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Dense dissociated hippocampal cultures are known to generate spontaneous bursting
electrical activity which can be recorded by multielectrode arrays. We have analyzed spatio-
temporal profiles of the distribution of spikes in the bursts recorded after 2 weeks in vitro.
We have found a statistically significant similarity between the spiking patterns in sequen-
tial bursting events, we refer to these spiking patterns as spiking signatures. Such spiking
signatures may appear in different parts of the bursts, including the activation patterns – the
first spike times in the bursts, and deactivation patterns – the last spike times in the bursts.
Moreover, these patterns may display apparent time scaling, e.g., they may be replayed in
the subsequent bursts at different speeds, while preserving the spiking order. We discuss
how such properties of the bursts may be associated with the formation of repeatable
signaling pathways in cultured networks in vitro.
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INTRODUCTION
In recent years, neurons cultured on multielectrode arrays (MEAs)
have attracted a growing interest as a biological model of network
level plasticity and information processing. It has been found that
such networks generate synchronized bursting events (of 0.5–2 s
duration) with high frequency spiking elicited by a large number
of cells involved in the network. Bursting activity in cultures was
broadly investigated in connection with many different applica-
tions including disease treatment (Wagenaar et al., 2005), learning
in neural networks (Shahaf and Marom, 2001; Marom and Shahaf,
2002; le Feber et al., 2010), signal processing at the network level
(Chao et al., 2005; Bakkum et al., 2008; Vajda et al., 2008), and
many others. In the course of development the cultured networks
demonstrate highly variable characteristics of bursting dynam-
ics (Van Pelt et al., 2004; Wagenaar et al., 2006). At the same
time, it was noted that the burst consists of quite well-organized
spatio-temporal spiking sequences. Statistically significant simi-
larity of the burst patterns was found using correlation criteria
(Segev et al., 2002), spike rate characteristics (Madhavan et al.,
2007), and activation patterns, e.g., statistics of the spiking times
of burst initiation (Raichman and Ben-Jacob, 2008). The pres-
ence of motifs in the activation patterns found in the latter case
is especially interesting since such patterns can be repeated with
a millisecond precision (Hulata et al., 2004; Rolston et al., 2007;
Raichman and Ben-Jacob, 2008; Chao-Yi et al., 2009). It is par-
ticularly important for cellular mechanisms of learning when the
motifs are changed during low-frequency electrical stimulation
(Shahaf et al., 2008). Generation of spontaneous burst discharges

can be also treated as a kind of self-organized criticality (e.g., neu-
ronal avalanches) as it was shown in cultured slices (Beggs and
Plenz, 2004) as well as in dissociated cultures (Pasquale et al.,
2008). In the course of burst development, spikes from different
neurons form an avalanche, leading to a high frequency sequential
population discharge. Such avalanches also point to the presence
of a certain synaptic organization in the cultured networks at a
certain stage of development.

In this paper we address spike pattern ordering in spontaneous
burst discharges recorded from dissociated hippocampal cultures
in vitro. We claim that different parts of the bursts, including both
activation and deactivation stages, display repeatable character-
istics of the spiking order. During the burst discharges we find
spatio-temporal patterns of spiking activity (spiking signatures)
which occur above chance compared to surrogate data sets. We
believe that these spiking signatures may reflect the structure of the
underlying patterns of synaptic connectivity, revealing particular
preferred signaling pathways. Moreover, the spiking signatures can
be replayed at different speeds in the consequent bursts activating
the signaling pathways in different time scales.

