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adaptation can be distinguished conceptually from online error 
correction that has been investigated more extensively, see e.g., 
(Diedrichsen et al., 2005). Online error correction takes place, 
for example, if in a reaching task the target jumps suddenly to 
another position, and we need to correct our movement trajec-
tory. However, there is no adaptation of the visuomotor mapping 
involved, since the rules of the control process – i.e., the “con-
trol policy” that maps sensory inputs to motor outputs – do not 
change. We just need to update the current target position and 
continue to run the same control process. Previous studies have 
either focused on over-trial learning of visuomotor mappings 
(Krakauer et al., 2000), that is the gradual update of a motor plan 
over the course of many trials, or on online adaptation in tasks 
where the visuomotor mapping changed on a trial-by-trial basis 
(Braun et al., 2009). Here we investigate both over-trial learning 
and online adaptation in a single visuomotor learning experiment 
performed by macaques.

RESULTS
We investigated a visuomotor learning experiment performed by 
macaques (Paz et al., 2003). Two rhesus monkeys were exposed to 
visuomotor rotations with rotation angles ±45° and ±90° within 
the classical center-out reaching paradigm (Figure 1). The experi-
ment was structured in three epochs distinguished by trial type: 
pre-learning standard center-out to eight targets, learning a ran-
domly chosen visuomotor rotation to one target, and post-learning 
standard center-out to eight targets. During the learning epoch 

InTRodUcTIon
In the recent past, a number of neurophysiological studies have 
examined sensorimotor learning in primates using multi- electrode 
recording techniques in order to gain insight into the biologi-
cal mechanisms of such learning on a cellular level (Shen and 
Alexander, 1997; Wise et al., 1998; Li et al., 2001; Gribble and Scott, 
2002; Padoa-Schioppa et al., 2002; Paz et al., 2003). The general 
paradigm in these experiments has been to introduce kinematic or 
dynamic perturbations during reaching movements and to observe 
neuronal changes while the animal is learning the new sensorimo-
tor mappings. Learning such mappings can be conceptualized as 
the acquisition and retention of internal models (Wolpert et al., 
1995; Kawato, 1999), and neurophysiological studies of learning 
have focused on the question of how the neuronal representations 
of these internal models evolve over the course of many trials. 
Importantly, in these studies a trial is a repetitive episode in an 
experiment, where the same motor task is performed again and 
again so that a changing behavioral response can be identified with 
a learning process.

However, many tasks require adaptation within a single trial 
(Braun et al., 2009). For example, a number of studies have exam-
ined adaptive behavior in reaching tasks under visuomotor rota-
tions, where a rotation is introduced between the hand movement 
and a cursor that is controlled on a screen (Paz et al., 2003). In 
early trials where the occurrence of the rotation is unexpected, 
the control process has to adapt online to the new visuomotor 
mapping during the movement (Braun et al., 2009). Such online 
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monkeys required between 10 and 15 trials to learn the transfor-
mation (Paz et al., 2003) and thus, in the first few learning trials 
adaptive behavior had to be produced online during movement 
execution. After target appearance each trial began with a vari-
able hold period (“preparatory phase”), whereupon a GO signal 
prompted the monkey to move the cursor to the target (“movement 
phase”). The two phases correspond to the two types of learning 
that we investigate: over-trial learning of a movement plan during 
the preparatory phase and online adaptation during the move-
ment phase.

