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Spike trains from neurons in the basal ganglia of parkinsonian primates show increased
pairwise correlations, oscillatory activity, and burst rate compared to those from neurons
recorded during normal brain activity. However, it is not known how these changes affect
the behavior of downstream thalamic neurons. To understand how patterns of basal
ganglia population activity may affect thalamic spike statistics, we study pairs of model
thalamocortical (TC) relay neurons receiving correlated inhibitory input from the internal
segment of the globus pallidus (GPi), a primary output nucleus of the basal ganglia. We
observe that the strength of correlations of TC neuron spike trains increases with the
GPi correlation level, and bursty firing patterns such as those seen in the parkinsonian
GPi allow for stronger transfer of correlations than do firing patterns found under normal
conditions. We also show that the T -current in the TC neurons does not significantly affect
correlation transfer, despite its pronounced effects on spiking. Oscillatory firing patterns in
GPi are shown to affect the timescale at which correlations are best transferred through
the system. To explain this last result, we analytically compute the spike count correlation
coefficient for oscillatory cases in a reduced point process model. Our analysis indicates
that the dependence of the timescale of correlation transfer is robust to different levels
of input spike and rate correlations and arises due to differences in instantaneous spike
correlations, even when the long timescale rhythmic modulations of neurons are identical.
Overall, these results show that parkinsonian firing patterns in GPi do affect the transfer
of correlations to the thalamus.
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INTRODUCTION
Much research has been dedicated to the study of how parkin-
sonian conditions affect the firing patterns of the basal gan-
glia. Hallmarks of the spiking activity in parkinsonian basal
ganglia are oscillatory firing patterns, in which neurons’ firing
rates vary in a regular way over time, and increased burstiness
(reviewed in Rivlin-Etzion et al., 2006; Galvan and Wichmann,
2008). Specifically, an increase in the rate of oscillatory bursts
has been found in neurons in the globus pallidus (GPi) of mon-
keys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP), which induces a parkinsonian state (Bergman et al.,
1998; Wichmann et al., 1999; Wichmann and Soares, 2006).
Computational studies have suggested that these changes in the
firing patterns of neurons in the basal ganglia can compromise
the relay capabilities of thalamocortical (TC) neurons to which
GPi outputs project (Rubin and Terman, 2004; Guo et al., 2008;
Cagnan et al., 2009; Pirini et al., 2009; Dorval et al., 2010).

Parkinsonian changes in basal ganglia activity extend beyond
changes in individual neurons’ firing patterns, however, to
include altered coordination of activity of neuronal populations
within the basal ganglia. Experimental studies have provided
evidence that the basal ganglia are a collection of circuits that
function independently of one another under normal conditions,
but that this segregation is broken down in parkinsonism

(Filion et al., 1988; Bergman et al., 1998; Bronfeld and Bar-Gad,
2011). In particular, while little correlation is normally present
in the activity of GPi neurons (Nini et al., 1995; Bar-Gad et al.,
2003), significant correlations between the outputs of GPi neu-
rons arise in non-human primates treated with MPTP (Nini et al.,
1995; Bergman et al., 1998; Raz et al., 2000; Heimer et al., 2006)
and in humans with Parkinson’s disease (Hurtado et al., 1999;
Gale et al., 2008). While the implications of parkinsonian changes
in single GPi neuron firing patterns have been considered
theoretically, the effects of the temporal relationships emerg-
ing within GPi population activity have yet to be investigated
computationally.

The primary targets of GPi motor outputs are in the thalamus
(DeVito and Anderson, 1982; Jones, 2007) and under normal
conditions, inhibitory signals from GPi to TC neurons appear to
modulate thalamic activity that is driven by other sources, such
as excitatory inputs from cortex (Deniau and Chevalier, 1985;
Inase et al., 1996). Because GPi inputs to thalamus are inhibitory,
it is not clear how parkinsonian increases in correlations within
GPi will be transferred to thalamus or how shared changes in GPi
firing patterns will affect this correlation transfer; however, an
enhancement in correlations and loss of specificity in the stimuli
that evoke responses has been found in the thalamic targets of
GPi outputs (Pessiglione et al., 2005). The primary aim of this
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work is to address these questions about correlation transfer com-
putationally. Correlation transfer has been studied extensively
in generic feedforward (Stroeve and Gielen, 2001; Galan et al.,
2006; Moreno-Bote and Parga, 2006; de la Rocha et al., 2007;
Marella and Ermentrout, 2008; Shea-Brown et al., 2008;
Ostojic et al., 2009; Barreiro et al., 2010; Tchumatchenko et al.,
2010; Rosenbaum and Josic, 2011) and recurrent networks
(Doiron et al., 2003, 2004; Lindner et al., 2005; Kriener et al.,
2008; Moreno-Bote et al., 2008; Renart et al., 2010). These
studies provide a general framework to study correlation trans-
fer; however, in all of these cases, the neuron models did not
include the requisite ionic channels for burst discharge and the
stochastic input was stationary in time. These assumptions do
not adequately model the GPi-thalamic circuit in either normal
or parkinsonian conditions, and in our study we extend the
correlation transfer framework to include these two important
features.

To this end, we subjected pairs of computational model TC
neurons to synthetic GPi inputs designed to exhibit various
parkinsonian firing patterns, and we studied how these patterns
affect the transfer of correlations to these model neurons. Two
of our main findings are that bursty GPi patterns enhance tha-
lamic sensitivity to input correlations and that oscillatory input
patterns induce oscillations in the timescale of thalamic correla-
tion. We show that the correlation transfer of conductance-based
models is very similar to that of integrate-and-fire-or-burst (IFB)
models, suggesting that our findings do not arise from particu-
lar modeling assumptions. We also show that a minimal point
process model is sufficient to capture some of the important
trends in correlation transfer seen in the computational models.
In particular, under an assumption of rhythmicity in GPi activity
there are specific timescales where correlation transfer is maxi-
mal. In total, we show how the pattern of GPi activity observed
in parkinsonian conditions has distinct consequences for the
magnitude and timescale of correlated firing of TC neurons.

These results offer the first insights into the details of how a
breakdown in GPi response segregation, thought to be a neural
correlate of motor pathologies associated with Parkinson’s dis-
ease, might propagate to other brain areas and thereby impact
motor outputs.

METHODS
MODEL OF PALLIDO-THALAMIC CORRELATION TRANSFER
To investigate how correlations are transferred to the thalamus by
GPi activity, we consider two identical model TC neurons. Each
neuron receives an independent excitatory input stream from cor-
tex, assumed to be a spike train with a mean rate μ = 20 Hz
and Poisson statistics. Each neuron also receives inhibitory input
from the GPi, modeled as a time inhomogeneous Poisson spike
train, with time-dependent rate λ(t), discussed further below. We
include a partial overlap of the GPi spike trains to the two TC
neurons, representing divergence in the synaptic projections from
GPi to thalamus (Figure 1A), with the fraction of each neuron’s
spikes that are shared by the other neuron denoted by c ∈ [0, 1].
This degree of input sharing can be achieved by generating three
independent spike trains, two with rate λ(t)(1 − c) that are each
sent to one neuron only, and one with rate λ(t)c that goes to both
neurons, as shown in Figure 1A. (In practice, we use an equivalent
algorithm of generating a single train with rate λ(t)/c and, when
a spike occurs, sending it to each TC neuron with probability c,
checked independently for each of the TC neurons. This approach
is advantageous in that it requires only one spike train, not three,
to be generated and easily generalizes to larger populations.)

