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linked with each other than with neurons in the rest of the network 
(Hilgetag et al., 2000; Hilgetag and Kaiser, 2004; Sporns et al., 2004; 
Kaiser et al., 2007), resulting in the multi-scale organization of a 
hierarchical modular network (HMN).

Brain dynamics are also organized in an intricate way. First, 
the brain can sustain irregular activity in the absence of external 
stimuli. Such irregular sustained activity (ISA) represents internal 
self-organized states of the nervous systems, and has attracted great 
attention (Vreeswijk and Sompolinsky, 1996, 1998; Brunel, 2000; 
Roxin et al., 2004; Galán, 2008). The phenomenon is important in 
the study of various neural functions, such as signal propagation 
(Vogels and Abbott, 2005) and neural coding (Lewis et al., 2009). It 
was shown that networks of sparsely connected spiking neurons can 
produce highly irregular chaotic activity without external stimuli, 
due to the balance between excitation and inhibition (Vreeswijk 
and Sompolinsky, 1996; Vogels and Abbott, 2005). However, little is 
known about the impact of complex network topology, especially 
the HMN architecture, on the organization of sustained activity 
and particular ISA.

1 IntroductIon
The impact of network topology on the dynamical behavior of 
network systems is a topic of central importance for the under-
standing of complex systems, and has attracted much attention in 
the complex network field (Strogatz, 2001); Albert and Barabási, 
2002; Boccaletti et al., 2006; Arenas et al., 2008). Understanding 
the large-scale organization of the structure and dynamics in the 
brain from the viewpoint of complex networks has become a new 
frontier in neuroscience (Sporns et al., 2004; Bassett and Bullmore, 
2006; Reijneveld et al., 2007; Bullmore and Sporns, 2009).

Neural networks in the brain have a highly intricate struc-
tural organization. One prominent feature of this organization is 
modularity. It is known from the anatomy of the brain that corti-
cal architecture is organized in a hierarchical and modular way, 
from cellular micro-circuits in cortical columns at the lowest level, 
via cortical areas at the intermediate level, to sets of highly con-
nected brain regions at the global systems level (Mountcastle, 1997; 
Hilgetag et al., 2000; Hilgetag and Kaiser, 2004). This means that 
neurons within a column, an area or a set of areas are more densely 

Sustained activity in hierarchical modular neural networks: 
self-organized criticality and oscillations

Sheng-Jun Wang1, Claus C. Hilgetag2 and Changsong Zhou1,3*
1 Department of Physics, Hong Kong Baptist University, Hong Kong, China
2 School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
3 Centre for Non-linear Studies and The Beijing-Hong Kong-Singapore Joint Centre for Non-linear and Complex Systems (Hong Kong), Hong Kong Baptist University, 

Hong Kong, China

Cerebral cortical brain networks possess a number of conspicuous features of structure and 
dynamics. First, these networks have an intricate, non-random organization. In particular, they 
are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, 
via cortical areas and area subcompartments organized as structural and functional maps to 
cortical columns, and finally circuits made up of individual neurons. Second, the networks 
display self-organized sustained activity, which is persistent in the absence of external stimuli. 
At the systems level, such activity is characterized by complex rhythmical oscillations over a 
broadband background, while at the cellular level, neuronal discharges have been observed to 
display avalanches, indicating that cortical networks are at the state of self-organized criticality 
(SOC). We explored the relationship between hierarchical neural network organization and 
sustained dynamics using large-scale network modeling. Previously, it was shown that sparse 
random networks with balanced excitation and inhibition can sustain neural activity without 
external stimulation. We found that a hierarchical modular architecture can generate sustained 
activity better than random networks. Moreover, the system can simultaneously support 
rhythmical oscillations and SOC, which are not present in the respective random networks. The 
mechanism underlying the sustained activity is that each dense module cannot sustain activity 
on its own, but displays SOC in the presence of weak perturbations. Therefore, the hierarchical 
modular networks provide the coupling among subsystems with SOC. These results imply that 
the hierarchical modular architecture of cortical networks plays an important role in shaping the 
ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of 
both the sensitivity of critical states and the predictability and timing of oscillations for efficient 
information processing.

Keywords: hierarchical modular networks, balanced networks, sustained activity, neural avalanche, self-organized 
criticality, slow oscillations

Edited by: 
Luciano Da F. Costa, Institute of 
Physics of São Carlos, Brazil

Reviewed by: 
Antonio C. Roque, Universidade de 
São Paulo, Brazil
Elbert Macau, National Institute for 
Space Research, Brazil
Bjoern Schelter, Aberdeen University, 
UK
Sebastian Ahnert, University of 
Cambridge, UK

*Correspondence: 
Changsong Zhou, Department of 
Physics, Hong Kong Baptist University, 
Kowloon Tong, Hong Kong, China. 
e-mail: cszhou@hkbu.edu.hk

Frontiers in Computational Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 30 | 1

Original research article
published: 29 June 2011

doi: 10.3389/fncom.2011.00030

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/computational_neuroscience/10.3389/fncom.2011.00030/abstract
http://www.frontiersin.org/computational_neuroscience/10.3389/fncom.2011.00030/abstract
http://www.frontiersin.org/people/wangsheng_jun/19652
http://www.frontiersin.org/people/claushilgetag_1/18170
http://www.frontiersin.org/people/changsongzhou/4423
http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
http://www.frontiersin.org/Computational_Neuroscience/editorialboard


The sustained resting state activity of the brain is far from 
simply noisy. To the contrary, rhythmic oscillations with charac-
teristic frequencies, such as α, β, γ waves are abundant (Buzsáki, 
2006). The relationship between cognitive functions and brain 
rhythms as well as synchronization of the rhythms has been a 
central topic in neuroscience over the last decade (Engel et al., 
2001; Fries, 2005). How oscillations emerge in the brain and how 
they are related to the network architecture, however, is still largely 
an open question.

