
COMPUTATIONAL NEUROSCIENCE
ORIGINAL RESEARCH ARTICLE

published: 08 March 2012
doi: 10.3389/fncom.2012.00007

Cellular and circuit mechanisms maintain low spike
co-variability and enhance population coding in
somatosensory cortex
Cheng Ly 1,2*, Jason W. Middleton2,3 and Brent Doiron1,2

1 Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
2 Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
3 Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

Edited by:

David Hansel, University of Paris,
France

Reviewed by:

Germán Mato, Centro Atomico
Bariloche, Argentina
Magnus Richardson, University of
Warwick, UK

*Correspondence:

Cheng Ly, Department of
Mathematics, University of
Pittsburgh, 139 University Place,
Room 505, Thackeray Hall, Pittsburgh,
PA, USA.
e-mail: cheng70@gmail.com

The responses of cortical neurons are highly variable across repeated presentations of a
stimulus. Understanding this variability is critical for theories of both sensory and motor
processing, since response variance affects the accuracy of neural codes. Despite this
influence, the cellular and circuit mechanisms that shape the trial-to-trial variability of pop-
ulation responses remain poorly understood. We used a combination of experimental and
computational techniques to uncover the mechanisms underlying response variability of
populations of pyramidal (E) cells in layer 2/3 of rat whisker barrel cortex. Spike trains
recorded from pairs of E-cells during either spontaneous activity or whisker deflected
responses show similarly low levels of spiking co-variability, despite large differences in
network activation between the two states.We developed network models that show how
spike threshold non-linearities dilute E-cell spiking co-variability during spontaneous activity
and low velocity whisker deflections. In contrast, during high velocity whisker deflections,
cancelation mechanisms mediated by feedforward inhibition maintain low E-cell pairwise
co-variability. Thus, the combination of these two mechanisms ensure low E-cell popula-
tion variability over a wide range of whisker deflection velocities. Finally, we show how this
active decorrelation of population variability leads to a drastic increase in the population
information about whisker velocity. The prevalence of spiking non-linearities and feedfor-
ward inhibition in the nervous system suggests that the mechanisms for low network
variability presented in our study may generalize throughout the brain.

Keywords: layer 2/3 somatosensory cortex, whisker stimulation, noise correlation, Fisher information

INTRODUCTION
The neural response of a population of neurons to a stimulus
is often dissected into the reliable (or trial averaged) and unreli-
able (or trial variable) components (Britten et al., 1993; Softky and
Koch, 1993; Shadlen and Newsome, 1998). A significant amount of
study has been devoted to the former, while a clear understanding
of neural variability remains a challenge for systems neuroscience
(see Averbeck et al., 2006; Faisal et al., 2008; Cohen and Kohn, 2011
for a review). Of particular interest is the trial-to-trial shared vari-
ability of the spike train responses from pairs of neurons, often
termed noise correlations to indicate that it is variability which
is not signal locked (Averbeck et al., 2006). The magnitude of
noise correlations is a critical parameter in population-level codes,
since noise correlations can either severely limit information trans-
fer (Zohary et al., 1994; Sompolinsky et al., 2001; Gutnisky and
Dragoi, 2008), or enhance stimulus estimation (Abbott and Dayan,
1999; Latham and Nirenberg, 2005) and discrimination (Romo
et al., 2003), depending upon the relationship between noise and
signal correlations (Petersen et al., 2001; Averbeck et al., 2006).
The widespread use of electrode arrays and imaging techniques
promised a clear measurement of the trial-to-trial co-variability
of simultaneously recorded pairs of neurons. However, a large

range of noise correlation values are reported across the cortex,
with some studies reporting significantly positive co-variability
(Zohary et al., 1994; Gawne et al., 1996; Petersen et al., 2001; Kohn
and Smith, 2005; Kerr et al., 2007; Gutnisky and Dragoi, 2008;
Smith and Kohn, 2008; Cohen and Maunsell, 2009; Mitchell et al.,
2009), and others showing lower levels or near zero noise correla-
tion (Greenberg et al., 2008; Ecker et al., 2010; Renart et al., 2010;
Middleton et al., 2012). This situation is further complicated with
the known dependence of noise correlation upon stimulus features
(Petersen et al., 2001; Kohn and Smith, 2005; Khatri et al., 2009;
Rothschild et al., 2010), spatial distance between neurons (Smith
and Kohn, 2008; Rothschild et al., 2010), focus of spatial attention
(Cohen and Maunsell, 2009; Mitchell et al., 2009), or the state of
arousal (Greenberg et al., 2008; Kohn et al., 2009). The scope of the
reported data paint a complicated picture of population-wide vari-
ability across the cortex (Cohen and Kohn, 2011). Investigations of
how cellular and circuit properties of cortical networks determine
the co-variability of spiking activity are required to shed light on
these contrasting observations.

Previous studies have identified several mechanisms that con-
trol noise correlations, some intrinsic to single neurons and others
due to network interactions. The spike train correlation of pairs
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of uncoupled neurons driven by common input fluctuations has
been shown to be sensitive to neural firing rate (de la Rocha et al.,
2007; Shea-Brown et al., 2008; Tchumatchenko et al., 2010), mem-
brane integration (Litwin-Kumar et al., 2011; Rosenbaum and
Josić, 2011), and membrane excitability (Marella and Ermentrout,
2008; Shea-Brown et al., 2008; Barreiro et al., 2010). A central
principle of these studies is that the non-linear transformation
between synaptic inputs and output trains of action potentials
dilute correlations. Cortical models assuming only dilution mech-
anisms predict that when firing rates increase, then so do noise
correlations (de la Rocha et al., 2007). This prediction is at odds
with many experimental studies where noise correlations are only
weakly, or not at all, related to the firing rates of pairs of neu-
rons (Kohn and Smith, 2005; Greenberg et al., 2008; Gutnisky
and Dragoi, 2008; Cohen and Maunsell, 2009; Kohn et al., 2009;
Mitchell et al., 2009; Ecker et al., 2010; Oram, 2011; Middleton
et al., 2012).

A contrasting mechanism for low noise correlations involves
the co-variability due to common excitation afferent to a pair of
neurons being canceled by common inhibition, producing over-
all low net membrane potential correlations (Renart et al., 2010).
This mechanism is related to known noise cancelation schemes
for convergent excitatory and inhibitory inputs onto a single tar-
get cell (Salinas and Sejnowski, 2000; Moreno et al., 2002; Cafaro
and Rieke, 2010), and is in fact its extension to a divergent architec-
ture of common input to a pair of cells. Models that only consider
cancelation mechanisms predict that low spike train correlations
must be due to low membrane potential correlations. However,
in the rare cases when both both pairwise membrane potential
and spike train responses are recorded, significant membrane co-
variability can coexist with very small spike correlation (Poulet
and Petersen, 2008; Gentet et al., 2010). Thus, neither the correla-
tion dilution or cancelation framework captures the complicated
correlation structure of spiking activity from real it in vivo net-
works. Dilution and cancelation of spike train correlations are not
mutually exclusive, and we hypothesize that a combined frame-
work is required to account for noise correlations across a range
of spontaneous and stimulus evoked conditions.

In a recent study, we recorded simultaneous extracellular in vivo
spike trains from pairs of putative pyramidal (E) cells in layer 2/3
of rat whisker barrel cortex (Middleton et al., 2012). Low noise
correlation was found in both spontaneous and stimulus evoked
states, despite a large difference in E-cell firing rates between the
two conditions. We proposed a simple, phenomenological firing
rate model where the combination of a correlating background
synaptic field and a strong feedforward inhibitory (I) architec-
ture were sufficient to capture the low within trial co-variability
of E-E pairs. However, while our firing rate model offered some
insight, its lack of synaptic and spike dynamics precluded iden-
tifying the core mechanisms that maintain low spike correlations
across a range of network activation levels. Furthermore, popula-
tion responses that rely on realistic circuitry and spike dynamics
are needed to determine the functional coding consequences of
these mechanisms, as opposed to models which make simpli-
fying ad hoc relations between trial averaged and trial variable
components of a population response.

Our current study uses a combination of in vivo recordings,
computational modeling of spiking networks, and theoretical
analysis of reduced models to study the mechanisms behind low
noise correlations in the superficial layers of rat barrel cortex. We
show that correlation dilution by spike threshold non-linearities
and correlation cancelation by feedforward inhibitory circuitry
together can result in overall low spike train noise correlations. In
a simplified binary network setting, we derive a compact expres-
sion showing that this combination of mechanisms requires that
the strength of inhibition and background correlating synaptic
inputs are properly balanced. In this regime, our theory makes
the clear prediction that while E-E correlation is low, the cor-
relation between the spike outputs of E-cells and I-cells will be
larger in spontaneous compared to evoked conditions. Our pre-
diction is verified in both our spiking network model and with
paired I-E cell in vivo recordings. In total, by combining corre-
lation dilution and cancelation mechanisms we build a theory
of rat barrel cortical dynamics that captures both the large co-
variability of membrane potential activity in spontaneous states
(Poulet and Petersen, 2008; Gentet et al., 2010) and low spiking
co-variability over a range activation levels (Poulet and Petersen,
2008; Jadhav et al., 2009; Gentet et al., 2010; Middleton et al.,
2012).

In the whisker barrel system the magnitude of evoked corti-
cal activation is sensitive to whisker deflection velocity (Simons,
1978; Pinto et al., 2000). Only recently has the distribution of
velocities during active sensing been measured, and the dynamic
range of natural velocities was found to be much larger than pre-
viously thought (Ritt et al., 2008; Wolfe et al., 2008). Furthermore,
neural recordings across several layers of somatosensory cortex
suggest an accurate population-level representation of whisker
dynamics (Arabzadeh et al., 2003, 2004; Jadhav et al., 2009; Wang
et al., 2010). Despite the evidence of a cortical code for whisker
velocity, the circuit mechanisms that define this code remain
elusive. In most sensory systems, including the vibrissal system,
feedforward inhibitory networks contribute to cortical represen-
tation by either sharpening response tuning (Ferster and Miller,
2000; Bruno and Simons, 2002; Swadlow, 2003; Wilent and Con-
treras, 2005) or setting a temporal integration window (Pinto
et al., 2000; Miller et al., 2001; Wehr and Zador, 2003; Wilent
and Contreras, 2005; Higley and Contreras, 2006; Heiss et al.,
2008). Although these features are important, they pertain to trial
averaged responses and neglect trial-to-trial population variabil-
ity. With our new understanding of how feedforward inhibition
and threshold non-linearities can contribute to the trial vari-
able aspects of cortical response, we show that the estimation of
whisker velocity is increased substantially when feedforward inhi-
bition is included in a spiking model. In the past, both inhibition
(Seriès et al., 2004; Priebe and Ferster, 2008) and spike thresh-
old non-linearities (Hansel and van Vreeswijk, 2002; Carandini,
2004; de la Rocha et al., 2007; Priebe and Ferster, 2008) have been
shown to impact cortical coding. By considering the combined
role of these generic cellular and circuit features on population
response sensitivity and trial variability, we provide an important
advance in linking cortical architecture and dynamics with cortical
processing.
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MATERIALS AND METHODS
IN VIVO EXPERIMENTS
Animal preparation
Data were obtained from 13 Sprague-Dawley adult female rats.
Surgical procedures and maintenance of rats during recording
sessions were approved by the University of Pittsburgh IACUC,
are similar to those previously described (Bruno and Simons,
2002; Middleton et al., 2012). During recording sessions rats
were maintained in a lightly sedated state using fentanyl (Baxter
Healthcare Corp., Deerfield, IL, 10 μg kg−1 h−1) and immobi-
lized with pancuronium bromide (SICOR Pharmaceuticals Inc.,
Irvine, CA, 1.6 mg kg−1 h−1) to prevent spontaneous whisker
movements that could otherwise interfere with the use of our
whisker stimulators (below). Body temperature was maintained
at 37˚C and blood pressure, heart rate, tracheal airway pressure,
and electrocorticogrom (ECoG) were monitored throughout the
recording session. If any of these indicators could not be main-
tained within normal physiological ranges, the experiment was
terminated.