We consider two different thalamic neuron models. The first
is a conductance-based model, and the second is a reduced
IFB model. Results using both models are compared, show-
ing the accuracy with which the reduced model replicates the
conductance-based model results. In this way, we illustrate that
certain properties are unlikely to depend strongly on assumptions
inherent in particular model formulations.
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FIGURE 1 | Model schematic and basic behavior. (A) Diagram of the connectivity and inputs used for our computational models. Here, λ denotes a
time-dependent rate, c a shared spike fraction, and μ a constant rate. (B) Sample response of the conductance-based TC neuron model to the injection of a
5 ms pulse of 3 pA current.
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CONDUCTANCE-BASED THALAMIC MODEL
In this model, the thalamic neurons are described using
Hodgkin–Huxley-style equations (Hodgkin and Huxley, 1952) in
which each intrinsic current has a time dependent conduc-
tance and a reversal potential. The parameters for this model
are given in Table 1. The model is a slight modification of a
previously developed model of TC neurons (Rubin and Terman,
2004; Guo et al., 2008) and consists of the following ordinary
differential equations:

CV ′ = Iapp − Ileak − IK − INa − IT − Iinhib − Iexcite (1)

h′ = h∞(V) − h

τh(V)
(2)

hT′ = qhT

hT∞ (V) − hT

τhT (V)
. (3)

Here, C is the capacitance in μF/cm2, V is a dynamic variable
for the membrane potential of a thalamic neuron in mV , and the
right-hand side of Equation (1) incorporates all of the ionic cur-
rents that affect this membrane potential. The first term, Iapp, is a
constant current that determines the resting membrane potential
and is chosen so the neuron is silent in the absence of fluctuations
in the synaptic inputs. Each of the other currents is voltage-
dependent and includes a parameter ḡ∗, the maximal conductance
of the corresponding channel population in mS/cm2, and E∗,
the reversal potential of these channels in mV . The first voltage-
dependent current is the leak current, a generic ion current given
by Ileak = ḡleak(V − Eleak).

Table 1 | Parameter values for the thalamic models.

Parameter Conductance-based model IFB model Units

C 1 2 μF/cm2

Iapp 1.05 0.89 nA/cm2

ḡleak 0.05 0.035 mS/cm2

ḡNa 3 – mS/cm2

ḡK 5 – mS/cm2

ḡT 2 0.07 mS/cm2

ḡi 0.024 0.024 mS/cm2

ḡe 0.02 0.06 mS/cm2

Eleak –70 –65 mV

ENa 50 – mV

EK –80 – mV

ECa 120 120 mV

Ee 0 0 mV

Ei –85 –85 mV

Vh – –70 mV

Vthresh – –50 mV

Vreset – –68 mV

qhT 2.5 – –

τ−
h – 20 ms

τ+
h – 100 ms

τi 15 15 ms

τe 8 4 ms

The fast activating and slower inactivating sodium current is
given by INa = ḡNam3h(V − ENa). Because the activation is fast,
we approximate m by its voltage-dependent steady state value,

m∞(V) = 1/(1 + exp(−(V + 37)/7)).

The sodium inactivation gate, h, is governed by Equation (2), with

h∞(V) = 1/(1 + exp((V + 41)/4)),

τh(V) = 1/(ah(V) + bh(V)),

ah(V) = 0.128exp(−(46 + V)/18),

bh(V) = 4/(1 + exp(−(23 + V)/5)).

The slower activating and non-inactivating potassium current is
IK = ḡK n4(V − EK). We let n = 0.75(1 − h), which is a standard
approximation (Rinzel, 1978).

The equation IT = ḡTm2
ThT(V − ECa) describes the T-

current. This depolarizing calcium current allows the TC neurons
to fire characteristic rebound bursts subsequent to appropriate
hyperpolarization. Because the activation gate, mT , is fast, we
approximate it by

mT∞(V) = 1/(1 + exp(−(V + 60)/6.2)).

The dynamics of the slower inactivation gate, hT , is governed by
Equation (3), with

hT∞(V) = 1/(1 + exp((V + 88)/4)),

τhT (V) = 28 + exp(−(V + 25)/10.5).

Figure 1B shows the response of this neuron model to an injected
current pulse.

The remaining two currents in the model represent inhibitory
inputs from GPi and excitatory inputs from cortex, respectively.
The inhibitory synaptic current has the form Iinhib = ḡisi(V −
Ei). Here, si represents the synaptic filtering of the Poisson spike
trains from GPi, which were described above. For a given GPi
spike train starting from t = 0, y(t) = ∑n

k=1 δ(t − tGPi
k ), the

synaptic gating is determined by the solution to τis′i = −si + y(t),
with initial condition si(0) = 0. Similarly, the excitatory input
current has the form Iexcite = ḡese(V − Ee), where τes′e = −se +
x(t) and se(0) = 0, for a cortical spike train x(t) = ∑m

j=1 δ(t −
tctx
j ), also as described above.

INTEGRATE-AND-FIRE-OR-BURST (IFB) THALAMIC MODEL
The IFB model was proposed as a simpler model that can capture
the essential dynamics of a TC neuron’s spike and burst responses
(Smith et al., 2000). Each thalamic IFB neuron is governed by the
following equations:

CV ′ = Iapp − Ileak − IT − Iinhib − Iexcite (4)

hT′ =
{−hT/τ−

h (V > Vh)

(1 − hT)/τ+
h (V ≤ Vh)

(5)
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As in the conductance-based model, C is the capacitance, V
is the membrane potential, Iapp is a constant applied current,
Ileak = ḡleak(V − Eleak) is the leak current, and the parameters
ḡ∗ and E∗ represent the maximal conductances and the reversal
potentials of the various channels, respectively. As in the standard
leaky integrate-and-fire (LIF) model, when V reaches Vthresh, a
spike is counted and V is instantaneously reset to Vreset; when this
occurs, we hold V = Vreset for a refractory period of 5 ms.

The main difference between system (4)–(5) and the stan-
dard LIF model is the presence of a current due to T-type
calcium channels, IT = gThTH[V − Vh](V − ET), where H[x] is
the Heaviside function, defined to be 0 for x < 0 and 1 for x > 0.
As described by Equation (5), the inactivation variable hT begins
to slowly deinactivate, with timescale τ+

h , when the membrane
potential is hyperpolarized below Vh. If the neuron is then depo-
larized to above Vh, the T-current immediately activates because
of H[V − Vh], and hT begins to inactivate the T-current, with
timescale τ−

h . The synaptic currents, Iexcite and Iinhib, in the
IFB model are constructed in exactly the same way as in the
conductance-based model and have the same physiological inter-
pretations. The parameters used to simulate the model are given
in Table 1.

PATTERNS OF GPI SIGNALS TO THALAMUS
We use four different patterns for λ(t) (Figures 2A–B). The nor-
mal λ(t) is fixed at 70 Hz, matching experimental rates reported
from primate GPi under non-parkinsonian conditions (Raz et al.,

2000; Wichmann and Soares, 2006; Rivlin-Etzion et al., 2008).
For the oscillatory case, we constructed the firing rate λ(t) as a
continuous, periodic function of time composed of a weighted
sum of 21 sine waves, each oscillating about a mean rate of 80 Hz,
with individual frequencies f1 = 5 Hz, f2 = 5.5 Hz, . . . , f21 =
15 Hz and with random phase shifts (Figure 2). If the result-
ing λ(t) ever went below 0, it was simply set equal to zero. The
weight of the wave with frequency fi was chosen as the ampli-
tude of a Gaussian frequency distribution, with mean 10 Hz and
variance 1.5 Hz, evaluated at fi, for each i = 1, . . . , 21. The fir-
ing rate function was created in this way so that the location
and width of the peak in the power spectrum of each of our
computationally generated GPi spike trains qualitatively matched
the power spectra of data taken from oscillatory neurons in the
parkinsonian primate GPi, which in particular feature a promi-
nent peak at a frequency near 10 Hz, typically in the 7.5–13.5 Hz
range (Heimer et al., 2006) (see Figure A2A, in the Appendix).

