressed string x and C(xx) is the length of the 
compressed duplicated string.

The mainly descending trend of the compression rates is due to a 
supposedly constant size coding overhead, whose proportion of the 
compressed code diminishes as the length of the string is increased. 
One can observe a shift in the compression rate when exceeding 
the block size in both gzip, bzip2 and 7zip at some length of data, 
but not in 7zip-heavy. The latter compressor also most successfully 
approaches the mean limit compression efficiency of 1/8, the value 
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Figure A1 | Compression efficiencies when compressing a duplicated 
random string.

4http://7-zip.org/
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