Whisker stimulation
Whiskers were deflected using a custom built piezoelectric stimu-
lator attached 10 mm from the base of the whisker. Whiskers were
randomly deflected 1 mm in one of 8 directions (0˚, 45˚, 90˚, etc.)
using a ramp and-hold stimulus. The ramp phase of the deflection
was ∼8 ms long, with a mean velocity of 125 mm/s. The whisker
deflection was maintained for 200 ms, and the whisker was then
returned to its resting or neutral position with the same speed as
the initial deflection.

Electrophysiology and analysis
Simultaneous extracellular recordings in layer 2/3 were obtained
using a multi-channel Eckhorn matrix (MM-5, Thomas Record-
ing, Giessen, Germany). Platinum/iridium in quartz fibers (60 μm
diameter) were pulled and ground to 2–5 μm tip diameters, hav-
ing impedances of 1–6 M. The principal whisker (PW) of a cortical
neuron was defined as the whisker whose deflection evokes the
largest spike response, relative to other whiskers. Spike waveforms
were analyzed with cluster analysis using custom programmed
software in Labview. FS (fast spiking, putative I-cell) and RS (reg-
ular spiking, putative E-cell) unit spike waveforms are typically
distinct, the former being longer in duration (see Figure S1 in
Supplementary Material). After sorting, mean spike waveforms
were calculated and the duration of early and late components of
the waveforms were measured. A two dimensional scatterplot of
these two components reveals two clusters (Bruno and Simons,
2002; Swadlow, 2003), and cell type identity was assigned based
on this criteria. Data were collected from 48 FS-RS pairs (putative
I-E) and 31 RS-RS pairs (putative E-E). Correlation coefficients
were calculated in a standard fashion using Pearsons correlation
coefficient:

ρXY = Cov(X , Y )

σX σY

where X and Y are the random spike counts, and σ X/Y denotes
their SD. The spike count correlations were computed over 30 ms

sliding time windows, incremented by 2 ms. The correlation value
at a particular point in time was obtained by averaging over all 15
windows that contained that time point. Throughout this paper,
we set the spontaneous time to be 30 ms before the whisker stim-
ulation, while the evoked time corresponds to the time when the
firing rate (averaged across the population) is largest.

LEAKY INTEGRATE-AND-FIRE (LIF) MODEL
To model the layer 2/3 spiking network activity we used leaky
integrate-and-fire model (LIF) for both I and E-cell input integra-
tion and spike dynamics. Each neuron model obeyed:

τm
dvj

dt
= −vj −

∑
l∈{ I−cells}

Wjl sl (t )
(
vj − Ei

)
−

∑
k∈{ E−cells}

Wjk sk (t )
(
vj − Ee

) + ampe/iStimj (t )

+ σe/i

(√
1 − cηj (t ) + √

cη (t )
)

(1)

τde/i

dsj

dt
= −sj + xj (2)

τre/i

dxj

dt
= −xj + τre/i

∑
t ′
j

Ae/iδ
(

t − t ′
j

)
(3)

τn
dηj

dt
= −ηj + √

τnξj (t ) (4)

A spike was recorded every time the neuron’s voltage crossed a
threshold θ j (chosen randomly, see below), after which the volt-
age was reset to 0: vj(t+) = 0, and the variable xj increased by
Ae/i : xj(t+

j ) = xj(t−
j ) + Ae/i (in the sum

∑
t ′
j
Ae/iδ(t − t ′

j ), t ′
j

are the spike times of the jth neuron). A 5-ms absolute refrac-
tory period was included. The neurons were coupled via synapses
sj(t ) that were “alpha-functions” at each time t ′

j , with time con-

stants τre/i and τde/i for the rise and decay, respectively (depending
on the type of synapse). The network consists of E to I and I
to E connections, but no recurrent connections (no E to E and
I to I). All neurons received independent

√
1 − cηj(t ) and com-

mon slow
√

cη(t ) noisy background inputs that were modeled
as Ornstein-Uhlenbeck processes with autocorrelation functions:
〈ηj(τ )ηj(τ + t)〉τ = 1/2e−t /τn (same for η(t ) as well). All ξ j(t )
were independent white noise processes with 〈ξ j(t )〉 = 0 and
〈ξ j(t )ξ j(t ′)〉 = δ(t − t ′) that give rise to trial-to-trial variability.
The parameter c ∈ (0, 1) specifies the degree of the correlated noisy
input. We assume the slow noise (τ n = 80 ms, slow based on exper-
imental data (Gentet et al., 2010; Middleton et al., 2012)) that each
neuron receives. The whisker input stimulus coming from layer 4
has a time-varying average of

〈
Stimj (t ; V )

〉 = V

(
(t − t0) V

9

)−1.5

e−4.95/(V (t−t0))H (t − t0)

(5)

for all neurons, where t 0 is the time of stimulus onset, H (x)
is the Heaviside step function, and V represents the velocity
of the whisker input (V = 1 corresponded to the velocity where
simulations best matched the experimental data), and time t is
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in milliseconds (similar to Middleton et al., 2012). The stimulus
Stimj(t ) is a filtered Poisson process with rate λ(t ) (same for all
neurons) that is chosen so that 〈Stim(t )〉 has the value specified
above, and is uncorrelated from trial-to-trial. On a given trial,

d

dt
Stimj = −Stimj

τw
+

∑
k

δ (t − tk) (6)

where tk is governed by a Poisson Process with rate λ(t ), and
τw =2 ms. Given 〈Stimj(t )〉, we solve for λ(t ):

λ(t ) = 1

2π

∫
eiωt

(
1

τw
+ iω

)∫
e−iωt ′ 〈

Stimj
(
t ′)〉 dt ′ dω (7)

There are 200 excitatory neurons (Ne = 200) and 50 inhibitory
neurons (Ni = 50). Excitatory neurons received synaptic input
from 20% of the inhibitory neurons (10 neurons; a random sub-
set), while the inhibitory neurons received synaptic input from
5% of the excitatory neurons (10 neurons; a random subset).
The strength of the inhibitory coupling was Wjl = g /10 (0 if
uncoupled), and the excitatory coupling was Wjm = 0.1/10. The
inhibition was much stronger than the excitation – a value of
g = 13 is used throughout the paper. The network is not recur-
rent (Wjl = 0 when j corresponds to an inhibitory neuron and
Wjm = 0 when j corresponds to an excitatory neuron). Although
there are a small fraction of indirect E to E connections (E to
I to E) and I to I connections (I to E to I), the effects on the
network statistics are minor, making the LIF model predomi-
nantly a feedforward inhibitory network rather than a recurrent
network.

To incorporate heterogeneity, the thresholds for both excita-
tory and inhibitory neurons were chosen at random. Excitatory
neuron thresholds were chosen from a gamma distribution with
shape parameter n = 8, and a mean value of 1.1; inhibitory neu-
ron thresholds were chosen from a gamma distribution with shape
parameter n = 8, and a mean value of 1.2. Unless otherwise spec-
ified, we set c = 0.5, τm = 20 ms, Ae/i = 1, τdi = 9 ms, τri = 2 ms,
Ei = −0.4, σ i = 135, τde = 5 ms, τre = 1 ms, Ee = 1.1, σ e = 105,
τ n = 80 ms, ampe = 1.85, ampi = 2.

The correlation values ρ in the LIF simulations were computed
in the same way as in the experimental data (see Experimental
data analysis above): over 30 ms sliding time windows, incre-
mented by 2 ms. The correlation value at a particular point in
time is obtained by averaging over all 15 windows that contain
that time. Using a single window of 30 ms centered at the desired
time point did not change the correlation values much (see Figure
S5 in Supplementary Material).

Simulations were written in C as Matlab Executable (MEX)
files. All simulations were analyzed in Matlab.

BINARY NETWORK MODEL
For analytical tractability, we also considered binary neurons with-
out temporal dynamics to model neural activity. The general
network consists of excitatory (E) neurons, Yk, k ∈ {1, 2, . . ., Ne}
that received feedforward inhibitory inputs (I), Xj, j ∈ {1, 2, . . ., Ni}
(the specific network architecture that are analyzed in the Results

section are presented in the Appendix). For simplicity, the excita-
tory neurons did not provide any input to the inhibitory neurons.
The variables had values of 0 (not spiking) or 1 (spiking), and were
given by the following equations:

Xj = H
(
θIj + ηj

)
, (8)

Yk = H

⎛
⎝θE + ηNi+k + g

Ni

Ni∑
j=1

Wkj Xj

⎞
⎠ (9)

where H (x) is again the Heaviside step function; all excitatory
neurons had the same threshold value θE in the absence of inputs,
while the inhibitory neurons had different θIj . Higher whisker
velocities (V ) were represented by lower threshold θ I/E values, so
that θ I/E = θ0,I/E − kI/EV. Each row of the weight matrix summed

to Ni :
∑Ni

j=1 Wkj = Ni , with g > 0 being the strength of inhibitory

coupling. The random vector �η is of size (Ni + Ne) × 1, and rep-
resented fluctuating background input drawn from a multivariate
Gaussian distribution with zero mean �0. The distribution of �η
is provided in the Appendix. Furthermore, in an effort to make
the exposition more accessible, the detailed analysis of the various
binary network models is provided in the Appendix.

RESULTS
EXPERIMENTAL DATA AND SPIKING MODEL SIMULATIONS
We performed simultaneous extracellular spike train recordings
from pairs of single units in layer 2/3 of rodent somatosensory
(barrel) cortex (one unit per electrode, see Materials and Meth-
ods). Cluster analysis based on the temporal features of spike wave-
forms was used to identify cell class. Distinct waveform features
were observed with regular spike units having longer positive and
negative phases compared to those from fast spike units (Figure
S1 in Supplementary Material; Middleton et al., 2012). As done in
past studies (Bruno and Simons, 2002; Swadlow, 2003; Middleton
et al., 2012), we presumed regular spike units were E-cells, while
fast spike units were assumed to be I-cells. We expect that the bulk
of our I-cell recordings (i.e., fast spike units) come from basket
cells. They comprise a significantly larger portion of fast spiking
cells in the cortex (Markram et al., 2004) and they spontaneously
fire at much higher rates than chandelier cells, the other class of
fast spiking interneurons in layer 2/3 (Zhu et al., 2004). Basket cells
are more likely involved in robust feedforward sensory processing
while chandelier cells act to control excessive runaway excitation
in the neocortex (Zhu et al., 2004). Multiple stimulus trials were
performed for each neuron pair; during each trial we recorded
spiking activity preceding, during, and following deflection of the
principle whisker (example set of trials in Figure 1Ai). We first
focus our study on the joint activity of E-cell pairs.