The third GPi firing pattern we use is the bursty spike train.
Here, the GPi firing rate is discontinuous in time, with a baseline
firing rate of 70 Hz augmented by brief burst periods that push
the firing rate to 470 Hz. The interburst intervals are Poisson dis-
tributed with mean time of 70 ms between bursts and the burst
durations are selected from a Gaussian distribution (mean time
of 30 ms and variance of 10 ms), yielding an overall mean GPi fir-
ing rate of 190 Hz (see below). The final GPi firing pattern that we
consider is the case of oscillatory bursts; here the bursts are con-
structed as in the bursty case, with a baseline firing rate of 70 Hz,
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FIGURE 2 | Example model behaviors for each of the four types

of GPi input to thalamus: normal, oscillatory, bursty, and

oscillatory bursts. (A) Sample GPi firing rates. (B) Corresponding
examples of GPi spike trains. (C) T -current inactivation gate, hT ,

for the conductance-based thalamic model. (D) Spike train of
conductance-based thalamic model neuron in response to Poisson
excitatory input at 20 spikes per second in addition to the inhibitory input
shown above.
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with burst durations taken from the same Gaussian distribution,
and with a firing at a rate of 470 Hz within the bursts. The differ-
ence relative to the bursty case is that the waiting time between the
bursts is taken from a Gaussian distribution (mean of 70 ms and a
variance of 30 ms) as opposed to a Poisson distribution, increas-
ing the regularity of burst times. These four GPi firing patterns
give distinct patterning to thalamic responses, involving different
levels of T-current recruitment determined by how the T-current
inactivation variable hT tracks the effects of the inhibitory spike
trains on membrane potential (Figures 2B–D).

Each of the last three cases represent firing patterns that have
been observed to be enhanced in the primate GPi under parkinso-
nian conditions (Wichmann and Soares, 2006). The parameters
used for the spike rates, oscillation frequency, and bursting
statistics in Figure 2 are the same parameters used for the
conductance-based model’s GPi inputs for the remainder of the
text, unless otherwise specified.

The quantitative specifics of λ(t) for the four cases were chosen
so that the output firing rate of the thalamic neurons was roughly
equivalent in all four cases (10.6 Hz for the normal and oscillatory
cases and 8.6 Hz for the two bursty cases in the conductance-
based model; approximately 6.5 Hz for all four cases in the IFB
model). The GPi firing rates within bursts were selected to recruit
the rebound mechanism in the thalamic models sufficiently to
bring all of the bursty TC firing rates up toward their normal
and oscillatory values, without causing any to become excessive
(Guehl et al., 2003; Molnar et al., 2004; Pessiglione et al., 2005);
with lower GPi firing rates within bursts, inhibition diminished
regular TC spiking, and there were insufficient rebound spikes
to compensate for this suppression. Although the GPi firing rate
within bursts that we used and resulting overall bursty GPi firing
rate exceed those found experimentally for single GPi neurons
(Wichmann and Soares, 2006), it is possible that the collected
inputs from all GPi neurons presynaptic to a TC neuron could
achieve such rates; for our theoretical study, the resulting equili-
bration of TC firing rates across input conditions was necessary
since output correlation is strongly dependent on output firing
rate (de la Rocha et al., 2007), and we did not want differences
in TC rate to confound our comparisons of GPi-thalamic corre-
lation transfer. Model thalamic neuron interspike interval (ISI)
distributions as well as power spectra and cross-spectra of GPi
and thalamic spike trains resulting from these GPi input patterns
are presented in the Appendix.

CORRELATION MEASURES
PEARSON’S CORRELATION COEFFICIENT
We use the Pearson’s correlation coefficient to quantify the ten-
dency of the two spike counts to be linearly related to one another
(Averbeck et al., 2006; Cohen and Kohn, 2011). For spike counts
taken with a sliding window of size T, n1(T), and n2(T), the
Pearson’s correlation coefficient is

ρ(T) := cov(n1(T), n2(T))√
var(n1(T))var(n2(T))

, (6)

where cov(A, B) = E[AB] − E[A]E[B] is the covariance, and
var(A) = cov(A, A) is the variance. This quantity is computed to

measure the correlation ρin between the spike counts of the inputs
from GPi as well as the correlation ρout between the output spike
counts from the TC neurons.

This correlation coefficient depends on the window size, T,
over which the spikes are counted (Kass and Ventura, 2006).
For T sufficiently small, the two neurons must spike very close
together for both to have a spike counted in the same time bin, so
in this limit ρ(T) measures synchrony. On the other hand, when
T is large, ρ(T) is a measure of correlations at long timescales and
can be thought of as a spike rate correlation. In this case, the exact
timing of the spikes makes less of a contribution to the correla-
tions, while co-fluctuations in the firing rates are more important.
It was recently noted that measuring co-variability of spike trains
using a counting process introduces complications that are not
present in spectral analysis (Tetzlaff et al., 2008). In particular,
how ρ(T) varies with T reflects a combination of the temporal
properties of the spike trains and the windowing function used
to convert spike trains to spike counts. Nevertheless, spike count
statistics are a standard metric (Cohen and Kohn, 2011) that
make our results easily comparable to the results of other studies,
and they also convey how a downstream observer that integrates
spikes (i.e., a synapse or membrane potential) will measure the
co-variability in a spike train. That said, following up on our
correlation-based results with a complete spectral theory based on
linear response analysis (Doiron et al., 2004; Lindner et al., 2005;
de la Rocha et al., 2007) will be an important next step.

CORRELATION SUSCEPTIBILITY
For a pair of uncoupled neurons, when the input correlation coef-
ficient is zero, the output correlation coefficient must also be zero.
Following past work (de la Rocha et al., 2007; Shea-Brown et al.,
2008) we take a linear approximation for the correlation transfer
between input correlation ρin and output correlation ρout:

ρout ≈ Sρin. (7)

In Equation (7), S is called the correlation susceptibility and is
the slope of the input-output correlation curve. S measures the
extent to which small changes in the input correlation coefficient
cause changes in the output correlation coefficient. In this work,
we define correlation susceptibility in a slightly more relaxed way,
because with shared input rate modulation, it is not possible to
get ρin(T) = 0 for non-homogeneous inputs. That is, even with
c = 0, such that no single input spike is sent to both postsynap-
tic neurons, a common variation in input rate will introduce a
covariation into the numbers of input spikes arriving in any fixed
time window, making ρin(T) non-zero [see Equation (6)]. Thus,
we define the correlation susceptibility as the slope of the line
of best fit through the attainable portion of the input-output
correlation curve, which may have a non-zero intercept,

ρout(T) = S(T)ρin(T) − k. (8)

We have also explicitly denoted the dependence of both the input
correlation ρin(T) and the susceptibility S(T) on the window
length T. We use this measure of correlation susceptibility as an
indicator of the extent of correlation transfer through the system
for the observed values of ρin.
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BOOTSTRAPPING TECHNIQUE
Confidence bands in Figure 4 were found using a case resam-
pling bootstrapping technique. This technique was applied for
each value of T, by taking the set of N pairs (ρin(T), ρout(T)),
obtained for every value of c and from every simulation trial run.
We ran 30 trials for five different values of c, so N = 150. These
pairs were then sampled with replacement to obtain a new set of N
pairs. This procedure was repeated 1000 times, and the line of best
fit was calculated for each constructed data-set. The confidence
intervals for each value of T are such that 98% of the calcu-
lated slopes fall within these intervals. For the insets in Figure 4A
in particular, the same technique was used except that we only
included the 30 simulations from c = 0, which yielded the error
bars shown.

