
ORIGINAL RESEARCH ARTICLE
published: 18 April 2012

doi: 10.3389/fncom.2012.00018

Learning from open source software projects to improve
scientific review
Satrajit S. Ghosh1*, Arno Klein2, Brian Avants3 and K. Jarrod Millman4

1 McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
2 New York State Psychiatric Institute, Columbia University, New York, NY, USA
3 Department of Radiology, PICSL, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
4 Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA

Edited by:

Nikolaus Kriegeskorte, Medical
Research Council Cognition and
Brain Sciences Unit, UK

Reviewed by:

Harel Z. Shouval, University of Texas
Medical School at Houston, USA
Nikolaus Kriegeskorte, Medical
Research Council Cognition and
Brain Sciences Unit, UK

*Correspondence:

Satrajit S. Ghosh, McGovern
Institute for Brain Research,
Massachusetts Institute of
Technology, 43 Vassar St., 46-4033F
MIT, Cambridge, MA 02139, USA.
e-mail: satra@mit.edu

Peer-reviewed publications are the primary mechanism for sharing scientific results. The
current peer-review process is, however, fraught with many problems that undermine the
pace, validity, and credibility of science. We highlight five salient problems: (1) reviewers
are expected to have comprehensive expertise; (2) reviewers do not have sufficient
access to methods and materials to evaluate a study; (3) reviewers are neither identified
nor acknowledged; (4) there is no measure of the quality of a review; and (5) reviews
take a lot of time, and once submitted cannot evolve. We propose that these problems
can be resolved by making the following changes to the review process. Distributing
reviews to many reviewers would allow each reviewer to focus on portions of the
article that reflect the reviewer’s specialty or area of interest and place less of a
burden on any one reviewer. Providing reviewers materials and methods to perform
comprehensive evaluation would facilitate transparency, greater scrutiny, and replication
of results. Acknowledging reviewers makes it possible to quantitatively assess reviewer
contributions, which could be used to establish the impact of the reviewer in the
scientific community. Quantifying review quality could help establish the importance of
individual reviews and reviewers as well as the submitted article. Finally, we recommend
expediting post-publication reviews and allowing for the dialog to continue and flourish in
a dynamic and interactive manner. We argue that these solutions can be implemented
by adapting existing features from open-source software management and social
networking technologies. We propose a model of an open, interactive review system
that quantifies the significance of articles, the quality of reviews, and the reputation of
reviewers.

Keywords: distributed peer review, code review systems, open source software development, post-publication

peer review, reputation assessment, review quality

INTRODUCTION
Scientific publications continue to be the primary mechanism
for disseminating systematically gathered information about the
natural world and for establishing precedence and credit for
this research. In the current atmosphere of highly competitive
and uncertain research funding, publications are instrumental in
determining how resources are distributed, who gets promoted,
and in which directions research advances. This has cultivated
a publish-or-perish mentality where the focus is on maximizing
the number of publications rather than on the validity and repro-
ducibility of research findings, and a decrease in the amount of
information apportioned to each article. Peer review is the pri-
mary means of filtering this rapidly growing literature prior to
publication in an effort to ensure quality and validity.

Currently the typical review process for an article involves a
preliminary screening by a journal editor followed by an anony-
mous and private review by a very small number of individ-
uals (2–5, but often just 2) presumed to have expertise in the

research topic (Figure 1A)1. The editor takes into consideration
the reviewers’ recommendations to either publish, reject, or
request revisions of the article. If published, the public only
sees the final version of the article without any of the reviews
(however, see, BioMed Central). After publication, problems such
as fraud or mistakes are addressed via retraction after disclo-
sure or exposure by countering articles or letters to the editor

1Currently, reviewers are solicited by the editors of journals based on either
names recommended by the authors who submitted the article, the editors’
knowledge of the domain or from an internal journal reviewer database. This
selection process results in a very narrow and biased selection of review-
ers. An alternative way to solicit reviewers is to broadcast an article to a
larger pool of reviewers and to let reviewers choose articles and compo-
nents of the article they want to review. These are ideas that have already
been implemented in scientific publishing. The Frontiers system (fron-
tiersin.org) solicits reviews from a select group of review editors and the Brain
and Behavioral Sciences publication (http://journals.cambridge.org/action/
displayJournal?jid=BBS) solicits commentary from the community.

Frontiers in Computational Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 18 | 1

COMPUTATIONAL NEUROSCIENCE

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2012.00018/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=SatrajitGhosh&UID=17765
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=ArnoKlein&UID=34168
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=K_Millman&UID=2830
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Ghosh et al. Code review and scientific publications

FIGURE 1 | (A) The top flowchart illustrates a standard scientific article
review process before acceptance or rejection. (B) The bottom flowchart
illustrates our model of open scientific review, from inception of an idea
through its execution and documentation. This article focuses on the
review of the documentation, and in particular on post-publication review.
The numbers in the figure refer to the five solutions we propose to improve
the review process: (1) distribute reviews to many reviewers, (2) provide
reviewers materials and methods to perform comprehensive evaluation, (3)
acknowledge reviewers, (4) quantify review quality, and (5) expedite the
post-publication review process and allow it to continue indefinitely.