MATERIALS AND METHODS
CELL CULTURING
Hippocampal cells were dissociated from embryonic mice (on the
18-th day) and plated on MEAs pre-treated with adhesion promot-
ing molecules of polyethyleneimine (Sigma P3143) with the final
density of about 1600–2000 cells/mm2. C57BI6 mice were killed by
cervical vertebra dislocation, according to the protocols approved
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by the National Ministry of Public Health for the care and use of
laboratory animals. Embryos were removed and decapitated. The
entire hippocampus, excluding the cortex, whole medulla, and the
lower part of the pons, was dissected under sterile conditions. Hip-
pocampuses were cut in Ca2+- and Mg2+- free phosphate-buffered
saline (PBS-minus). After enzymatic digestion for 25 min by 0.25%
trypsin at 37˚C (Invitrogen 25200-056) cells were separated by trit-
uration (10 passes) using a 1-ml pipette tip. After being passed the
solution was centrifuged at 1500 g for 1.5 min, the cell pellet was
immediately re-suspended in culture neurobasal medium (NBM;
Invitrogen 21103-049) with B-27 (Invitrogen 17504-044), Gluta-
mine (Invitrogen 25030-024), and 10% fetal calf serum (PanEco
K055). The dissociated cells were seeded in a 40-μl droplet cov-
ering the center of the culture dish with 1 mm2 electrode region
of the MEA, forming a dense monolayer (Potter and DeMarse,
2001). After the cells had adhered (usually in 2 h), the dishes were
filled with 0.8 ml NBM supplemented with B-27 and 0.5 mM Glu-
tamine with 10% fetal calf serum. In 24 h the plating medium was
replaced by a medium containing NBM with 0.5 mM Glutamine
and 10% fetal calf serum, but with no antibiotics or antimycotics.
Glial growth was not suppressed, because glial cells are essential
for long-term culture health. One half of the medium was changed
every 2 days. The cells were cultured under constant conditions of
37˚C, 5% CO2, and 95% air at saturating humidity in a cell culture
incubator (MCO-18AIC, SANYO).

Phase contrast images of cultures were taken weekly to record
the status of the culture using a Leica DMIL HC (Germany)
inverted microscope with 10×/0.2 Ph1 objectives. Experiments
were done when the cultures were 2–5 weeks in vitro.

ELECTROPHYSIOLOGICAL METHODS
Extracellular potentials were collected by 64 planar indium tin-
oxide (ITO) platinum black electrodes integrated into the MED64
system (Alpha MED Science, Japan). The MED probe (MED-
P5155) had 8 × 8 (64) electrode arrays with 50 μm × 50 μm
micro-electrodes spaced by 150 μm (Figure 1A). Data was
recorded simultaneously in 64 channels at a sampling rate of
20 kHz/channel.

All signal analysis and statistics were performed using custom
made software (Matlab®).

SPIKE DETECTION
Detection of extracellularly recorded spikes (Figure 1B) was based
on threshold calculation of the signal median

T = NSσ, σ = median

( |x|
0.6745

)
, (1)

where x is the bandpass-filtered (0.3–8 kHz) signal, σ is the esti-
mate of the median normalized to SD of a signal with a zero
number of spikes (Quiroga et al., 2004), and N S is the spike detec-
tion coefficient changing the spike detection threshold. Note that
the spike detection threshold depends on spiking rate, leading to
false positives in detection of low amplitude spikes. We use in (1)
the median method (Quiroga et al., 2004) which is less sensitive to
the spike frequency compared with traditional mean root square
estimates (e.g., Maccione et al., 2009). Note also that SD of a sig-
nal containing Gaussian noise equals the median of the absolute

values of the signal divided by 0.6745. Thus, we choose 0.6745 in
Eq. 1 to normalize the median value to the SD of the signal.

Different values of N S correspond to different amplitudes of
the spikes to be detected. In this paper we use N S = 8 for all ana-
lyzed data, which gives the amplitudes of the detected spikes in
the 10- to 60-μV range. To illustrate the influence of the threshold
value one of the cultures was also analyzed for higher threshold
spikes, N S = 12 (Figure 3). The detected spikes were then plotted
in a raster diagram (Figures 1C,D). Note that in the spike extrac-
tion algorithm based on Eq. 1 the minimal interspike interval was
set to be 1.5 ms to avoid the overlapping of the neighboring spikes.

In these experiments we did not use any spike-sorting algo-
rithms to classify spikes coming from different cells (Quiroga
et al., 2004). During high frequency discharges a rather large pla-
nar electrode (50 μM in size) integrates signals from quite a large
area comprising many neurons firing in avalanche and it is hardly
possible to differentiate by shape local spikes coming with negli-
gible latencies. Thus, we analyze the signals contributed by a local
group of neurons near a particular electrode as a single event and
follow temporal ordering on the scale of inter-electrode distance
where the spike latencies are longer, which is caused by synaptic
or perhaps extrasynaptic transmission.