POINT PROCESS MODEL
SPIKE EMISSION
In an excitable neuron, we can think of spiking as a process that
requires a certain amount of activation energy (Lindner et al.,
2004). The amount of energy required depends on how far
the resting potential is below the spiking threshold and on the
strength of the inputs the neuron receives. The process of attain-
ing this activation energy and consequently spiking can be mod-
eled as the escape of a diffusive particle from an energy well,
the height of which is related to the distance between rest and
threshold.

Under the assumption that the well height is large and the dif-
fusion rate of the particle is small, it has been shown that the rate
of escape of a particle from an energy well is given by an Arrhenius
escape rate (Hanggi et al., 1990),

α(t) = βexp

[
−U

D

]
.

Here, D is the rate of diffusion, which depends on the noise
strength, and the well height is given by U .

This Arrhenius escape rate has been shown to be a good
approximation to the rate of firing of a neuron in the limit
of small input strength (rate of diffusion) and large distance
between rest and threshold (well height) (Plesser and Gerstner,
2000). When applying this theory to a neuron, β can be thought
of as a free parameter that can be fit to data (Plesser and Gerstner,
2000). We assume that the Poisson discharge times of the synap-
tic inputs provide the noise necessary to reach threshold. We
also assume that the modulations of the inhibitory input rate
change the average amount of inhibition over time. If the modu-
lations are sufficiently slow then we may use the Arrhenius theory
with a time dependence in the height of the energy well U(t)
(Wiesenfeld et al., 1994; Lindner et al., 2004).

To model the well modulation that occurs due to non-bursty,
oscillatory, inhibitory inputs with frequency �, we let

U(t) = U0(1 − η cos(2π�t)).

Here, U0 is the average well height and η is the modulation
strength. This formulation represents a simplification from the
oscillatory inputs used in the computational models in that the
modulation consists of a single sinusoid, rather than a sum
of sinusoids. This is the same well height modulation used in
(Wiesenfeld et al., 1994) and is plotted in Figure 3A.

To model the well modulation resulting from oscillatory burst
inputs, we let

U(t) = U0(1 + ηH[tmod(M) − T1]H[T1 + T2 − tmod(M)]),

where T1 is the time between bursts, T2 is the burst duration,
and M = T1 + T2 is the period of the oscillation; that is, the
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FIGURE 3 | Escape properties of neurons with spike correlation c and escape probability p(t) that depends on well height U(t). (A) Oscillatory well
height modulation. (B) Oscillatory bursty well height modulation. (C) Joint escape probabilities of two neurons in the interval (t, t + dt).
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product of Heaviside functions causes the value of U(t) to jump
up to U0(1 + η) for a time period of duration T2 and then to
jump down to U0 for time T1, and this occurs periodically due
to the mod operation. Again, this modulation is a simplification
of the oscillatory burst inputs used in the computational models,
because the period of the oscillation in this case is fixed, without
any of the jitter that the Gaussian distributions of waiting times
and burst times introduced in the computational models. This
well height is plotted in Figure 3B.

JOINT ESCAPE PROBABILITIES
Consider two neurons that each have a source of private noise,
of variance σ 2(1 − c), and a source of common noise, of vari-
ance σ 2c. Let each neuron have an escape rate α(t), which is
determined entirely by its inputs, such that the probability of one
neuron firing in the interval (t, t + dt) is

p(t) = α(t)dt.

The function α(t) completely determines the marginal spike train
statistics of each of the neurons in the pair; however, further infor-
mation is needed to calculate the joint statistics of the spike train
pair. To this end, we assume that the neurons’ output correlation
equals their input correlation, meaning in effect that S = 1. In
our escape model, large input fluctuations lead to barrier cross-
ings, and while the marginal rate of these fluctuations is α(t), the
probability that a specific input fluctuation is shared is c, leaving
a probability of 1 − c that it occurs independently across the neu-
rons. From this phenomenological separation, we can calculate
the joint statistics of the spike train pair as follows. If the fluc-
tuation is independent, then the probability that both neurons
will fire in response to it is p(t)2, the probability that one neuron
will fire while the other does not is p(t)[1 − p(t)], and the prob-
ability that neither neuron fires is [1 − p(t)]2. If the fluctuation
is fully shared (c = 1), then both neurons fire with probabil-
ity p(t), or both neurons are silent with probability 1 − p(t).
Combining the probabilities for the cases of independent and
identical fluctuations, we have that the total probability of both
neurons firing within the interval is cp(t) + (1 − c)p(t)2, the total
probability of neither neuron firing is c[1 − p(t)] + (1 − c)[1 −
p(t)]2, and the probability of one particular neuron firing, but
not the other one, is (1 − c)p(t)[1 − p(t)]. Given these possibil-
ities, each individual neuron in the pair fires with probability p,
while the probabilities of all possible distinct events (no firing,
only one neuron fires, or both neurons fire) sum to 1, as desired.
A schematic illustration outlining the joint probabilities for the
firing of two neurons for c ∈ [0, 1] is shown in Figure 3A.

RESULTS
We simulated a pair of model thalamic neurons receiving two
distinct sources of synaptic input. The first input represented cor-
tical signals and was a train of excitatory inputs with Poisson
distributed arrival times, having a time homogeneous rate. The
second represented GPi activity and was a pool of correlated
inhibitory inputs, each also Poisson distributed yet arriving at a
common time-dependent rate λ(t). We explored various aspects
of the correlated thalamic activity generated in this scenario,

including its dependence on the choice of thalamic model and
on the specifics of λ(t).

TC SPIKE TRAIN CORRELATIONS
In this section we measure the correlation transfer from GPi
spike train correlation to TC spike train correlation. We focus
on the Pearson’s correlation coefficient of the spike counts of the
neurons computed over windows of T ms (see Methods), a com-
monly used measure of spike train co-variability (Cox and Isham,
1980; Averbeck et al., 2006; Cohen and Kohn, 2011). Specifically,
to assess how correlation is transferred from GPi to thalamus,
we compare the inhibitory input correlation to the output spike
count correlation. Figure 4A provides an example of this compar-
ison, computed with T = 95 ms (see Correlation Susceptibility
section below for choice of time window), for the conductance-
based and IFB models, which yield very similar results. For each
pattern of GPi spikes, we let c range between 0 and 1. Note that
when c = 1, ρout remains less than 1 because the TC neurons are
also receiving independent excitatory input.

Also note that in all three cases for which the GPi firing is tem-
porally inhomogeneous, ρin > 0 even when c = 0, because the
two GPi spike trains have identical rate modulations. The value
of ρin for c = 0 is indicated as the horizontal coordinate of the
leftmost point on each curve in Figure 4A. The insets show that
ρin is indeed positive for c = 0 for the oscillatory case, although it
remains surprisingly small in that case, presumably because the
slow modulation in rate is sufficiently gradual that it does not
drastically affect firing rates (e.g., Figure 2D), normal vs. oscil-
latory cases). Importantly, for identical levels of ρin in the bursty
and the normal cases, the causes of the correlations are very dif-
ferent. In the normal case, the correlation comes completely from
the spike correlation imposed by c (in fact, ρin = c), while for
the bursty spike trains, the slow, shared rate modulation also
contributes to ρin.

With this interpretation, we arrive at the conclusion that spike
correlations may be transferred to outputs more effectively than
rate correlations. To make this inference, we first note that the
input-output correlation curves for the bursty cases (red and
black curves in Figure 4A) have steeper slope than those for the
non-bursty cases. Indeed, for the smallest ρin values arising in the
bursty cases, c is small and correlations are mostly due to shared
rate fluctuations. Since ρout is smaller for bursty than non-bursty
inputs for such ρin, we conclude that these rate correlations are
not passed on as efficiently as the spike correlations present in the
normal case, where c is larger. As c increases, the input-output
correlation curves for the bursty cases rise steeply and cross the
curve for the normal case (blue). Eventually, c becomes large
enough so that the combination of rate modulation and spike
correlations in the bursty cases causes more effective correlation
transfer than do the spike correlations alone in the normal case.