(e.g., Chang et al., 2006; http://retractionwatch.wordpress.com).
Through peer review and the scientific community’s history of
policing itself, scientists hope to achieve a self-correcting pro-
cess. However, this self-correction is currently impeded by slow,
private, and incremental reviews without objective standards
and limited post-publication feedback. Without a transparent
and objective framework, journals have gained a hierarchical
stature, with some attracting the best authors, articles, and
reviewers. These journals have been quantified by impact factors
(Garfield, 1955), and as such, have overtaken the review process
as arbiters of quality and significance of research. With the dif-
ficulty for individual reviewers to review the increasing number

and complexity of articles, and the use of journal impact factors
as proxies for evaluations of individual articles, the integrity of the
review process and, indeed, of science suffers (Smith, 2006; Poschl
and Koop, 2008).

In contrast to peer review of scientific articles, when soft-
ware programmers develop open source software and review
their code, the process is open, collaborative, and interactive, and
engages many participants with varying levels of expertise. There
is a clear process by which comments get addressed and new code
gets integrated into the main project. Since computer programs
are much more structured and objective than prose, it is more
amenable to standardization and, therefore, to review. These code
review systems also take advantage of some of the latest technolo-
gies that have the potential to be used for publication review.
Despite all of these differences, the purpose of code review sys-
tems mirror the purpose of publication review to increase the
clarity, reproducibility, and correctness of contributions.

The most prominent example of a post-publication review
system, arxiv.org, comes from the field of high energy parti-
cle physics. It has transformed the way results are disseminated,
reviewed, and debated. Authors submit articles to arXiv even
before they are submitted or appear in a traditional journal.
Often, discussion and responses take place before the article
appears in print. Interesting findings and the scientific discourse
related to these findings are thus brought to the immediate atten-
tion of the community and the public. This process of rapid, fully
open debate based on the exchange of technical preprints takes
place even for major new results that in other fields would typ-
ically be shrouded in secrecy. A recent example was the open
discussion of the possible discovery of a new particle at Fermilab’s
Tevatron accelerator that did not fit the Standard Model of par-
ticle physics 2. However, this system has been applied to narrow
domains of expertise, does not have a rating mechanism and its
scalability in the context of increasingly interdisciplinary domains
remains untested.

The advent of social networking technology has altered the tra-
ditional mechanisms of discourse, but the ease of adding to online
discussions has also resulted in increasingly redundant and volu-
minous information. Blogs (e.g., polymathprojects.org), social
network sites (e.g., Facebook, Google+) and scientific discussion
forums (e.g., metaoptimize.com, mathoverflow.net, and research-
gate.net) are redefining the technologies that extract, organize,
and prioritize relevant, interesting and constructive information
and criticism. In the scientific world, new discoveries and tech-
nologies make rapid dissemination and continued reappraisal of
research an imperative. However, the scientific establishment has
been slow to adopt these social technologies. The peer review sys-
tem is one area where the scientific community may benefit from
adopting such technologies.

For the publication review process to continue to play a crit-
ical role in science, there are a number of problems that need to
be addressed. In this article, we list five problems and potential
solutions that derive from distributed code review in open source
software development.

2http://arstechnica.com/science/news/2011/05/evidence-for-a-new-particle-
gets-stronger.ars

Frontiers in Computational Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 18 | 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Ghosh et al. Code review and scientific publications

PROBLEMS WITH THE CURRENT PEER-REVIEW PROCESS
REVIEWERS ARE EXPECTED TO HAVE COMPREHENSIVE EXPERTISE
Reviewers are expected to work in isolation, unable to discuss the
content of an article with the authors or other reviewers. When
faced with an article that may be authored by half a dozen or more
experts in their respective disciplines, how could a few reviewers
be expected to have the range of expertise necessary to adequately
understand and gauge the significance (or insignificance) of all
aspects of a given article? Why are the different components of an
article, including the background, experimental design, methods,
analysis of results, and interpretations handed over as a package
to each reviewer, rather than delegated to many experts in each
domain? Realistically, it is common practice for a reviewer to crit-
icize portions of an article that he or she understands, is interested
in, has time to read, and takes issue with, while falling silent on the
rest of the article. This leads an editor to assume these silences are
indicators of tacit approval. The unrealistic expectations placed
on each of the reviewers, coupled with the delayed and sequential
interactions they have with the authors and editors, have made
the review process inefficient.

REVIEWERS DO NOT HAVE SUFFICIENT ACCESS TO METHODS
AND MATERIALS TO EVALUATE A STUDY
The typical review process does not require submission of data or
software associated with an article (Association for Computing
Machinery Transactions on Mathematical Software was an early
exception), and the descriptions provided in methods sections
are often inadequate for replication. This makes it impossible
for a reviewer, if so inclined, to fully evaluate an article’s meth-
ods, data quality, or software, let alone to replicate the results
of the study. Failing to expose the methods, data, and software
underlying a study can lead to needless misdirection and inef-
ficiency, and even loss of scientific credibility (Ioannidis, 2005).
One example is the case of Geoffrey Chang, whose rigorous
and correct experimental work was later retracted due to a soft-
ware bug that undermined the paper’s conclusions (Chang et al.,
2006).