Over-trial learning of movement plans has been extensively 
investigated in various computational frameworks, such as feed-
back-error learning (Kawato et al., 1987) – for reviews see (Wolpert 
and Ghahramani, 2000; Tin and Poon, 2005). In this framework 
over-trial learning is conceptualized as a trial-by-trial update of 
a movement plan that aims to reproduce a given desired or ref-
erence trajectory. The process of planning is then followed by a 
process of movement execution that consists of tracking the pre-
programmed desired trajectory (DT) in the face of unforeseen 
perturbations (Figure 2A). In an alternative control scheme, the 
controller does not only adapt across trials to adjust its movement 
plan but also online within each trial during movement execution 
(Figure 2B). This scheme has been previously investigated within 
the framework of adaptive optimal feedback control (Braun et al., 
2009). In an adaptive optimal feedback controller, a predictive 
model of the environment is used in conjunction with an opti-
mal controller that employs these model predictions to compute 
its control commands in a continuous fashion. The processes of 

model prediction and motor execution are both adaptive and 
closely intertwined without the need of a reference trajectory. 
Instead, the controller optimizes a given performance criterion 
that specifies the task goal.

When treating the above visuomotor learning experiment in the 
framework of feedback-error learning two control components have 
to be distinguished: an inverse internal model ut

INV that computes a 
pre-specified sequence of control commands producing the DT in 
the absence of disturbances, and a hard-wired feedback-error control-
ler ut

PD that compensates for deviation errors from the DT in the pres-
ence of noise and disturbances during movement execution or in the 
presence of a wrong inverse internal model about the environment 
(Figure 3A). The total control signal is the sum of the two individual 
control commands, such that u u ut t t

DT INV PD= + . The inverse internal 
model stores a pre-specified sequence of control signals producing 
the desired cursor trajectory dt

∗  in the absence of perturbation. The 
DT to a specific target can be thought of as the mean experimental 
trajectory to that target under undisturbed conditions. The inverse 
model ut

INV can then be determined by running the inverse dynamics 
on the experimentally recorded DT. The error-feedback controller 
u u ut t t

PD P D= +  is often designed as a  proportional–derivative (PD) 
controller that compensates deviations from the DT by counteract-
ing the error signal e d xt t t= −∗ , where xt corresponds to the actual 
trajectory. The PD controller consists of two terms: a proportional 
part u et t

P ∝  and a derivative part ut
de
dt

tP ∝ , that is u K e Kt t

de

dt
tDT = +p d . 

If the environmental dynamics change over time, the inverse internal 
model ut

INV needs to be modified (Bhushan and Shadmehr, 1999). 
However, this modification becomes only effective in subsequent 

Figure 1 | Visuomotor learning task. Each trial began when the monkey 
centered the cursor on the origin for at least 1 s. After a variable hold period a 
target appeared at one of eight possible positions 4 cm from the origin. The 
monkey had to keep the cursor in the origin for an additional 1.0–1.5 s 
(“preparatory phase”) until the origin disappeared, corresponding to the GO 
signal. In the ensuing movement the target had to be reached within 2 s 

(“movement phase”). The trials were blocked in epochs. In the pre-learning 
epoch the monkey performed center-out reaching movements with veridical 
feedback. In the learning epoch a visuomotor rotation between hand and cursor 
movement was introduced – the rotation angle was randomly chosen to be one 
of four possibilities (−90°, −45°, +45°, +90°). In the post-learning epoch the 
standard mapping was re-established.
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trials, because the inverse model is like a movement tape that has 
to be played from the start. As the inverse internal model generates 
consistently wrong control commands during early transformation 
trials when it has not fully adapted, the error-feedback controller 
has to take over during such trials. This means that performance in 
such trials critically depends on the error-feedback gains K

p
 and K

d
 

(Figure 3B). Especially, for large rotation angles the error-feedback 
gains have to be very low, because a naive controller under these 
conditions will produce a circling movement into the target, which 
requires low movement speed. In a quantitative analysis we found 
that PD control gains that allow for stable performance are too low to 
explain experimental speed profiles for transformation angles ≥70° 
(Figure 3C). Moreover, it can be shown mathematically that for 
transformation angles ≥90° a PD controller cannot be stabilized 
anymore (see Methods). Therefore, feedback-error learning with a 
non-adaptive PD controller in its feedback loop cannot explain suc-
cessful target reaches in the first learning trials as they are observed 
experimentally for monkeys (Figure 4) and humans (Braun et al., 
2009). Consequently, the feedback-error learning scheme must be 
modified to allow for online adaptation, for example, by applying the 
estimated inverse transformation to the error-feedback controller 
(Nakanishi and Schaal, 2004).