In addition to sustained complex oscillations and waves, ava-
lanches of neuronal firing activity have been demonstrated in 
neural networks. It was shown that avalanche activity in neural sys-
tems reaches self-organized critical states. Self-organized criticality 
(SOC) is a concept proposed in physics that mimics the avalanche 
of sandpiles, and is a widespread property of complex systems, such 
as piling of granular media, earthquakes, and forest fires, etc., (Bak 
et al., 1987, 1988; Bak, 1996; Jensen, 1998). In such systems, as one 
unit exceeds a threshold, it promotes other units by interaction and 
may cause them to cross the threshold as well. Activity emerges as a 
cascade propagating through the system. The concept asserts that 
a system self-organized into a critical state is characterized by scale 
invariance, which is usually identified as a power-law distribution 
of variables, such as the size of the avalanche, duration of the event 
or the waiting time between events (Bedard et al., 2006). At such 
a critical state, signals and perturbations can efficiently propagate 
over broad spatio-temporal scales. In neural systems, SOC has been 
observed experimentally (Beggs and Plenz, 2003, 2004) and studied 
in models (Eurich et al., 2002; de Arcangelis et al., 2006; Levina et al., 
2007). Critical behavior in neural models has been shown to bring 
about optimal computational capabilities, optimal transmission, 
storage of information, and sensitivity to sensory stimuli (Kinouchi 
and Copelli, 2006; Levina et al., 2007).

Studying the interplay between the modular architecture and 
dynamical activity of neural networks may deliver important 
insights for the understanding of structure–function relation-
ships in neural systems. Previous investigations have shown several 
interesting results. The study of synchronization dynamics in the 
cerebral cortical network demonstrated that the clusters of the func-
tional networks coincide with the anatomical communities (Zhou 
et al., 2006, 2007; Honey et al., 2007; Müller-Linow et al., 2008). In a 
model of spreading neural activity, persistent, and scalable network 
activation could be produced in HMNs, but not in same-size ran-
dom networks, implying that the hierarchical cluster architecture 
is a potential basis for the stable and diverse functional patterns in 
cortical networks (Kaiser et al., 2007; Kaiser and Hilgetag, 2010). 
It was also shown that HMNs satisfy constraints of stability under 
dynamical changes (Robinson et al., 2009).

To summarize, sustained activity occurs and coexists with 
rhythmic oscillations and SOC in the brain, which has a HMN 
structure. However, it has not yet been studied whether these 
prominent structural and dynamical properties are inherently 
related. This question, however, is crucial for understanding the 
functional roles of spontaneous brain activity. Classical theories 
of cognitive neuroscience viewed the brain as a passive, stimulus-
driven device. In this view, the spontaneous on going activity of 
the brain was regarded as noise. Over the last decades, the para-
digm has shifted to consider the brain as an active network that 

can generate meaningful activity by itself, which has significant 
impact on the selective responses to stimuli (Engel et al., 2001; 
Fries, 2005; Knight, 2007).

Here we investigate the impact of HMN architecture on sus-
tained neural activity in a neural network model with balanced 
excitation and inhibition, with the principal aim to reveal relation-
ships between the structural and dynamic features. In previous 
studies of random networks, it was shown that both large size and 
small density of neural networks are needed for sustained activity 
in the balanced network (Vreeswijk and Sompolinsky, 1996, 1998). 
The brain network as a whole has a very sparse connectivity, while 
cerebral cortical columns consisting of a small number of neurons 
in a local region are often densely connected internally, due to 
their modular organization. The questions we are going to address 
are: how does the balance mechanism for sustaining the irregular 
activity of a large sparse network support the sustained activity in 
small modules and in HMNs? What is the difference between the 
sustained activity in HMNs and that in homogeneous random 
networks? What is the role of hierarchical modular structure in 
the emergence of slow waves and SOC?

Our computational simulations show that HMNs can sustain 
irregular activity in larger parameter regions for the strength of 
excitatory and inhibitory synapses than homogeneous networks 
of the same size and connection density. In the regime of ISA, 
the dynamics of modules displays intermittent activity rather 
than the continuous activity observed in homogeneous networks. 
The intermittent activity of modules induces the emergence of 
low-frequency oscillations in HMNs. The size and the interval of 
the activity of modules are distributed according to power laws, 
which is consistent with the experimental observation of SOC 
in neural systems. We show that small, dense modules cannot 
support sustained activity without external input, but display 
SOC in the presence of weak inputs. Therefore, HMNs can be 
regarded as coupled SOC subsystems where the avalanches from 
some modules can provide weak input to the other modules. 
Since systems with SOC are very sensitive to weak perturbation, 
quite sparse connections between the modules can maintain the 
sustained activity.

Our work provides a generic and simple cortex-like neural 
network model which exhibits several important dynamical prop-
erties consistent with experimental findings. These findings may 
be of significance in studying the structure–dynamics–function 
relationship in the brain. First, the findings provide some prin-
cipal understanding of the mechanism underlying the structure–
dynamics relationship in the brain. Hierarchical modular brain 
architecture plays an essential role in simultaneously supporting 
diverse and non-trivial dynamical features. Second, the coexist-
ence of SOC and oscillations may allow the cortical network to 
simultaneously take advantage of these two dynamical proper-
ties in information processing. For example, SOC would allow 
the system to have a broad responding region in the presence of 
external stimuli, while oscillations could provide timing, predict-
ability, and integration necessary in various cognitive functions. 
The present work may stimulate further large-scale network sim-
ulations in studying the structural and dynamical mechanism 
underlying the emergence of ongoing activity and its interaction 
with external stimuli.
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levels, we also cut inter-module connections of HMNs to isolate the 
densely connected smallest modules, and assemble these units by 
recovering the inter-module connections in a bottom-up manner.

Considering the fact that inhibitory couplings are formed by 
local connections and excitatory couplings by local or long-distance 
connections (Albus and Wahle, 1994; Bosking et al., 1997; Battaglia 
et al., 2007), we take R

inh
 = 1, and R

ex
 as a value in (0, 1). In HMNs, 

the connection density in a module is defined in the same way 
as in a random network, as the ratio of the number of connec-
tions to the total number of possible connections. The connection 
density between two modules is the ratio of the actual number of 
inter-module links to the number of possible links between them. 
The matrix of connection density between the modular units in a 
4-level HMN is shown in Figure 1. With the parameter R

ex
 = 0.99, 

the connection density in elementary modules can be about 15 
times larger than that of the whole network. Since we assume that 
the rewiring probability R

ex
 is the same across different levels of 

hierarchy, the density shown in Figure 1 can be expressed by an 
easily derived formula. For each unit the local connection density is

P P R Pu ex= + +( . )( ) ( . ) .0 8 1 0 2 20
4

0
4

 
(4)