REVIEWERS ARE NEITHER IDENTIFIED NOR ACKNOWLEDGED
Review is currently considered one’s unpaid “duty” to maintain
the standards and credibility of scientific research. There is lit-
tle motivation for potential reviewers to participate in the review
process; some motivation comes from the knowledge gained from
as yet unpublished results. However, the current system does not
acknowledge their services in a manner that could factor into their
evaluations for promotion and funding opportunities. In addi-
tion to acknowledging a reviewer’s contributions for the benefit
of the reviewer, identifying a reviewer has many benefits to sci-
ence and scientific discourse, including transparency of the review
process and proper attribution of ideas.

THERE IS NO MEASURE OF THE QUALITY OF A REVIEW
Currently there is no way to objectively quantify the quality,
strength, impartiality, or expertise of the reviews or reviewers.
Without measures associated with the quality of any portion of
a review, the community is forced to trust the qualitative assess-
ment of the editor and the journal’s impact factor as proxies for

quality. This prevents external scrutiny and makes it impossible
to evaluate or standardize the review process.

REVIEWS TAKE A LOT OF TIME AND ONCE SUBMITTED CANNOT
EVOLVE
A lengthy review process holds up grant submissions, funding of
research programs, and the progress of science itself. And even
after this process, for the vast majority of articles none of the
information (criticism or feedback) generated during the review
is made publicly available (BioMed Central is one counterexam-
ple). Furthermore, after an article has been published, the review
process simply ends even for those who participated, as if the
work and interpretations of the results are sealed in a time cap-
sule. Data, methods, analysis, and interpretations of the results
are all a product of their time and context, and at a later time may
not stand up to scrutiny or may yield new insights.

PROPOSED RE-DESIGN OF THE PEER REVIEW PROCESS
There are notable examples of journals (e.g., Frontiers—
frontiersin.org, BioMedCentral—biomedcentral.com, PLoS
One—plosone.org) that address one or another of the above
problems, but the vast majority of journals do not address any
of the above problems. We propose an open post-publication
review system for scientific publishing that draws on the ideas,
experience, and technologies recently developed to support
community code review in open source software projects.

Figure 1B illustrates this model of open scientific review, from
inception of an idea through its execution and documentation.
The numbers in the figure refer to the five solutions we propose
to improve the review process that addresses each of the prob-
lems listed in the prior section: (1) distribute reviews to many
reviewers, (2) provide reviewers materials and methods to per-
form comprehensive evaluation, (3) acknowledge reviewers, (4)
quantify review quality, and (5) expedite the post-publication
review process and allow it to continue indefinitely. With the con-
tinued inclusion of new comments, the concept of a “publication”
itself gives way to a forum or an evolving dialogue. In this sense,
review can be seen as a form of co-authorship. The end-to-end
review process in Figure 1B would integrate collaborative author-
ing and editing (e.g., Google docs; annotum.org—Leubsdorf,
2011), reviewing and discussion of scientific ideas and investiga-
tions. This article focuses on the review of the documentation,
and in particular on post-publication review.

In this section, we describe our proposed solutions, then high-
light the relevance of current code review systems in addressing
the problem and finally describe enhancements to the current
systems to support our proposed solution.

DISTRIBUTE REVIEWS TO MANY REVIEWERS
Reviewers would no longer work in isolation or necessarily in
anonymity, benefiting from direct, dynamic, and interactive com-
munication with the authors and the world of potential reviewers.
This would help reviewers to clarify points, resolve ambiguities,
receive open collegial advice, attract feedback from people well
outside of the authors’ disciplines, and situate the discussion in
the larger scientific community. Reviewers could also focus on
portions of the article that reflect their expertise and interests;

Frontiers in Computational Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 18 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Ghosh et al. Code review and scientific publications

but they would, of course, have the opportunity to provide feed-
back on an entire article. Furthermore, they would not be held
responsible for every aspect of the article, leaving portions that
they are not qualified or interested in for others and their silence
would not be mistaken for tacit approval. This will lessen bur-
den placed on any one reviewer, enabling a more comprehensive,
timely and scientifically rigorous review. This would also expose
which portions of an article were not reviewed.

In case there is a fear of disclosure prior to publication3, of an
overwhelming amount of participation in a review where anyone
could be a reviewer, or of a lack of consensus across reviewers,
there are at least three types of alternatives available. One would
be to assign certain reviewers as moderators for different compo-
nents of the article, to lessen the burden on the editor. A second
would be to restrict the number of reviewers to those solicited
from a pool of experts. This would still improve scientific rigor
while lessening the burden on each individual reviewer, as long
as they review specific components of the article they are knowl-
edgeable about. A third would be to conduct a preliminary review
consisting of a limited, possibly anonymous and expedited review
process prior to the full and open review as we propose. At dif-
ferent stages of such a tiered review, reviewers might be assigned
different roles, such as mediator, editor, or commenter.