E-cell spontaneous firing rate was 2.1 Hz (averaged across dif-
ferent neurons, n = 62), while whisker deflection caused a brief,
yet substantial increase in the trial averaged firing rate to 34.6 Hz
(Figure 1Aii). For a pair of E-cells the increase in firing rate during
whisker deflection caused a large co-activation of spike responses
(compare light and dark blue spike times in Figure 1Ai), consis-
tent with past studies in somatosensory cortex (Kerr et al., 2007;
Jadhav et al., 2009; Khatri et al., 2009). Despite these large firing
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FIGURE 1 | Low E-cell noise correlation in experiments and a model

with feedforward inhibition. (Ai) Raster plot of paired E-cell activity
across different trials (dark and light blue dots are from distinct neurons).
Each trial contained a period of time before, during, and after whisker
deflection. The duration of the whisker deflection is marked with a
horizontal bar (after a time shift to account for feedforward propagation to
L2/3). (Aii) Trial averaged firing rate; the dark and light blue curves
correspond to the units in (Ai), and the black curve is the mean across all
E-cells (n = 62). (Aiii) Distribution of ρEE values for distinct recorded pairs
in spontaneous and evoked states (n = 31). The mean ρEE (across pairs)
was 0.019 ± 0.06 in the spontaneous state and 0.023 ± 0.044 in the
evoked state. (Bi) Schematic of the LIF L2/3 network with E and I-cell
dynamics. On every trial each cell received inputs modeling L4 cell
response to whisker deflection, with the temporal shape of the input

matched to L4 responses and was trial locked. Each cell also received a
trial variable low frequency Gaussian noise input modeling whisker
independent synaptic input. These fluctuations were correlated across the
network. (Bii) Trial averaged firing rate for the model with inhibition. (Biii)

Distribution of ρEE values for different model neuron pairs in spontaneous
and evoked states. Mean of ρEE was 0.03 ± 0.032 in the spontaneous
state, and 0.024 ± 0.021 in the evoked state. (Ci) Schematic of the LIF
L2/3 network with only E-cell dynamics. E-cells received the identical
external inputs as in the case with inhibition. (Cii) Trial averaged firing rate
for the model without inhibition. The model firing rate with inhibition is
shown for comparison. (Ciii) Distribution of ρEE values for different model
neuron pairs for the model without inhibition. The mean ρEE was
0.34 ± 0.047, in the spontaneous state, and 0.34 ± 0.044 in the evoked
state. The model ρEE distribution with inhibition is shown for comparison.

rates, the probability of an E-cell firing within 30 ms of the whisker
deflection was roughly 20%, indicating a large amount of response
variability. The joint variability of a pair of E-cells was quantified
with the correlation coefficient, ρEE, between their spike counts
(computed over 30 ms sliding windows, see Materials and Meth-
ods). The spike count correlation coefficient is a standard metric
used to measure population-wide variability (Zohary et al., 1994;
Gawne et al., 1996; Kohn and Smith, 2005; Gutnisky and Dragoi,
2008; Smith and Kohn, 2008; Cohen and Maunsell, 2009; Mitchell
et al., 2009; Ecker et al., 2010; Renart et al., 2010; Middleton et al.,

2012), and quantifies correlations that are not attributable to the
stimulus, yet are rather due to an internal cortical state that is vari-
able from trial-to-trial. For our data ρEE was low (relative to what
has been reported in pyramidal neurons, see Cohen and Kohn,
2011) in both the spontaneous and whisker evoked states – hav-
ing average values across different E-E pairs of 0.019 and 0.023,
respectively (Figure 1Aiii, n = 31 pairs). This indicated a near
independent pairwise variability (assuming Gaussian statistics)
between E-cell spike outputs. This result is surprising consider-
ing that whisker deflection evoked an order of magnitude change
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in the firing rates compared to spontaneous conditions. Uncover-
ing the cellular and circuit mechanisms that produce the low value
of ρEE, and its invariance across spontaneous and whisker evoked
states, is the central aim of our study.

One possible explanation for low ρEE values is that the synap-
tic connections which provide input variability to pairs of E-cells
have little overlap, so that the synaptic currents to the neuron pair
are themselves uncorrelated. In this case, the low co-variability
of spike train outputs would be inherited from the lack of cor-
relation between the synaptic inputs to E-cell pairs. Poulet and
Petersen (2008) and Gentet et al. (2010) performed simultaneous
intracellular recordings from pyramidal neurons pairs in layer 2/3
of rodent somatosensory cortex. They reported significantly cor-
related membrane potential activity in spontaneous conditions,
showing that the inputs to pyramidal cell pairs are in fact corre-
lated. Nevertheless, despite this input correlation, their pyramidal
cell spike trains showed similarly low correlations in the spon-
taneous state as in our recordings (see Gentet et al., 2010 their
Figure 6B). In total, the results from Poulet and Petersen (2008)
and Gentet et al. (2010) are inconsistent with the hypothesis that
uncorrelated firing in the spontaneous state is a reflection of
uncorrelated membrane potential fluctuations.

In our previous study (Middleton et al., 2012) we presented a
firing rate model of layer 2/3 somatosensory cortex that replicated
the experimentally observed correlated dynamics of E-cells in both
the spontaneous and stimulus evoked state. A critical component
of the model was a strong feedforward inhibitory component,
known to shape the trial averaged response of pyramidal neu-
rons in primary somatosensory cortex (Pinto et al., 1996, 2000;
Miller et al., 2001). However, the phenomenological nature of
firing rate models precluded a clear understanding of the mecha-
nisms that determine actual pairwise spike train correlations. To
test and expand upon the predictions of our past model, we imple-
mented a leaky integrate-and-fire (LIF) model network of layer
2/3 somatosensory cortex, where a population of E-cells received
a strong feedforward inhibition from a population of I-cells (see
Materials and Methods and Figure 1Bi).

The model neurons (both E and I) had two sources of exter-
nal synaptic input. The first was a Poisson train of excitatory
inputs whose inhomogeneous firing rate was temporally matched
to the firing rate responses from layer 4 neurons (which provide
input to layer 2/3) in response to whisker deflection in previ-
ous studies (Pinto et al., 2000). The precise synaptic arrival times
were uncorrelated between cells, yet the temporal evolution of
the stimulus was identical for all neurons and fixed across stim-
ulation trials (see Materials and Methods and Figure 1Bi inset).
The transient nature of the input produced an elevated, trial aver-
aged population firing rate during whisker input that matched
the experimental data (Figure 1Bii). The second source of exter-
nal input was a low frequency, Gaussian noise processes that was
partially correlated between any pair of neurons. This input mod-
eled a spatially broad local field potential previously shown to
account for the pairwise firing statistics of both E and I-cells in
spontaneous conditions (see Figure 5 of Middleton et al., 2012).
The synaptic field potential was the source of trial-to-trial vari-
ability in our network model. The degree of correlation of this
input was set so the model correlation ρEE matched that from our

experiments, in both the spontaneous and whisker evoked con-
ditions (Figure 1Biii with c = 0.5 throughout all LIF simulations,
see Materials and Methods).

When inhibition was absent, there was a temporal broaden-
ing of the population firing rate (Figure 1Cii, cf. blue and black
curves), consistent with results from firing rate models (Pinto et al.,
2000; Miller et al., 2001; Bruno and Simons, 2002). However, feed-
forward inhibition was also crucial for maintaining the observed
low ρEE correlation values in both spontaneous and evoked states.
Indeed, without inhibition ρEE was unphysiologically large in the
LIF simulations (Figure 1Ciii). In total, when a strong feedforward
inhibitory component was present our LIF network replicated
both the trial average response, and the trial-to-trial variability
observed in our experimental results.

WHISKER VELOCITY AND E-E CORRELATION
Natural somatosensory processing produces a wide range of
whisker velocities as rodents probe their environments (Ritt et al.,
2008; Wolfe et al., 2008). The LIF model enabled simulation of
the network response to whisker deflection with distinct whisker
velocities. We varied the stimulus input in the spiking model based
on recordings of layer 4 excitatory neurons responses to differ-
ent velocities (Pinto et al., 2000). Briefly, as velocity increased
(Figure 2A, left), the mean input rate peaked earlier and decayed
faster (Figure 2A, right). For all whisker velocities, the temporal
dynamic of the model evoked E-cell firing rate was much sharper
with inhibition intact, compared to a network lacking inhibition
(Figures 2Bi,Ci). For each whisker velocity V, we considered the
time integrated response of the network following the onset of the
stimulus divided by the spontaneous firing rate:

rE (V ) =
1
T

∫ T0+T
T0

νE (t ; V ) dt

νE ,spont
. (10)

Here vE(t ) is the population firing rate, T0 is the onset time of
the whisker stimulation, and T = 30 ms (the same time window
used to measure the spike count correlations). Thus defined rE(V )
measures the normalized sensitivity of the population response to
whisker velocity. A velocity of V = 0 corresponds to the sponta-
neous state (so that rE(0) = 1), while a velocity of V = 1 is when
the model best matched the whisker evoked experimental data
(Figure 2Bii).

Not surprisingly, rE(V ) increased with velocity. However, the
removal of feedforward inhibition decreased the velocity sensi-
tivity of the normalized response rE (Figure 2Cii, blue is below
the black curve). The large response sensitivity with inhibition
intact was due to the suppression of firing rate during sponta-
neous conditions, while transient whisker responses escaped a
delayed feedforward inhibition and was thus not suppressed (Pinto
et al., 2000). While inhibition enhanced the trial averaged E-cell
sensitivity to whisker velocity, it also had a large impact on the
trial-to-trial variability of the population response. When inhibi-
tion was present ρEE was consistently low over a large range of
whisker velocities (Figure 2Biii). This is in contrast to a model
without inhibition where ρEE was much larger (Figure 2Ciii,
blue is above the black curve). Thus, feedforward inhibition both
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FIGURE 2 | Effects of varying whisker deflection velocity in the spiking

model. (A) Different time intervals to evoke a fixed deflection angle result in
different whisker velocities (left). An increase in whisker velocity scales the
peak and broadness the temporal waveform of L4 pyramidal cell responses
(right), as reported in Pinto et al. (2000). A velocity of 1 corresponds to the
value used in our experiments, two other smaller velocities are shown for
comparison purposes. (Bi) The trial averaged E-cell firing rate in time in the
model with inhibition for the same whisker input velocities in (A). (Ci) Same

as (Bi) but for the model without inhibition. (Bii) The normalized E-cell firing
rate (see equation (10)) as a function of velocity in the model with inhibition.
(Cii) Same as (Bii) but for the model without inhibition. Model with inhibition
is shown for comparison. Shaded regions represent mean ± 0.25 SD across
different neurons. (Biii) With inhibition, ρEE is approximately constant and
small across a large range of velocities. (Ciii) Without inhibition, ρEE is much
larger (cf. blue with black curve) – shaded regions represent mean ± SD
across different neuron pairs.

increased population response sensitivity to whisker velocity and
reduced pairwise co-variability over a range of evoked states. While
the former has been the focus of several studies (Pinto et al., 2000;

Miller et al., 2001), the observation that feedforward inhibition
maintains low correlated variability is novel, and the mechanisms
that support this are the topic of the next sections.
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SIMPLIFIED BINARY NEURON MODEL NETWORK
The LIF network replicated our experimental recordings and pre-
dicted that a feedforward inhibitory path is required for low
correlated trial-to-trial variability of the E-cell population spiking
activity. However, the complexity of the spiking model simulations
made further analysis difficult. Following past work (Ginzburg
and Sompolinsky, 1994; Renart et al., 2010), we highlight the
core mechanisms underlying our model predictions by consider-
ing a simplified network where LIF neuron models were replaced
with non-dynamic, two-state binary neuron models (see Materials
and Methods). Briefly, on every stimulus trial each binary neuron
model received a random input, and outputted a response that was
either a 0 (no spike) or a 1 (a spike), depending on if the input
was below or above a threshold value θ , respectively (Figure 3Ai).
Input variability was Gaussian distributed for I-cells (Figure 3Ai,
top). For E-cells the input was the combination of a Gaussian
distributed field and the binomial responses from a subset of the
I-cell population, scaled by −g, that project feedforward to the E-
cell (Figure 3Ai, bottom). As in the LIF simulations, the synaptic
field inputs were correlated with strength c for all cell pairs (E-E,
E-I, and I-I).

For binary neuron models the response probability is the frac-
tion of the input probability density that is larger than the thresh-
old (Figure 3Aii, shaded region). Since the stimulus was fixed
across trials, a change in whisker velocity resulted in a shift of the
input density by a deterministic amount, applied to both the E
and I neurons (Figure 3B, left to right). Equivalently, an increase
in whisker velocity can be thought of as a decrease in threshold
θ , and in the model we made the association θ = θ0 − kV, where
V is whisker velocity and k > 0 is a linear scaling. For the I-cell
population the input variability was Gaussian distributed for all
whisker velocities (Figure 3B, top), while the input distribution
to E neurons was not Gaussian because of the variability of the
feedforward I-cell activity. This variability was significant for large
whisker velocities, skewing the distribution of total E-cell inputs
(Figure 3B, bottom-right). Nonetheless, the feedforward archi-
tecture allowed a calculation of the joint “spiking” statistics of
the network using thresholded high dimensional Gaussians (i.e.,
dichotomized Gaussians; see Appendix). We computed the spike
statistics from a large feedforward binary network (50 excitatory
neurons each receiving an avg. of 118 inhibitory inputs). The E-
cell population showed low ρEE across a range of whisker velocities
(Figure 3C, black curve). Furthermore, ρEE was much larger with-
out inhibition (Figure 3C, blue curve; note the broken axis). Thus,
despite the simplifications from the LIF network, the binary net-
work model with inhibition exhibited low E-E cell co-variability
over a broad range of activation, similar to LIF spiking model and
the experimental data (Figure 3C; Figure S2 in Supplementary
Material). Further, its analytic tractability allowed for a deeper
analysis of the mechanisms that maintain low E-E co-variability,
which we present below.