The connection density between a pair of modules of the i-level 
is

P P R Ri ex
i

ex= + −−( . )( ) ( ).0 8 1 10
1

 
(5)

For example, for the two 1-level modules (i = 1), the initial con-
nection density between them is P

0
. After all the inhibitory connec-

tions from 20% of inhibitory neurons are rewired into the modules 
(R

inh
 = 1), the density becomes 0.8P

0
. Further rewiring the excitatory 

connections with rate R
ex

 results in the density P
1
 =(0.8P

0
)(1 − R

ex
) 

as given in Eq. (6) for i = 1.
The model can be easily generalized by splitting a module into m 

submodules of equal size at each level. In this case, the connection 
density between the modules of the ith level is

2 Model
2.1 Balanced Model of sustaIned actIvIty
Our investigation started from a random neural network model 
which exhibits sustained activity (Vogels and Abbott, 2005). The 
network consists of a large number N of leaky integrate-and-fire 
neurons, sparsely, and randomly connected with a connection 
probability P

0
 = 0.01. The ratio of excitatory to inhibitory neurons 

in the network is taken as 4:1. Whenever the membrane poten-
tial of a neuron crosses a spiking threshold of −50 mV, an action 
potential is generated and the membrane potential is reset to the 
resting potential V

rest
, where it remains clamped for a 5-ms refrac-

tory period. We use a conductance-based model of neurons (Vogels 
and Abbott, 2005). The dynamics of the membrane potential is 
described as

τ dV

dt
V V g E V g E Vrest ex ex inh inh= − + − + −( ) ( ) ( ).

 
(1)

The value of the time constant is t = 20 ms, the resting mem-
brane potential is V

rest
 = −60 mV. Reversal potentials of synapses for 

excitatory and inhibitory neurons are E
ex

 = 0 mV and E
inh

 = −80 mV, 
respectively. The synaptic conductances g

ex
 and g

inh
 are expressed 

in units of the resting membrane conductance, which is set to 1/
(100 MΩ).

When a neuron fires, the appropriate synaptic variables of its 
postsynaptic targets are increased, g

ex
 → g

ex
 + ∆g

ex
 for an excita-

tory presynaptic neuron and g
inh

 → g
inh

 + ∆g
inh

 for an inhibitory 
presynaptic neuron. Otherwise, these parameters obey the follow-
ing equations:

τex
ex

ex

dg

dt
g= − ,

 
(2)

and

τinh
inh

inh

dg

dt
g= − ,

 
(3)

where synaptic time constants are t
ex

 = 5 ms and t
inh

 = 10 ms.

2.2 the hIerarchIcal Modular network Model
We obtain HMNs by rewiring the random network described in 
Section 2.1 in a top-down way. The network is divided randomly 
into two groups of the same size, and a modular architecture is 
obtained by rewiring connections between the two groups. In par-
ticular, with a probability R, each of the inter-modular connections 
(i → j) is rewired back into the module from which the connec-
tion projects, that is, deleting the link from i to j and connecting 
i to k which is randomly selected in the same module of node i. 
The rewiring probabilities for excitatory and inhibitory synapses 
are denoted by R

ex
 and R

inh
, respectively. In this way we obtain a 

1-level (flat) modular network. This method is applied recursively 
to generate HMNs with (l + 1)-levels, in which each module in the 
l-level network is split into two submodules, and the connections 
between them are rewired with the probabilities R

ex
 and R

inh
. This 

rewiring method can transfer a large sparse network into a network 
composed of local units which are small and dense. See Figure 1 for 
an example of a 4-level HMN with 16 units, each having N/16 = 625 
neurons. For studying the dynamics of network modules at different 

Figure 1 | Connection density matrix of a 4-level HMN. Network size is 
N = 10,000. The connection density of the initial random networks is 0.01. The 
rewiring probabilities of excitatory links and inhibitory links are Rex = 0.99 and 
Rinh = 1, respectively. The matrix is averaged over 100 network realizations.
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noise to check whether the networks could sustain the activity on 
their own. The duration of network activity was determined by 
numerical simulations lasting up to 1000 ms after the removal 
of noise.

The results of the average duration over many realizations of 
simulations are illustrated in Figure 2. The results for the random 
network are shown in Figure 2A for comparison. In the red regions 
the networks sustain their activity throughout the simulations. The 
sustained activity in the upper-left region regular sustained (RS) 
corresponds to RS activity. Here excitation is dominant and all the 
neurons of a network fire spikes synchronously. In the blue region 
excitatory transient (ET), the excitatory couplings tend to synchro-
nize neurons in the networks if there is external excitation. However, 
the signals generated by neuronal firing arrive synchronously at 
postsynaptic neurons during their refractory period. Therefore, 
after the ET activity, all neurons turn silent if the external stimula-
tion is removed. On the other hand, in the blue region inhibitory 
transient (IT), the inhibitory couplings dominate the network, and 
the activity is too weak to sustain. When stimulation is removed, 
all neurons turn to silent after the IT process. The other red region 
IS represents ISA (Vogels and Abbott, 2005). This overall picture 
remains similar for the HMNs with various rewiring probabilities 
R

ex
, as seen in Figures 2B–D. Compared to the random networks, 

in the 4-level HMNs obtained with the rewiring probability of 

P P m R Ri ex
i

ex= + − −−( . )( ( ) ) ( ),0 8 1 1 10
1

 (6)

where i = 1,…,l, if a network is rewiring into a l-level HMN. The 
connection density within each unit of the network, that is, the 
l-level module, is

P P m R Pu ex
l l= + − +( . )( ( ) ) ( . ) .0 8 1 1 0 2 20 0  

(7)

In the present work, we consider a large and sparse initial ran-
dom network with size N = 10,000 and connection probability 
P

0
 = 0.01. For HMNs, we report results for m = 2. The results remain 

qualitatively the same when other values of m are considered.