Relevance of code review systems
In the same manner that articles are submitted for review and
publication in journals, code in collaborative software projects is
submitted for review and integration into a codebase. In both
scientific research and in complex software projects, specialists
focus on specific components of the problem. However, unlike
scientific review, code review is not limited to specialists. When
multiple pairs of eyes look at code, the code improves, bugs are
caught, and all participants are encouraged to write better code.
Existing code review systems such as Gerrit (http://code.google.
com/p/gerrit) as well as the collaborative development and code
review functionality provided by hosting services like GitHub
(http://github.com) are built for a distributed review process and
provide reviewers the ability to interact, modify, annotate and
discuss the contents of submitted code changes.

Indeed, the purpose of these systems mirror the purpose
of scientific review—to increase the clarity, reproducibility and
correctness of works that enter the canon. While no journals
provide a platform for performing such open and distributed
review, the Frontiers journals do provide an interactive, but non-
public discussion forum for authors and reviewers to improve
the quality of a submission after an initial closed review. In
GitHub, code is available for everyone to view and for registered
GitHub members to comment on and report issues on through
an interactive web interface. The interface combines a discus-
sion forum that allows inserting comments on any given line of
code together with a mechanism for accepting new updates to
the code that fix unresolved issues or address reviewer comments
(an example is shown in Appendix Figure A1). These interactive

3To allay concerns over worldwide pre-publication exposure, precedence
could be documented by submission and revision timestamps acknowledging
who performed the research.

discussions become part of a permanent and open log of
the project.

Enhancing code review systems for article review
These existing code review systems, while suitable for code, have
certain drawbacks for reviewing scientific articles. For exam-
ple, the GitHub interface allows line-by-line commenting which
reflects the structure of code. But commenting on an article’s text
should follow the loose structure of prose with comments refer-
ring to multiple words, phrases, sentences or paragraphs rather
than whole lines. These comments should also be able to refer to
different parts of an article. For example, a reviewer might come
across a sentence in the discussion section of an article that con-
tradicts two sentences in different parts of the results section. The
interface should allow reviewers to expose contradictions, unsub-
stantiated assumptions, and other inconsistencies across the body
of an article or across others’ comments on the article. This sys-
tem can be used in both a traditional review-and-revise model as
well as a collaborative Wikipedia-style revision model that allows
collaborative revision of the article. Since metrics keep track of
both quality and quantity of contributions (discussed later), such
an approach encourages revisions to an article that improve its
scientific validity instead of a new article. A mock-up of such a
review system is shown in Figure 2.

PROVIDE REVIEWERS MATERIALS AND METHODS TO PERFORM
COMPREHENSIVE EVALUATION
In a wide-scale, open review, descriptions of experimental designs
and methods would come under greater scrutiny by people from
different fields using different nomenclature, leading to greater
clarity and cross-fertilization of ideas. Software and data qual-
ity would also come under greater scrutiny by people interested
in their use for unexpected applications, pressuring authors to
make them available for review as well, and potentially leading
to collaborations, which would not be possible in a closed review
process.

We propose that data and software (including scripts contain-
ing parameters) be submitted together with the article. This not
only facilitates transparency for all readers including reviewers
but also facilitates reproducibility and encourages method reuse.
Furthermore, several journals (e.g., Science—sciencemag.org,
Proceedings of the National Academy of Sciences—pnas.org) are
now mandating availability of all components necessary to repro-
duce the results (Drummond, 2009) of a study as part of article
submission. The journal Biostatistics marks papers as providing
code [C], data [D], or both [R] (Peng, 2009).

While rerunning an entire study’s analysis might not currently
be feasible as part of a review, simply exposing code can often
help reviewers follow what was done and provides the possi-
bility to reproduce the results in the future. In the long run,
virtual machines or servers may indeed allow standardization
of analysis environments and replication of analyses for every
publication. Furthermore, including data with an article enables
readers and reviewers to not only evaluate the quality and rel-
evance of the data used by the authors of a study, but also
to determine if the results generalize to other data. Providing
the data necessary to reproduce the findings allows reviewers to

Frontiers in Computational Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 18 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Ghosh et al. Code review and scientific publications

FIGURE 2 | This schematic illustrates color-coded ratings assigned to

text in an article or reviewer comment. Such a visualization could help
authors, reviewers, and editors quickly assess how much of and how
favorably an article has been reviewed, and could be useful in a publishing
model where an article is considered published after it garners a minimum
rating over an appreciable amount of its content. (A) A reviewer selects some
text which launches a colorbar for rating the text and a comment box, and (B)

gives a low rating (red) for the text and adds a negative comment (a thumbs
down appears in the comment box to reflect the rating). (C) Another reviewer
selects the same block of text (which launches a comment box), then rates
the text and some of the other comments. A red or blue background

indicates a cumulative negative or positive rating. In this example, the
positive ratings outweigh that of the initial negative comment, turning the
text from red to blue. Each reviewer’s vote can be weighted by the ratings
received by that reviewer’s past contributions to peer review. (D) A reviewer
selects the bottom-most comment to leave a comment about it. (E) The
middle row shows how the ratings of an article’s text can change over time.
(F) The bottom row represents a dashboard summary of the ratings assigned
to an article, including reviewer activity, coverage, and variation of opinion
regarding the article. General comments can also be added for the article as a
whole via the dashboard. The dashboard also indicates whether code, data
and/or a virtual machine are available for reproducing the results of the article.

potentially drill down through the analysis steps—for example,
to look at data from each preprocessing stage of an image analysis
pipeline.