BURST DETECTION
To detect bursts we calculated the total spiking rate [TSR(t )]
(Figure 1E) accounting for the total number of spikes from all
electrodes within 50 ms time bin. Fast appearance of a large num-
ber of spikes over all electrodes in a small (50–100 ms) time bin
was used as a criterion for burst appearance.

The signal TSR(t ) was analyzed to estimate burst beginning and
ending points. Burst threshold was set to be T Burst = 0.1 × σTSR,
where σTSR is SD of TSR(t ). Note that in many experiments there
are a few electrodes recording continuous high frequency spike
trains (∼1 spike/10 ms). They contribute to TSR(t ) values with a
certain level of noise (Figure A1 in Appendix). To exclude this
noise we set the burst detection threshold coefficient to 0.1, giv-
ing the best estimate for the burst initiation and ending points
recognized in the raster diagram (Figure A2 in Appendix).

The initiation time of the burst, Tp, was defined as the first bin,
where TSR(t ) was above the threshold. Then, Tp was adjusted to

the first spike after this time. The end point of the burst, T end
p , was

defined as the last time bin, where TSR(t ) was above the thresh-
old. Then, T end

p was adjusted to the latest spike before this time.
Note that compared to the burst detection algorithm proposed by
Pasquale et al. (2009) our method is not self-adapting. However it
is fully automatic and was capable to detect all the bursts in our
recordings.

PATTERN ANALYSIS
Next, we defined a spiking pattern as a vector of spiking times
ta

p
i (Δτ) accounting for the time interval from the reference point,

Tp + Δτ, to the first spike appearing in electrode i for the p-th
burst in the sequence. Here, Tp is the start time of the p-th burst,
Δτ is the parameter changing the reference point and varied from
0 to the burst duration, so that the pattern ta

p
i (Δτ) represented 64-

th size vector of spiking times for the p-th burst. If Δτ = 0, then
ta

p
i (0) describes the so-called activation pattern (Raichman and
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FIGURE 1 | (A) Hippocampal neurons cultured on MEA. (B)

Electrophysiological signal recorded from a single microelectrode during burst
activity. (C) Raster plot of electrical spiking activity over 64 electrodes(DIV 14).

(D) Raster plot of the single burst activity. (E) Total spike rate-diagram,
TSR(t ) – total number of spikes over all electrodes in every consequent
50 ms bin.

Ben-Jacob, 2008). Here, we also defined the deactivation pattern
td

p
i . For each burst we looked for the last spikes in each chan-

nel (electrode) and set the reference point at the time moment
of the first of them. Then, td

p
i denotes the time interval between

the reference point and the last spikes in each electrode. So, the
activation pattern of one burst is a set of times of appearance of
the first spikes for each electrode after the burst beginning, and
deactivation pattern of one burst is a set of the last spiking times
for each electrode after the burst beginning.

To measure similarity of each pair of the spiking patterns we
introduced the quantity

Sabs
(
p, q

) =
√√√√ 1

N

N∑
i=1

(
t

p
i − t

q
i

)2
, (2)

where t
p
i = ta

p
i (Δτ) and t

p
i = td

p
i are the vectors of

spiking times for the activation and for the deactivation pat-
terns, respectively, for the p-th and q-th bursts. In other
words, S(p,q) defines the distance between the two vectors in
N -dimensional metric space, N = 64 is the number of elec-
trodes.

Formula (2) estimates the absolute distance between the spiking
patterns. We also defined a relative distance as

Srel
(
p, q

) =√√√√ 1

N

N∑
i=1

(
t

p
i

max(t
p
i ) − min(t

p
i )

− t
q
i

max(t
q
i ) − min(t

q
i )

)2

,

(3)
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where max(t
p
i )−min(t

p
i ) and max(t

q
i )−min(t

q
i ) are the durations

of the p-th and q-th patterns, respectively, so that each spiking
time, t

p
i , of the p-th burst is normalized to its duration. Thus,

the relative distance does not depend on the absolute duration
of the pattern and is more sensitive to the order of spikes in the
raster diagram. We used this quantity, if it is different from the
absolute one, to test the presence of temporal scaling in the spiking
patterns.