To ease presentation we analyzed a small network of two E-
cells receiving feedforward inhibition from one I-cell. Further, we
focused on the response covariance rather than the correlation
coefficient ρ; this simplification did not qualitatively impact our
results since the near zero ρEE is due to spike count covariance
being small, as opposed to variance being excessively large. The

response statistics of the E-E pair obeyed:

νE =
(∫ ∞

θE

∫ θI

−∞
+

∫ ∞

θE +g

∫ ∞

θI

)
G2 dx dy , (11)

E [EE] =
(∫ ∞

θE

∫ ∞

θE

∫ θI

−∞
+

∫ ∞

θE +g

∫ ∞

θE +g

∫ ∞

θI

)
G3 dx dy1 dy2,

(12)

CovEE = E [EE] − ν2
E , (13)

where Gn is an n-dimensional Gaussian with 0 mean, unit vari-
ances, and covariances of strength c (see equations (A29)–(A31)
in Appendix). Variables x and yj are the distribution values of the
synaptic field to the inhibitory and excitatory neurons, respec-
tively. We remark that the strength of feedforward inhibition, g,
only appears in the limits of the integrals, implying that inhibition
acts to effectively raise E-cell threshold. How CovEE depends on
our key parameters g, c, and θ is not obvious or transparent. Thus,
we considered the asymptotic limit of small c and g and derived
the following compact approximation for CovEE (see cf. equation
(A34) in Appendix with σ E = σ I = 1):

CovEE ≈ S (θE ) Covin
(
c , g

)
, (14)

with

S(θE ) = e−2θ2
E

2π
,

Covin(c , g , θE , θI ) = c + g 22νI (1 − νI ) − 2cg

(
2νI θE + e−θ2

I√
π

)
.

Here the I-cell response probability is νI = erfc(θI )
2 =

1√
π

∫ ∞
θI

e−x2
dx . Equation (14) is one of our main theoretical

results, and offers a framework to understand the mechanism that
maintain low ρEE over a range of stimulus intensities.

Equation (14) shows that the output covariance CovEE fac-
torizes into the product of the input covariance Covin and the
E-cell covariance susceptibility S. The susceptibility S ∈ [0, 1/2π]
measures the linear relationship between input and output co-
variability. A truly linear system (meaning the output is simply
a scaled version of the input) has S = 1, while in general a non-
linearity in the input/output transfer reduces S, as is the case for
spiking neurons (de la Rocha et al., 2007). For binary models
S = 1/2π is maximized when θE = 0; here the input distribution
maximally straddles the threshold so that fluctuations are best
transferred and there is minimal correlation dilution. Decompos-
ing CovEE as in equation (14) was motivated by studies of pairs
of uncoupled cells (de la Rocha et al., 2007; Marella and Ermen-
trout, 2008; Shea-Brown et al., 2008; Barreiro et al., 2010; Tchu-
matchenko et al., 2010; Litwin-Kumar et al., 2011; Rosenbaum
and Josić, 2011); however, in equation (14) we have expanded
the framework to capture our feedforward circuit model. To gain
insight in how CovEE is maintained at low values over a range of
stimulus intensity, we explored equation (14) by a process of grad-
ually building our simplified circuit model to match the criteria of
the full model.
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FIGURE 3 | Binary network capture E-cell statistics. (Ai) Binary neuron
model receives random drive from the synaptic field (assumed to be
Gaussian) on a given trial, resulting in a “spike” (denoted by a 1) if the total
input is above threshold or no response (denoted by a 0) if the total input is
below threshold. I neuron (top) only receives input from the synaptic field
whereas an E neuron (bottom) also receives feedforward inhibitory input. (Aii)

The probability of a response on a given trial is the area of the input probability
density above threshold θ . An increase in whisker velocity is modeled by a
decrease in threshold θ . (B) The probability of spiking (colored region: red for I

neuron, blue for E neuron) increases with velocity (left to right). The effect of
inhibition on the excitatory neuron is demonstrated with high velocity (lower
right, V = 1). (C) A large binary network consisting of 50 excitatory neurons,
each receiving a random number of inhibitory inputs (avg. 118), qualitatively
captures the average correlation (as well as other statistics, see Figure S2 in
Supplementary Material). Across a range of velocities, ρEE remains
consistently low with inhibition (black), but dramatically increases without
inhibition (blue). Shaded regions represent mean ± SD across different neuron
pairs.
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CORRELATION DILUTION AND CANCELATION BALANCE TO MAINTAIN
LOW E-E COVARIANCE
We first considered a pair of E-cells subject to a correlated
synaptic field (c > 0), yet with feedforward inhibition removed
(g = 0), so that the correlation transfer reduced to its simplest
case (Figure 4Ai). Here the total input covariance was Covin = c,
so that Covin was velocity independent (Figure 4Aiii, black
curve). In contrast, the covariance susceptibility S was veloc-
ity dependent through the E-cell response threshold θE. For

small velocities, θE > 0 was large, making S = e−2θ2
E /2π small,

implying that the transfer of co-variability was poor (Figure 4Aiii,
red curve). This is because the threshold non-linearity of the
binary model attenuated the overall transfer of inputs. When
the whisker velocity increased so that θE decreased, thresh-
olding was less effective at suppressing fluctuations meaning S
increased (Figure 4Aiii, red curve). The increase in S subse-
quently caused CovEE to increase (Figure 4Aiii, green curve).
Due to the multiplicative nature of S on Covin we termed
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FIGURE 4 | Mechanism for low E-E co-variability. Analysis of a small binary
network (2 E and 1 I) shows how the output covariance depends on the input
covariance and threshold non-linearity: CovEE ≈ SCovin (equation (14)). (Ai)

Schematic of a network with no inhibition where the pair of E-cells receive
common background input. (Aii) The input covariance is Covin = c (equation
(14) with g = 0), and independent of velocity. (Aiii) The susceptibility function

S = e
−2θ2

E
2π

(red) increases with velocity (i.e., decreases with threshold), so that
the output covariance CovEE ≈ Sc (green) also increases with velocity. (Bi) A
network that now includes inhibition where the I-cell does not receive input
correlated to the E-cells. (Bii) The input covariance consists of two terms: c
(blue) and 2g2vI (1 − vI) (orange). In total, Covin = c + 2g2vI (1 − vI) (black)

increases with velocity. (Biii) CovEE (green) is even larger (more synchronous)
than in (Aiii) because both S and Covin increase with velocity. (Ci) A network
that now includes correlated input to all cells. (Cii) The input covariance
consists of three terms: c (blue), 2g2vI (1 − vI) (orange), and a negative cross

term −2cg
(

2νIθE + e
−θ2

I√
π

)
(magenta) that decreases with velocity. The total

input covariance Covin = c + 2g2νI (1 − νI ) − 2cg
(

2νIθE + e
−θ2

I√
π

)
(black)

decreases with velocity. (Ciii) S (red) increases with velocity while Covin

(black) decreases with velocity, maintaining an approximately constant and
low spike count covariance CovEE ≈ SCovin for all velocities (solid green)
compared to (Aiii) (dotted green) and (Biii) (dashed green).
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mechanisms that affect co-variability through S as correlation
dilution.

We next considered a circuit with feedforward inhibitory cou-
pling intact, but where the noisy synaptic field inputs that gave
rise to E-E correlation were uncorrelated with those provided to
the I neuron (Figure 4Bi). This network had the first two terms
of Covin, but not the cross term (proportional to cg ) in equa-
tion (14), yielding Covin = c + g 22vI(1 − vI). The first term was
again due to a correlated synaptic field, while the second term was
due to the projections from the common I-cell to the E-cell pair.
While the synaptic field continued to be independent of velocity
(Figure 4Bii, blue curve), the amount of feedforward inhibition
recruited increased with velocity due to vI’s dependence on θ I

(Figure 4Bii, orange curve). This was because the thresholding of
the I neuron attenuated the co-variability that correlated inhibi-
tion provides, and this impact of the threshold was reduced when
θ I decreased. In total, Covin increased with velocity (Figure 4Bii,
black curve). When Covin was multiplied by the susceptibility S,
CovEE increased significantly with velocity, and was larger than
the case when inhibition was removed (Figure 4Biii, green curve;
verified in the LIF spiking model in Figure S3 in Supplementary
Material). This network is consistent with the idea that inhibi-
tion can lead to synchrony (i.e., higher correlation in a small
time window; van Vreeswijk et al., 1994; Wang and Buzsáki, 1996;
Whittington et al., 2000; Cardin et al., 2009).

Finally, if the same correlated background input for the exci-
tatory neurons also provided input to the inhibitory neurons
(Figure 4Ci), the output covariance was approximated by the full
equation (14). This circuit captured the key aspects of our LIF net-
work (Figures 1 and 2). The inclusion of the negative cross term
(magenta line in Figure 4Cii) opposed the contributions of the
first and second terms, such that Covin now decreased as velocity
increases (black line in Figure 4Cii). Due to the subtractive aspect
of the third term in equation (14) we termed the overall mecha-
nism correlation cancelation. This scheme is similar to mechanisms
proposed in recurrent cortical networks, where dense, balanced
activity maintains an overall low level of input correlation (Renart
et al., 2010).

The decrease in Covin was countered by an increase in S as
velocity ranged from small to large values (Figure 4Ciii, red
and black lines). In total, CovEE ≈ SCovin was maintained at
a near constant level over a wide range of stimulus intensities
(Figure 4Ciii, green line; CovEE for the other networks are plotted
for comparison; they are relatively larger and increase more with
velocity). Thus, we propose that the combination of cancelation of
correlation via feedforward inhibition and correlation dilution via
S was such that E-E response co-variability changed very little as
whisker velocity changed. Binary model neurons are oversimpli-
fied and cannot quantitatively capture the complicated dynamics
of real spiking model systems. Nevertheless, the analysis presented
here is a proof of principle that gave some clear predictions that
we could test in our LIF spiking model network.

CORRELATION DILUTION AND CANCELATION IN THE LIF MODEL
Our binary model network suggested we measure the stimulus-
induced changes of both Covin and S for the E-cell pairs in the
spiking model network. To do this we first decomposed the total

input to every E-cell (Figure 5A, black curves) as the sum of
the background synaptic field (Figure 5A, blue curves) and the
feedforward inhibition (Figure 5A, orange curves). We computed
the covariance statistics of the input fluctuations across trials and
pairs in our network. As expected, the covariance of background
synaptic field was both high and independent of whisker input
(Figure 5B, blue curve). This contrasted with the low covariance of
the inhibitory inputs to a pair of E-cells during spontaneous con-
ditions, which rose sharply with whisker input (Figure 5B, orange
curve). This was because the firing rates of the I-cells increased
significantly during stimulus presentation, and hence so did the
co-variability of inhibition to the E-cells. However, when both
background and inhibition were combined, the total input covari-
ance decreased during stimulus presentation (Figure 5B, black
curve). Thus, the correlation cancelation via feedforward inhibi-
tion illustrated with the binary network (Figure 4Cii) occurred in
the more complicated LIF model system. Furthermore, in agree-
ment with past results (de la Rocha et al., 2007), the covariance
susceptibility S of our model LIF neurons receiving a weakly cor-
related fluctuating input increased over the range of firing rates
experienced during whisker stimulation (Figure 5C). In total, our
LIF network exhibited a combination of correlation dilution and
cancelation, as first observed in binary model neuron network
(Figure 4C).

We next verified with our spiking model network that this com-
bination of correlation dilution and cancelation maintained low
E-E co-variability over a range of whisker velocities. The decrease
of the total input covariance during whisker stimulation, relative to
spontaneous conditions, was larger for high velocity stimuli than
that for low velocity stimuli (Figure 5D, solid vs. dashed). How-
ever, the increase in E-cell firing rate for high versus low velocity
stimuli caused the covariance susceptibility to be larger for the
high velocity input (Figure 5E, solid vs. dashed). Motivated by the
results from our simplified binary model network, we computed
an approximation to CovEE obtained by multiplying the total input
covariance and the susceptibility (Figure 5F, green), and saw that
the result was similar to the actual CovEE (Figure 5F, black). We
remark that in the LIF network without inhibition, the CovEE val-
ues ranged from 0.025 to 0.065 (not shown), which was much
larger than the results with inhibition intact (Figure 5F), consis-
tent with our binary network results when g = 0 (Figure 4A). The
results from our LIF simulations support our general theory that
over a range of stimuli intensities high total input covariances were
balanced by low S values, while high S values were balanced by low
total input covariances.