Due to the prevalence of rhythmic firing in both normal
and parkinsonian conditions, TC spike train responses are often
reported through spectral measures. For completeness, we also
present an analysis of the spike train auto- and cross-spectra for
both the conductance-based and IFB models (see Appendix).
Despite the distinction between the models, we found a qualita-
tive agreement in their performance.
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FIGURE 4 | Input-output correlation relationships and correlation

susceptibility. (A) Output correlation vs. input correlation for T = 95 ms,
including zoomed view near the origin (insets). Curves were generated by
varying c in steps from 0 to 1 and computing ρin and ρout for each model, for
each c. (B) Correlation susceptibility (S) vs. T . The inset in (B) shows the
oscillations in the susceptibility when the thalamic neurons receive

oscillatory inputs. The conductance-based model (left), and the IFB model
(right) are both shown. The following input conditions are used: normal
(blue), oscillatory (green), bursty (red), and oscillatory bursts (black). Error
bars in the insets in (A) and confidence bands on the correlation
susceptibility in (B) show 98% confidence intervals, calculated using
bootstrapping techniques.

CORRELATION SUSCEPTIBILITY
Figure 4B shows the correlation susceptibility S (see Methods)
plotted as a function of T. Taking a linearization of the input-
output correlation curve (Figure 4A) is justified since a linear
approximation fits the curves very well. We include 98% confi-
dence bands on the correlation susceptibility in Figure 4B. These
confidence bands were found using a case resampling boot-
strapping technique (Methods). Note that the conductance-based
model (left) and the IFB model (right) give qualitatively similar
results yet again, providing further evidence that the IFB model
is a good reduction of the conductance-based model for studying
correlation transfer and that our findings transcend the details
associated with a specific neuronal model. Moreover, we see that
the susceptibility curves for the four cases consider begin to sepa-
rate out at time windows T above 50 ms and settle down toward
asymptotic behaviors once T exceeds about 200 ms; indeed, we
used T = 95 ms in Figure 4A because this choice of T lies in the
interval between these values.

BURSTS INCREASE CORRELATION SUSCEPTIBILITY
Notice that the bursty cases in Figure 4B have increased correla-
tion susceptibility when compared to the non-bursty cases. This

increased sensitivity to changes in ρin may stem from two effects.
First, in the bursty cases, the entire range c ∈ (0, 1) is compressed
into a small interval of ρin values. Since ρin increases from some
positive value up to 1 as c increases from 0 to 1, instead of from
0 up to 1, a small change in ρin corresponds to a larger change in
c in bursty cases, and this larger change in spike correlations can
strongly impact ρout. Second, bursty inputs provide a strong tem-
poral signal to both neurons. The neurons simultaneously receive
periods of strong inhibition, which will cause decreased firing,
and then are simultaneously released from the inhibition, caus-
ing them to fire at similar times. Thus, even a small increase in the
input correlation may cause a large increase in the output correla-
tion by making the times of firing after the release from inhibition
more similar.

Although we have not quantified the relative importance of
these two effects, they both do contribute to the enhancement of
susceptibility in the bursty cases. That is, the first of these two
effects alone is not sufficient to cause enhanced susceptibility,
because it does not in itself ensure that ρout for the bursty cases
becomes larger than ρout for the non-bursty cases as ρin increases
to 1. The second effect also is not sufficient on its own, because
common modulations of inhibitory input rate would tend to
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increase ρout for each c, and thus the bursty ρout can be below
the non-bursty ρout at fixed ρin if the c giving that ρin is much
smaller in the bursty case than in the non-bursty case.

Finally, one may also ask why the bursty case yields a greater
correlation susceptibility than occurs in the oscillatory bursty
case. While we do not have a definitive explanation for this rela-
tion, one might speculate that the greater irregularity of input
spike timing in the bursty case causes larger, more abrupt vari-
ations in T-current recruitment, as in Figure 2C, which causes
correlated inputs to more strongly impact firing patterns. We shall
see, however, that the T-current is not behind this difference,
which is evident only when output correlations are measured
on sufficiently long time windows (Figure 4B). From Figure 4A,
we can speculate that both of the effects mentioned above are
stronger in the bursty case than in the oscillatory bursty case,
since we see that the minimal ρin, corresponding to c = 0, and
the maximal ρout, corresponding to c = 1, are both larger in the
bursty than oscillatory bursty case, yielding a larger slope of ρout

as a function of ρin.

OSCILLATORY FIRING CAUSES OSCILLATORY SUSCEPTIBILITY
As seen most clearly in the inset in Figure 4B, the correlation sus-
ceptibility in the cases with oscillatory firing in the GPi is also
oscillatory. The frequency of the oscillation of the correlation sus-
ceptibility is the same as that of the inhibitory input from GPi,
which in the case shown is 10 Hz. The oscillatory bursts yield this
same rhythm in correlation susceptibility if the variance of the
time between bursts is sufficiently small.

We next ask how changing the frequency of the oscillations
in the GPi affects the correlation transfer, since data shows that
there is a range of possible GPi oscillation frequencies under
Parkinsonian conditions (Raz et al., 2000; Wichmann and Soares,
2006). In Figure 5A, we change the frequency of the oscilla-
tory bursts by shifting the mean waiting time between bursts
(holding the variance of the burst durations equal to 5 ms,
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FIGURE 5 | Oscillation frequency of S tracks GPi oscillation frequency

while oscillation amplitude of S depends non-monotonically on GPi

oscillation frequency. (A) Oscillatory bursts in the inputs from GPi to the
conductance-based thalamic model. (B) Non-bursty oscillations in GPi
inputs to the conductance-based thalamic model. Frequencies are 10 Hz
(dark blue), 8 Hz (red), 6 Hz (green), 4 Hz (black), 2 Hz (tan), 1 Hz (light blue),
and 0.5 Hz (green). Note that while two of the curves are colored green, the
0.5 Hz green curve is qualitatively similar to the 1 Hz curve and thus can be
clearly distinguished from the 6 Hz green curve.

setting the variance of the interburst intervals equal to 10 ms,
and choosing all other parameters as in Figure 2). Interestingly,
the rhythm in the correlation susceptibility tracks the frequency
of bursts in GPi, pointing to a key role of bursting for the
time-dependence of correlation transfer. Notice also that as the
mean waiting time between bursts increases, i.e., as the burst
frequency drops from 10 to 4 Hz, the amplitude of the oscil-
lation in S also increases. We do not have a clear explanation
for this increase in amplitude, which may relate to the increase
in thalamic firing rate when longer pauses between inhibitory
bursts are available or to thalamic rebound effects. As burst fre-
quency goes to 0, the simulation becomes identical to the normal
case, and indeed, we see that lowering burst frequency below
4 Hz first lowers the peak in S and eventually converts S to a
monotone function of window size T, approaching the normal
curve in Figure 4B (e.g., the light blue curve in Figure 5A, which
does not exhibit noticeable oscillations even when plotted out
to 1000 ms).

Figure 5B shows the effects of changing the frequency of oscil-
lations in the GPi for the non-bursty oscillatory case. In this
case, GPi activity is generated as a weighted sum of oscillatory
components (see Methods), and we bias the weighting progres-
sively toward the zero frequency component to achieve the overall
decrease in GPi frequency. Once again, decreasing the frequency
of the oscillation initially causes the rhythm in the susceptibil-
ity as a function of T to become stronger, with a frequency that
matches the frequency of the rhythm in the GPi firing rate. As
GPi oscillation frequency is decreased more, however, the rhythm
in S is lost, and the S vs. T curve again approaches the nor-
mal case, as expected. These results suggest a possible mechanism
for the therapeutic effect of deep brain stimulation (DBS) of
the basal ganglia for Parkinson’s disease. By imposing high fre-
quency rhythms, DBS could decrease the thalamic sensitivity to
changes in input correlations that we find with GPi inputs in
the 4–10 Hz range and that could be provoked by pathologi-
cally synchronized firing rate modulations in the basal ganlia in
parkinsonism.