To estimate statistical significance of the similarity values we
generated surrogate data sets composed of spiking patterns with
indexes randomly shuffled with equal probability. Shuffling the
neuron indexes without changing actual spiking times removes
the information about mutual temporal order of the electrode
spikes, preserving the other statistics. The non-parametric Mann–
Whitney U test (Mann and Whitney, 1947) was used to identify
statistical difference between median values of the distributions for
the actual and for the surrogate patterns. If p-value given by the
test was less than 0.05, then the set of the patterns is non-randomly
similar.

Spiking signature was defined as the pattern of spiking times,
if it is statistically different from the surrogate patterns. To ana-
lyze the fraction of non-random patterns in real data compared
to surrogates we calculated the Jaccard index (Jaccard, 1901). It
determines the relation between the overlapping area of real and
surrogate distributions and the total area of the distributions. In
other words, the Jaccard index characterizes the amount of non-
randomly similar pattern pairs. Its zero value indicates that the
distributions do not overlap. If it is equal to 1, then the distribu-
tions are totally overlapped and all the observed patterns are not
statistically different from the surrogate patterns.

Note that the shuffling method used here to identify the spiking
signatures has minimal effect on the statistics of the signal analyzed
preserving, in particular, TSR(t ), function for the surrogates. We
also tested other algorithms, including spike jittering with uni-
form probability of the surrogate spike time around its original
timing (Figure A3 in Appendix). The dependence of the simi-
larity measure on the jittering time window (maximum random
spike timing jitter taken from a uniform distribution) is shown in
Figure A3 in Appendix. As one may expect jittering with small time
windows does not make the surrogates statistically different from
the original patterns in terms of the similarity measure. However,
time windows where the surrogates become statistically different
from the original patterns are in the range of the pattern duration
(100–200 ms). This means that shuffling based on electrode index
randomizing is statistically equal to the spike timing jittering with
time windows in the range of pattern duration.

Note also that we did not use the widely employed ISI shuffling
for the whole burst analysis, as the ISI distribution is not uni-
form in the burst. In particular, it was important for us to preserve
higher ISIs at the beginning of the bursts and lower ISIs at their
end stage (Figure 4G).

RESULTS
ACTIVATION AND DEACTIVATION PATTERN ANALYSIS
First, we analyzed the activation patterns (Figure 2A). We were
interested in determining if the activation patterns have similar
characteristics from burst to burst. Distributions of the similarity

measures (2) between all pairs of the activation patterns (left dis-
tribution) and surrogates of those patterns (right distribution)
are shown in Figure 2C. According to the Mann–Whitney U test
(see Materials and Methods), the median for the original patterns
is smaller than the median for surrogate data (p-value < 0.05).
This indicates that the activation patterns are statistically similar,
i.e., there is a spiking signature (Figure 2A) in the recorded burst
sequence. Note also that the statistical significance of the similarity
of activation patterns is robust to changes in the burst detection
threshold (Figure A2 in Appendix).

Next, we analyzed the statistics for the activation patterns using
the relative distance (3) (Figure 2D). Under this measure the pat-
terns are also statistically different from the surrogate data. The test
shows slightly better performance than for the absolute distance.

We proceed with the deactivation patterns (Figure 2B). Both
absolute (Figure 2E) and relative (Figure 2E) distance analyses
show that the patterns are statistically similar (Figure 2F).

The results are summarized in Figure 2G for six different cul-
tures of the same DIV. It was found that in the case of activation
patterns, both absolute and relative measures of the similarity give
essentially similar results. Then the patterns are repeatable in the
sense of time sequences of spikes (absolute distance) and spiking
order (relative distance). As for the deactivation patterns, they are
more variable in time duration, which is indicated by the larger
bar for absolute distance p-value in Figure 2G. The relative dis-
tance test reduces the time variability in the deactivation duration
and is characterized by a much lower p-value. Thus, the cultures
eventually demonstrate highly organized signaling not only on
the time scale of synchronized bursts but also on the time scale of
spike transmission inside the burst. Note that median comparison
is quite a robust method to estimate statistical difference between
real and surrogate data.