CONSEQUENCES FOR I-E CORRELATION
In the LIF network we chose c and g values to be relatively large
in order to capture the low ρEE values across a range of velocities.
With a large (c, g ) pair, a precise relation between c and g is needed
for a low value of ρEE, since if we set either c to zero (between E and
I, Figure S3 in Supplementary Material) or g to zero (Figure 1C)
the co-variability increased significantly. However, low ρEE can
also be obtained by simultaneously decreasing the strength of both
c and g, effectively attenuating all sources of co-variability. Thus, a
specific choice of the (c, g ) pair would not be required to guaran-
tee a low ρEE. We therefore needed testable predictions that clearly
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single realization for a pair of E-cells is shown with V = 1. (B) The covariance of
the input currents, averaged across pairs, has the following features: the input
covariance from the background is constant (blue), the inhibitory synaptic
input’s covariance increases with firing rate (orange), but together the total
input covariance decreases with firing rate (black) – cf. Figure 4Cii. (C) The
covariance susceptibility function S for the LIF spiking model increases with

firing rate. (D) The input covariance for a low (dashed, V = 0.1) and high
velocity (solid, V = 1) whisker input in time decreases by different amounts
upon whisker stimulation. (E) The susceptibility function in time is determined
by the instantaneous firing rate [interpolating the curve in (C)]; low velocities
have smaller S and higher velocities have larger S. (F) The approximation of
the spike count covariance in green, obtained by multiplying corresponding
black and red curves, is small like the actual CovEE (cf. Figure 4Ciii). The
dashed-lines correspond to low velocity, solid lines correspond to high
velocity.

distinguish between our mechanism of correlation dilution and
cancelation produced by a large (c, g ) pair and a mechanism based
on the simple lack of correlation given by small (c, g ) pairing.

For a given whisker velocity in the small binary network there
was a family of (c, g ) values for equation (14) that lead to
CovEE ≈ 0. For a collection of fixed velocities (ranging between
0 and 1, see Figure 4) the (c, g ) pairs that achieve CovEE ≈ 0 were
generally in a diagonal region of parameter space (one gray line per
velocity in Figure 6A). An asymptotic approximation for CovIE

in a small binary network consisting of one excitatory and one
inhibitory neuron, similar to equation (14), enabled an efficient
exploration of the effect of particular (c, g ) values on CovIE. Our
calculations (see cf. equation (A36) in Appendix) resulted in the
following:

CovIE ≈ e−θ2
E −θ2

I

2π
[c − 2g

√
πeθ2

I νI (1 − νI )]. (15)

We chose a representative subset of (c, g ) pairs (color-coded in
Figure 6A) and substituted these into equation (15) to study the
dependence of CovIE on whisker velocity. Although all (c, g ) pairs
produced CovEE = 0, larger (c, g ) values resulted in a appreciable
decrease of CovIE when velocity increased from low to high val-

ues (Figure 6B). This is because the term −2g
√

πeθ2
I νI (1 − νI )

becomes more negative as θ I decreases, effectively anti-correlating
E and I-cell activity as whisker velocity increased. Of course, for

small c and g, CovIE is also small and independent of whisker
velocity. In total, this analysis shows that the invariance of CovEE

to whisker velocity produced by a large (c, g ) pair does not hold
for CovIE.

We further considered how the spread of CovIE values in a het-
erogeneous network changed with whisker velocity. We analyzed a
small binary network consisting of two heterogeneous inhibitory
neurons having θI1 < θI2 (see Appendix) providing feedforward
input to a single excitatory neuron. We measured heterogeneity
of CovIE by taking the difference 
 CovIE = CovI1E − CovI2E ,
yielding the result (see cf. equation (A43) in Appendix):


 CovIE ≈ e−θ2
E

2
√

π

[
c

(
e−θ2

I1√
π

− e−θ2
I2√
π

)
− g
 (νI )

(
1 − νI1 − νI2

)]

(16)

where 
(νI ) = νI1 − νI2 . We substituted (c, g ) values that gave
CovEE ≈ 0 (color-coded in Figure 6A) into equation (16), and saw
that larger (c, g ) values showed a significant decrease in 
CovIE

when velocities ranged from low to high values.
In total, these analyses provided two clear signatures of a large

(c, g ) pairing for I-E response statistics:

1. CovIE measured during spontaneous conditions will be larger
than that measured during stimulus evoked conditions.
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FIGURE 6 | Analysis of I-E statistics in the binary model. (A) With the
analytic approximation for CovEE (equation (14)), we plot the region of
parameter space (c, g) where CovEE ≈ 0, with each gray line representing a
particular velocity (ranging from 0 to 1, see Figure 4). Larger values of c
correspond to larger g values. Color-coded dots are a representative subset
of (c, g) pairs used below in (B,C). (B) The analytic formula for CovIE

(equation (15)) enables analysis of how it changes with velocity for a
particular pair of c and g values (colored coded). Although many (c, g) pairs
give CovEE ≈ 0, larger values exhibit more of a decrease in CovIE with
velocity (the decrease is of the same order as the full binary network and
LIF simulations). (C) A similar analysis for the width of the histogram of
CovIE (see equation (16)) values, again, shows that large c and g values
correspond to more of a decrease in the width of this distribution in the
evoked state. Except for c and g, the parameters for the binary model
match those used in (Figure 4).

2. The spread of CovIE in a heterogeneous network of E and I-cells
will be larger when measured during spontaneous than during
stimulus evoked conditions.

We next tested these two predictions with both the LIF spiking
model simulations and simultaneously recorded E and I activity
from layer 2/3 of somatosensory cortex.

Our experimental data set not only contained E-E pairs
(Figure 1A), but we also obtained a large number of I-E pairs
(n = 48), allowing us to measure the co-variability of excitatory
and inhibitory spiking (Middleton et al., 2012). In somatosensory
cortex, fast spiking inhibitory neurons have larger spontaneous
and peak-evoked firing rates than excitatory neurons (Bruno and
Simons, 2002; Swadlow, 2003; Middleton et al., 2012), evident in
both the LIF simulations (Figure 7Ai) and the experimental data
(Figure 7Bi). In agreement with our predictions for large (c, g )
pairing, both the average ρIE and the spread of ρIE around the
average computed from the LIF network (Figure 7Aii) and the
experimental recording (Figure 7Bii) decreased in the whisker
evoked state compared to the spontaneous state. Further, the
decrease in the mean of ρIE is observed not only in the population
response, but also on a pair-by pair basis for both the networks
simulations and experimental recordings (Figure 7C). In the LIF
model this indirect test of the consequences of a large (c, g ) val-
ues, while it verifies our binary model predictions (Figure 6), is
not strictly required since we can set either c or g to zero and
observe the direct shifts in network co-variability expected for a
large (c, g ) pairing (Figure 1Ciii for g = 0 and Figure S3 in Sup-
plementary Material for uncorrelated E and I activity). However,
such a direct test was not an option in the experimental record-
ing, as manipulations of g and c were not possible. Thus, the fact
that our experiments were in line with our predictions (1, 2) is
compelling evidence that the invariance of ρEE for real layer 2/3
cortical response (Figure 1Aiii) is due to a combination of corre-
lation dilution and cancelation in a cortical network with strong
feedforward inhibition.

CONSEQUENCES FOR CODING
Rodents rely heavily on their whiskers for sensing and must
be able to distinguish many different velocities encountered
in their environment (Ritt et al., 2008; Wolfe et al., 2008).
Transient whisker deflections are due to a “stick-slip” whisker
dynamic when whiskers interact with an object, and the veloc-
ity of the whisker deflection is heavily dependent on the tex-
ture of an object. Behavioral studies show that rodents use
their whiskers to make discriminations of fine texture differences
(Guic-Robles et al., 1989; Carvell and Simons, 1990), suggest-
ing a neural representation of whisker velocity. Indeed, record-
ings from barrel cortex have established that deflection velocity,
as opposed to simply whisker deflection frequency or ampli-
tude, is well represented by both single units (Wang et al., 2010)
and the joint response of populations of neurons (Arabzadeh
et al., 2003, 2004; Jadhav et al., 2009). We next focused on the
information content about whisker velocity contained in the
responses of the excitatory neuron population. In particular,
we investigated the impact that feedforward inhibition had on
the population code, given its role in both enhancing response
sensitivity (Figure 2Cii) and reducing E-E cell co-variability
(Figure 2Ciii).

To measure the confidence in the estimate of whisker veloc-
ity from single trial population spiking activity, we use the linear
Fisher information J (Kay, 1993) computed from the E-cell spik-
ing activity. The inverse of J is the lower bound on the error for
the optimal linear estimator of the velocity (Kay, 1993), and thus
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FIGURE 7 | I-E subnetwork statistics in the LIF model and experimental

data. (Ai) In the model with inhibition (same network as Figure 1B), the firing
rate of the I-cells (red) is larger than the E-cells (blue). (Bi) In the experimental
data, the firing rates of the I-cells are larger (vI,spont = 13.6 Hz and
vI,evoked = 103 Hz with n = 48 I-cells). (Aii) In the spiking model with
feedforward inhibition, the mean of ρ IE is 0.59 (SD of 0.053) in the
spontaneous state, and decreases to ρ IE = − 0.0026 (SD of 0.028) in the
evoked state. This is consistent with the binary analysis prediction in

(Figure 6B,C) because the value of c and g are relatively large. (Bii) In the
experimental data, the mean of ρ IE is 0.057 (SD of 0.083) in the spontaneous
state, with a mean ρ IE of 0.0009 (SD of 0.056) in the evoked state. The data
shows a decrease in ρ IE in the evoked state compared to the spontaneous
state, and a decrease in the width of the histogram of ρ IE values (n = 48 I-E
cell pairs). (C) Decrease in ρ IE holds across pairs: the decrease is larger with
whisker stimulation when spontaneous ρ IE is larger in both experimental data
(black dots) and the LIF spiking model (dark green dots).

a larger J indicates a better overall velocity code. For our network,
we have:

J = r′T
E Q−1 r′

E (17)

where rE is the vector of population responses of the excitatory
neurons, the notative “′” denotes differentiation with respect to
velocity, and Q is the covariance matrix of spike counts in the
30-ms time window upon a whisker deflection. For populations
with distributed responses tuning, such as visual cortex repre-
sentations of stimulus orientation or color, estimates of Q from

spiking networks can be cumbersome (Seriès et al., 2004). How-
ever in our network, all neurons responded similarly to increases
in velocity, with response heterogeneity arising only from ran-
dom network architecture and spike threshold values. This fact,
coupled with the smaller size of our E-cell network (Ne = 200)
enabled more direct estimates of Q. For computational efficiency,
only about 10% of the possible pairs of covariance values were
stored, the rest of which were randomly sampled until Q was pos-
itive semi-definite (see Figure S4 in Supplementary Material for
details). The reported J /Ne has been averaged over realizations
of Q. In considering the linear Fisher information we neglected
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any codes based on the variability of population response (Shamir
and Sompolinsky, 2004), however a linear J can be estimated from
spiking responses (Seriès et al., 2004; Beck et al., 2011) and serves
as a reasonable measure of coding performance when knowledge
of higher order responses statistics (i.e., 3rd and above) cannot be
obtained (Beck et al., 2011).