3 results
3.1 the Balanced regIon In hMns
In random networks, balance between excitation and inhibition 
exists in a region of the parameter space of the strength of the 
excitatory and inhibitory synapses (∆g

inh
, ∆g

ex
), which allows the 

neural network to sustain irregular activity without external input. 
The HMN structure can enlarge the balanced parameter region. We 
performed a parameter search by varying the strength of excita-
tory (∆g

ex
) and inhibitory (∆g

inh
) synapses, limited to the upper 

boundary ∆g
ex

 = 1, ∆g
inh

 = 10 following Vogels and Abbott (2005). 
Network activations were simulated by providing each node with 
background noise activation for 200 ms, and then removing the 

A B

C D

Figure 2 | Average duration of network activity in the parameter space (∆ginh, ∆gex). The network has regular sustained activity (RS) in region RS, irregular 
sustained activity (IS) in region IS and cannot sustain activity in regions ET and IT. The network size is N = 10,000, the overall connection density is P0 = 0.01. (A): random 
networks. (B–D): 4-level HMNs with the rewiring probability Rex = 0.8, Rex = 0.9, and Rex = 0.99, respectively. The results are averaged over 100 network realizations.
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mittent activity with bursts of relatively strong activity  separated 
by distinct silent periods, while the activity in the random net-
work generally proceeds at a lower level, but without discernible 
silent intervals. The corresponding spike raster of these neurons in 
Figures 3C,D shows that in the module of the HMN, the neurons 
fire with stronger coherence due to dense connections.

The intermittent firing patterns provide new insight into the 
mechanism underlying the sustained activity in HMNs: the dense 
modules can support temporally coherent activity which will ter-
minate eventually if the modules are isolated. However, a silent 
module can be activated again due to the input from some other 
modules which are still active. This behavior is manifested by the 
spike rasters of several modules in Figure 3E. The avalanches of 
some of the modules are relatively synchronized within a time 
window, the correlation: however, does not last for a very long 
time. Since the modules cannot be so strongly synchronized as to 
move the whole network into silence simultaneously, such inter-
mittent activity will continue, leading to sustained activity in the 

excitatory links R
ex

 = 0.8, the parameter regions of both irregular 
and RS activity are enlarged (Figure 2B). The regions are further 
enlarged with R

ex
 = 0.9 (Figure 2C). When the rewiring probability 

R
ex

 = 0.99, the region of ISA shifts toward the top and is decreased. 
When R

ex
 is very close to 1.0, the modules become effectively discon-

nected, and the communication between the modules is too weak 
to maintain ISA at the level of the whole network.

In contrast to the previous result suggesting that irregular 
activity can sustain only in large and sparse networks (Vreeswijk 
and Sompolinsky, 1996; Vogels and Abbott, 2005), surprisingly, it 
appears that sustained activity also exists in networks with dense 
and small modules. Given the HMN organization, the network 
model simultaneously possesses both the higher connection prob-
abilities found among neighboring neurons and the lower con-
nectivity between neurons separated by modules. Thus our model 
shows that sustained activity can exist in a broad parameter region 
in more realistic cortex-like neural networks.

We note that in order to sustain irregular activity, the inhibitory 
strength is several times larger than the excitatory strength due to 
a smaller proportion of inhibitory neurons in the system. This is 
physiologically realistic, since inhibitory synapses are often closer 
to the cell body of postsynaptic neurons, corresponding to greater 
physiological impact (Somogyi et al., 1998; Buzsáki, 2006).

The similarity of the sustained region for the homogeneous 
random network and HMNs implies that the balance of excitation 
and inhibition plays a crucial role in sustaining irregular activity. 
However, we here show that the detailed mechanisms are quite dif-
ferent. For random networks, it is known that the network can sus-
tain irregular activity in the balanced region, because in such sparse 
large networks, the average current into a neuron is around zero; 
however, it fluctuates strongly and can exceed the firing threshold 
occasionally to maintain the activity (Vreeswijk and Sompolinsky, 
1996; Vogels and Abbott, 2005). Therefore, dense and small net-
works cannot sustain activity without external signals. However, 
we show that such isolated dense modules, when perturbed, can 
produce firing avalanches that display the characteristic of SOC due 
to the balance of excitation and inhibition. Such SOC modules are 
sensitive to very weak inputs. When connected into a hierarchical 
modular structure, they can maintain sustained activity due to the 
mutual triggering of the avalanches. A more detailed analysis of this 
new mechanism is present in Sections 3.4 and 3.5 (Figures 6–8). In 
the following, we describe different firing patterns in the sustained 
activity of the HMNs due to such firing avalanches. In most of the 
following analysis, if not specified, the synapse strengths are fixed 
to ∆g

inh
 = 8.0, and ∆g

ex
 = 0.5, a point in the middle of the sustained 

region IS.

3.2 varIatIon of fIrIng patterns
The patterns of the irregular dynamics in HMNs are distinctly 
different from random networks when the modularity increases 
at large R

ex
. We compared the activity of one module in a 4-level 

HMN obtained at R
ex

 = 0.99 and the activity of the correspond-
ing ensemble of neurons in the random network before rewiring. 
Both the HMN and random network sustain irregular activity as 
a whole. The population activity of the ensemble of neurons in a 
random network is shown in Figure 3A and that of the correspond-
ing module in a HMN in Figure 3B. The HMN displays an inter-

A

B

C

D

E

Figure 3 | Comparison of the activity patterns in a random network and 
HMN. (A,B) population activity of an ensemble of neurons in a random 
network and of the same ensemble neurons which form a module in the 
HMN rewired from the random network, respectively. (C,D) the 
corresponding spike rasters of the ensembles. (e) The spike rasters of eight 
modules in the HMN.
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(Figure 4B). Therefore, in the HMN, the silent period is distrib-
uted according to a power law, with an exponent −2.54 ± 0.05. In 
these networks, one can observe silent intervals as long as tens of 
milliseconds to one hundred millisecond. The distribution of the 
size of activity is shown in Figures 4C,D. For random networks, it 
follows an exponential function with the exponent −0.16 ± 0.01. 
For the HMN, the size of the activity displays a power-law distribu-
tion with the exponent −2.08 ± 0.08, followed by an exponential 
cut-off, most clearly seen by the cumulative distribution in the 
inset. Such a cut-off is mainly due to finite-size effects of the dense 
module. Indeed, when we enlarge the network size, the power-law 
distribution of the avalanche size is extended to larger magnitudes 
(Figure 5). However, systematic simulation of even larger networks 
is beyond our computational capacity.