Next, we analyzed the data in more detail. To find how many
pairs of patterns have statistically small and non-random similari-
ties we employed the Jaccard index computation (see Materials and
Methods). It also shows that the original and the surrogate data
are statistically different. Surprisingly, the fraction of repeatable
pairs in the deactivation patterns in the sense of their relative dis-
tance is significantly larger than in terms of their absolute distance
(Figure 2H).

This difference in absolute and relative distance statistics con-
firms the presence of time scaling in the deactivation patterns. In
other words, the spikes at the end of the bursts can be played on
different timescales but in statistically the same order. Note that
similar scaling properties have been also found in some in vitro
and in vivo studies of cortical neurons (Ikegaya et al., 2004). Note
also that scaling dynamics is a characteristic feature of neuronal
avalanches in cultured networks (Pasquale et al., 2008) indicating
that the burst discharges intrinsically contain different time scales.

The presence of similarity in the spiking patterns is also illus-
trated in Figure 3A. Average values of ta

p
i (Δτ) describing the first

spiking times in the burst are plotted in 8 × 8 matrix according to
MEA electrode distribution. They apparently organize a gradient
distribution. The activity is initiated in a definite spatial area dif-
ferent for different cultures. Otherwise one would always expect
the wave to propagate in the same direction in different experi-
ments. Such a difference excludes that the wave is an artifact of
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FIGURE 2 | Profiles of the activation patterns (A) and deactivation

patterns (B) in the bursts. Distributions of the absolute distance (2)
computed for real data (solid curve) and for surrogates (dashed curve).
Comparison of activation patterns using absolute distance (C) and relative

distance (D). Comparison of deactivation patterns using absolute distance (E)

and relative distance (F). Averaged p-values (G) and Jaccard index (H) of
statistical significance of non-random small similarities for activation and
deactivation patterns using absolute and relative spiking times (n = 6).

the recording facility. Otherwise, it should give generally the same
direction of the wave in different experiments. Here we note, how-
ever, that the profile of the activation (deactivation) patterns may
depend on the threshold of spike detection. Figure 3B shows the

activation pattern for the same burst sequence as in Figure 3A
but for a higher value of the spike detection coefficient (N S = 12).
This means that a specific profile of the spiking signature is also
sensitive to the characteristic spike amplitudes detected from the
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electrodes. The high amplitudes of the recorded spikes do not
reflect non-random spatio-temporal patterns. Figure 3C illus-
trates the deactivation pattern for the same burst sequence. In
contrast to Figure 3A it has no gradient trends. This means that
the profiles of activation and deactivation patterns can be gen-
erally uncorrelated. Figure 3D illustrates the activation patterns
for three different cultures. This kind of non-random spatio-
temporal patterns was observed in four of six presented cultures
and others had random patterns. For illustration we also show here
(Figure 3E) the space time profiles (rasters) of the bursts presented
in Figure 3A.

ANALYSIS OF THE BURSTS AS A SEQUENCE OF PATTERNS
Let us now analyze the intrinsic structure of the burst using the
similarity measures (2, 3) with Δτ = 50 increased in 50 ms incre-
ments from 50 to the duration of the burst. We sequentially shifted

the reference point Tp + Δτ as shown schematically in Figure 4A.

The corresponding patterns were defined as spiking times ta
p
i (Δτ)

according to the reference point. Note that, since the bursts in the
sequence have different durations, here we additionally normalize
the components of the vector ta

p
i (Δτ) to the corresponding burst

duration. Such a procedure allows to make the absolute (2) and
relative (3) distances independent of the duration of particular
burst. Thus, we can assess statistical similarity of different parts of
bursts.