Over the entire range of velocities, the network with feedfor-
ward inhibition had Fisher information values that were roughy
two orders of magnitude larger than those from a network with-
out inhibition (Figure 8A). To highlight the mechanisms by which
feedforward inhibition enhanced population codes we dissected
the contributions of inhibition to J. Response sensitivity was mea-
sured by r ′

E or loosely the “slope” of the trial averaged E-cell
evoked firing rate versus whisker velocity. equation (17) shows
that J increases as r ′

E does. On the other hand, response variability
was measured by Q, and for populations of neurons with similar
stimulus tuning J will generally decrease as ||Q|| increases (Abbott
and Dayan, 1999; Sompolinsky et al., 2001; Josic et al., 2009).
In our network inhibition both increased response sensitivity
(Figure 2Cii) and provided mechanisms of low E-E co-variability

(Figure 2Ciii), thus we expect a synergistic effect of inhibition on
population codes. The Fisher information J computed with the
Q−1 obtained from the network with inhibition (smaller covari-
ances), but with response vector r′

E obtained from the network
without inhibition (smaller sensitivity), was intermediate between
the information computed from simulations with and without
inhibition (Figure 8B, black dashed curve). In a similar fashion,
the information obtained when we use the Q−1 from the network
without inhibition (larger covariances) and the response r′

E from
the network with inhibition (larger sensitivity) was also interme-
diate to that computed with or without inhibition (Figure 8B,
blue dashed curve). Both dashed curves do not correspond to an
actual network response because second order statistics Q depend
on first order statistics rE, and as such do not represent a realizable
neural code. However, they do quantify how important both inhi-
bition enhanced sensitivity and inhibition mediated decorrelation
are for an accurate population code.

To provide a concrete example for how inhibition enhances
coding we performed a linear discriminant analysis (Duda et al.,
2001) of the population responses when the velocity V was either
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FIGURE 8 | Fisher Information of the LIF model for varying velocities.

(A) The Fisher information, J = r
′T
E Q−1r′

E , per neuron, for the population
response of the LIF spiking network model is much larger with inhibition
(black) than without (blue); “′” denotes differentiation with respect to
velocity. The network with inhibition has lower correlation, leading to larger
||Q−1||, and is also more sensitive to velocity (i.e., larger r′

E values). The y -axis
is a log-scale. (B) The black dashed curve is the Fisher information with Q−1

obtained from the network with inhibition (low correlation), but with firing
rate vector r′

E obtained from the network without inhibition. The dashed blue
curve is Q−1 obtained from the network without inhibition, and firing rates r′

E

obtained from the network with inhibition. Although the dashed curves do
not correspond to an actual network (Q and rE are related), this shows how
important both are for the difference in Fisher information because both
dashed curves lie between the two solid curves. (C), Histogram of a
weighted sum of E-cell spike counts during whisker stimulation (30 ms
window) across trials of the model network with inhibition, for two different
velocities: V = 0.5, 1. The discriminability, d ′ = |μ1−μ0.5 |

(σ1+σ0.5 )/2
, is relatively high:

d ′ = 1.1. (D) Same as C except for the network model without inhibition. The
discriminability is much worse d ′ = 0.64 due to high co-variability and less
sensitivity to velocity.
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0.5 or 1. We take our linear code to be Vest = a · r = ∑Ne
i=1 airi ,

where a is a vector of weights that sets the contribution of the
various cell responses to an overall population code. This effec-
tively assumes a straightforward decoding of population activity,
as might be expected by a neuron that receives weighted convergent
input from the E-cell network. We computed the optimal weights
(Duda et al., 2001) for the population discrimination (Fisher’s lin-
ear discriminant), yielding a = (Q1 + Q0.5)−1(v1 − v0.5), where vx

and Qx are the mean and covariance of the population response to
velocity x. The network with inhibition produced a discriminable
response based on trial distributions of Vest for the two velocities
(Figure 8C), while the discrimination power of the population
without inhibition was severely diminished (Figure 8D). The dis-
tribution of Vest from the networks showed that inhibition both
separated the trial average responses, as well as reduced the vari-
ance of the responses, leading to an overall enhanced discrimina-
tion. In total, feedforward inhibition increased the whisker velocity
estimation and discrimination power of stochastic networks of
spiking neurons.

DISCUSSION
SUMMARY OF RESULTS
Co-variability of population activity across stimulation trials has
been an intense focus of research (Averbeck et al., 2006; Faisal et al.,
2008; Cohen and Kohn, 2011) with conflicting reports (Averbeck
et al., 2006; Greenberg et al., 2008; Gutnisky and Dragoi, 2008;
Smith and Kohn, 2008; Cohen and Maunsell, 2009; Mitchell et al.,
2009; Ecker et al., 2010; Renart et al., 2010; Middleton et al., 2012).
To provide greater insight into how cortical circuitry determines
spike count co-variability across a range of network activation we
expanded on our past study (Middleton et al., 2012) and utilized
in vivo extracellular recordings, computational modeling, and the-
oretical analysis to study the rat barrel somatosensory cortex under
whisker stimulation. We found that despite strong evidence for
highly correlated background inputs to all neurons in layer 2/3
of the somatosensory cortex (Poulet and Petersen, 2008; Gentet
et al., 2010), there were consistently low levels of E-E spike count
correlation during both spontaneous and whisker evoked states. A
feedforward inhibitory spiking network model captured the cor-
relation structure of the experimental recordings, and motivated
the study of a reduced binary model network. Using a binary
model network we decomposed the mechanism that provided
low co-variability to a combination of a spike threshold based
correlation dilution for low levels of network activation and a
circuit-based cancelation of correlation at high levels of network
activity. Our analysis made clear predictions for how co-variability
of I-E pairs would change with whisker input, and these were veri-
fied in simulation and experiment. Finally, the inhibition induced
low E-Eco-variability and enhanced population sensitivity coop-
erated to dramatically increase the (Fisher) information content
about whisker velocity.

CORRELATION DILUTION AND CANCELATION IN SOMATOSENSORY
CORTEX
Our study suggests that the low co-variability of E-cell activ-
ity (Figure 1) is due to a combination of correlation dilution
through cellular excitability at low firing rates, and network-based

correlation cancelation mechanisms at high rates. Our previous
study (Middleton et al., 2012) presented a firing rate model that
captured the essential features of our data, yet the model was not
decomposed into the base mechanisms of correlation dilution and
cancelation. Thus, our binary model treatment has provided novel
insights and ties together not only our experimental data (Middle-
ton et al., 2012), but also the work from several groups recording
from populations of cells in superficial layers of somatosensory
cortex.

Poulet and Petersen (2008) and Gentet et al. (2010) measured
high membrane potential co-variability between E-E pairs, yet zero
co-variability of E-E spikes in the spontaneous state. In the spon-
taneous state of our model, the synaptic field correlations were
not canceled by feedforward inhibition, so that the membrane
potential co-variability was significant (evident by Covin > 0).
Nonetheless, correlation dilution via spike thresholding accounted
for the low spike variability in spontaneous conditions. Moreover,
Gentet et al. (2010) also report that the co-variability of I-E spike
counts is larger than that of E-E spike counts in the spontaneous
state. This was also the case in our model, since I-cells fired at a
higher rate in the spontaneous state so that the correlation dilu-
tion mechanism was less effective than for a pair of low rate E-cells.
Thus, a correlation dilution mechanism is consistent with both the
high correlation of membrane potential activity and the low corre-
lation of the spiking activity observed in the low rate spontaneous
state.

The correlation cancelation mechanism employed in our study
required that correlated excitatory inputs were canceled by cor-
related inhibitory inputs. This is consistent with estimates of the
co-variability of excitatory and inhibitory inputs to pairs of pyra-
midal neurons in barrel cortex (Okun and Lampl, 2008), namely
that excitatory and inhibitory currents are strongly anti-correlated.
The fact that in our model correlation cancelation operated best in
the stimulus evoked state also agrees with population recordings in
somatosensory cortex showing that the trial-to-trial co-variability
of simultaneously recorded cells plays a negligible role in pop-
ulation representation of whisker velocity (Petersen et al., 2001;
Jadhav et al., 2009). However, a clear verification of correlation
cancelation for high levels of network activations would require
intracellular recordings from excitatory neuron pairs showing that
the co-variability of inputs decreases with stimulus intensity. This
prediction has yet to be tested in layer 2/3 of the rat somatosen-
sory cortex. However, it is consistent with intracellular membrane
potential recordings from simultaneously recorded pyramidal
neurons in visual cortex, where a marked decrease in membrane
potential co-variability is reported when stimuli with preferred
orientation are presented, compared to that for blank stimuli (Yu
and Ferster, 2010). Thus, we propose that in the superficial layers of
somatosensory cortex a strong feedforward inhibitory circuit sup-
ports a correlation cancelation mechanisms which ensures that
co-variability is low for stimulus evoked regimes.

DECORRELATED CORTICAL ACTIVITY AND WHISKER VELOCITY CODING
Feedforward inhibition is a central component in many corti-
cal circuits and is critical for several aspects of neural processing
(Ferster and Miller, 2000; Bruno and Simons, 2002; Swadlow,
2003; Wehr and Zador, 2003; Wilent and Contreras, 2005; Higley
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and Contreras, 2006; Heiss et al., 2008; Priebe and Ferster, 2008;
Cafaro and Rieke, 2010). In the barrel cortex, feedforward inhibi-
tion is associated with increased sensitivity of cortical responses
to whisker velocity (Pinto et al., 2000; Miller et al., 2001; Bruno
and Simons, 2002). These reports considered the trial averaged
firing rate, and while it is an important descriptor of cortical
response, any measure of coding must also consider the trial vari-
ability about the average (i.e., the noise). Correlated variability
across a neuron population (i.e., noise correlation) has been shown
to be weak in barrel cortex and hence contributes in a negligi-
ble fashion to sensory coding (Petersen et al., 2001; Arabzadeh
et al., 2003, 2004; Jadhav et al., 2009). This may lead some to
discount the relevancy of noise correlations in somatosensory
codes. In our study we show that the mechanisms that main-
tain low noise correlations should not be dismissed, and rather
require a matching of excitability and circuit-based mechanisms
to decorrelate population variability across a range of stimu-
lus intensities. For our model both the enhanced sensitivity and
decorrelation features of feedforward inhibition combine syner-
gistically to substantially increase the accuracy of whisker velocity
codes.

While there is evidence that spike count responses convey
information about whisker related inputs (Petersen et al., 2001),
there has been significant discussion about the impact of the
fine temporal structure of somatosensory spike trains for corti-
cal coding (Petersen et al., 2001; Jadhav et al., 2009), especially
in its role for velocity coding (Wang et al., 2010). In our study
we chose to compute spike count statistics over 30 ms windows.
This timescale is longer than the fast temporal changes of firing
rates reported from somatosensory cortex, and overlaps the entire
response period. Furthermore, this timescale is reasonable from
the perspective of downstream synaptic and cellular integration.
Future studies should explore the impact of decoder timescale on
the ability for feedforward inhibition to enhance cortical codes
through correlation cancelation.

INHIBITION AS A SOURCE OF DECORRELATION
A traditional view of inhibition in spiking networks is that inhibi-
tion acts to synchronize population activity, often associated with
the emergence of network-wide rhythmic activity (van Vreeswijk
et al., 1994; Wang and Buzsáki, 1996; Whittington et al., 2000;
Börgers and Kopell, 2003; Tiesinga et al., 2004; Brunel and Hansel,
2006; Buzsáki, 2006; Cardin et al., 2009). These networks do not
have external sources of correlated activity, nor densely recur-
rent excitatory activity to provide internal sources of correlation.
Within the context of our analysis these networks lack the third
cancelation term in equation (14), yet retain the second term
where inhibition is a source of correlation. Recently, Renart et al.
(2010) presented correlation cancelation mechanisms in recur-
rent, balanced, densely coupled networks to explain the low level
of co-variability in cortex. In their study, inhibition played a sim-
ilar role to that in our network, and canceled the co-variability to
neuron pairs. While the theoretical analysis in Renart et al. (2010)
considered networks of dynamic, binary neurons and treated the
fully recurrent case, it neglected the role of threshold non-linearity,
known to be important in response variability (Carandini, 2004;
de la Rocha et al., 2007). This was in part due to the fact that

the source of positive and negative correlation was internally gen-
erated within their network and hence the impact of threshold
attenuation was equivalent for both. In our analysis, the source of
correlating input was independent of network activity and pre-
sumed to be from external sources (Middleton et al., 2012), while
the inhibitory cancelation signal depended on stimulus intensity.
Hence, the degree of cancelation was dependent on the degree
of attenuation by I-cell thresholding. In our network, correlation
cancelation is fully operative in the high rate evoked condition,
and correlation dilution mechanisms ensure low co-variability for
low rate responses.