A power-law distribution of avalanche size is the fingerprint 
of SOC. These results show that HMNs are close to critical states, 
while the random networks are not. The observation of criti-
cal states is consistent with experimental data which showed a 
power-law distribution (also with cut-off) of the neuronal ava-
lanche size (Beggs and Plenz, 2003) or the intervals between large 
energy fluctuations (Worrell et al., 2002). Here, both the intervals 
between avalanches and the avalanche sizes of the modules exhibit 
power-law distributions in the balanced HMNs with sustained 
irregular activity.

whole network. This behavior suggests that the network dynamics 
has the ability to become coordinated but is also very flexible to 
desynchronize.

3.3 crItIcal BehavIor In hMns
The intermittent activity of a module is a response of the module 
to weak input signals from other modules. The intermittent activity 
exhibits the characteristics of an avalanche. It has been shown that 
criticality of avalanches is useful for information propagation and 
processing in neural networks (Beggs and Plenz, 2003). Therefore, 
we investigated whether the activity of the networks has properties 
of criticality. We analyzed the distribution of the size of each activ-
ity of a module and the length l

s
 of the silent interval between two 

active periods (Figure 2B). Activity size is measured as the number 
of spikes fired in an active period.

Figures 4A,B compare the distribution of l
s
 in a module of 

HMNs with a corresponding subnetwork of the random network. 
The data are cumulated from 60,000 time steps. The distribution of 
the silent period in the random network follows a straight line with 
a slope of −0.24 ± 0.01 when plotted in log-linear form, showing 
that the silent period in random networks follows an exponential 
distribution (Figure 4A). Very rarely one can observe a silent period 
larger than 2 ms in the ensemble. By contrast, the distribution of 
the module in the HMN displays a straight line in the log–log plot 

A

B

C

D

Figure 4 | Distribution of the silent period ls and the activity size in an ensemble of N/16 neurons in random network (A) and (C) and in a module of 
4-level HMN (B) and (D). The whole networks have the same size N = 10,000 and the rewiring probability for generating HMN is Rex = 0.99. The insets in (B) and (D) 
shows the cumulative distribution, that is, the number of intervals larger than a given value, which manifests an exponential cut-off in the distribution.
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displays self-sustained periodic activity. The examples of subcritical 
(∆g

ex
 = 0.28) and supercritical (∆g

ex
 = 1.30) regimes are shown in 

the inset of Figure 6B for comparison with the approximate criti-
cal state at ∆g

ex
 = 0.50. The approximate critical states occur in a 

broad parameter regions without fine-tuning of system parameters, 
which is the feature of SOC.

Next we show that the interaction among modules can strongly 
affect the sustained activity of modules, although the inter-module 
coupling is very sparse compared to the intra-module coupling. To 
show the effect of inter-module interactions, we build HMNs in a 
bottom-up way. We take the isolated modules of a 4-level HMN as 
basic units for building hierarchical networks with various levels. 
We assemble the units according to the connection density matrix 
(Figure 1) from lower to higher levels. Figure 7 shows the sustaining 
probability of networks built by assembling units in this bottom-
up way. When the units are coupled, the sustaining probability 
increases. In the 4-level HMN the sustaining probability is equal to 1.

These results verify our speculation of the new mechanism 
of sustained activity in HMNs as coupled SOC subsystems. The 
sparse coupling between the modules transmits a small portion of 

3.4 MechanIsM of the sustaIned actIvIty
The SOC feature in the avalanches of the modules suggests a new 
mechanism of sustained activity of neuronal networks, as follows. 
In HMNs, all elementary modules are small and dense and cannot 
sustained their activity independently. However, the modules can 
exhibit SOC in the presence of weak perturbations. The sparse con-
nections between modules could provide such weak perturbation. 
Thus, the whole network with sustained activity can be regarded 
as a system of coupled SOC subsystems.

To verify this new mechanism, we need to show that isolated 
modules can also display SOC when they are weakly perturbed 
and that the hierarchical coupling of such modules will gradu-
ally lead to sustained activity. In Figure 6A we show the sustained 
probability of an isolated module versus the connection density 
(random connections, 4:1 ratio of excitatory to inhibitory neurons). 
When the connection density of the module is equal to the value 
in above 4-level HMN, indicated by the arrow in Figure 6, the 
sustaining probability is effectively zero and the module cannot sus-
tained its activity. Then we investigate the response of the isolated 
module to weak input. In the simulations, we provide one spike 
into a randomly selected node from the module at each time step. 
With such a small input, the module can intermittently produce 
large avalanches and one obtains a power-law distribution of the 
activity size, as shown in Figure 6B. The distribution also has an 
exponential cut-off due to finite size, as seen more clearly by the 
cumulative distribution in the inset. Thus, the isolated modules can 
reach the self-organized critical state in the presence of weak exter-
nal perturbations, very similar to that in the self-sustained HMNs 
without external signal. One needs to emphasize that a balance of 
excitation and inhibition is important for the approximate critical 
state in the module. For the same inhibition strength ∆g

in
 = 8.0, if 

the excitatory strength is small, ∆g
ex

 < 0.3, the module is clearly in 
the subcritical regime with only small avalanches, or even cannot 
generate any response for the weak input. By contrast, for a much 
larger excitatory strength ∆g

ex
 > 1.0 above the region IS, the module 

is evidently in the supercritical regime, with high probability for 
generating large avalanches covering the whole module, or simply 

Figure 5 | The cumulative distribution of the activity size of modules in 
4-level HMNs with N = 10,000, P0 = 0.01 (squares) and N = 20,000, 
P0 = 0.006 (circles). ∆gex = 0.5, ∆ginh = 8.0.

A

B

Figure 6 | (A) The relation between the sustaining probability of random 
networks and the connection density. ∆gex = 0.5, ∆ginh = 8.8, N = 625. (B) The 
distribution of avalanche size of the isolated module driven by external input. 
Inset: the cumulative distributions of clearly subcritical state (∆gex = 0.28) and 
supercritical state (∆gex = 1.3) are compared to the approximate critical state 
(∆gex = 0.5).
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of the rewiring probability R
ex

. Both of them increase rapidly when 
R

ex
 > 0.9. Large value of s〈l

s
〉 in a broad range of R

ex
 close to the 

transition point of the sustained activity implies robust critical 
behavior in the system.