We calculated the p-value and Jaccard index at certain Δτ.
Figures 4C–F illustrate their changes for different parts of the
burst. Lower p-values, p < 0.05, mean that the patterns are sta-
tistically similar in terms of the median test (see Materials and
Methods). Surprisingly, within the first 40% of burst dura-
tion, the absolute distance shows that the patterns are statis-
tically repeatable (i.e., they have the spiking signature). Note

FIGURE 3 | (A) Matrix of 8 × 8 electrodes with color representation
of average first spike timing in the bursts – activation pattern.
Color means first spike timing on electrode after burst starts
averaged over all bursts in a set. First electrode is in the left top
corner, 64-th –bottom right. Spike detection coefficient (see
Materials and Methods) was set to be NS = 8. (B) Color representation

activation pattern of the same activity, where spikes were detected
with detection coefficient NS = 12. (C) Color representation of the
average last spiking times in the bursts – deactivation pattern. (D) Examples
of the average activation patterns in different cultures. (E) Raster plot of the
bursts with similar activation patterns [(A) – average activation pattern of
the bursts].
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FIGURE 4 | (A) Schematic graph of spiking patterns for different
time shifts from the burst beginning time Tp. (B) Spiking patterns
calculated for maximal spiking rate inside the burst. Dependence of p-value
of pattern similarity using absolute (C) and relative (D) spiking times and
Jaccard index using absolute (E) and relative (F) spiking times on time shift

from the burst start time. Absolute values of the time shift (x -axes) from the
burst starting point are normalized to burst duration. (G) Average number of
spikes over all electrodes at every 50 ms interval of the bursts (n = 6). (H)

Average duration of patterns taken at different reference points (parts of
the bursts).
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that the average pattern duration is maximum if patterns are
taken at the beginning of the bursts (Figure 4H). Hence, not
only the initiation profile of the burst but also the spikes inside
the bursts in the multielectrode data reflect repeatable activa-
tion of certain synaptic pathways (Figure A4 in Appendix).
Next, we applied the relative distance test (3) for the entire
burst (Figure 4C). Apparently, the interval between the first 20
and 40% of burst duration contains a series of peaks higher
than p = 0.05. A possible explanation is that this interval cor-
responds to the highest spiking rate in the burst and, hence,
the spiking order is very sensitive to pattern duration. In turn,
the absolute distance (2) here is less sensitive to pattern dura-
tion because most of the spikes come almost synchronized
(Figure 4B).

Then, we show the behavior of the Jaccard index with increasing
Δτ. As was to be expected, due to the presence of time scaling the
relative distance test shows lower values than the absolute one for
the first few spiking patterns inside the bursts. However, the rela-
tive index grows faster because of the earlier mentioned sensitivity
of the relative distance to the spiking rate.

Note that the last spiking patterns corresponding to the end
of the burst do not show similarity, as was the case for the deac-
tivation patterns. This is due to the different definitions of the
activation patterns ta

p
i (Δτ) related to the shifting reference point

Tp + Δτ and deactivation patterns td
p
i which explicitly determine

the last spikes in the burst for each electrode.

DISCUSSION
Spontaneous electrical activity of dissociated hippocampal neu-
rons on MEAs at certain stages of development occurs in the
form of synchronized burst discharges. On a millisecond time
scales the intraburst spike distribution can be also characterized
as repeatable patterns ordered in space and in time. To assess
repeatability we introduced the measure of similarity between
the spiking patterns as the vector of spiking times relative to
some reference time line. We demonstrated, in particular, that
the spiking patterns taken as the first spiking times (e.g., the
activation patterns) are statistically significantly similar to each
other. This fact agrees with the previous studies (Raichman
and Ben-Jacob, 2008). Analysis of the whole intraburst struc-
ture showed that the deactivation patterns are also well repeat-
able in terms of the similarity measure. Note, however, that
the patterns taken in the middle of the bursts which consist
of spike sequences with higher frequency are not statistically
similar above chance compared to surrogate data which shows
an absence of repeatability of the spike patterns. This is, most
likely, a consequence of the recording technique when the overlap
of many almost synchronous spikes detected by the extracellu-
lar electrode cannot be reliably resolved. Nevertheless, patterns
appearing in the first 40% of the burst duration show significant
similarity.