Alternatively, the source of correlating input could arise from
recurrent activity within the cortical network itself, which our
model neglects. A full theory that accounts for pairwise spiking sta-
tistics in recurrent networks is beyond the scope of this study, and
is a current challenge for the theoretical community (the theory
presented in Renart et al., 2010 is valid only when the total external
and internal inputs are asynchronous). Furthermore, our feedfor-
ward inhibitory network, while an oversimplification of cortical
tissue, adequately captured the key aspects of the somatosensory
data. Thus, our analysis provides intuition about the mechanisms
for maintaining low co-variability across a range of states.

A consequence of the theoretical analysis in Renart et al. (2010)
is that the spread of correlation values (of different pairs) is deter-
mined by the size of the population (N ); in particular, they show
that the spread scales as 1/

√
N . We extended this analysis and

showed that the spread of ρIE values decreased dramatically in
the evoked state even though the population size remains fixed,
in both simulation and experimental data. Our binary network
analysis related this to the non-linear thresholding of the stochastic
binary network. In fact, a linear transfer of fluctuating inputs gives
second order statistics that are independent of stimulus intensity
(see Supplementary Material, section 3). Thus, taking into account
the non-linear transfer of input to output, as well as neural archi-
tecture, is crucial to properly account for how pairwise statistics
change with neural state.

In summary, we have argued that a combination of correlation
dilution and cancelation mechanisms provides low co-variability
of population activity over a large range of states in the superficial
layers of somatosensory cortex. This theory offers a parsimonious
explanation of not only our data, but the recordings of other
groups from the same cortical area. Further, this low co-variability
enhances the overall whisker velocity code used in somatosensory
cortex, thereby giving a concrete functional implication of our
decorrelation mechanisms.
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APPENDIX
BINARY NEURON MODEL NETWORK STATISTICS
Recall that the general binary network that consists of excitatory (E) neurons, Yk, k ∈ {1, 2, . . ., Ne} that received feedforward inhibitory
inputs (I), Xj, j ∈ {1, 2, . . ., Ni}. We assume the excitatory neurons do not provide any input into the inhibitory neurons. The variables
had values of 0 (not spiking) or 1 (spiking), and were governed by the following equations:

Xj = H
(
θIj + ηj

)
, (A1)

Yk = H

⎛
⎝θE + ηNi+k + g

Ni

Ni∑
j=1

Wkj Xj

⎞
⎠ (A2)

where H (x) is again the Heaviside step function; all excitatory neurons had the same threshold value θE in the absence of inputs,
while the inhibitory neurons had different θIj . Higher whisker velocities (V ) were represented by lower threshold θ I/E values, so that

θ I/E = θ0,I/E − kI/EV. Each row of the weight matrix summed to Ni :
∑Ni

j=1 Wkj = Ni , with g > 0 being the strength of inhibitory

coupling. The random vector �η is of size (Ni + Ne) × 1, and represented fluctuating background input drawn from a multivariate
Gaussian distribution with zero mean �0. The distribution of �η obeyed:

�η ∼ 1

π(Ni+Ne )/2|M |1/2
exp

(
− �vT M−1�v

)
(A3)

where �v =
[�x
�y
]

is a column vector representing the arguments, and �vT = [x1 . . . xNi y1 . . . yNe ] is its transpose. With a slight abuse

of notation, we represent the inhibitory and excitatory noise values with xj and yk, respectively (not to be confused with the binary
random variables Xj and Yk that represent the output). For convenience, let us denote the probability density function by G:

G = 1

π(Ni+Ne )/2|M |1/2
exp(− �vT M−1�v). (A4)

The covariance matrix M is:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ 2
I · · · cσ 2

I cσI σE · · · cσI σE
...

. . .
...

... · · · ...
cσ 2

I · · · σ 2
I cσI σE · · · cσI σE

cσEσI · · · cσEσI σ 2
E · · · cσ 2

E
...

. . .
...

...
. . .

...
cσEσI · · · cσEσI cσ 2

E · · · σ 2
E

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The parameter c ∈ (0, 1) is the level of correlation of the background input that leads to correlated spiking across the entire
population. The (co)-variances of the ηj’s had a simple structure which we will subsequently exploit.

The probability that Xj = 1, and Yk = 1 (i.e., spiking or firing rate in a given time window) and the second order statistics of
these events are the desired quantities that will be derived below. The background inputs being correlated Gaussian noise results in
dichotomized Gaussians for the various statistical values. The fact that Xj and Yk are binary random variables allowed us to easily
calculate:

E
[
Xj

]
:= 0 Pr

(
Xj = 0

) + 1 Pr
(
Xj = 1

)
(A5)

E [Yk ] := 0 Pr (Yk = 0) + 1 Pr (Yk = 1) . (A6)

Let

νIj := E
[
Xj

] = Pr(Xj = 1), (A7)

νEk := E [Yk ] = Pr(Yk = 1) (A8)

One can think of νIj and νEk as the probability of firing in a given time window, related to the standard firing rate notation.
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We start with the statistics of the inhibitory neurons that only receive background inputs. It is straight forward to see

νIj =
∫ ∞

θIj

∫
R

· · ·
∫

R

G dx1...dxj−1dxj+1..dxNi d�y dxj

=
∫ ∞

θIj

e−x2
j /(σI )

2

√
πσI

dxj

= erfc(θIj /σI )

2

(A9)

To calculate νEk we evoke the tower law

νEk = E [Yk ] = E �X
[
E
[

Yk | �X]]
= E �X

[
Pr

(
Yk = 1, �X = �x)/Pr

( �X = �x)] (A10)

The advantage of having a feedforward network is that is easier to evaluate the above expression because the expectation E �X over all
2Ni configurations (Xj ∈ {0, 1}) is independent of Yk. We thus have

νEk =
∑

�x

Pr
(
Yk = 1, �X = �x)
Pr

( �X = �x) Pr
( �X = �x) =

∑
�x

Pr
(
Yk = 1, �X = �x) (A11)

The probability that Yk = 1 with some configuration �x , summed over all configurations, gives νEk .
One practical issue that arises with evaluating vE for different I thresholds θIj was that for Ni large, the number of terms (2Ni ) in the

sum increases very fast.
Remark: To mimic physiological realism, we restricted the values of the spiking probabilities to νIj ≤ 0.5 and νEk ≤ 0.5, so that the

effective thresholds are positive values on average (i.e., θIj ≥ 0 for I neurons). This was necessary to insure that the pairwise correlation
of an uncoupled population of neurons robustly increases with firing rate (de la Rocha et al., 2007).

The second order statistics, Cov(Xj Yk) = E
[
Xj Yk

]−νIj νEk and Cov(Yk Yk ′) = E [Yk Yk ′]−νEk νEk′ were next to be calculated. Because

the variables X ’s and Y ’s are binary random variables, the individual variances are: Var(Xj) = νIj − ν2
Ij

and Var(Yk) = νEk − ν2
Ek

. In

particular, the correlation coefficients are

ρIj Ek = Cov
(
Xj Yk

)√
Var

(
Xj

)
Var (Yk)

(A12)

ρEk Ek′ = Cov (Yk Yk ′)√
Var (Yk)Var (Yk ′)

. (A13)

Again, because they are binary random variables we have the identity

E
[
Xj Yk

] = Pr
(
Xj = 1, Yk = 1

)
(A14)

E [Yk Yk ′] = Pr (Yk = 1, Yk ′ = 1) (A15)

HOMOGENOUS CASE: E RECEIVE INPUTS FROM I NEURONS
For exposition, we first assume θIj = θI · ∀j , and that the weight matrix Wjk consists of all 1’s so that all νEk ’s are equal (denote vE). In
this case, the firing rate statistics only require evaluating integrals of dimension Ni + 1 (the term E[Yk Yk ′ ] requires Ni + 2 dimensions).
With a slight abuse of notation, we use G to denote the multivariate Gaussian with the appropriate dimension being obvious from the
context. Although this homogenous network is relatively simple, it is instructive for the general expressions above.

From equation (A9), we have

νI = erfc(θI /σI )

2
.

The homogeneity of the I neurons reduces the formulas above because many of the 2Ni terms are equal. The result is:

νE =
Ni∑

l=0

(
Ni

l

)∫ ∞

θI

. . .

∫ ∞

θI︸ ︷︷ ︸
l integrals

∫ θI

−∞
. . .

∫ θI

−∞︸ ︷︷ ︸
Ni−l integrals

∫ ∞

θE +g
l

Ni

G d�x dy . (A16)
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The second order statistics are:

E [XY ] =
Ni−1∑
l=0

(
Ni − 1

l

)∫ ∞

θI

. . .

∫ ∞

θI︸ ︷︷ ︸
l integrals

∫ ∞

θI

∫ θI

−∞
. . .

∫ θI

−∞︸ ︷︷ ︸
Ni−1−l integrals

∫ ∞

θE +g
l+1
Ni

G d�x dy (A17)

E [Yk Yk ′] =
Ni∑

l=0

(
Ni

l

)∫ ∞

θI

. . .

∫ ∞

θI︸ ︷︷ ︸
l integrals

∫ θI

−∞
. . .

∫ θI

−∞︸ ︷︷ ︸
Ni−l integrals

∫ ∞

θE +g
l

Ni

∫ ∞

θE +g
l

Ni

G d�x dyk dyk ′ (A18)

where

(
N
l

)
= N !

(N−l)!l! . To summarize, the correlation coefficients are:

ρIE = E [XY ] − νI νE√
νI − ν2

I

√
νE − ν2

E

(A19)

ρEE = E [Yk Yk ′] − ν2
E

νE − ν2
E

. (A20)

HETEROGENEOUS CASE: E RECEIVE INPUTS FROM I NEURONS

We still assume Wjk consists of all 1’s. From equation (A9), the probability of an I neuron spiking is νIj = erfc(θIj /σI )

2 . The difference now

in computing νEk and the second order statistics without the symmetries in the integrals. For example, each νEk requires 2Ni integrals,
each of which has Ni + 1 dimensions, which is unwieldy for large Ni.

νEk =
Ni∑

l=0

∑
(j1,...,jNi )

∫ ∞

θIj1

. . .

∫ ∞

θIjl︸ ︷︷ ︸
l integrals

∫ θIjl+1

−∞
. . .

∫ θINi

−∞︸ ︷︷ ︸
Ni−l integrals

∫ ∞

θE +g
l

Ni

G dxj1 . . . dxjNi
dy (A21)

E
[
Xj Yk

] =
Ni−1∑
l=0

∑
(j1,...,jNi −1)

∫ ∞

θIj1

. . .

∫ ∞

θIjl︸ ︷︷ ︸
l integrals

∫ ∞

θIj

∫ θIjl +1

−∞
. . .

∫ θINi −1

−∞︸ ︷︷ ︸
Ni−1−l integrals

∫ ∞

θE +g
l+1
Ni

G dxj1 . . . dxjNi
dy (A22)

E [Yk Yk ′] =
Ni∑

l=0

∑
(j1,...,jNi )

∫ ∞

θIj1

. . .

∫ ∞

θIjl︸ ︷︷ ︸
l integrals

∫ θIjl+1

−∞
. . .

∫ θINi

−∞︸ ︷︷ ︸
Ni−l integrals

∫ ∞

θE +g
l

Ni

∫ ∞

θE +g
l

Ni

G dxj1 . . . dxjNi
dyk dyk ′ (A23)

The inner sum over (j1, . . . , jNi ) represents all possible combinations of choosing l indices out of Ni (Ni − 1 in equation (A22)).

SMALL PARAMETER APPROXIMATION
For moderate to large Ne/i values, the formulas (large dimensional integrals) above are impractical to compute. The best way to compute
the statistical values is via Monte Carlo simulations even with this simplified model of a neuron. However, for small networks, the
statistical formulas provide insight for the ways in which the quantities change in different states. We derive the formula for the partial
derivative with respect to c by first evoking a generalized product rule:

∂G

∂c
= G

[
−

(
tr

(
M−1 ∂M

∂c

)
+ �vT ∂

∂c

{
M−1} �v

)]
(A24)

and calculating each of these terms.
We will show that the first term in the square brackets is 0. It can be shown by induction that

M−1 = c

⎛
⎜⎜⎝

. . .
... . . .

· · · 1 · · ·
. . . ...

. . .