REMOVING T -CURRENT HAS LITTLE EFFECT ON CORRELATION
SUSCEPTIBILITY
Because we have already seen evidence that the T-current plays a
role in the spiking of the thalamic neurons that receive oscillatory
or bursty input from GPi, we next investigate how removing this
current affects the firing of these neurons and the correlation
transfer of the system. When the T-current is removed in the
conductance-based model, the firing rate of the thalamic neu-
rons decreases for every input firing pattern we tested. Indeed, the
rates of thalamic firing without the T-current drop to 7.5 Hz for
normal inputs from GPi, 6.9 Hz for oscillatory inputs, and 2 Hz
for both oscillatory and non-oscillatory burst inputs, vs. 10.6 Hz
for the former pair of cases and 8.6 Hz for the latter pair with
the T-current present. This decrease in firing rate could be com-
pensated for by increasing Iapp; however, we chose to leave all
parameters unchanged under T-current block to obtain the most
fair comparison.

Figure 6A shows the spike-triggered-averages (STAs) for the
conductance-based model with (solid) and without (dashed) the
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FIGURE 6 | Removing the T -current (dashed lines) affects spike triggered average but not correlation susceptibility. (A) Spike triggered averages.
(B) Correlation susceptibility. GPi firing patterns used are: oscillatory (green), bursty (red), and oscillatory bursts (black).

T-current (with the normal case omitted because the T-current
is not significantly recruited in that case, see Figure 2, leftmost
column). Removing the T-current most strongly affects the STA
of the non-oscillatory burst case (red), causing the peak in the
inhibition before a spike to completely disappear when the T-
current is removed. Indeed, without the T-current, an inhibitory
peak no longer promotes rebound firing, so this effect is expected.
The STAs for the oscillatory cases on the other hand, are not
as strongly affected. Here, input trains always feature peaks, but
without the T-current, the peak in the inhibition shifts to the
left, so it occurs longer before the spike. Thus, although removing
the T-current in these cases changes the rate of firing, it does
not significantly change the average input that causes the neurons
to fire.

Despite the drastic change in the STA of neurons with bursty
inputs from GPi and the large change in the thalamic firing
rates for all input types, the correlation susceptibility is not
very strongly affected by the removal of the T-current, as seen
in Figure 6B. This finding indicates that the T-current is not
essential for the patterns of correlation transfer that we see in
the system, although it does influence the single neuron firing
patterns.

Removing the T-current from the IFB model produces similar
results (not shown), in that thalamic firing patterns are strongly
affected, while correlation susceptibility shows little change. It is
worth nothing that without the T-current, the IFB model is sim-
ply an LIF model. Thus, the level of complexity in an LIF model
is sufficient to produce the patterns in correlation transfer seen
here. This suggests that perhaps even less complex models could
be used to explain such patterns.

POINT PROCESS MODEL RESULTS
To provide an analytic explanation for the trends that we see in the
transfer of correlations under the oscillatory conditions discussed
above, we consider a phenomenological point process model of
TC spike activity (see Methods). Although this reduced model
lacks T-current effects, the results of the previous section suggest
that it may still capture the main correlation transfer mechanisms
present in the full computational model. Since the firing rate,

α(t) = β exp
[
− U(t)

D

]
, is an even function, we can write it as the

cosine series,

α(t) = α0 +
∞∑

n=1

αn cos(2πn�t).

In this case,

A(τ) = α0δ(τ) + 1

2

∞∑
n=1

α2
n cos(2πn�τ)

is the spike train autocorrelation function of the neuron, as
given by Wiesenfeld and colleagues (Wiesenfeld et al., 1994) and
derived explicitly in (Reitsma, 2010).

Because the firing is Poisson, and the two neurons are receiving
identical input rate modulations, the pairwise spike train cross-
correlation function must be identical to the auto-correlation
function when τ 	= 0 (Lindner et al., 2005). The main difference
is that the probability that one neuron will spike in the interval
(t, t + dt) is given by p(t) = α(t)dt, while the probability that
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both neurons will spike in this interval is given by

cp(t) + (1 − c)p(t)2 = cα(t)dt + (1 − c)[α(t)dt]2

= cα(t)dt + O(dt2).

Thus, the instantaneous joint firing rate is

lim
dt→0

cp(t) + (1 − c)p(t)2

dt
= cα(t),

so the mean joint firing rate is cα0.
Using these two facts we deduce that the spike train cross-

correlation function is

C(τ) = cα0δ(τ) + 1

2

∞∑
n=1

α2
n cos(2πn�τ).

The intensity of the delta function is the mean joint firing rate of
the two neurons. In agreement with these expressions, numerical
calculations show that the auto- and cross-correlation functions
of the computational thalamic models with inhibitory inputs that
have identical rate modulations are the same for lags sufficiently
far from zero, as shown in Figure 7.

The variance of the spike count over a finite window of
length T is the integral of the autocorrelation function against a
weighting factor Cox and Isham (1980):

var(n(T)) =
∫ T

−T
A(τ)(T − |τ |)dτ

= α0T +
∞∑

n=1

( αn

2πn�

)2 [1 − cos(2πn�T)].
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spike trains. Autocorrelation (red) and cross-correlation (blue) functions
with (A) Normal GPi inputs. (B) Oscillatory GPi inputs. (C) Bursty GPi
inputs. (D) Oscillatory bursty GPi inputs.

Because the two neurons are identical, and their correlation is
expected to be symmetric about τ = 0, we can calculate the
covariance in the same way, using the cross-correlation function
instead of the autocorrelation function:

cov(n1(T), n2(T)) =
∫ T

−T
C(τ)(T − |τ |)dτ

= cα0T +
∞∑

n=1

( αn

2πn�

)2 [1 − cos(2πn�T)].

Thus, the Pearson’s correlation coefficient is

ρ(T) = cα0T + ∑∞
n=1

(
αn

2πn�

)2 [1 − cos(2πn�T)]
α0T + ∑∞

n=1

(
αn

2πn�

)2 [1 − cos(2πn�T)]
. (9)

It is clear from Equation (9) that the rhythms seen in the cor-
relation coefficient are due to a difference in the covariance and
variance of spike emission, rather than in long timescale oscil-
lations, since the only difference between the numerator and
denominator is the first Fourier coefficient. This similarity arises
because the oscillations in the firing probability α(t) are perfectly
correlated between the two neurons, which makes the oscillatory
terms in the covariance and variance identical. This condition also
holds in our computational models, since the neurons receive GPi
inputs with identical rate modulations. If GPi rate modulations
were made less coherent, then the covariance expression in the
numerator in Equation (9) would change. As a result, a mismatch
between oscillatory terms in the numerator and denominator
would develop and the correlation between TC neurons would
decrease, but the dependence of ρ on T would remain non-
monotonic, at least for small perturbations from the perfectly
coherent case.

COMPARISON OF MODEL RESULTS
Now that we have an analytic expression for the correlation coef-
ficient of the reduced point process model, we can investigate
numerically how this compares with and gives insight into the
behavior of ρout(T) in the thalamic computational models. In
Figure 8, the output correlation coefficients of the computational
models are plotted along with ρ(T) calculated analytically for
the reduced point process model using Equation (9), for c = 0
(Figure 8A) and non-zero c (Figure 8B). For the computational
model simulations, we simplify the non-bursty oscillatory inputs
from GPi by using only a single sine wave instead of a sum of sine
waves to set the GPi firing rate. We also simplify the oscillatory
bursts in GPi by setting the variances of the waiting time between
bursts and of the burst duration equal to zero.