3.6 eMergence of a low-frequency coMponent In network 
actIvIty
Another significant effect of the intermittent dynamics in HMN is 
the emergence of low-frequency oscillatory activity. Here we per-
form an analysis by calculating the power spectrum density (PSD) 
of the average potential of networks with N = 10,000 and overall 
connectivity P

0
 = 0.01. Figure 9A shows that in random networks 

the power decays as the frequency increases. When we rewire the 
network into a HMN with R

ex
 = 0.99 and R

inh
 = 1.0, a peak appears 

at low frequencies around 15 Hz.
The low-frequency oscillations are closely related to the inter-

mittent dynamics of modules. When the random network is rewired 
into a 3-level HMN with the same rewiring probability, the isolated 
modules are not as densely connected and the temporal activity 
within them is not very strong. When connected into 3-level HMNs, 
the intermittent activity is not as pronounced as in a 4-level net-
work. As a result, the low-frequency peak of PSD of the 3-level 
HMN is lower than that of a 4-level HMN (Figure 9B). When 
the random network is rewired into a 2-level HMN, its isolated 
modules can almost always support sustained activity. However, 
the modules do not display pronounced intermittent activity and 
a peak is no longer clearly observed at low frequency in the PSD 
of the 2-level HMN (Figure 9B).

To further illustrate the features of the oscillations, in Figure 10A 
we show the time series of the average membrane potentials of 
a few modules in the HMN. A significant randomness exists in 
the oscillations, corresponding to the broadband background. As 
discussed in Figure 3, the relation between the activities of the 
modules is quite complex. It is seen that clear synchronization of 
the oscillations can occur among some modules for some periods 

the avalanches to act as the weak input into the other temporally 
silent modules, maintaining them at approximate critical state and 
inducing avalanches of various sizes. With increases in the number 
of hierarchical levels and total number of modules in the system, 
such mutual triggering leads to self-sustained activity.

3.5 transItIon froM sustaIned actIvIty to sIlence at hIgh 
rewIrIng proBaBIlIty
Systems close to a critical state are sensitive to weak perturbation 
over a broad range of magnitudes (Kinouchi and Copelli, 2006; 
Levina et al., 2007). Therefore, we expect that sustained activity in 
HMNs can be achieved for a range of parameters of sparse coupling 
between the modules. Figure 2 shows the variation of the param-
eter region of sustained activity for several values of the rewiring 
probability R

ex
. Here we study the probability P

sus
 of sustaining 

the activity in the HMNs with respect to R
ex

 for given values of 
synaptic strength (∆g

ex
 = 0.5, ∆g

inh
 = 8.0). As shown in Figure 8, 

the sustaining probability only starts to decrease when the rewiring 
probability is larger than 0.99. After that, we obtain a finite prob-
ability that the whole network becomes silent after the removal of 
the external noise signal. When R

ex
 > 0.999, the probability that 

the whole network possesses sustained activity becomes eventually 
zero, but some of the modules can support sustained activity while 
the others are silent, since the modules are effectively disconnected. 
It is notable that the transition of the sustaining probability occurs 
at a large value of the rewiring probability, confirming that HMNs 
only need a very small amount of inter-module connections to 
sustain the activity of the whole network due to the sensitivity of 
SOC to weak perturbations.

We can characterize the difference in the activity of random 
and HMNs in a more quantitative way by the statistics of the silent 
period l

s
 (in the unit of simulation time steps of 0.1 ms) during 

which no neuron in the considered ensemble fires a spike. The aver-
age value 〈l

s
〉 and the SD s〈l

s
〉 are shown in Figure 8 as a  function 

Figure 7 | Sustaining probability in networks which are built by 
assembling the isolated modules of the 4-level HMN according to the 
connection density matrix shown in Figure 1. The labels on the x-axis 
represent the number of modules used in recovering HMNs in the bottom-up 
way. The resulting HMNs are indicated by the hierarchical trees. ∆gex = 0.5, 
∆ginh = 8.0.

Figure 8 | The sustaining probability of a 4-level HMN as a function of 
rewiring probability Rex. The average 〈ls〉 and SD s〈ls〉 of the silent period ls in 
a module is also shown as functions of Rex. N = 10,000, ∆gex = 0.5, ∆ginh = 8.0.

Wang et al. Activity in modular neural networks

Frontiers in Computational Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 30 | 8

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


fluctuations in short intervals. These properties are consistent with 
previous observations on models of functional networks of the 
brain (Honey et al., 2007).

Both the sustained activity and slow oscillations originate from 
the interaction of SOC within different modules. The activity in a 
module is characterized by many small events separated with small 
intervals, both following power-law distributions. Through sparse 
connections between the modules, such small but frequently occur-
ring events slightly change the membrane potential of the neurons 
in other silent modules, slowly drive the system and induce power-
law activity in these modules. Such induced activity can further 
activate the other silent modules. Therefore, the whole network 
can support sustained irregular activity due to mutual triggering 
of SOC with very sparse connections among the modules. The slow 
oscillations are related to the finite-size effects of the SOC within 
the dense, small modules. As shown by the cumulative distributions 
in the insets of Figures 4B,D, the largest activities have a cut-off 
and therefore possess typical scales. Indeed, if we pay particular 
attention to the statistics of these large events by applying different 
thresholds, we can see that the intervals between two large events 
exhibit a distribution peaked around 60 ms. Furthermore, the mean 
activity of the whole network is mainly contributed by such large 
events. The combination of these effects leads to the slow oscilla-
tions with a frequency of about 15 Hz < 1/60 ms.

of time. We can manifest such synchronization–desynchronization 
process by correlation of a pair of modules using a moving window 
of 500 ms. The correlation is defined as

c
x t x x t x

x t x x t x

i i j j

i i j j

=
〈 − − 〉

〈 − 〉〈 − 〉

( ( ) )( ( ) )

( ( ) ) ( ( ) )
.