⎞
⎟⎟⎠ + diag
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where diag is some diagonal matrix independent of c. Since ∂M
∂c =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · σ 2
I σI σE · · · σI σE

...
. . . · · · ... · · · ...

σ 2
I · · · 0 σI σE · · · σI σE

σEσI · · · σEσI 0 · · · σ 2
E

... · · · ...
...

. . .
...

σEσI · · · σEσI σ 2
E · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, the matrix diag does

not appear in

tr

(
M−1 ∂M

∂c

)
= c[σ 2

I N 2
i + σ 2

E N 2
e + 2NiNeσEσI ],

which is obviously 0 when c = 0.
The second term is simply:

�vT ∂

∂c

{
M−1} �v = �vT

⎛
⎜⎜⎝

. . .
... . . .

· · · 1 · · ·
. . . ...

. . .

⎞
⎟⎟⎠ �v =

Ni+Ne∑
j=1

Ni+Ne∑
k=1

vj vk (A25)

Using equation (A24), one can derive following useful formula:

∂G

∂c

∣∣∣∣
c=0

= G

∣∣∣∣
c=0

[
− �vT ∂

∂c

{
M−1} �v

]
c=0

=
Ni∏

j=1

e−v2
j /σ 2

I

√
πσI

Ne∏
k=1

e
−v2

Ni +k/σ 2
E

√
πσE

2
∑
l �=l ′

vl

σE/I

vl ′

σE/I

(A26)

The sum in equation (A26) consists of

(
Ni + Ne

2

)
terms, and σ E/I depends on the type of neuron corresponding to vl and vl ′ .

Differentiating with respect to g is straight forward because it only appears in the limits of integration so that we can apply the
Fundamental Theorem of Calculus.

The correlation coefficients consists of a complicated fraction where the denominator terms:
√

Var(X or Y ) lead to very long and
convoluted formulas in the asymptotic regime. We will focus on covariances rather than correlation because our results qualitatively
holds for this quantity as well. It is unsurprising and easy to see from the formulas above that

Cov(Xj Yk)
∣∣c=0,g=0 = Cov(Yk Yk ′)

∣∣
c=0,g=0 = 0.

Using this we have the Taylor approximation

Cov
(
Xj Yk

) ≈ c
∂Cov

∂c

∣∣∣∣
c=0,g=0

+ g
∂Cov

∂c

∣∣∣∣
c=0,g=0

(A27)

The following two identities will be useful in evaluating the derivative with respect to c in equation (A26):

∫ ∞

θ

e−(x/σ)2

√
πσ

x

σ
dx = e−(θ/σ )2

2
√

π∫ θ

−∞
e−(x/σ)2

√
πσ

x

σ
dx = − e−(θ/σ )2

2
√

π

(A28)

The asymptotic formulas for the statistical quantities of interest simplify tremendously when evaluating the partial derivatives at
c = g = 0.
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ASYMPTOTIC E-E CORRELATION REMAINS LOW
To see why ρEE remains uniformly low on average across different states, we consider the minimal model Ni = 1 and Ne = 2 so that the
feedforward inhibitory input is statistically the same (with the same θ I). Recall that the different velocities (spontaneous to stimulus
evoked) are simply represented by changing the thresholds: θ ’s. The statistics for this network are:

νE = νE1 = νE2

νE =
(∫ ∞

θE

∫ θI

−∞
+

∫ ∞

θE +g

∫ ∞

θI

)
G dx dy

(A29)

E [Y1Y2] =
(∫ ∞

θE

∫ ∞

θE

∫ θI

−∞
+

∫ ∞

θE +g

∫ ∞

θE +g

∫ ∞

θI

)
G dx dy1 dy2 (A30)

Cov(Y1, Y2) = E [Y1Y2] − ν2
E (A31)

We only analyze the Cov(Y 1,Y 2) because the denominator of ρEE,
√

Var(Y1)Var(Y2) = νE − ν2
E , increases with whisker velocity and

only helps maintain a low ρEE. Recall that we restrict vE ∈ [0, 0.5].
To lowest order, Cov(Y 1,Y 2) increases with c and g because there is no interaction between Y 1 and Y 2. In order to see how the

covariance remains uniformly low, the asymptotic approximation for small g and c needs to be of 2nd order.

Cov(Y1, Y2) ≈ c

[
∂

∂c
{ Cov} + c

2

∂2

∂c2
{ Cov}

]
c=0,g=0

+ g

[
∂

∂g
{ Cov} + g

2

∂2

∂g 2
{ Cov}

]
c=0,g=0

+ cg

[
∂2

∂c∂g
{ Cov}

]
c=0,g=0

(A32)

Let us denote the spiking probability of the E neuron in the absence of inputs c = g = 0 with

νE0 := erfc(θE/σE )

2
. (A33)

The term ∂2

∂c2 { Cov}
∣∣∣
c=0,g=0

in the asymptotic formula is analytically intractable; we ignore this small term because when g = 0

the first order term c ∂
∂c { Cov}

∣∣
c=0,g=0 is a reasonable approximation to Cov(Y 1,Y 2) (not shown). We skip the tedious and straight

forward steps for deriving the terms:

∂

∂c
{ Cov}

∣∣∣∣
c=0,g=0

= e−2(θE /σE )2

2π
> 0

∂

∂g
{ Cov}

∣∣∣∣
c=0,g=0

= −2νE0νI
e−(θE /σE )2

√
πσE

− 2νE0

(−(1 − νE0)νI − νE0νI
) e−(θE /σE )2

√
πσE

= 0

∂2

∂g 2
{ Cov}

∣∣∣∣
c=0,g=0

= 2νI
e−2(θE /σE )2

πσ 2
E

(1 − νI ) > 0

∂2

∂c∂g
{ Cov}

∣∣∣∣
c=0,g=0

= −2 e−2(θE /σE )2

πσE

(
νI

θE
σE

+ e−(θI /σI )2

2
√

π

)
< 0

The resulting approximation is

Cov (Y1, Y2) ≈ e−2(θE /σE )2

2π

[
c + g 2 2νI (1 − νI )

σ 2
E

− 2cg

(
2νI θE

σ 2
E

+ e−(θI /σI )
2

√
π

)]
(A34)

ASYMPTOTIC I-E CORRELATION IN A SMALL NETWORK
We now consider a minimal network Ne = 1, Ni = 1 to derive an analytic formula for the I-E covariance

Cov(X , Y ) =
∫ ∞

θI

∫ ∞

θE +g
G dx dy − νI

(∫ θI

−∞

∫ ∞

θE

+
∫ ∞

θI

∫ ∞

θE +g

)
G dx dy . (A35)
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Similar to the argument above, we ignore the denominator of ρIE,
√

Var(X)Var(Y ), because this term increases with whisker velocity.
All things being equal, this promotes a decrease of ρIE in the evoked state, consistent with our experimental data.

The resulting calculations are: ∂
∂g E[XY ]

∣∣∣
c=0,g=0

= − e−(θE /σE )2
√

πσE
νI , ∂

∂c E[XY ]∣∣c=0,g=0 = e−(θE /σE )2
√

π
e−(θI /σI )2

2
√

π
, ∂νE

∂g

∣∣∣
c=0,g=0

=
− e−(θE /σE )2

√
πσE

ν2
I , and ∂νE

∂c

∣∣∣
c=0,g=0

= 0. To first order, the formula for the I-E covariance is:

Cov (X , Y ) ≈ e−(θE /σE )2

√
π

[
c

e−(θI /σI )
2

2
√

π
− g

1

σE
νI (1 − νI )

]

= e−(θE /σE )2−(θI /σI )
2

2π

[
c − 2g

√
πe(θI /σI )

2 1

σE
νI (1 − νI )

] (A36)

SPREAD OF THE ρ IE DISTRIBUTION
To better understand how the spread of ρIE values (across different pairs) changed in different states, we considered a minimal popula-
tion size of 2 different I neurons Ni = 2 providing input to a single E neuron Ne = 1. Recall that different velocities are represented by
simply changing the thresholds: θ ’s. We assume that θI1 < θI2 so that νI1 > νI2 in all states – this assumption is not true for all recorded
I neurons but simplifies our analytical explanation below. Let


νI := νI1 − νI2 (A37)

With this small network, the width of ρIE values is simply:


ρIE := ∣∣ρI1E − ρI2E
∣∣ = E [X1Y ] − νI1νE√

νI1 − ν2
I1

√
νE − ν2

E

− E [X2Y ] − νI2νE√
νI2 − ν2

I2

√
νE − ν2

E

In this case the terms in the denominators
√

νI1 − ν2
I1

√
νE − ν2

E and
√

νI2 − ν2
I2

√
νE − ν2

E by themselves will often lead to a decrease

of 
ρEI in the evoked state even if the |Cov(X 1,Y ) − Cov(X 2,Y )| stays the same. This can be seen as follows. Let the statistics in the
evoked state be denoted by a bar: νI1 , and νI2 . A sufficient condition for the claim above is√

νI1 − ν2
I1

−
√

νI2 − ν2
I2

<

√
νI1 − νI1

2 −
√

νI2 − νI2
2,

which is satisfied since the experimental data shows 
(νI ) < 
(νI ).
We will focus on the difference in the numerators Cov(X 1,Y ), Cov(X 2,Y ), just like before.


Cov (X , Y ) := Cov (X1, Y ) − Cov (X2, Y ) = 
E [XY ] − 
(νI νE ), (A38)

where


E [XY ] = E [X1Y ] − E [X2Y ]


(νI νE ) = νE
(νI ).

The result is

∂

∂g
{
E[XY ]}

∣∣∣∣
c=0,g=0

=
(

−
∫ ∞

θI1

∫ θI2

−∞
+

∫ θI1

−∞

∫ ∞

θI2

)
G(x1, x2, y = θE ; c = 0) dx2 dx1

= e−(θE /σE )2

2
√

πσE

(−νI1(1 − νI2) + νI2(1 − νI1)
) = e−(θE /σE )2

√
πσE

(−νI1 + νI2)

= − e−(θE /σE )2

2
√

πσE

(νI )

(A39)

We use the identities in equation (A28) to evaluate the derivative with respect to c (43):

∂

∂c
{
E[XY ]}

∣∣∣∣
c=0,g=0

=
∫ ∞

θE

(∫ ∞

θI1

∫ θI2

−∞
−

∫ θI1

−∞

∫ ∞

θI2

)
∂G

∂c

∣∣∣∣
c=0

dx2 dx1 dy

= e−(θE /σE )2

2
√

π

(
e−(θI1 /σI )

2

√
π

− e−(θI2 /σI )
2

√
π

)
.

(A40)
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Again, there is a lot of cancelation to arrive at equation (A40). The variable vE also depends on g and c, so we have to also evaluate
∂vE/∂g and ∂vE/∂c at c = g = 0 for the second term in 
Cov. They are


(νI )
∂νE

∂g

∣∣∣∣
c=0,g=0

= −
 (νI )

(∫ ∞

θI1

∫ θI2

−∞
+

∫ θI1

−∞

∫ ∞

θI2

+
∫ ∞

θI1

∫ ∞

θI2

)
G

(
x1, x2, y = θE ; c = 0

)
dx2 dx1

= −
 (νI )
e−(θE /σE )2

√
πσE

(
1

2
νI1

(
1 − νI2

) + 1

2
νI2

(
1 − νI1

) + νI1νI2

)

= −
 (νI )
e−(θE /σE )2

2
√

πσE

(
νI1 + νI2

)
(A41)

and


 (νI )
∂νE

∂c

∣∣∣∣
c=0,g=0

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

θE

∂G

∂c

∣∣∣∣
c=0

dy dx2 dx1 = 0. (A42)

The difference between equations (A40) and (A42), and the difference between equations (A39) and (41), make up the terms for

Cov. The resulting approximation is:


Cov (X , Y ) ≈ e−(θE /σE )2

2
√

π

[
c

(
e−(θI1 /σI )

2

√
π

− e−(θI2 /σI )
2

√
π

)
− g


 (νI )

σE

(
1 − νI1 − νI2

)]
(A43)

Notice how closely this equation resembles the asymptotic formula for I-E covariance (equation (A36)). The first term in the square
brackets represents an increase in the spread of correlation coefficients increases with firing rate in the absence of g. The second term
demonstrates that feedforward inhibition acts to decrease the spread of the correlation values.
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