Another possibility for a control framework that is capable of 
online adaptation and control is provided by the framework of 
adaptive optimal feedback control (Todorov and Jordan, 2002; 
Braun et al., 2009). The basic idea is that an adaptive optimal feed-
back controller employs the best available estimate of the relevant 
task variables at every instant of time (in our case the estimate of 
the rotation angle φ̂t ) for generating a control signal which mini-
mizes the expected cost, while the estimates of the task variables 
are simultaneously tuned online during movement execution to fit 
sensory observations (Figure 5). Thus, the adaptive optimal control 
problem breaks down into an estimation problem and a control 
problem. The estimator tries to fit a predictive forward model to 
the observations and the controller utilizes this estimated forward 

A B

Figure 2 | Sensorimotor learning schemes. (A) In a desired trajectory 
controller, the movement plan is adapted during sensorimotor learning. 
The correct movement plan produces a movement along the desired 
trajectory when executed. The process of motor execution itself is not 
adaptive and consists of tracking the given desired trajectory. (B) An 

online adaptive controller employs an adaptive predictive model of 
the environment to compute an adaptive motor response. The process of 
motor execution generates adaptive optimal policies online. Both  
movement planning and execution are adaptive. Red blots designate 
adaptive modules.

φ

A

B C

Figure 3 | Desired trajectory model with non-adaptive PD controller. 
(A) For unexpected transformation trials, motor execution in the desired 
trajectory framework relies completely on the presumed error-feedback 
controller to correct for deviations from the desired trajectory. To this end, a 
movement error e(t) is calculated at every point in time as the difference 
between the desired state d*(t) and the actual state x(t). A corrective control 
command is computed, proportional to this error e(t) with proportionality 
constant Kp. To ensure stable performance, it is also important to consider the 
temporal change of the error by means of another proportionality constant Kd. 
This PD controller works as a general tracker. (B) Feedback gains Kp and Kd of the 
hard-wired error-feedback controller that allow for stable control for the different 
transformation angles. As the transformation angle increases, the zone of stable 
control shrinks to low feedback gains, i.e., slow control (the light-colored area). 
(C) Movement durations for a controller with the feedback gains from (A) for the 
monkey experiment. Stable control with a desired trajectory controller requires 
extremely slow movements when confronted with high transformation angles. 
The gains are too low and therefore the movement times are too long to explain 
the experimental movement durations for transformation angles ≥70°. For 90° 
transformations, the error-feedback controller cannot be stabilized anymore.
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model to fit the mean trajectory and variance of the 90°-transfor-
mation trials and used this parameter set for predictions on the 
45°-transformation trials and standard trials. We found that the 
adaptive optimal feedback control model is able to consistently 
capture the main characteristics of the mean trajectories, speed pro-
files, angular momentum, and trial to trial variability of movements 
during early transformations (Figure 6). The variability pattern of 
the 45° transformations trials deviates somewhat from the model 
predictions, which can be attributed to the simplicity of the point 
mass model and the relatively small number of highly variable trials. 
The predictions for the 45° transformations trials yielded r2 > 0.77 
for all kinematic variables.

In our visuomotor learning task, the adaptive optimal control 
model has to continuously estimate the rotation angle φ̂t . In each 
trial this estimate evolves from an initial estimate φ̂0  that represents 
the prior over the expected visuomotor rotation. Thus, over-trial 
learning corresponds to updating the prior φ̂0 from trial to trial. In 
the absence of any learning experiences the initialization  reflecting 
the standard mapping would be φ̂0 0= o. In a block of identical trans-
formation trials the initial parameter estimate should successively 
approximate the true rotation angle, thus reflecting over-trial learn-
ing. The initial parameter estimate φ̂0 in each trial corresponds to the 
assumed association between target direction 



