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Computational neuroscience, broadly 
defined, is the mathematical and physical 
modeling of neural processes at a specific 
chosen scale, from molecular and cellular 
to systems, for the purpose of understand-
ing how the brain and related structures 
represent and process information. The 
ultimate objective is to provide an under-
standing of how the organism takes in sen-
sory information, how such information is 
integrated and used in the brain, and how 
the output of such processing results in 
meaningful decisions and behaviors by the 
organism to allow it to function and thrive 
in its environment. This endeavor involves 
the building of computational models that 
aim to replicate and explain observed or 
measured data in order to arrive at a deeper 
understanding of the dynamics of brain 
function. Beginning with a set of experi-
mental observations or measurements, a 
model is postulated that aims to provide a 
set of rules or relationships that if given the 
initial experimental observations (or at least 
part of such a set) would be able to describe 
and explain some desired aspects or prop-
erties of the experimental measurements, 
such as casual, correlative, or mechanistic 
relationships between the data and underly-
ing molecular, cellular, and systems mech-
anisms that produced it. In general, this 
process almost always begins with a quali-
tative “guess” about how the data fit together 
and what are the likely rules that govern the 
relationships between it. This is subject to a 
number of uncontrollable variables, includ-
ing the amount and quality (e.g., accuracy 
and precision) of the data, how general or 
narrow the acquisition conditions were 
under which it was collected, which may 
constrain the generality and applicability 
of the model, and the degree of under-
standing and expertise on the part of the 
investigator constructing the model about 
the neurobiology which the data describe. 
This qualitative picture of the model is then 

“translated” into a  quantitative mathemati-
cal framework which almost always involves 
expressing the hypothesized relationships 
as ordinary or partial differential equations 
or related objects, such as difference equa-
tions, as state variables that evolve in space 
and/or time. The model, once constructed, 
is still nothing more than a guess, and so 
testing it with the goal of building circum-
stantial support for it (or against it) is then 
carried out by numerical simulations of the 
processes being modeled, often where the 
answers or outputs are known from experi-
ment and can be compared with the out-
puts computed by the model. At this point 
several outcomes are possible, assuming the 
model is at least partially correct. One pos-
sibility is that the model is able to describe 
the data set used to constructed it but can-
not make any novel non-trivial predictions 
or new hypotheses about the system under 
study. This outcome often provides a mod-
est contribution to the literature that may 
give some insights into the mechanisms 
involved if the model or at least parts of it 
can be experimentally tested and validated. 
A less desirable outcome is where a model 
contains terms or is constructed in a way 
where further experimental testing of the 
model cannot occur, for example due to 
limitations in experimental technologies 
or terms in the mathematics that have no 
known real world counterparts. A more 
productive outcome is when the model 
results in a novel non-trivial or unexpected 
experimental hypothesis that can be tested 
and verified. This may lead to the design and 
carrying out of new experiments and may 
lead to potentially significant novel experi-
mental findings. In turn, new data sets allow 
the fine tuning or modification of the model 
in an iterative way. But in all cases though, 
the core of the process is the same: one 
guesses at a model and uses mathematics 
to justify the guess. The actual validation of 
the guess is based on numerical simulations, 

and in an often iterative approach improves 
the model. Note however, that in the typical 
way in which computational neuroscience is 
practiced, the mathematics involved, while 
in an applied sense is central to the process, 
is purely descriptive and does not participate 
in the process of discovery. Given this dis-
cussion, we can define computational neu-
roscience somewhat more provocatively as 
numerical simulations of postulated models 
constructed from qualitative hypotheses. In 
the most limited case this definition extends 
itself to numerical simulations of postu-
lated models constructed from unverifiable 
hypotheses. The computational neurosci-
ence literature is full of beautifully mathe-
matically constructed models that have had 
minimal impact on main stream neurosci-
ence or our understanding of brain function 
because of this.

Here, we propose to define mathemati-
cal neuroscience not as the generation of 
hypotheses based on numerical simulations 
of postulated models, but as the systematic 
analytical investigation of data driven the-
orems, a term we progressively explain in 
the rest of this commentary. The principle 
idea being put forward is that mathematical 
conjectures can be written down and logi-
cally proven who’s axioms, i.e., the starting 
point ground truths, are not unknown or 
postulated hypotheses about how the sys-
tem under consideration might work, but, 
within the limits of experimental verifica-
tion, are the simplest possible set of experi-
mentally verified knowns which allow the 
construction of the statement of truth being 
made by the conjecture. (We apologize out-
right to mathematicians for the consider-
able abuse of the term “axiom” here). The 
initial goal is to set up a conjecture that is 
mathematically sound and is based on an 
agreed upon experimentally known set of 
axioms, and then use any mathematics pos-
sible to formally prove it or at least pro-
vide a reasonable starting point, such as a 
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by such theorems then must apply to the 
neural systems described by the starting axi-
oms and any other proven theorems used 
to construct the current theorem. The point 
is that if one is careful in stating the initial 
axioms and in how those axioms are used 
to prove conjectures, then the proven state-
ment in the form of a theorem also applies 
to or says something about the neurobiol-
ogy the axioms describe. In other words, 
one can “work back” to the mechanisms 
of the neurobiology for which the starting 
axioms apply. A notable and important dif-
ference between mathematical axioms and 
our use of the term here applied to neuro-
biological experimental measurements is 
that mathematical axioms are irreducible 
and permanent, while such experimental 
neurobiological axioms may change as new 
experiments are done and new information 
accumulates. In this regard, “proven” theo-
rems that relate to the neurobiology would 
then have to be revisited to ensure that 
they still apply in practice if their starting 
points change. Again, to achieve this, new 
math not necessarily typical in neuroscience 
may need to be used or even discovered. 
This last point is potentially intriguing and 
there are several examples from theoretical 
physics where the physics has contributed to 
the development of new mathematics, even 
entire new branches of mathematics, out of 
the necessity of describing the physical sys-
tem. In this context it is not what can math 
do for physics but what can physics do for 
math. We propose that a similar argument 
can be applied to the relationship between 
mathematics and neuroscience where it is 
clear that we either are not using the right 
mathematical tools to understand the brain 
or such tools have not yet been discovered. 
The resultant mathematical descriptions 
should make non-trivial predictions about 
the system that can then be verified experi-
mentally. This approach takes advantage and 
has the potential to use the vast amounts of 
qualitative data in neuroscience and to put 
it in a quantitative context. Again, consider 
the example from above regarding the sig-
nificant resources and time being put into 
deciphering the structural connectome of 
the brain. This massive amount of accumu-
lating data is qualitative, and although eve-
ryone agrees it is important and necessary 
to have it in order to ultimately understand 
the dynamics of the brain that emerges 
from the structural substrate represented 