Relevance of code review systems
While certain journals (e.g., PLoS One, Insight Journal) require
code to be submitted for any article describing software or

algorithm development, most journals do not require submis-
sion of relevant software or data. Currently, it is considered
adequate for article reviewers to simply read a submitted arti-
cle. However, code reviewers must not only be able to read the
code, they must also see the output of running the code. To do
this they require access to relevant data or to automated test-
ing results. Code review systems are not meant to store data, but

Frontiers in Computational Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 18 | 5

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Ghosh et al. Code review and scientific publications

complement such information by storing the complete history of
the code through software version control systems such as Git
(git-scm.com) and Mercurial (mercurial.selenic.com). In addi-
tion to providing access to this history, these systems also provide
other pertinent details such as problems, their status (whether
fixed or not), timestamps and other enhancements. Furthermore,
during software development, specific versions of the software
or particular files are tagged to reflect milestones during devel-
opment. Automated testing results and detailed project histories
provide contextual information to assist reviewers when asked to
comment on submitted code.

Enhancing code review systems for article review
As stated earlier, code review systems are built for code, not for
data. Code review systems should be coupled with data storage
systems to enable querying and accessing code and data relevant
to the review.

ACKNOWLEDGE REVIEWERS.
When reviewers are given the opportunity to provide feedback
regarding just the areas they are interested in, the review process
becomes much more enjoyable. But there are additional factors
afforded by opening the review process that will motivate reviewer
participation. First, the review process becomes the dialogue of
science, and anyone who engages in that dialogue gets heard.
Second, it transforms the review process from one of secrecy to
one of engaging social discourse. Third, an open review process
makes it possible to quantitatively assess reviewer contributions,
which could lead to assessments for promotions and grants. To
acknowledge reviewers, their names (e.g., Frontiers) and con-
tributions (e.g., BioMed Central) can be immediately associated
with a publication, and measures of review quality can eventu-
ally become associated with the reviewer based on community
feedback on the reviews.

Relevance of code review systems
In software development, registered reviewers are acknowledged
implicitly by having their names associated with comments
related to a code review. Systems like Geritt and GitHub explicitly
list the reviewers participating in the review process. An example
from Geritt is shown in supplementary Figure A2.

In addition, certain social coding websites (e.g., ohloh.net)
analyze contributions of developers to various projects and assign

“kudos” to indicate the involvement of developers. Figure 3
shows an example of quantifying contributions over time. Neither
of these measures necessarily reflect the quality of the contribu-
tions, however.

Enhancing code review systems for article review
The criterion for accepting code is based on the functionality of
the final code rather than the quality of reviews. As such, code
review systems typically do not have a mechanism to rate reviewer
contributions. We propose that code review systems adapted for
article review include quantitative assessment of the quality of
contributions of reviewers. This would include a weighted combi-
nation of the number (Figure 3), frequency (Figure 4), and peer
ratings (Figure 2) of reviewer contributions. Reviewers need not
be the only ones to have an impact on other reviewers’ standing.
The authors themselves could evaluate the reviewers by assign-
ing impact ratings to the reviews or segments of the reviews.
These ratings can be entered into a reviewer database, referenced
in the future by editors and used to assess contributions to peer
review in the context of academic promotion. We acknowledge
some reviewers might be discouraged by this idea, thus it may be
optional to participate.

QUANTIFY REVIEW QUALITY
Although certain journals hold a limited discussion before a paper
is accepted, it is still behind closed doors and limited to the
editor, the authors, and a small set of reviewers. An open and
recorded review ensures that the role and importance of review-
ers and information generated during the review would be shared
and acknowledged. The quantity and quality of this informa-
tion can be used to quantitatively assess the importance of a
submitted article. Such quantification could lead to an objective
standardization of review.

There exist metrics for quantifying the importance of an
author, article, or journal (Hirsch, 2005; Bollen et al., 2009), but
we know of no metric used in either article review or in code
review for quantifying the quality, impact, or importance of a
review, of a comment on a review, or of any portions thereof.
Metrics have many uses in this context, including constructing a
dynamic assessment of individuals or ideas for use in promotion
and allocation of funds and resources. Metrics also make it pos-
sible to mine reviews and comment histories to study the process
of scientific publication.

FIGURE 3 | Example of a metric for quantifying contributions

over time. This is a screenshot of a ribbon chart visualization in GitHub
of the history of code additions to a project, where each color

indicates an individual contributor and the width of a colored ribbon
represents that individual’s “impact” or contributions during a
week-long period.