xTDIR and the required 
movement direction 



xMDIR. This belief association can be estimated 
from the experiment by examining initial movement directions 
before sensory feedback sets in. Mathematically, this mapping can 
be expressed by a function approximator that is sequentially adapt-
ing to the presented learning pairs. One of the simplest and most 
generic function approximators are radial basis function networks 
(Moody and Darken, 1989). Such an approximator would retain 
initial estimates φ̂0 over trials in dependence of the target  direction, 

model to produce an optimal control command (Braun et al., 2009). 
We implemented such an adaptive optimal feedback controller in a 
modified linear quadratic Gaussian (LQG) setting with a linear arm 
model and control-dependent noise (see Methods). The linear arm 
model (a point mass model) was primarily chosen for mathematical 
tractability and because of previous successes in describing human 
movements (Todorov and Jordan, 2002; Braun et al., 2009). To 
test the model quantitatively on the experimental data from our 
visuomotor experiment, we adjusted the free parameters of the 
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Figure 4 | raw hand-movement data (100 ms after the gO signal) 
from the monkey experiments. (Left) Randomly sampled trajectories 
from pre-learning trials to the 90° target with veridical feedback. 
(Middle) First learning trials of ±90°-transformations. The −90° 

rotations have been mirrored to the other side. (Right) First 
learning trials of ±45°-transformations. Again the −45° rotations 
have been mirrored to the other side. The lower panels show the respective 
speed profiles.

   
  

Figure 5 | Block diagram of adaptive motor control in the closed loop. 
For successful motor learning to take place, the brain has to tackle three 
problems simultaneously: it has to issue a control command in the face of 
uncertainty, it has to estimate the current state of the biomechanical system, 
and it has to identify this system. The adaptive controller is adjusted according 
to ongoing system identification (“parameter estimate”). The adaptive 
controller translates the task goal (cost function), the adjustable forward 
model and the current state estimate into an optimal control command. The 
forward model is identical to the one that is used during the estimation 
process and optimal control computations are carried out depending on the 
latest model update.
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number of basis functions is high enough and homogeneously 
distributed, the goodness of fit becomes essentially independent 
from this number (see for example, Tanaka et al., 2009). For our 
data and number of basis functions (n = 100) the best fitting basis 
function width is b ≈ 7, which would correspond to a SD of σ ≈ 15° 
in a Gaussian basis function. Compared to broad cosine-tuning 
functions (σ ≈ 50°) often reported to be prevalent in motor systems 
(Todorov, 2002), this comparatively narrow width is qualitatively 
much more consistent with the basis function width of σ ≈ 23° 

such that ˆ ( ) ( )φ0

 

x w f xi i i
TDIR TDIR= ∑ . The basis functions f

i
(°) are 

often chosen as bell shaped functions with a center 


ai  and a width 
b

i
, for example von Mises functions in case of a circular variable, 

i.e., f xi
e e

e e

biaix bi

bi bi
( )
� � �

TDIR
TDIR

= −
−

−

−  with 
� �
a xi ,

TDIR ∈ℜ2  and 
� �
a xi = =TDIR 1 , 

where the centers 


ai  have to be scattered (more or less) uniformly 
over the unit circle. The over-trial weight update can then be accom-
plished by standard gradient-based methods like the Widrow–Hoff 
rule, w w x f xi( ) ( ) ( ) ( )τ τ ε(φ φ )+ = − −∞

∧
1 0

 TDIR TDIR , where τ represents 
the trial number and φ∞ corresponds to the final plateau value in 
the learning curve. While φ∞ is introduced here ad hoc, the residual 
error might be explicable in terms of the two learning mechanisms, 
since for small angular deviations online adaptation is not necessary 
anymore for stable control, so updating of the prior φ̂0  might cease 
when major online adaptations terminate. The time course of over-
trial learning would be determined by the learning constant ε in this 
model. The learning constant can be adjusted to fit the experimental 
learning curve of initial movement directions (Figure 7).