On the left, ρout is plotted for oscillatory inputs, while on the
right, we use oscillatory bursts in the inputs. Both oscillatory
inputs and oscillatory bursty inputs show an oscillation in ρout,
but the amplitude of this oscillation is much higher for the case of
oscillatory bursts. Apparently, the oscillatory bursts with no vari-
ability in the interburst intervals cause a very strong dependence
of correlation transfer on timescale. Introducing variability in the
timing of the bursts for this case causes the oscillations in ρout(T)

to have a smaller amplitude and dampen more quickly.
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FIGURE 8 | Oscillations of ρ obtained from calculations on the point

process model match those in ρout from thalamic model simulations.

(A) Comparison of correlation coefficients for the voltage-based thalamic
models (conductance-based model, blue; IFB model, red) with input
correlation of c = 0 and the point process model (black) with c = 0.08.

(B) As in (A) with c = 0.2 in the thalamic models. Non-bursty oscillatory
inputs from GPi are shown on the left, oscillatory bursty inputs on the right;
in both cases, oscillations occur at a frequency of 10 Hz. Parameters for the
point process model are D = 0.1, U0 = 1, and η = 0.4 for oscillatory inputs
and D = 0.35, U0 = 1, and η = 1 for oscillatory bursts.

Quantitatively, we do not expect the correlation coefficients
of the computational and reduced models to match identically,
as even when comparing the conductance-based model and the
IFB model, the quantitative results for correlation transfer differ
in the two systems. The difference between the reduced model
prediction and the computational model results is largest at
small window sizes for c non-zero. This difference arises because
the instantaneous correlation level for the reduced model is c
(obtained by taking limT→0 ρ(T)). In other words, the reduced
model assumes the spike correlations are perfectly transferred
from input to output. In the full computational models, how-
ever, the spike correlations in the inputs do not directly translate
into instantaneous correlations in the outputs because of the
membrane dynamics of the thalamic models. Also, the refrac-
tory period of the computational models will affect correla-
tion transfer on short timescales, while the reduced model has
no refractory period. Some quantitative difference between the
reduced model and the computational models is also evident
on longer timescales, again because the reduced model assumes
perfect correlation transfer, which does not occur in the compu-
tational models.

Despite its quantitative differences in performance relative to
the computational models, the reduced model sheds light on the

qualitative behaviors of the correlation coefficient. In particular,
the analysis of the reduced model gives insight into the origin
and nature of the rhythms seen in ρout(T). In the computational
models, we observed that the time between peaks of ρout(T) is
equal to the period of the oscillation in the GPi firing rate. This
observation is supported by the reduced model, where the funda-
mental frequency � of the oscillation in the correlation coefficient
in Equation (9) is the same as the frequency of the well modu-
lation. Thus, the frequency of the oscillation in GPi determines
the timescales on which the thalamic neurons will be most cor-
related. Also, from Equation (9), it is clear that as T → ∞, the
oscillations in ρout(T) damp out, and ρout asymptotes to a con-
stant value. This effect is seen in the correlation susceptibility of
the computational models, in Figures 4 and 5.

Finally, the rhythms in the correlation coefficient are present
despite identical inhibitory input rate modulations, due to dif-
ferences in the covariance and variance of spike emission. The
dependence of ρT on the input rate correlations (Equation 9)
shows that very specific matching between input rate correlations
and spike time correlations would be necessary to eliminate these
rhythms. This observation indicates that the oscillations seen in
ρout(T) in the computational models will be robust to changes in
parameters.
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DISCUSSION
In our study, we have predicted that firing patterns, such as oscil-
lations and bursting, observed in the GPi under parkinsonian
conditions directly affect the correlation present between GPi
output signals as well as the way that correlations are transferred
from GPi to thalamus. This conclusion is supported both by sim-
ulations and by calculations with a reduced point process model,
even though the latter, by design, lacks rebound effects based on
the T-current.

Recordings from MPTP primates (Nini et al., 1995;
Bergman et al., 1998; Raz et al., 2000; Bar-Gad et al., 2003;
Heimer et al., 2006) show correlations in the activity of GPi
neurons that are significantly higher than in normal conditions,
and human Parkinson’s disease patients also exhibit strong corre-
lations within the GPi (Hurtado et al., 1999; Gale et al., 2008). As
expected, we find that simply increasing the instantaneous corre-
lations due to overlap of GPi inputs to a pair of TC cells, c, in our
model would be enough to enhance the correlations between TC
neurons. This immediate effect may explain the TC correlations
observed in those MPTP experiments that do not feature changes
in firing patterns (Pessiglione et al., 2005). Interestingly, we also
find that for fixed c, the introduction of shared burstiness in
GPi spike trains, whether bursts occur at a steady rate or not, is
sufficient to increase both the correlation present in the inputs
from GPi to TC neurons (ρin) and the pairwise correlations of TC
cells (ρout) well beyond the levels arising from shared oscillations
alone. Thus, we predict that enhancements in GPi correlations
will be particularly prominent when bursting is present and
that any surges in TC correlations observed in parkinsonian
conditions may be indicative of burstiness in GPi.

By using correlation susceptibility (S) as a particular measure
of correlation transfer, we assess how strongly small changes in
correlations observed in GPi influence correlation in thalamus
under different GPi firing patterns (Figures 4, 5). Our computa-
tional models show that patterns of inhibitory neuron firing that
include bursts of spikes cause the system to be much more suscep-
tible to passing along correlations. Thus, the models predict that
a small change in correlations in GPi will cause a larger change
in thalamic correlation when the inputs from GPi are bursty than
when the inputs are either purely oscillatory or of constant rate.

Perhaps surprisingly, we showed that although the T-current
in the TC neurons affects the pattern of spiking that they exhibit,
and the type of inputs that lead to a spike, it does not have
a large effect on transfer of correlations through the system,
even in cases where the GPi activity is oscillatory, bursty, or
both (Bronfeld and Bar-Gad, 2011). In particular, the point pro-
cess model that we analyzed includes no T-current, yet it still
produces a dependence of correlation on timescale that is qual-
itatively very similar to the computational neuronal models in
oscillatory regimes. These results show that even in parkinsonian
states where T-current bursts in thalamic neurons are not promi-
nent, such as may be the case in non-tremor parkinsonism
Pessiglione et al. (2005), correlation transfer, including its depen-
dence on GPi activity patterns, may still be enhanced. Since the
T-current is not needed to explain the difference in thalamic
correlation structure resulting from oscillatory inhibition that is
not bursty compared to that arising with bursty inhibition, both

of which include both spike and rate correlations, we can con-
clude that the large, fast changes in firing rate that occur when
the GPi fires a burst represent a particularly powerful inhomo-
geneous signal to both neurons, which may make them more
sensitive to small changes in the proportion of shared input
spikes. More concretely, bursts of inhibition are especially effec-
tive at sculpting postsynaptic firing patterns, blocking firing in
certain time windows. Our work complements past studies of cor-
relation transfer in LIF model neurons where the impact of either
input timescale (Moreno-Bote et al., 2008) or inhibitory con-
ductance (Stroeve and Gielen, 2001) was explicitly considered.
In these studies, simplifying assumptions of the spike dynamics
or the exponential form of the input statistics permitted deeper
analysis. However, for our purposes these simplifications do not
capture the critical rhythmicity present in GPi-thalamic circuits.
A full mathematical analysis of the relation between bursty inhibi-
tion and correlation transfer, beyond the point process analysis of
oscillatory effects from oscillatory bursty inhibition that we have
performed, remains for future work.