Frontiers in Computational Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 18 | 6

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Ghosh et al. Code review and scientific publications

FIGURE 4 | Example of a metric for quantifying contributor

frequency. Quotes over Time (www.qovert.info) tracked the
top-quoted people from Reuters Alertnet News on a range of topics, and

presents their quotes on a timeline, where color denotes the identity of a
speaker and bar height the number of times the speaker was quoted on a
given day.

Relevance of code review systems
In general, code review systems use a discussion mechanism,
where a code change is moderated through an iterative pro-
cess. In the context of code review, there is often an objective
criterion—the code performs as expected and is written using
proper style and documentation. Once these standards are met,
the code is accepted into the main project. The discussion mech-
anism facilitates this process. Current code review systems do not
include quantitative assessment of the quality of reviews or the
contributions of reviewers.

Enhancing code review systems for article review
The classic “Like” tally used to indicate appreciation of a con-
tribution in Digg, Facebook, etc., is the most obvious measure
assigned by a community, but it is simplistic and vague. In addi-
tion to slow and direct measures of impact such as the number of
times an article is cited, there are faster, indirect behavioral mea-
sures of interest as a proxy for impact that can be derived from
clickstream data, web usage, and number of article downloads,
but these measures indicate the popularity but not necessarily
quality of articles or reviews.

We propose a review system (Figure 2) with a “reputation”
assessment mechanism similar to the one used in discussion
forums such as stackoverflow.net or mathoverflow.net in order to
quantify the quality of reviews. These sites provide a web interface
for soliciting responses to questions on topics related to either
computer programming or mathematics, respectively (supple-
mentary Figure A3). The web interface allows registered members
to post or respond to a question, to comment on a response, and
to vote on the quality or importance of a question, of a response,
or of a comment. In our proposed review system, such a vote
tally would be associated with identified, registered reviewers, and
would be only one of several measures of the quality of reviews
(and reviews of reviews) and reviewers. Reviews can be ranked
by importance (weighted average of ratings), opinion difference
(variance of ratings) or interest (number of ratings). Reviewer
“reputation” could be computed from the ratings assigned by
peers to their articles and reviews.

It would also be possible to aggregate the measures above to
assess the impact or importance of, for example, collaborators,

coauthors, institutions, or different areas of multidisciplinary
research. As simple examples, one could add the number of con-
tributions by two or more coders in Figure 3 or the number of
quotations by two or more individuals in Figure 4. This could be
useful in evaluating a statement in an article in the following sce-
nario. Half of a pool of reviewers A agrees with the statement and
the other half B disagrees with the statement. Deciding in favor
of group A would be reasonable if the aggregate metric evaluat-
ing A’s expertise on the statement’s topic is higher than that of
B. However, such decisions will only be possible once this system
has acquired a sufficient amount of data about group A and B’s
expertise on reviewing this topic, where expertise is related to the
“reputation” assessment mentioned above.

EXPEDITE REVIEWS AND ALLOW FOR CONTINUED REVIEW.
Once open and online, reviews can be dynamic, interactive, and
conducted in real time (e.g., Frontiers). And with the participa-
tion of many reviewers, they can choose to review only those arti-
cles and components of those articles that match their expertise
and interests. Not only would these two changes make the review
process more enjoyable, but they would expedite the review pro-
cess. And there is no reason for a review process to end. Under
post-publication review, the article can continue as a living docu-
ment, where the dialogue can evolve and flourish (see Figure 5),
and references to different articles could be supplemented with
references to the comments about these articles, perhaps as Digital
Object Identifiers (http://www.doi.org), firmly establishing these
communications within the dialogue and provenance of science,
where science serves not just as a method or philosophy, but as a
social endeavor. This could make scientific review and science a
more welcoming community.

Relevance of code review systems
Code review requires participation from people with differing
degrees of expertise and knowledge of the project. This leads to
higher quality of the code as well as faster development than
individual programmers could normally contribute. These con-
tributions can also be made well beyond the initial code review
allowing for bugs to be detected and improvements to be made
by new contributors.

Frontiers in Computational Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 18 | 7

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Ghosh et al. Code review and scientific publications

FIGURE 5 | A visualization of the edit history of the interactions of

multiple authors of a Wikipedia entry (“Evolution”). The text is in the
right column and the ribbon chart in the center represents the text edits over

time, where each color indicates an individual contributor
(http://www.research.ibm.com/visual/projects/history_flow/gallery.htm,
Víegas et al., 2004).

Enhancing code review systems for article review
Current code review systems have components for expedited
and continued review. Where they could stand to be improved
is in their visual interfaces, to make them more intuitive for a
non-programmer to quickly navigate (Figure 2), and to enable a
temporal view of the evolutionary history of an arbitrary section
of text, analogous to Figure 5 (except as an interactive tool). As
illustrated in Figure 1B and mentioned in the Discussion section
below, co-authorship and review can exist along a continuum,
where reviewers could themselves edit authors’ text in the style
of a wiki (e.g., www.wikipedia.org) and the authors could act as
curators of their work (as in www.scholarpedia.org).