When the transformation is switched off unexpectedly during 
the learning epoch, behavioral studies have documented character-
istic deviations in direction of the learned target (Krakauer et al., 
2000; Paz et al., 2003). These aftereffects indicate the formation 
of an internal model during learning. As the initial movement is 
largely devoid of corrective feedback, this deviation error can be 
predicted by the prior that has been retained in the radial basis func-
tion network during the learning epoch, because the weights w

i
 have 

adapted to the transformation. Thus, the function φ̂0 predicts the 
generalization of the learned transformation across the workspace 
by virtue of its dependence on target direction. Importantly, there 
is a relation between this pattern of generalization and the underly-
ing basis functions. In our case, this implies a relation between the 
width of the von Mises tuning functions in the radial basis function 
network and the broadness of the aftereffect (Figure 8). Due to 
the bias-variance trade-off, however, the best fit of the aftereffect 
will in general not allow determining the optimal tuning width 
uniquely, since the goodness of fit also depends on the number 
of basis functions and the noise of the fitted data. However, if the 
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Figure 6 | Predictions of the adaptive optimal control model compared to 
monkey movement data. Averaged experimental hand trajectories (left 
column), speed profiles (middle left column), angular momenta (middle right 
column), and trajectory variability (right column) for standard trials (black) and 
different transformation angles [±45° (red), ±90° (magenta)]. The peak in the 

angular deviation profile reflects the corrective movement. Higher rotation 
angles are associated with higher variability in the movement trajectories. All 
trajectories were rotated to the same standard target, since model predictions 
were isotropic. The model consistently reproduces the characteristic features of 
the experimentally observed behavior.
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text.
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torques) is  generated via an inverse dynamic transformation by 
translating the DT in muscle coordinates. Importantly, though, 
tracking a DT in muscle coordinates in the case of learning a 
visuomotor rotation does not help, because this trajectory would 
presume knowing the relationship between desired cursor state 
and desired muscle state. Consequently, the error-feedback con-
troller would have to operate in extrinsic cursor coordinates as 
a function of the desired and actual cursor state. This leads to 
the consequence that there should be an immense repository of 
extrinsic desired trajectories for all tools that require adaptive 
control and that these desired trajectories are tracked in “tool 
space.” Accordingly, the central nervous system would have to 
pre-compute detailed extrinsic trajectories for complex tool use 
in advance – for an extended discussion see also (Shadmehr and 
Wise, 2005). Additionally, a temporal alignment mechanism with 
regard to the computation of the DT needs to be postulated when-
ever an unpredicted perturbation thwarts the original movement 
plan to an extent that changes the total movement duration. As 
feedback-error corrections are based on the comparison of actual 
and desired limb position at a certain moment of time, it is not 
clear how the reference values for the surplus time should be 
calculated. Somehow the DT would need to be re-evaluated and 
re-aligned, requiring an additional alignment mechanism. The 
nature of such a mechanism is however not necessarily trivial.

In our study we have also investigated over-trial learning. Such 
over-trial learning corresponds to the trial-by-trial update of the 
prior belief over expected transformations. We used a radial basis 
function network to model this trial-by-trial update by fitting 
both the over-trial learning curve and an aftereffect curve that 
reveals learned movement directions when the transformation is 
switched off unexpectedly. Previous studies have used aftereffect 
errors to make inferences with respect to the underlying basis func-
tions (Donchin et al., 2003; Tanaka et al., 2009). In particular, the 
recent study by Tanaka et al. (2009) investigated over-trial  learning 
of visuomotor rotations by using a population-coding model 
(Salinas and Abbott, 1995) that was based on a radial basis  function 

that is typically assumed for parietal neurons and was recently 
reported in a behavioral study on learning visuomotor rotations 
(Tanaka et al., 2009).