2 2

 

(8)

Figure 10B shows an example of c between two modules. The short 
time correlation has a large fluctuation, and clear correlation may be 
persistent for hundreds of millisecond. We also compute the corre-
lation between modules over long time window. The correlation can 
reveal the hierarchical modular structure, as shown in Figure 10C. 
Averaging the correlation for the modules within the same level 
shows a clear increase with the hierarchical level (Figure 10D). The 
largest correlation is between two modules which are neighbors 
at level 4, for example, modules 1 and 2 illustrated in Figure 10C. 
Conversely, the smallest correlation is between modules which 
are only very sparsely connected at level 1, e.g., modules 1 and 9. 
Thus, the correlation between modules in the model can reveal the 
network structure over long time periods, but exhibits significant 

A

B

Figure 9 | (A) Comparison of the power spectrum density of average 
potentials in random networks and HMNs with N = 10,000 and P0 = 0.01. Solid 
line: random network. Dashed line: 4-level hierarchical modular network with 
Rex = 0.99. (B) Power spectrum density of average potential of hierarchical 
modular networks with different depth of hierarchy. The parameters are 
N = 10,000, P0 = 0.01, and Rex = 0.99. Black: 2-level HMN; red: 3-level HMN; 
blue: 4-level HMN.

A

B

C D

Figure 10 | (A) The average membrane potential of several modules in the 
HMN networks. (B) The correlation between the average potential of two 
modules, computed with a moving window of 500 ms. (C) The correlation 
matrix C(i,j). The entries are the correlation between the module i and the 
module j which are computed in a long window of 6000 ms and averaged over 
100 realizations. (D) The average correlation between modules from the same 
level, as a function of the level.
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modular networks, the state is close to the critical states, and the 
network dynamics in the broad region of ISA are similar. However, 
due to highly demanding computation in modeling the HMNs, 
it is difficult to identify the exact critical point using systematic 
finite-size analysis.

3.7 realIstIc network
We proceed to testing these results on realistic biological data for 
the cortical network of the cat (Scannell et al., 1999; Zhou et al., 
2006). The cat cortical network consists of 53 areas which are linked 
by 830 fiber connections of different densities. It forms a weighted 
complex network and exhibits a hierarchically modular structure. 
The connection matrix {a

ij
} is shown in Figure 12. The cortex net-

work has modules that broadly agree with four functional cortical 
subdivisions, that is, visual cortex (V), auditory (A), somato-motor 
(SM), and fronto-limbic (FL) (Hilgetag et al., 2000; Hilgetag and 
Kaiser, 2004).

In the present work, a pair of interacting areas is represented by 
a 4-level HMN as in Figure 1, so that each area of the cat network 
is represented by one of the two modules (3-level HMN) in the 
4-level HMN, and the connection density between the two areas is 
given by that between the two 3-level modules. The 3-level HMN 
in each cortical area has 4000 neurons with the overall connec-
tion probability P

0
 = 0.02. The rewiring probability is R

ex
 = 0.999 

So far, we have mainly presented the findings of critical states 
and slow oscillations for one particular parameters set ∆g

ex
 = 0.5, 

∆g
inh

 = 8.0. These behaviors, however, are quite robust to the vari-
ation of the parameters in the irregular sustained region when the 
network modularity is strong enough at large R

ex
. This is demon-

strated in Figure 11 where the power-law distributions of the silent 
period and the size of activity and the peaked distribution of PSD 
are shown for several points as indicated in the parameter space. 
We can see that the magnitudes of the avalanches, the power and 
frequency of the oscillations depend on the system parameters.

Here we would like to further discuss the cut-off of the power-
law distribution. The cut-off of the avalanche magnitude results 
from several factors. Firstly, in our model, modules have small size, 
so the avalanche size is limited. Secondly, inhibitory couplings in 
the model prevent avalanches from reaching the module size. Both 
of these two factors can be adjusted by network parameters while 
maintaining power-law distributions, but affect the cut-off of the 
avalanche size. In Figure 11 we see that the magnitude of avalanches 
increases with the excitatory coupling strength. In larger networks 
the power-law distribution is extended, as shown in Figure 5. 
Furthermore, SOC is often reflected by an approximate power-
law distribution in a broad parameter space, but is not necessarily 
tied to the exact critical point. Deviation from such an exact criti-
cal point will also typically result in an exponential cut-off. In our 

A B

C D

Figure 11 | Self-organized criticality and slow oscillations are common in the HMNs in the regime of sustained irregular activity. For various points 
indicated by the white symbols in the parameter space (A), the peaks in the spectra of the mean potential of the whole network (B), the power-law distributions of 
the silent period (C) and activity of the modules (D) are robust. The insets in (C) and (D) are the corresponding cumulative distributions.
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Figure 12 | The connection matrix {aij} of the cortical network of the cat 
brain. The symbols represent different densities of the fiber connections: 1 (, 
sparse), 2(•, intermediate), and 3(, dense). aij represents the connection 
density from area i to area j.

and R
inh

 = 1.0. Here a larger R
ex

 is considered since we have 53 
areas so that smaller inter-module connections are necessary to 
maintain the intermittent activity in the system. With these param-
eters, connection probability between area i and area j is a

ij
P

c
 with 

P
c
 = 8.0 × 10−6, where P

c
 is the connection density between the two 

modules of the 4-level network.
The distributions of the silent period and the size of activity are 

shown in Figure 13. Both the silent period and the size of activ-
ity are distributed according to a power law. The scale exponent 
of the distribution of the silent period is −2.58 ± 0.08. The scale 
exponent of the distribution of the size of activity is −3.04 ± 0.09. 
They are similar to the values obtained in our previous simpler 
model. The distribution of the PSD in Figure 14 shows a peak 
around a low frequency. These results show that both criticality 
and low-frequency oscillations are quite robust when HMNs are 
embedded in more complex realistic cortical networks, implying 
that the combination of the hierarchical modular architecture and 
the balance of excitation with inhibition may generally play an 
important role in the activity of the brain.

The analysis of modular organization in human cortical con-
nectivity data from magnetic resonance imaging (MRI) or dif-
fusion spectrum imaging (DSI) has shown that brain networks 
have many levels of hierarchy. The number of modules and the 
sizes of the modules vary at different levels (Bassett et al., 2010), 
and the number of hierarchy increases from 2 in MRI data (par-
cellation into 104 regions) to 3 in DSI data (1000 regions). It is 
likely that more refined levels can be detected in smaller scales if 
connectivity data with higher resolution could become available 
in the future. Recent simulation of a simple spreading model in 
HMNs shows that the persistence of scalable activation is optimal 
for certain combination of depth of the hierarchy l, the number of 
modular division m (Kaiser and Hilgetag, 2010). In our biologically 
meaningful HMN model with balanced excitation and inhibition, 

A

B

Figure 13 | Distribution of the silent period (A) and the size of activity 
(B) of one area of the cat cortical network model. The insets are the 
corresponding cumulative distributions.