DISCUSSION
The current review process is extremely complex, reflecting the
demands of academia and its social context. When one reviews
a paper, there are considerations of content, relevance, presen-
tation, validity, as well as readership. Our vision of the future
of scientific review aims to adopt practices well-known in other

fields to reliably improve the review process, and to reduce
bias, improve the quality, openness and completeness of scien-
tific communications, as well as increase the reproducibility and
robustness of results. Specifically, we see hope in the model of
review and communication used by open source software devel-
opers, which is open, collaborative, and interactive, engaging
many participants with varying levels of expertise.

In this article, we raised five critical problems with the current
process for reviewing scientific articles: (1) reviewers are expected
to have comprehensive expertise; (2) reviewers do not have suf-
ficient access to methods and materials to evaluate a study; (3)
reviewers are neither identified nor acknowledged; (4) there is no
measure of the quality of a review; and (5) reviews take a lot of
time, and once submitted cannot evolve. We argue that we can
address all of these problems via an open post-publication review
process that engages many reviewers, provides them with the data
and software used in an article, and acknowledges and quanti-
fies the quality of their contributions. In this article, we described
this process (Figure 1B) together with a quantitative commenting

Frontiers in Computational Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 18 | 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Ghosh et al. Code review and scientific publications

mechanism (Figure 2). We anticipate that such a system will
speed up the review process significantly through simultaneous,
distributed, and interactive review, an intuitive interface for com-
menting and visual feedback about the quality and coverage of
the reviews of an article. The proposed framework enables mea-
surement of the significance of an article, the quality of reviews
and the reputation of a reviewer. Furthermore, since this system
captures the entire history of review activity, one can refer to or
cite any stage of this evolving article for the purpose of capturing
the ideas and concepts embodied at that stage or quantifying their
significance over time.

Despite the advantages of our proposed open review process
and the promise offered by existing solutions in other domains,
adopting the process will require a change of culture that many
researchers may resist. In particular, there is a common sentiment
that reviewer anonymity is advantageous, that it: protects social-
professional relationships from anger aroused by criticism, allows
for greater honesty since there is no concern about repercussions,
and increases participation. However, in the current system the
combination of anonymity, lack of accountability, and access to
author material creates the potential for serious problems such
as the use of the authors’ ideas without acknowledgment of their
source. Under the proposed system, people who implement the
system will have the option to consider which components remain
anonymous but reviewers would be tracked, potentially allevi-
ating this issue. Furthermore, the open post-publication review
system prevents any single person from blocking a publication or
giving it a negative rating. The transparency of such a system will
also reduce any single individual or group’s ability to game the
system. To further curtail the selfish tendencies of some reviewers,
comments they make about the text would themselves be subject
to review by others, and it would be in their own self-interest to
maintain a high rating in their peer community.

In the long run, the review process should not be limited to
publication, but should be engaged throughout the process of
research, from inception through planning, execution, and doc-
umentation (Butler, 2005; see Figure 1B). Open review at every
stage of a scientific study would facilitate collaborative research

and mirror open source project development closely. Such a pro-
cess would also ensure that optimal decisions are taken at every
stage in the evolution of a project, thus improving the quality of
any scientific investigation. We envision a system where the dis-
tinction between authors and reviewers is replaced simply by a
quantitative measure of contribution and scientific impact, espe-
cially as reviewers can act as collaborators who play a critical role
in improving the quality and, therefore, the impact of scientific
work. Where there is significant concern about exposing ideas
before an article is written, reviewers could be drawn from col-
laborators, funding agencies, focus groups, or within the authors’
institutions or laboratories, rather than the general public. In such
scenarios either the review process or the identity of reviewers
or both could be kept hidden but tracked for the purposes of
“reputation assessment” (see above) and accountability.

Changing the review process in ways outlined in this arti-
cle should lead to better science by turning each article into a
public forum for scientific dialogue and debate. The proposed
discussion-based environment will track and quantify impact of
not only the original article, but of the comments made dur-
ing the ensuing dialogue, helping readers to better filter, find,
and follow this information while quantitatively acknowledging
author and reviewer contributions and their quality. Our pro-
posed re-design of the current peer review system focuses on
post-publication review, and incorporates ideas from code review
systems associated with open source software development. Such
a system should enable a less biased, comprehensive, and efficient
review of scientific work while ensuring a continued, evolving,
public dialogue.

ACKNOWLEDGMENTS
We would like to thank Matthew Goodman, Yaroslav Halchenko,
Barrett Klein, Kim Lumbard, Fernando Perez, Jean-Baptiste
Poline, Elizabeth Sublette, and the Frontiers reviewers for their
helpful comments. Arno Klein would like to thank Deepanjana
and Ellora, as well as the NIMH for their support via R01 grant
MH084029. Brian Avants acknowledges ARRA funding from the
National Library of Medicine via award HHSN276201000492p.