dIScUSSIon
In this study we have examined evidence for over-trial learning 
and online adaptation in a visuomotor learning experiment per-
formed by macaque monkeys. Crucially, online adaptive behavior 
cannot be explained by DT controllers that rely on a non-adaptive 
feedback-error controller. When we used an adaptive optimal feed-
back control model (Braun et al., 2009) instead, we were able to 
reproduce adaptive behavior in early learning trials that reflect 
online adaptation. However, it should be noted that feedback-error 
learning would still be possible with an adaptive error-feedback 
controller in the feedback loop that is specific for the tool in use 
(in our case the computer cursor). In total, this would add up to 
three controller types that have to be learned for each tool under 
error-feedback control: an inverse internal model, an online adap-
tive error-feedback controller, and a forward internal model that 
is required for estimation purposes to stabilize the feedback loop. 
In contrast, the framework of adaptive optimal feedback control 
only requires learning a forward model (Todorov and Jordan, 
2002). The additional difficulty in the optimal control framework 
is the computation of the optimal policy based on the assumed 
forward model.

Moreover, there are other interesting features of the error- 
feedback controller: (1) the error-feedback controller has to 
track the DT in extrinsic cursor coordinates, and (2) some kind 
of temporal alignment mechanism with regard to the refer-
ence trajectory needs to be postulated due to the excess move-
ment time in the face of unexpected perturbations. Often, it is 
assumed that a DT is first selected in task-oriented coordinates 
and then translated via an inverse kinematic transformation, 
for example, into joint angles (Kawato et al., 1987; Mussa-Ivaldi 
and Bizzi, 2000). Thereby, the problem of motor redundancy is 
solved explicitly. Subsequently, a motor command (e.g., muscle 
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Figure 8 | Aftereffect. (A) Initial directional error (taken when the speed 
crossed a 2-cm/s threshold) in standard center-out movements of monkeys after 
the visuomotor rotation was switched off. The error is most pronounced in the 
direction of the target that was used during the learning phase. (B) Given a 

simple radial basis function network, the broadness of the aftereffect curve 
depends on the width of the underlying basis functions, which is denoted by the 
parameter b. (C) Model basis functions that correspond to different aftereffect 
curves.
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hand to be used and one out of eight possible concentrically 
arranged targets (radius 0.8 cm, center-target distance 4 cm) 
lit up, while the monkey was waiting for the go signal to move, 
which appeared after a variable hold period of 1.0−1.5 s. In 
a successful trial, the target had to be reached in less than 2 s 
(movement period), whereupon a liquid reward was delivered. 
The experiment was structured in a pre-learning epoch, a learn-
ing epoch, and a post-learning epoch. During the pre-learning 
epoch, a standard eight-target center-out task was performed 
to randomly chosen targets. During the learning epoch, only 
the upward target was presented in every trial and one out of 
four possible rotations (±45°, ±90°) was applied. In one session 
it was always the same transformation in all learning trials, but 
different transformations were used on different days. During the 
post-learning epoch veridical cursor feedback was re-established. 
See (Paz et al., 2003) for further details.

PRoof of InSTabILITy of a Pd conTRoLLER ExPoSEd To 90° 
TRanSfoRmaTIonS
In the following we perform a linear stability analysis of the system 
given by 

  

x Fx Gut t t+ = +1 , where 


xt  corresponds to the state vector 
and 



ut  corresponds to the control signal. If we assume a point mass 
model for the dynamics, the state vector 



x p v p vt t
x

t
x

t
y

t
y= ( )  is 

defined by position p
t
 and velocity v

t
, and the matrices F and G are 

given by
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the time discretization constant ∆ and the point mass m. The PD 
controller can then be written as 
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. In order to determine the stabil-

ity of this closed-loop system, we have to compute the follow-
ing closed-loop transfer function by taking the z-transform: 
X( )

( )

z

z
zI F GK GK GK GK

D

P D P D
∗ = − + +  +( )−1

. Stability of the closed 
loop can be examined by checking whether all poles of the transfer 
function lie within the unit circle. To this end, we need to compute the 
denominator of the matrix inverse and find the roots of the expression 
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with the substitution ζ := +ik k md p
2 4  and Re{ζ}and Im{ζ} denot-

ing the real and imaginary parts of respectively. Similarly, one finds 
|z

3
| = |z

2
| and |z

4
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|. From the requirement |z