The presence of organized timing in the activity of culture net-
works was addressed in many earlier works (Shahaf and Marom,
2001; Johnson, 2007, 2010; Rolston et al., 2007; Raichman and
Ben-Jacob, 2008). Our results indicate that there are statistically
repeatable patterns of spiking activity during burst discharges
compared to surrogate data. We define that as an existence of

spiking signatures in spontaneous burst discharges. Such signa-
tures are characterized by statistically non-random distributions
of spiking times relative to surrogates in different parts of the
bursts. This means that the spiking sequences constituting the
bursts preserve a certain order, which is statistically preferable for
all bursts. The signatures do not require precise repetition of the
spike positions in the consequent bursts, hence, they are a quite
robust indicator of the culture functional state to spiking time jit-
tering. In space the spiking signatures are well-organized wave-like
shapes (Figure 3). The different patterns of wave propagation may
be due to differences in the underlying patterns of synaptic con-
nectivity in the cultures (Galan, 2008). In particular, this may be
associated with different densities of active cell distribution. The
absence of symmetry in the wave profiles (Figure 3) may also be
an argument in favor of the synaptic nature of the spiking signa-
tures. Another possible mechanism based on electrical or chemical
diffusion supported by local cell discharges due to depolarization
is not likely here, as it is expected to be symmetric in all directions
(like concentric or spiral waves).

Furthermore, we cannot distinguish different activation pat-
terns within the same recording. The spiking signature may indi-
cate that there is a “dominant” pattern at this stage of culture
development. We hypothesize that the functional connectivity
in the culture has reached a homeostatic state in which further
plasticity does not alter the “dominant signaling pathway.” This
leads, in turn, to statistically repeatable spatio-temporal patterns
of spiking activity during the burst discharge. Note that this does
not contradict the existence of spiking motifs described earlier
in cultures (Raichman and Ben-Jacob, 2008). Different motifs
may contribute to the tails of the distribution classified here as
“random” patterns in the sense that they are different from the
dominant one.

A further argument supporting the hypothesis of spiking sig-
natures is the scaling feature of the spiking patterns. The relative
similarity measure (3) indicates better performance of the pattern
repeatability test for the resolvable parts of the bursts especially for
its deactivation part. We hypothesize that the spiking consequence
has fractal nature of the discharge in terms of time scales and
activation of multiscale synaptic pathways (e.g., the percolation
effect in spike propagation). Being at different level of depression
after the high frequency part of the burst, these pathways may
display different synaptic efficacy, hence providing effective spike
propagation at variable speed from burst to burst. That is why,
for example, deactivation patterns have much higher variations in
their durations.

Finally, we hope that the method of assessing of spiking pat-
terns similarity proposed here may be a simple and robust tool
for analyzing culture burst activations. Its main advantage is that
different parts of the bursts recorded by MEAs can be easily tested
for similarity within the same recording and for the variability
between different recordings.
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APPENDIX

FIGURE A1 | Burst threshold detection. (A) Raster of burst activity. Some
electrodes generate continuous spike trains contributing to the noise level
for burst detection. (B) Total spike rate-diagram of the burst. Horizontal lines
indicate burst detection thresholds with different sensitivity coefficients
T = 0.1σ, 1σ, 2σ, and 3σ (see Materials and Methods).
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FIGURE A2 | Statistical significance of similarity of activation patterns

taken in the bursts detected with various burst detection thresholds.

Probability of non-randomly small similarity in the set of patterns was

represented by p-value of Mann–Whitney test (A) and by Jaccard index (B)

(see Materials and Methods) depending on the burst detection threshold.
p-Value < 0.05 for any burst detection threshold.

FIGURE A3 | Statistical significance of activation patterns similarity

using surrogates calculated with jittering method. (A) Probability of
obtaining non-randomly small similarity of the set of patterns represented by
p-value (A) and Jaccard index (B) (see Materials and Methods) as a function

of jittering deviation (maximum random spike timing taken from a uniform
distribution). (C) Similarity distributions of the activation patterns (solid line)
and surrogates of these patterns (dashed line) calculated with jittering
deviation of 150 ms.
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FIGURE A4 | Similarity analysis of patterns taken from different offsets

(reference points) of the bursts. (A) Average total spike rate of the bursts
representing total number of the spikes from all electrodes every 50 ms.
Labels “*” indicate time offsets (reference points) from which activation

patterns were taken (see Materials and Methods). “*’ – 0 ms offset from the
burst beginning (activation patterns), “ * * ” – 100 ms offset, “ * * *
” – 500 ms offset. (B) Similarity distributions of the three sets of activation
patterns (solid line) and surrogates of these patterns (dashed line).
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