REFERENCES
Bollen, J., van de Sompel, H., Hagberg,

A., and Chute, R. (2009). A
principal component analysis of
39 scientific impact measures.
PLoS One 4:e6022. doi: 10.1371/
journal.pone.0006022

Butler, D. (2005). Electronic notebooks:
a new leaf. Nature 436, 20–21.

Chang, G., Roth, C. B., Reyes, C. L.,
Pornillos, O., Chen, Y.-J., and Chen,
A. P. (2006). Retraction. Science 314,
1875.

Drummond, C. (2009). “Replicability
is not reproducibility: nor is it
good science,” in Proceedings of
the Evaluation Methods for Machine
Learning Workshop at the 26th ICML.
(Montreal, Canada). Citeseer.

Garfield, E. (1955). Citation indexes
to science: a new dimension in

documentation through asso-
ciation of ideas. Science 122,
108–111.

Hirsch, J. (2005). An index to quantify
an individual’s scientific research
output. Proc. Natl. Acad. Sci. U.S.A.
102, 16569.

Ioannidis, J. (2005). Why most
published research findings are
false. PLoS Med. 2:e124. doi:
10.1371/journal.pmed.0020124

Leubsdorf, C. Jr. (2011). “Annotum:
an open-source authoring and
publishing platform based on
WordPress,” in Proceedings of the
Journal Article Tag Suite Conference.
(Bethesda, MD: National Center for
Biotechnology Information US).

Peng, R. D. (2009). Reproducible
research and Biostatistics.
Biostatistics 10, 405–408.

Poschl, U., and Koop, T. (2008).
Interactive open access publishing
and collaborative peer review for
improved scientific communication
and quality assurance. Inform. Serv.
Use 28, 105–107.

Smith, R. (2006). Peer review: a flawed
process at the heart of science and
journals. J. R. Soc. Med. 99, 178.

Víegas, F., Wattenberg, M., and Dave,
K. (2004). “Studying coopera-
tion and conflict between authors
with history flow visualizations,”
in Proceedings of the SIGCHI
Conference on Human Factors in
Computing Systems, (New York, NY,
USA: ACM Press), 575–582.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any

commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 06 June 2011; accepted: 16
March 2012; published online: April
2012.
Citation: Ghosh SS, Klein A, Avants
B and Millman KJ (2012) Learning
from open source software projects
to improve scientific review. Front.
Comput. Neurosci. 6:18. doi: 10.3389/
fncom.2012.00018
Copyright © 2012 Ghosh, Klein, Avants
and Millman. This is an open-access
article distributed under the terms of
the Creative Commons Attribution Non
Commercial License, which permits non-
commercial use, distribution, and repro-
duction in other forums, provided the
original authors and source are credited.

Frontiers in Computational Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 18 | 9

18

http://dx.doi.org/10.3389/fncom.2012.00018
http://dx.doi.org/10.3389/fncom.2012.00018
http://dx.doi.org/10.3389/fncom.2012.00018
http://dx.doi.org/10.3389/fncom.2012.00018
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Ghosh et al. Code review and scientific publications

APPENDIX

FIGURE A1 | A snapshot from the web interface of a request to merge code into the NiPyPE (nipy.org/nipype) project on GitHub. This demonstrates:
(A) part of a discussion thread, (B) inline commenting of code (for line 98), and (C) code updates (commits) taking place as a function of the discussion.

Frontiers in Computational Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 18 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Ghosh et al. Code review and scientific publications

FIGURE A2 | A web page snippet from the Geritt code review system used for Insight Toolkit (itk.org). This explicitly lists the reviewers who are
participating in the review.

FIGURE A3 | A response to a question on stackoverflow.net. The top left
number (170) indicates the number of positive votes this response received.
There are comments to the response itself and the numbers next to the

comments reflect the number of positive votes for each comment (e.g., 220
in this example). (http://meta.stackoverflow.com/questions/76251/how-do-
suggested-edits-work).

Frontiers in Computational Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 18 | 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Learning from open source software projects to improve scientific review
	Introduction
	Problems with the Current Peer-Review Process
	Reviewers are Expected to have Comprehensive Expertise
	Reviewers do not have Sufficient Access to Methods and Materials to Evaluate a Study
	Reviewers are Neither Identified nor Acknowledged
	There is no Measure of the Quality of a Review
	Reviews take a lot of Time and Once Submitted Cannot Evolve

	Proposed Re-Design of the Peer Review Process
	Distribute Reviews to Many Reviewers
	Relevance of code review systems
	Enhancing code review systems for article review

	Provide Reviewers Materials and Methods to Perform Comprehensive Evaluation
	Relevance of code review systems
	Enhancing code review systems for article review

	Acknowledge Reviewers.
	Relevance of code review systems
	Enhancing code review systems for article review

	Quantify Review Quality
	Relevance of code review systems
	Enhancing code review systems for article review

	Expedite Reviews and Allow for Continued Review.
	Relevance of code review systems
	Enhancing code review systems for article review

	Discussion
	Acknowledgments
	References
	Appendix