Our study also shows that the correlation susceptibility, S, and
the output correlation, ρout, are both affected by the timescale
of GPi firing rate oscillations, when these are present, regard-
less of whether or not GPi bursting occurs. In particular, when
two neurons receive identical rate modulations in their inputs,
correlations are maximized on a timescale of half the period of
the firing rate oscillation (Figure 5). The analysis of our reduced
point process model shows that differences in the covariance and
variance of spike timing are sufficient to cause this dependency of
the correlations on timescale. In brief, oscillations in input rates
can be viewed as a factor that modulates a spike-related instan-
taneous correlation, and as that factor grows and shrinks with
window size, the output correlation oscillates correspondingly.
This analysis also indicates that the oscillatory dependence of the
correlation coefficient on the window size for neurons receiving
correlated inhibitory inputs arriving at oscillatory rates is very
robust. Finally, this non-monotonic dependency of correlation
on window size points to the critical importance of the observa-
tion window used when measuring spike count correlations in the
parkinsonian GPi-TC network.

In parkinsonian conditions, increased correlations in basal
ganglia are thought to represent a pathological breakdown of
functional circuit segregation (Filion et al., 1988; Nini et al., 1995;
Bergman et al., 1998; Bronfeld and Bar-Gad, 2011). Other work
has posited that increased correlations seen in the thalamic
targets of GPi in parkinsonism are indicative of desegregation
within this nucleus (Pessiglione et al., 2005). Our work shows
that the increase in correlations in the thalamus may be due
to a dual effect of increased correlations in basal ganglia as
well as increased correlation susceptibility because of bursty
GPi firing patterns. Such an increase in correlation suscep-
tibility would make thalamic neurons very sensitive to even
small fluctuations in correlations in GPi. This effect could be
compounded by the sensitivity of correlations to the timescale
of oscillations in the GPi activity levels. This increased cor-
relation in the thalamus may compromise thalamic informa-
tion processing (Montgomery and Baker, 2000; Grill et al., 2004;
Garcia et al., 2005; Dorval et al., 2008, 2010; Xu et al., 2008)
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and, in particular, may be detrimental to the ability of the
thalamus to accurately relay excitatory information it receives
(Rubin and Terman, 2004; Guo et al., 2008; Cagnan et al., 2009;
Pirini et al., 2009) in order to appropriately contribute to motor
control.
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APPENDIX
INTERSPIKE INTERVAL (ISI) DISTRIBUTIONS
The ISI distributions of our model thalamic neurons depend on
the particular GPi firing pattern used (see Methods and Figure 2).
Figure A1 shows that all four types of GPi firing patterns yield
a dominant, primary peak in the distribution (in the 20–30 ms
range in the conductance-based thalamic model). Normal, con-
stant rate inputs from GPi lead to a unimodal ISI distribution,
while the other cases result in a bimodal ISI distribution when
the conductance-based thalamic model is used. The primary peak
in these distributions is due to a combination of spike and burst
responses, the latter of which include short ISIs; in the bursty
cases, the primary peak shifts to smaller times because T-current-
induced thalamic bursts, and hence short ISIs, become more
common. The secondary peaks reflect the period of the oscilla-
tions present in the GPi firing patterns. In particular, note that
the mean interburst interval in our bursty cases is 70 ms. Note
that, our mean thalamic firing rates are similar across all cases of
GPi inputs, despite their different ISI distributions.

Interestingly, while the ISI distributions generated by the
conductance-based model (Figure A1A) and the IFB model
(Figure A1B) are generally quite similar, the IFB distributions for
the non-bursty cases lack short ISI peaks. These differences sug-
gest that non-bursty inhibitory inputs are less effective at recruit-
ing the T-current in the IFB model than in the conductance-based
model. On the other hand, the similarities evident in the bursty
cases illustrates the power of such patterned inhibitory inputs to
drive thalamic model neurons to fire in a specific way, regardless

of the details of the intrinsic firing mechanism in the neuron
model.

POWER SPECTRA
We next consider the power spectra of the GPi spike trains that we
generated and of the spike trains produced by our model thalamic
neurons, subject to inhibitory inputs from GPi as well as to 20 Hz
excitatory inputs (Figure A2A). The power spectra for the thala-
mic spikes were calculated using the Chronux software package
(Chronux software package; Mitra and Bokil, 2008). Note that in
GPi, both oscillations (green) and oscillatory bursts (black) in
spike rate yield a 10 Hz peak in the power spectrum. The power
spectrum of the oscillatory GPi spike train is a good match to
power spectra calculated from recordings in GPi under parkin-
sonian conditions (Heimer et al., 2006). The spectra from the
conductance-based and IFB thalamic models inherit the GPi
spectral peaks in the oscillatory cases, as expected.

It is also interesting to notice that the power spectrum of the
bursty (red) GPi spike train shows higher power at low frequen-
cies but no distinct peak. However, these inputs do cause the
thalamic power spectrum to have a peak around 7 Hz in both
the conductance-based model and the IFB model. When the T-
current is removed from the models by setting ḡT = 0, this peak
in the thalamic neuron power spectrum disappears for both mod-
els. This effect indicates that the model neurons are frequency
selective, consistent with experimental results (Puil et al., 1994),
and that it is the T-current that causes them to have a preferred
response frequency.
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FIGURE A1 | Thalamic neuron interspike interval (ISI) distributions depend on the pattern of inhibitory inputs from GPi. (A) Conductance-based model.
(B) IFB model. Normal (blue), oscillatory (green), bursty (red), and oscillatory bursty (black) patterns of GPi inputs are shown.
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FIGURE A2 | Power spectra and cross-spectra of GPi and thalamic spike trains. (A) Spike train power spectra. (B) Spike train cross-spectra. Normal (blue),
oscillatory (green), bursty (red), and oscillatory bursty (black) patterns of GPi inputs are shown.

The cross-spectra for c = 0 are shown in Figure A2B for the
GPi spike trains and the corresponding thalamic spike trains. The
cross-spectra for the neurons that receive normal input from GPi
(blue) are always flat, and the power is zero because the inputs to
the neurons are not correlated. For each of the other patterns of
GPi firing, the cross-spectra are non-zero even when c = 0 since
the temporal inhomogeneity of the inhibitory input rate λ(t) is

identical for both neurons and acts to correlate the output spikes.
In these cases the cross-spectra are very similar to the power spec-
tra shown in Figure A2A. The main difference is the fact that in
the large frequency limit, the cross-spectra always asymptote to
zero, while the power spectra limit to the firing rate. Moreover,
the conductance-based and IFB models exhibit spectra that are
qualitatively very similar across the frequency range considered.

Frontiers in Computational Neuroscience www.frontiersin.org December 2011 | Volume 5 | Article 58 | 17

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Correlation transfer from basal ganglia to thalamus in Parkinson's disease
	Introduction
	Methods
	Model of Pallido-Thalamic Correlation Transfer
	Conductance-Based Thalamic Model
	Integrate-and-fire-or-burst (IFB) Thalamic Model
	Patterns of GPi Signals to Thalamus

	Correlation Measures
	Pearson's Correlation Coefficient
	Correlation Susceptibility

	Bootstrapping Technique
	Point Process Model
	Spike Emission
	Joint Escape Probabilities

	Results
	TC Spike Train Correlations
	Correlation Susceptibility
	Bursts Increase Correlation Susceptibility
	Oscillatory Firing Causes Oscillatory Susceptibility
	Removing T-current has Little Effect on Correlation Susceptibility

	Point Process Model Results
	Comparison of Model Results
	Discussion
	Acknowledgments
	References
	Appendix
	Interspike Interval (ISI) Distributions
	Power Spectra