1
| < 1∧|z

2
| < 1 it 

 network, where the input layer consisted of narrow Gaussian-
tuned visual units and the output was given by a weighted sum of 
preferred hand-movement directions. Their results suggested that 
post- adaptation generalization could be reproduced by narrow 
directional tuning widths (σ ≈ 23°) in the input layer, whereas 
broad tuning functions such as cosine tuning or bimodal Gaussian 
tuning curves could not reproduce the observed generalization 
pattern. In the literature basis functions are often interpreted in 
terms of neuronal tuning functions (Pouget and Snyder, 2000), 
where different types of tuning functions have been reported for 
different parts of the brain. For example, narrow Gaussian tuning 
functions have been previously reported for the parietal cortex 
area (Andersen et al., 1985; Brotchie et al., 1995; Graziano et al., 
1997), whereas cosine tuning has been reported for motor corti-
cal areas (Georgopoulos et al., 1982) and bimodal tuning curves 
have been reported for the cerebellum (Coltz et al., 1999). Tanaka 
et al. (2009) therefore concluded that their model was consistent 
with the notion that adaptive processes with respect to visuomo-
tor rotation learning could be instantiated by changes in synaptic 
weights between neurons in posterior parietal cortex and motor 
cortex. The results in our study are consistent with this interpreta-
tion, in that we also found that comparatively narrow basis func-
tions could explain the observed generalization pattern. Of course, 
this hypothesis can ultimately only be tested by simultaneously 
studying neuronal activity changes both in the motor cortical and 
parietal brain areas.

In previous studies different time scales of motor learning have 
roughly been differentiated as “within-session” and “across-session” 
learning (Karni et al., 1998; Costa et al., 2004). Within-session learn-
ing has further been associated with two different interacting learn-
ing mechanisms that act again on different time scales (Smith et al., 
2006). Moreover, such “within-session” learning has been associ-
ated with establishing optimal control routines and corresponds 
roughly to over-trial learning in our experiment. Here we want to 
add the notion of “within-trial” adaptation and to denote optimal 
adaptive real-time sensorimotor integration occurring on an even 
shorter time scale. This is in line with previous studies which have 
provided evidence that online sensorimotor integration can be 
described by optimality principles (Baddeley et al., 2003; Kording 
and Wolpert, 2004; Braun et al., 2009). Our results are in line with 
these previous studies that suggest that motor learning occurs on 
multiple timescales.

mEThodS
anImaLS and daTa acqUISITIon
Two female rhesus monkeys (Macaca mulatta, ∼4.5 kg) operated 
two manipulanda that recorded the two-dimensional movements 
of their two arms. Animal care complied with the NIH Guidelines 
for the Care and Use of Laboratory Animals (1996) and with guide-
lines supervised by the Institutional Committee for Animal Care 
and Use at Hebrew University.

ExPERImEnTaL dESIgn
The monkeys controlled two cursors on a video screen 50 cm 
away by operating the two manipulanda in the horizontal plane. 
At the beginning of each trial, both cursors had to be centered 
at a circular starting position, then a laterality cue indicated the 
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x w f xi i i
TDIR TDIR= ∑ , 

where the basis functions f
i
 () were given by von Mises functions 
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TDIR
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−

−

−  with preferred direction 
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 and width b

i
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centers 


ai  have to be scattered (more or less) uniformly over the 
unit circle, i.e., 

 

a xi ,
TDIR ∈ℜ2  and 
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a xi = =TDIR 1 . The over-trial 

update of the weights w
i
 was accomplished by gradient descent, 

yielding w w x f xi( ) ( ) ( ( )) ( )τ τ ε φ φ∞ 0+ = − −
∧

1
 TDIR TDIR , where τ rep-

resents the trial number and φ∞ corresponds to the final plateau 
value in the learning curve.