the most significant conceptual deviation 
from computational neuroscience. In com-
putational neuroscience a model is written 
down which is a guess about the relation-
ship between a set of data, but there is no 
formal logical way to “prove” the model 
correct or incorrect. So numerical simula-
tions are done. But this is never proof of 
anything. In fact, this exercise often results 
in an expansion of the model to fit the data. 
Writing down a valid conjecture on the 
other hand is a very narrow statement about 
a very specific set of facts. And it has the 
potential to be proven; meaning that it can 
be established as true or false analytically. 
And once proven it is true forever. One has 
established a truth about the relationship 
between the starting point axioms from a 
logical set of arguments. No simulations or 
other guesses are required. There is another 
important consequence of this mathemati-
cal neuroscience approach. As mentioned 
above, much of computational neurosci-
ence is based on time varying differential 
equations that describe state variables. But 
this completely misses the fact that other 
properties or aspects of the neurobiological 
system under study may be more appropri-
ately and more naturally described by other 
mathematical objects. Mathematical neuro-
science by its very formulation breaks free of 
differential equations and rewards creativity 
and imagination. There is no template or 
rule book to this process, one is free to write 
down a set of axioms and to construct and 
prove a conjecture from those axioms using 
whatever mathematics is deemed appro-
priate. Of course, this makes it an inher-
ently difficult process, since it is not clear 
a priori what experimental observations 
can be translated into such mathematical 
statements let alone what conjectures might 
arise from such statements. There in lies 
the challenge but also the reward. There is 
a large intellectual void in our theoretical 
understanding of many aspects about how 
the brain works and how it processes infor-
mation despite ever accumulating volumes 
of experimental data. A new approach for 
dealing with such data is needed.

Then the game becomes how far can the 
math take you. Starting from the initial the-
orem, what new theorems can be logically 
derived given an agreed upon set of experi-
mentally verified axioms without making 
any new or unknown experimental assump-
tions. The statements of truth expressed 

sketch of a possible proof. These axioms 
are the same types of experimental obser-
vations and measurements that form the 
starting point in computational neurosci-
ence, but instead of qualitatively guessing 
a possible relationship that explain the set 
of observables, the objective is to translate 
the set of experimental observations into a 
corresponding complimentary set of simple 
mathematical statements. No assumptions 
or guesses whatsoever regarding the rela-
tionship between either the set of experi-
mental observables or their corresponding 
mathematical representations need be made 
at this point. Only, as simply as possible, 
straight forward statements of fact that eve-
ryone would agree upon.

For example, consider on-going efforts 
to decipher the connectome of the mamma-
lian brain; that is, identifying and mapping 
the structural connectivity of the networks 
in the brain at various scales. At the cellular 
scale, no one would disagree that the con-
nections between cells represented by the 
vast spaghetti of processes that make up 
the neuropil are a complex intermingling 
of curves. This represents a universally 
accepted qualitative anatomical statement 
of fact about the structural connectivity 
of cellular networks in the brain that few 
would argue with. We can translate this 
agreed upon statement into a mathemati-
cal statement. For example, we can say that 
the set of edges that connects the vertices 
that make up the network of interest are 
not represented by Euclidean geodesics 
but by curves that can be described geo-
metrically as Jordan arcs or some other 
appropriate mathematical object. We may 
decide to characterize the turning numbers 
(from topology) of similar curves in a set 
or use some other math to describe a dif-
ferent property. The point is that we have 
taken a simple agreed upon experimental 
neurobiological statement of fact and have 
“translated” it into a mathematical state-
ment. We have captured some desirable 
aspect or property about this “experimental 
axiom” within the language of mathematics.

The next step is to set up a conjecture 
that says something about the set of axioms. 
While this is itself a guess, often the product 
of much trial and error and finding pat-
terns between the objects under study, it is 
a mathematical guess. This means that once 
a plausible conjecture is written down, it 
can be attempted to be proven. And here is 
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provide an understanding of the dynam-
ics of brain function, which necessarily 
requires a quantitative, i.e., mathematical 
and physical, context. The famous theoreti-
cal physicist Richard Feynman once wrote 
that “people who wish to analyze nature 
without using mathematics must settle for 
a reduced understanding.” No where is this 
more true than in attempting to understand 
the brain given its amazing complexity.

by the connectome, it is not at all clear at 
present how to achieve this. Although there 
have been some initial attempts at using 
this data in quantitative analyses they are 
essentially mostly descriptive and offer little 
insights into how the brain actually works. 
A reductionist’s approach to studying the 
brain, no matter how much we learn and 
how much we know about the parts that 
make it up at any scale, will by itself never 
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