Figure 14 | Power spectrum density of the average membrane potential 
of the cat cortical network model.
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on the spatial and temporal resolution of the data. Our model is 
different from the usual neural network models for the simulation 
of critical behavior. In those models, a separation of timescales is 
assumed and external random input is needed for driving a system 
to avalanche (Eurich et al., 2002; de Arcangelis et al., 2006; Levina 
et al., 2007). In our model, a slow and random perturbation of a 
module results from the weak interaction with the avalanche activ-
ity of other modules. Self-organized critical states within the dense 
modules can be obtained by mutual triggering among the modules. 
These findings show that the modular structure of brain networks 
naturally provides the substrates for the system to simultaneously 
support global sustained activity and local critical states, so that 
the advantages of both of them could be employed for informa-
tion processing (Beggs and Plenz, 2003; Vogels and Abbott, 2005; 
Lewis et al., 2009).

Interestingly, the coexistence of local critical states and global 
sustained activity can lead to slow waves in the mean activity of 
HMNs. While much research has been devoted to study oscillations 
in complex brain activity and their relevance to functions of the 
brain (Engel et al., 2001; Fries, 2005; Buzsáki, 2006), the generating 
mechanisms for oscillations are still largely an open question. On 
the one hand, in terms of non-linear dynamics, feedback projec-
tions with inhibition and delays are supposed to play an important 
role. On the other hand, it has been stated that slow waves are 
related to slow neuronal oscillations composed of silent phases 
(down-state) and burst phases (up-state; Buzsáki, 2006). There has 
been much work on modeling the dynamics based on burst firing 
of individual neurons (Belykh et al., 2005; Hill and Tononi, 2005). 
Here we demonstrated that the hierarchical modular architecture 
of the brain could play an important role in generating oscilla-
tions from the mutual triggering of critical states. Although the 
individual model nodes do not possess up- or down-states, the 
modular structure induces a burst-like behavior of the modules 
and the slow oscillations of the whole network. Since the large-scale 
neural network in the brain has more levels of hierarchical modular 
architecture and strongly heterogeneous organization in the mod-
ules, it is likely that such a structural organization underlies the 
emergence of complex oscillations covering a broad range of scales 
when interacting with feedbacks by inhibition and delays. More 
detailed exploration of the underlying mechanism should provide 
new insights into the structure–function relationships which are 
mediated by the sustained, critical, and oscillatory dynamical activ-
ity of the brain.

There are other important questions that need to be addressed 
in the future. For example, what are the reasons for neural sys-
tems to organize into a HMN architecture? No doubt, there are 
numerous constraints on the network organization to meet require-
ments of efficient information processing during diverse functions. 
Our analysis demonstrates possible functional advantages of the 
hierarchical modular organization for supporting simultaneously 
various dynamical properties which may be beneficial for informa-
tion processing. The modular architecture also provides the neural 
systems with an increased parameter space for sustained activity 
(Kaiser et al., 2007; Kaiser and Hilgetag, 2010) as well as balanced 
functional segregation and integration (Sporns et al., 2000; Zhao 
et al., 2010). Of additional relevance could be constraints from wir-
ing and metabolic costs. It was shown that small-world connectivity 

a more systematic analysis of the dependence of the activity on 
the network parameters, such as the depth of the hierarchy l, the 
number of modular division m, the overall average density P0

 and 
the modularity related to the rewiring probabilities R

ex
 and R

inh
 

can shed light on the organization of HMNs in the whole brain 
in terms of these organization parameters. This will be a topic for 
future explorations.

4 dIscussIon
Among the most basic and prominent features of the neural net-
works of the brain are the mixture of excitatory and inhibitory 
neurons and the network organization into a hierarchical modular 
graph. Here we studied effects of the hierarchical modular organiza-
tion on the dynamics of the sustained activity of neural networks 
with balanced excitation and inhibition. We found that the combi-
nation of these two structural features can simultaneously support 
sustained irregular activity, critical states of neural avalanches and 
slow oscillations in the mean activity of the neural networks.

The hierarchical modular structure enables the brain networks 
to have both ISA and dense local subnetworks, which cannot sup-
port sustained activity in isolation. The mechanism unveiled in 
this work is that very weak interactions between modules ensure 
the sustained activity of the HMNs, which extends the balanced 
parameter region between excitatory and inhibitory synapses. For 
given strengths of excitatory and inhibitory synapses, the mod-
ules in silent periods cannot be activated by the input from the 
other active modules as the synaptic connections between modules 
become too sparse, and the whole network looses the ability to 
support sustained activity. In a region close to the transition point, 
the modules display an intermittent dynamics, while the whole 
network sustains irregular activity.

Within the modules, the intermittent activity exhibits several 
other non-trivial properties. We can observe relatively large synchro-
nized firing of the neurons which is not present in the subnetworks 
of the corresponding random networks. Such synchronization was 
also observed experimentally in the spontaneous activity in slices of 
mouse visual cortex (Mao et al., 2001; Cossart et al., 2003; Ikegaya 
et al., 2004; Grinstein and Linsker, 2005). A model investigation 
into the role of network structure in the generation of synchrony 
suggested that networks with hubs are able to exhibit synchrony 
peaks (Grinstein and Linsker, 2005). Here we show that modular 
network structure provides another potential mechanism of gener-
ating synchronization. Very recently, the existence of hub neurons 
has been demonstrated experimentally (Bonifazi et al., 2009). It will 
be interesting for future work to investigate the activity patterns of 
HMNs with hubs (Müller-Linow et al., 2008).

Our more detailed statistical analysis of the activity within the 
modules of balanced HMNs shows that the dynamic behavior pos-
sesses characteristics of SOC. Both the silent period and the size of 
the activity are distributed according to a power-law, which is con-
sistent with several experimental findings on neuronal avalanches 
(Worrell et al., 2002; Beggs and Plenz, 2003). The exponents of the 
distribution depend on various network parameters, which will be 
analyzed in more detail in the future. In experiments, it was also 
shown that the exponents are related to various components in the 
configuration of neural systems (Worrell et al., 2002). For example, 
in Beggs and Plenz (2003) it was shown that the exponent depends 
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