modEL fIT: onLInE adaPTaTIon
There were four free scalar parameters in the adaptive optimal 
control model that were fit to the data: the cost parameters w

v
 

and r, the adaptation rate Ω
v
, and the signal-dependent noise level 

Σ
u
. We adjusted these parameters to fit the mean trajectory of the 

90°- rotation trials (by collapsing the + and −90° trials into one 
angle). These parameter settings were then used to extrapolate 
behavior to both the standard trials and the 45° rotation trials. 
The fitted parameter values were w

v
 = 0.1, r = 0.03, Ω

v
 = 0.0001, 

and Σ
u
 = 1.5.

modEL fIT: ovER-TRIaL LEaRnIng
The performance error in the over-trial learning process was 
assessed by signed normalized deviation (SND) from a straight 
line, calculated as an angular deviation – the required hand 
direction minus the actual hand direction (taken when the speed 
crossed a 2-cm/s threshold), normalized by the transformation 
in the session (±45° or ±90°). The learning parameter ε and the 
steady-state estimate φ∞ of the over-trial estimator were fitted to 
the over-trial measure of the performance error obtained from the 
initial movement (taken when the speed crossed a 2-cm/s thresh-
old). To predict the performance error after adaptation, we also 
fitted the aftereffect error for different widths of the basis functions 
(b = 1,3,7,10,20).
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| < 2. For this to be true it must be also true 
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ζζ + <d , which is a contradiction. Therefore, there are 

no constants k
p
, k

d
 ∈  to stabilize the feedback loop.

comPUTaTIonaL modEL: onLInE adaPTaTIon
The adaptive optimal feedback controller that was used to model 
online adaptation in Figure 6 was taken from (Braun et al., 2009). 
We assumed a linear arm model, where the control signal u

t
 is 

contaminated by signal-dependent noise (with scalar magnitude 
Σ

u
) and smoothed by a second-order muscle-like low-pass filter 

with time constants τ
1
 = τ

2
 = 40 ms (Todorov and Jordan, 2002). 

The resulting force vector f
t
 acts on the point mass (m = 0.5 kg) 

representing the hand that has position pt
H  and velocity v

t
. In turn, 

the hand position is translated into a cursor position p
t
 by a rotation 

matrix Dφ, such that p D pt t
H= φ . The aim of the control process is 

to bring the cursor position p
t
 to the target position ptarget. Sensory 

feedback of the cursor position, speed, and force is provided with a 
time delay of 150 ms and the feedback was contaminated by additive 
Gaussian noise with a covariance of 0.04 cm2 for position, 4 cm2/s2 
for speed, and 400 cN2 for force. We also assumed a quadratic infi-
nite horizon cost function J w p p w v rut p t v t t= ∑ − + +{ }=

1
2 0

2 2 2∞ ( ) .target  
The weights w

p
 and w

v
 punish positional error between cursor and 

target and high velocities, the parameter r punishes excessive con-
trol signals. Since the absolute value of the cost function does not 
matter, we set w

p
 = 1. Since the system dynamics are linear and the 

cost is quadratic, the adaptive controller can be described by a linear 
state-feedback control law that is updated in every time step with 
the current estimate of φ (Braun et al., 2009). Estimating the rota-
tion parameter φ during the movement constitutes the process of 
online adaptation. The speed of this adaptation process (modeled 
as a random walk) is determined by a scalar covariance Ω

v
. Details 

of the model can be found in (Braun et al., 2009).

comPUTaTIonaL modEL: ovER-TRIaL LEaRnIng
We assumed a radial basis function network for learning and retain-
ing the parameter estimate φ̂0  that initializes the belief about the 
assumed association between target direction 



xTDIR  and the required 
movement direction 



xMDIR
 in each trial. The estimate φ̂0  is used by 

the online adaptation process as the mean of a Gaussian distribution 
representing the initial belief at the beginning of the trial. The radial 
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